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Abstract

We study the empirical performance of Primal-Dual Hybrid Gradient (PDHG) method on different class of
optimization problems arising in machine learning and other areas. We demonstrate numerical superiority of
PDHG in various scenarios. Besides, we compare the performance of PDHG with other gradient type methods.
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1 Introduction

Primal-dual methods are widely used for solving optimization problems with constraints. Encoding such
nonsmooth constrains we replace original problem with the problem of finding saddle points of the Lagrangian.
More precisely we consider the problem of the form

min
x∈X

[
f(x) + f2(x) + g�g2(Ax)

]
. (1)

Here f and g are convex functions for which the proximal operators are easily computable; A : X → Y is a linear
operator. We assume that we have an access to g∗ and g∗2 Fenchel-Legendre conjugates of g and g2 respectively.
Finally, f2 and g∗2 are convex functions with Lf and Lg∗ Lipschitz gradients. As it was stated before, we consider
primal-dual methods which are searching for a saddle point of of the Lagrangian, which has the following form

L(x, y) = f(x) + f2(x) + 〈Ax, y〉 − g∗(y)− g∗2(y). (2)

The point (x∗, y∗) is called a saddle point for the Lagrangian (2) if it satisfies

L(x, y∗) ≤ L(x∗, y∗) ≤ L(x∗, y) ∀x ∈ X , y ∈ Y. (3)

We assume throughout the paper that at least one saddle point exists. It can be guaranteed using Slater’s
constraint qualification condition.

There exist different ways to measure the convergence of primal-dual algorithms: duality gap, Karush-Kuhn-
Tacker (KKT) error, metrical subregularity [Rockafellar and Wets, 1998], smoothed gap [Tran-Dinh et al., 2018].
Recently Quadratic Error Bound has been introduced in [Fercoq, 2021] which properly reflect the behaviour of
PDHG. This regularity assumption holds for a wide range of problems such as strongly convex-concave problem
or linear programming.

2 Preliminaries

In this section we introduce necessary definitions and notation which will be used throughout the paper.

2.1 Notation

We denote X the primal space, Y the dual space. The proximal operator of a function f is given by proxf (x′) =

arg minx′
[
f(x′) + 1

2 ‖x− x
′‖2
]
. We will use the indicator function ιC of a convex set C which is defined as

follows

ιC :=

{
0 if x ∈ C
+∞ if x /∈ C.

Besides, Fenchel-Legendre conjugate f∗ of a function f is defined by

f∗(y) = sup
x∈X

[〈x, y〉 − f(x)] .

2.2 Definitions

First we define the epigraph of a function f .

Definition 2.1. Let f : X → R ∪ {+∞}. The epigraph of f , denoted by epi f , is the subset of X ×R defined by

epi f = {(x, t) ∈ X × R : t ≥ f(x)}.

Knowing what the epigraph is, we can define the definition of convex function.
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Definition 2.2. A function f : X → R ∪ {+∞} is convex if its epigraph is a convex set.

More restricted class of convex functions is a class of so called strongly-convex functions.

Definition 2.3. A function f : X → R ∪ {+∞} is µ-strongly convex if f − µ
2‖x‖

2 is convex.

Now we define what strongly convex-concave Lagrangian function means.

Definition 2.4. The Lagrangian function is µ-strongly convex-concave, if x 7→ L(x, y) is µ-strongly convex for
all y, and y 7→ −L(x, y) is µ-strongly convex for all x.

Moreover, we will work with L-smooth functions.

Definition 2.5. Let f : X → R∪{+∞} is L-smooth, if it is continuously differentiable and ‖∇f(x)−∇f(x′)‖ ≤
L ‖x− x′‖ for all x, x′.

3 Brief description of existing methods

Now we describe the methods we will compare later in numerical experiments.

3.1 Primal-Dual Hybrid Gradient

We start with Primal-Dual Hybrid Gradient (PDHG) method which is defined by Algorithm 1. This algorithm
was designed to find a saddle point of the Lagrangian (2) (see [Fercoq, 2021] for more detailed description
and convergence theory of the method under different optimality measures). Quadratic Error Bound (QEB)
was introduced in [Fercoq, 2021] which unifies existing optimilaty measures for PDHG analysis like strong
convexity [Chambolle and Pock, 2011] and metrical subregularity [Liang et al., 2016]. [Fercoq, 2021] shows linear
convergence of PDHG under Quadratic Error Bound regularity condition.

Algorithm 1 Primal-Dual Hybrid Gradient (PDHG)
1: Parameters: stepsizes τ, σ
2: Initialization: x0 ∈ X , y0 ∈ Y
3: for k = 0, 1, 2, . . . ,K do
4: x̄k+1 = proxτf

(
xk − τ∇f2(xk)− τA>yk

)
5: ȳk+1 = proxσg∗ (yk − σ∇f2(yk) + σAx̄k+1)

6: xk+1 = x̄k+1 − τA>(ȳk+1 − yk)
7: yk+1 = ȳk+1

8: end for
9: return (xK , yK)

3.2 Restarted Averaged Primal-Dual Hybrid Gradient

One of the popular techniques to make the performance of a certain method better is to average all iterates and
issue this mean as the output of averaged method. This technique could be applied on PDHG which lead to
Averaged PDHG (Algorithm 2). [Fercoq, 2021] suggests to restart APDHG to get even better performance (see
Algorithm 3). Under certain assumptions (for example, Quadratic Error Bound) restarted ADPHG coverges
linearly (see Proposition 13 from [Fercoq, 2021]).
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Algorithm 2 Averaged Primal-Dual Hybrid Gradient (APDHG)
1: Parameters: stepsizes τ, σ
2: Initialization: x0 ∈ X , y0 ∈ Y
3: for k = 0, 1, 2, . . . ,K − 1 do
4: x̄k+1 = proxτf

(
xk − τ∇f2(xk)− τA>yk

)
5: ȳk+1 = proxσg∗ (yk − σ∇f2(yk) + σAx̄k+1)

6: xk+1 = x̄k+1 − τA>(ȳk+1 − yk)
7: yk+1 = ȳk+1

8: end for

9: x̃K = 1
K

K−1∑
l=0

x̄l+1 ỹK = 1
K

K−1∑
l=0

ȳl+1

10: return (x̃K , ỹK)

Algorithm 3 restarted Averaged Primal-Dual Hybrid Gradient (rAPDHG)
1: Parameters: stepsizes τ, βk, t0 ∈ R, integer period K
2: Initialization: x0 ∈ X , y0 ∈ Y
3: for t = 0, 1, 2, . . . , T − 1 do
4: x(t+1)K = APDHG(xtK ,K) run APDHG for K iterations starting from xtK

5: end for
6: return xTK

3.3 FISTA and its extensions

Next, we consider Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [Beck and Teboulle, 2009]. This
method was designed to solve problems of the form (so called composite problem)

min
x∈X

[
f(x) + g(x)

]
,

where g is convex l.s.c. function with easily computable proximal operator, and f is a convex function with
Lipschitz gradient. [Beck and Teboulle, 2009] shows optimal O( 1

k2
) convergence of FISTA. Later [Fercoq and Qu,

2019] analyses restarted version of FISTA (rFISTA) and proves optimal linear convergence. Besides, [Chambolle
and Pock, 2016] considers strongly convex case of the composite problem, and proves optimal linear convergence
of FISTA-PC (modification of FISTA for strongly convex composite problem). However, we would like to note
that rFISTA is provably works for more wide class of problems satisfying QEB. All three methods are presented
by Algorithms 4 and 5. For FISTA-PC we use constants µf , µg for strong convexity parameters of f and g
respectively.

We would like to point out that FISTA and restarted FISTA provably converge for much wider class of
functions (satisfying Quadratic Error Bound) than FISTA-PC that converges only in strongly convex case.
Besides, in practice it is much difficult to estimate strong convexity parameter than the Lipschitz constant of the
gradient. Thus it could be complicated to find best parameters for appropriate performance of FISTA-PC rather
for rFISTA.

3.4 Primal-dual method with random extrapolation and coordinate descent

In this section we investigate Primal-dual method with random extrapolation and coordinate descent (PURE-
CD) [Alacaoglu et al., 2020]. This method was created to solve problems of the form

min
x∈X

[
f(x) + g(x) + h(Ax)

]
,
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Algorithm 4 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) and FISTA-PC
1: Parameters: stepsizes τ, βk, t0 ∈ R, q = τµ/1+τµg

2: Initialization: x0 = x−1 ∈ X
3: for k = 0, 1, 2, . . . ,K − 1 do
4: yk = xk + βk (xk − xk−1)
5: xk+1 = proxτg (yk − τ∇f(yk))

6: tk+1 =
1+
√

1+4t2k
2 , βk+1 = tk−1

tk+1
FISTA update

7: tk+1 =
1−qt2k+

√
(1−qt2k)2+4t2k
2 , βk+1 = tk−1

tk+1

1+τµg−tk+1τµ
1−τµf FISTA-PC update

8: end for
9: return xK

Algorithm 5 restarted Fast Iterative Shrinkage-Thresholding Algorithm (rFISTA)
1: Parameters: stepsizes τ, βk, t0 ∈ R, integer period K
2: Initialization: x0 = x−1 ∈ X
3: for t = 0, 1, 2, . . . , T − 1 do
4: x(t+1)K = FISTA(xtK ,K) run FISTA for K iterations starting from xtK

5: end for
6: return xTK

where f, g : X → R ∪ {+∞} and h : Y → R ∪ {+∞} are proper, lower semicontinuous, convex functions,
A : X → Y is a linear operator. We assume that Euclidean spaces X and Y can be represented as X =

∏n
i=1Xi

and Y =
∏m
j=1 Yj . In the simplest case, when X = Rn and Y = Rm, this is obvouisly true. Moreover, f

is assumed to have coordinatewise Lipschitz continuous gradients and g, h admit easily computable proximal
operators. PURE-CD as PDHG works in X × Y. The pseudocode of PURE-CD is represented in Algorithm 6.

In this section we use additional notation. We consider the proximal operator of a function g with respect to
positive semidefinite matrix V

proxV,g(x) = arg min
x′

[
g(x′) +

1

2

∥∥x′ − x∥∥2

V −1

]
.

Here ‖u‖A is defined as follows
‖u‖A =

√
〈Au, u〉,

where A is a positive definite matrix. In case of diagonal matrix V each diagonal entire of V is used as a stepsize
for corresponding coordinate. Moreover, we are required to define the following notation

J(i) = {j ∈ [m] : Aji 6= 0}.

The Lagrangian function of this problem has the form

L(x, y) = f(x) + g(x) + 〈Ax, y〉 − h∗(y).

4 Optimization problems

4.1 Ridge regression

The first problem we consider is Ridge regression. The problem has the following form

min
x∈X

[
1

2
‖Ax− b‖2 +

λ

2
‖x‖2

]
,
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Algorithm 6 Primal-Dual method with Random Extrapolation and Coordinate Descent (PURE-CD)
1: Parameters: Diagonal matrices θ, τ, σ > 0
2: Initialization: x0 ∈ X , y0 ∈ Y
3: for k = 0, 1, 2, ...K − 1 do
4: ȳk+1 = proxσ,h∗ (yk + σAxk)

5: x̄k+1 = proxτ,g
(
xk − τ

(
∇f(xk) +A>ȳk+1

))
6: sample ik+1 ∈ [n] with P (ik+1 = i) = pi
7: x

ik+1

k+1 = x̄
ik+1

k+1

8: xjk+1 = xjk ∀j 6= ik+1

9: yjk+1 = ȳjk+1 + σjθj (A(xk+1 − xk))j ∀j ∈ J(ik+1)

10: yjk+1 = yjk ∀j /∈ J(ik+1)
11: end for
12: return (xK , yK)

where λ is positive regularization parameter. Such regularization is used when linear system Ax = b has infinite
number of solutions. We choose the solution with the smallest norm. Usually `2 is applied if data suffers from
multicollinearity. Referring to (1), we set g(Ax) = 1

2 ‖Ax− b‖
2, i.e. g(z) = 1

2 ‖z − b‖
2 , and f(x) = λ

2‖x‖
2. Other

functions are zero.
First, we need to find g∗.

Lemma 4.1. The Fenchel-Legendre conjugate of g = 1
2 ‖x− b‖

2 is given by

g∗(y) =
1

2
‖y‖2 + 〈y, b〉 .

Proof. We write the definition of the Fenchel-Legendre conjugate

g∗(y) = sup
x

[
〈y, x〉 − 1

2
‖x− b‖2

]
.

This is the strongly convex problem, thus the solution is unique. By the Fermat rule we get

y − x+ b = 0⇒ x = y + b.

Finally, putting the above into the definition of Fenchel-Legendre conjugate we derive

g∗(y) + 〈y, y + b〉 − 1

2
‖y + b− b‖2

=
1

2
‖y‖2 + 〈y, b〉 .

Now we need to find the explicit form of proximal operators for f and g∗.

Lemma 4.2. The proximal operator of τf , where f = λ
2‖x‖

2, is given by

proxτf (x) =
x

1 + τλ
.

Proof. We write the definition of a proximal operator

proxτf (x) = arg min
x′

[
τλ

2
‖x′‖2 +

1

2

∥∥x′ − x∥∥2
]
.

By the Fermat rule we obtain
τλx′ + x′ − x = 0⇒ x′ =

x

1 + τλ
.
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Lemma 4.3. The proximal operator of σg∗, where g∗(y) = 1
2‖y‖

2 + 〈y, b〉, is given by

proxσg∗(x) =
x− σb
1 + σ

.

Proof. We write the definition of a proximal operator

proxσg∗(x) = arg min
x′

[
σ

2
‖x′‖2 + σ

〈
x′, b

〉
+

1

2

∥∥x′ − x∥∥2
]
.

By the Fermat rule we get

σx′ + σb+ x′ − x = 0⇒ x′ =
x− σb
1 + σ

.

The Lagrangian function of Ridge regression problem has the following problem

L(x, y) =
λ

2
‖x‖2 + 〈Ax, y〉 − 1

2
‖y‖2 − 〈y, b〉 .

It is λ-strongly convex in x and 1-strongly concave in y. Finally, f is L-smooth with L = λmax(A>A), where
λmax(M) denotes the largest eigenvalue of M .

4.2 Elastic net regression

Now we consider Elastic net regression problem of the form

min
x∈X

[
1

2
‖Ax− b‖2 + λ1‖x‖1 +

λ2

2
‖x‖2

]
,

where λ1, λ2 are positive regularization constants. Use of `2 regularization has the same meaning as for Ridge
regression. Besides, we also add thresholding via `1 regularization. This means that we select only important
features corresponding to large values of x and throw away others. In this case we use the following notation:
f(x) = λ1‖x‖1, f2(x) = λ2

2 ‖x‖
2, and g(z) = 1

2‖z − b‖
2, i.e. g(Ax) = 1

2 ‖Ax− b‖
2.

We already now the explicit form of the Fenchel-Legendre conjugate of g (see Lemma 4.1). Moreover, we
don’t have to use proximal operator of f2, but f2 is L-smooth with L = λ2. The only thing that is still unknown
is the proximal operator of f = ‖ · ‖1.

Lemma 4.4. The proximal operator of τf(x), where f(x) = λ1‖x‖1, is given by

[
proxτf (x)

]
i

=


xi − τλ1 if xi > τλ1

0 if xi ∈ [−τλ1, τλ1]

xi + τλ1 if xi < −τλ1

.

Proof. Recall that the subdifferntial of |x| can be given in the following way

∂|x| =


1 if x > 0

[−1, 1] if x = 0

−1 if x < 0

.

Now we write the definition of proximal operator of τf

proxτf (x) = arg min
x′

[
τλ1‖x′‖1 +

1

2

∥∥x′ − x∥∥2
]
.
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Note, that the subproblem inside arg min is separable, thus the solution can be found for each component
separately [

proxτf (x)
]
i

= arg min
x′i

[
τλ1|x′i|+

1

2
(x′i − xi)2

]
.

Since both functions in arg min are convex with domain R, then the Fermat rule can be written as follows

0 ∈ τλ1∂|x′i|+ x′i − xi.

Now we consider all three cases. If x′i > 0, then

0 = τλ1 + x′i − xi ⇒ x′i = xi − τλ1.

We get that this case could be realized if xi > τλ1. Now let be xi < 0, then

0 = −τλ1 + x′i − xi ⇒ x′i = xi + τλ1.

This case is realized, if xi < −τλ1. Finally, if xi = 0, then we obtain

0 ∈ [−τλ1, τλ1] + 0− xi ⇒ xi ∈ [−τλ1, τλ1].

Combining all the above we derive

x′i =


xi − τλ1 if xi > τλ1

0 if xi ∈ [−τλ1, τλ1]

xi + τλ1 if xi < −τλ1

,

that concludes the proof.

Note that the result above can be written as follows:

proxτλ1‖x‖1(x) = sign(x) max{|x| − τλ1,0},

where all functions work element-wise. For example, for x ∈ Rd we have

sign : Rd → Rd, [sign(x)]i = sign(xi) ∀i ∈ [d],

| · | : Rd → Rd, [|x|]i = |xi|,
max : Rd → Rd, [max{x,0}]i = max{xi, 0},

where 0 is a vector of zeros. Such explicit form allows efficient implementation of this proximal operator in
practice.

Finally, we write the explicit of form of the Lagrangian function of this problem

L(x, y) = λ1‖x‖1 +
λ2

2
‖x‖2 + 〈Ax, y〉 − 1

2
‖y‖2 − 〈y, b〉 .

This function is λ2-strongly convex in x and 1-strongly concave in y.
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4.3 Logistic regression

Next, we study one of the most popular models in classic machine learning, which is Logistic regression model
for binary classification. This linear classifier returnes the probability that the object belongs to a certain class.
Let {(xi, yi)}Ni=1 be a data set, where each pair consists of a feature vector xi ∈ Rd and class label yi ∈ {−1, 1}.
We consider `2 regularized problem

min
w

[
N∑
i=1

log
(

1 + exp(−yix>i w)
)

+
λ

2
‖x‖2

]
,

where w ∈ Rd denotes the parameters of the model. Now we define a function of the form

g(z) =

N∑
i=1

log (1 + exp(−yizi)) =

N∑
i=1

h(yizi), z ∈ RN , (4)

where h(t) = log (1 + exp(−t)). Using g we can write the main part in the original problem as g(Xw), where

X =


x>1
x>2
...
x>N

 ∈ RN×d

is a feature matrix. We define the regularization term as f , and we already know the explicit form of proximal
operator of τf . Now we need to find the Fenchel-Legendre conjugate of g.

Lemma 4.5. The Fenchel-Legendre conjugate of g which is defined in (4) has the following form

ads

Proof. We write the definition

g∗(ϕ) = sup
z

[
〈ϕ, z〉 −

N∑
i=1

log (1 + exp(−yizi))

]
.

The subproblem inside sup is separable, hence we can solve it componentwise. The i-th component has the form
as follows

g∗i (ϕi) = sup
zi

[ϕizi − log (1 + exp(−yizi))] ,

and g∗(ϕ) =
∑N

i=1 g
∗
i (ϕi). Let consider the first case yi = −1, then

g∗i (ϕi) = sup
zi

[ϕizi − log (1 + exp(zi))] .

Writing the Fermat rule we obtain

ϕi −
ezi

1 + ezi
= 0⇒ ϕi =

ezi

1 + ezi
.

We clearly see that g∗i is well defined for ϕi ∈ (0, 1). Taking log of both sides we get

logϕi = zi − log(1 + ezi). (5)

Besides, we have

1− ϕi = 1− ezi

1 + ezi
=

1

1 + ezi
,

9



thus we also get
log(1− ϕi) = − log(1 + ezi). (6)

Subtracting (6) from (5) we obtain
logϕi − log(1− ϕi) = zi.

Combining all the above we finally derive

g∗i (ϕi) = ϕizi − log (1 + exp(zi))

= ϕi (log(ϕi)− log(1− ϕi))− log

(
1 +

ϕi
1− ϕi

)
= ϕi logϕi + (1− ϕi) log(1− ϕi).

Now assume that yi = 1, then
g∗i (ϕi) = sup

zi
[ϕizi − log (1 + exp(−zi))] .

Writing the Fermat rule again we get

ϕi +
e−zi

1 + e−zi
= 0⇒ −ϕi =

e−zi

1 + e−zi
.

Taking log of both sides we get
log(−ϕi) = −zi − log(1 + e−zi). (7)

Besides, we have

1 + ϕi = 1− e−zi

1 + e−zi
=

1

1 + e−zi
.

So we also have the equality
log(1 + ϕi) = − log(1 + e−zi). (8)

Subtracting (7) from (8) we get
log(1 + ϕi)− log(−ϕi) = zi.

Finally, we have

g∗i (ϕi) = ϕizi − log(1 + exp(−zi))

= ϕi (log(1 + ϕi)− log(−ϕi))− log

(
1 +

−ϕi
1 + ϕi

)
= (1 + ϕi) log(1 + ϕi)− ϕi log(−ϕi).

One formula that combines both cases has the form

g∗i (ϕi) = −yiϕi log (−yiϕi) + (1 + yiϕi) log(1 + yiϕi).

The whole conjugate of g has the following form

g∗(ϕi) =
N∑
i=1

−yiϕi log (−yiϕi) + (1 + yiϕi) log(1 + yiϕi). (9)

Now we need to find a proximal operator of g∗.

Lemma 4.6. The proximal operator of a function g, which has the form (9), can be written as

ss
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Proof. We again begin with writing the definition of a proximal operator of g∗

proxσg∗(ϕ) = arg min
ϕ′

[
N∑
i=1

−yiϕ′i log
(
−yiϕ′i

)
+ (1 + yiϕ

′
i) log(1 + yiϕ

′
i) +

1

2

∥∥ϕ′ − ϕ∥∥2

]
.

This optimization problem is separable, thus we consider only one component

arg min
ϕ′i

[
−yiϕ′i log

(
−yiϕ′i

)
+ (1 + yiϕ

′
i) log(1 + yiϕ

′
i) +

1

2
(ϕ′i − ϕi)2

]
.

Writing the Fermat rule we have

0 = −yi(1 + log(−yiϕ′i)) + yi(1 + log(1 + yiϕ
′
i)) + ϕ′i − ϕi

= −yi log(−yiϕ′i) + yi log(1 + yiϕ
′
i) + ϕ′i − ϕi.

4.4 Support vector machine

The objective of the support vector machine algorithm is to find an optimal hyperplane in an d-dimensional
space, where d is the number of features, that distinctly classifies the data points. The optimilaty is characterized
by the fact that the distance from the closest point to a hyperplane is the largest. Let {(xi, yi)}Ni=1 be a data
set, where xi ∈ Rd is a feature vector, and yi ∈ {−1, 1} is a class label. From mathematical point of view, `1
regularized SVM problem can be formulated as follows

min
w

[
N∑
i=1

max
(

0, 1− xiy>i w
)

+ λ‖w‖1

]
.

We set f(w) = λ‖w‖1, and g (D(y)Xw), where

g(z) =
N∑
i=1

max(0, 1− zi) ∀z ∈ RN ,

and

X =


x>1
x>2
...
x>N

 ∈ RN×d, D(b) =


y1 0 . . . 0
0 y2 . . . 0
...

...
. . .

...
0 0 . . . yN

 ∈ RN×N .

Proximal operator of τf was already found in Lemma 4.4. Now we need to find the Fenchel-Legendre conjugate
of g.

Lemma 4.7. The Fenchel-Legendre of g has the following form

g∗(ϕ) = 〈ϕ,1〉+ ι[−1,0]N (ϕ)

Proof. First, note that g(z) =
N∑
i=1

max(0, 1− zi) =
N∑
i=1

l(zi). Then we can write the Fenchel-Legendre conjugate

of g via

g∗(ϕ) =

N∑
i=1

l∗(ϕi).

11



Thus we need to find l∗(t)

l∗(t) = sup
s

[st−max(0, 1− s)]

= max

[
sup
s<1

(st− (1− s)) , sup
s≥1

(st)

]
= max

[
sup
s<1

(s(t+ 1)− 1) , sup
s≥1

(st)

]
.

Now we analyse several cases in order to find explicit form for l∗. If t > 0, then st is not upper bounded above
for s ≥ 1, thus l∗(t) = +∞. If s < −1, then s(t+ 1) is not upper bounded above for s < 1, thus l∗(t) = +∞. Let
t ∈ [−1, 0], then

sup
s≥1

st = t, sup
s<1

s(t+ 1)− 1 = t.

Combining everything, we derive the explicit form of l∗(t)

l∗(t) = t+ ι[−1,0](t).

Finally, we have the following form for g∗

g∗(ϕ) =
N∑
i=1

ϕi + ι[−1,0](ϕi) = 〈ϕ,1〉+ ι[−1,0]N (ϕ), (10)

where 1 ∈ RN is the vector of ones.

Knowing the explicit form of g∗ we are ready to compute a proximal operator for σg∗.

Lemma 4.8. The proximal operator for σg∗, where g∗ is defined in (10), is given by

[
proxσg∗(ϕ)

]
i

=


ϕi − σ if ϕi ∈ [−1 + σ, σ]

0 if ϕi > σ

−1 if ϕi < −1 + σ

.

Proof. We write the definition of a proximal operator

proxσg∗(ϕ) = arg min
ϕ′

[
σ
〈
ϕ′,1

〉
+ ι[−1,0]N (ϕ′) +

1

2

∥∥ϕ′ − ϕ∥∥2
]
.

The optimization subproblem inside arg min is separable, hence we can solve it componentwise. We consider the
problem of the form

arg min
ϕ′i

[
σϕ′i + ι[−1,0](ϕ

′
i) +

1

2
(ϕ′i − ϕi)2

]
.

This problem is equivalent to the following one

min
ϕ′i

[
σϕ′i +

1

2
(ϕ′i − ϕi)2

]
s.t ϕ′i ≤ 0,−1− ϕ′i ≤ 0.

Note, that the function we minimize is a second degree polynomial with positive senior coefficient. Thus we can
easily find a solution of this problem. Note, that if we solve unconstrained problem, then the solution is given by

(
ϕ′i
)
∗ =
−(σ − ϕi)

2 · 1/2
= ϕi − σ.

12



If ϕi − σ ∈ [−1, 0], then global solution is also the solution of constrained problem. If ϕi − σ > 0, then (ϕ′i)∗ = 0.
If ϕi − σ < −1, then (ϕ′i)∗ = −1. Combining all the above we obtain

(
ϕ′i
)
∗ =


ϕi − σ if ϕi ∈ [−1 + σ, σ]

0 if ϕi > σ

−1 if ϕi < −1 + σ

.

The proximal operator of σg∗ can be shortly written as the thresholding function.

Remark 4.9. For clarification, when we work with SVM problem the role of arbitrary matrix A in (2) plays the
matrix D(b)A, since SVM problem is written as

min
w

[
g(D(b)Aw) + λ‖w‖1

]
.

Remark 4.10. For PURE-CD method proximal operators are defined with respect to function and positive definite
matrix. In general, it is not possible to give explicit form of the proximal operator (for example, if the function is
`1 norm). However, for the method itself we only need to know the explicit form of proximal operator with diagonal
matrix. This could be seen as the generalization of all proximal operators we have computed above, but with its
own stepsize τ for each coordinate. Since all proximal operators are defined element-wise, this generalization is
straightforward.

5 Experiments

In this section we present experimental results of comparison of the methods described in Section 3.

5.1 Parameters setting and data sets

Rustem: to do
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6 How to choose stepsizes if strong convexity parameters are unknown?

We work with the problem of the form

L(x, y) = f(x) + 〈Ax, y〉 − g∗(y),

i.e. we assume that f2 and g2 are zero functions.

6.1 Adaptive local estimation

Based on the paper [Vladarean et al., 2021] we propose the following way how to handle the issue of unknown
strong convexity parameters. From the definition of strong convexity

ϕ(x1) ≥ ϕ(x2) + 〈∇ϕ(x2), x1 − x2〉+
µ

2
‖x1 − x2‖2

we may estimate local strong convexity parameter that we need to compute xk+1 and yk+1 as follows

µkf =
f(xk)− f(xk−1)− 〈∇f(xk−1), xk − xk−1〉

1
2‖xk − xk−1‖2

,

µkg∗ =
g∗(yk)− g∗(yk−1)− 〈∇g∗(yk−1), yk − yk−1〉

1
2‖yk − yk−1‖2

.

Using these estimators we define constants τk and σk in the following way

τk =

√√√√µkg∗

µkf

1

‖A‖
, σk =

√√√√ µkf

µkg∗

1

‖A‖
,

or

τk = min


√√√√µkg∗

µkf

1

‖A‖
, τk−1

√√√√1 +
µk−1
g∗

µk−2
g∗

µk−2
f

µk−1
f

 , σk = min


√√√√ µkf

µkg∗

1

‖A‖
, σk−1

√√√√1 +
µk−2
g∗

µk−1
g∗

µk−1
f

µk−2
f

 .

6.2 Adaptive restart of PDHG

Definition 6.1. We say that a function f : X → R ∪ {+∞} has a quadratic error bound if there exists η and an
open region R that contains arg min f such that for all x ∈ R,

f(x) ≥ min f +
η

2
dist(x, arg min f)2. (11)

We shall use the acronym f has η-QEB.

Although this is more general than strong convexity, the quadratic error bound is not enough for saddle point
problems. For example, for a large class of problems with linear constraints (i.e. y → L(x, y) is linear) QEB is
not satisfied in y. To resolve this issue, we may resort to metric regularity.

Definition 6.2. A set-valued function F : Z ⇒ Z is metrically subregular at z for b if there exists η > 0 and a
neighbourhood N(z) of z such that ∀ z′ ∈ N(z),

dist(F (z′, b)) ≥ ηdist(z′, F−1(b)). (12)

We denote C(z) = [∂f(z), ∂g∗(y)] and M(z) = [A>y,−Ax]. The Largrangian’s subgradient is then ∂̃L(z) =
(C +M)(z). We put a tulde to emphasize the fact that the dual component if the negative of the subgradient.
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Proposition 6.3. If L is µ-strongly convex-concave, then ∂̃L us µ-metrically sub-regular at z∗ for 0, where z∗ is
the unique saddle point of L.

PDHG can be conveniently seen as a fixed point algorithm zk+1 = T (zk) where T is defined as follows

x̄ = proxτf (x− τA>y), ȳ = proxσg∗(y + σAx̄)

x+ = x̄− τA>(ȳ − y), y+ = ȳ

T (x, y) = (x+, y+). (13)

In strongly convex-concave case we are able to prove linear convergence of PDHG in the norm ‖ · ‖V .

Proposition 6.4. If L is µ-strongly convex-concave in the norm ‖ · ‖V , then the iterates of PDHG satisfy for all
k,

‖zk+1 − z∗‖2V ≤
(

1 +
µ

1 + µ/Γ

)−1

‖zk − z∗‖2V , (14)

where z∗ is the unique saddle point of L and Γ = (1− αf )(1−√γ).

For z = (x, y) ∈ Z, we denote ‖z‖2V = (τ−1‖x‖2 + σ−1‖y‖2)1/2. Let stepsizes satisfy γ = στ‖A‖2 < 1,
τLf/2 ≤ αf < 1, αg = σLg∗/2 ≤ 1, and σLg∗/2 ≤ αf (1 − στ‖A‖2). Using Proposition 6.3 we get another
Proposition.

Proposition 6.5. If ∂̃L is metrically sub-regular at z∗ for 0 and for all z∗ ∈ Z∗ with constant η > 0, then
(I − T ) is metrically sub-regular at z∗ for 0 and for all z∗ ∈ Z∗ with constant η√

3η+2+2
√

3 max{αg ,αf}
, and PDHG

converges linearly with rate
(

1− η2(1−αf )(1−√γ)

(
√

3η+2+2
√

3 max{αf ,αg})
2

)
.

Let us assume that f and g∗ are strongly convex function, but we do not know the strong convexity parameter
of f . In this case L is strongly convex-concave. By Propositions 6.5 and 6.3 we get that ∂̃L is µ-metrically
sub-regular at z∗ for 0, and (I − T ) is η-metrically sub-regular, where

η =
µ√

3µ+ 2 + 2
√

3 max{αg, αf}
.

This implies the following
‖T (z)− z‖2 ≥ η2 ‖z − z∗‖2 . (15)

Moreover, from Lemma 2 of [Fercoq, 2021] we get for z′ = z∗ (note that z∗ is a fixed point of T )

λ ‖z − T (z)− z∗ + T (z∗)‖2 ≤ ‖z − z∗‖2V − ‖T (z)− T (z∗)‖2V − 2µf ‖x̄− x̄∗‖2 − 2µg∗ ‖ȳ − ȳ∗‖2

λ ‖z − T (z)‖2 ≤ ‖z − z∗‖2V , (16)

where
λ = 1− αf −

αg − (1− γ)αf
2

−
√

(1− αf )2γ + ((1− γ)αf − αg)2 /4.

Using the above in Proposition 6.4 we get

λ ‖zk+1 − T (zk+1)‖2 ≤ ‖zk+1 − z∗‖2V ≤
(

1 +
µ

1 + µ/Γ

)−1

‖zk − z∗‖2V

≤ η2

(
1 +

µ

1 + µ/Γ

)−1

‖T (zk)− zk‖2 . (17)

We may use (17) as criterion for restarted PDHG.
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