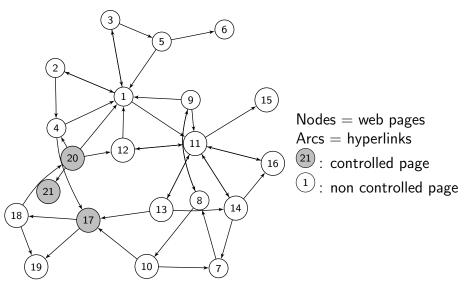
Optimization of the HOTS score of a website's pages

Olivier Fercoq and Stéphane Gaubert

INRIA Saclay and CMAP Ecole Polytechnique

June 21st, 2012



Context

A webmaster controls a given number of pages:

- May add links
- Must respect the content
- Wishes to maximize:
 - Sum of PageRank values of the site
 - HITS authority score of the home page
 - Sum of HOTS score values of the site

PageRank: Brin and Page, 1998 HITS: Kleinberg, 1998 HOTS: Tomlin, 2003

Tomlin's HOTS algorithm: irreducible case

A: adjacency matrix of the web graph (irreducible) ρ : web traffic

$$\begin{split} \max_{\rho \ge 0} &- \sum_{i,j \in [n]} \rho_{i,j} (\log(\frac{\rho_{i,j}}{A_{i,j}}) - 1) \\ &\sum_{j \in [n]} \rho_{i,j} = \sum_{j \in [n]} \rho_{j,i} , \ \forall i \in [n] \qquad (p_i) \\ &\sum_{i,j \in [n]} \rho_{ij} = 1 \qquad (\mu) \end{split}$$

Optimal ρ while PageRank gives a specific ρ (uniform probability is arbitrary)

Dual problem: irreducible case

Minimize:
$$\theta(p,\mu) := \sum_{i,j\in[n]} A_{ij} e^{p_i - p_j + \mu} - \mu$$
.

 $\boldsymbol{\theta}$ is convex and differentiable.

20

$$\begin{aligned} \frac{\partial \theta}{\partial \mu}(p,\mu) &= 0 \Rightarrow \mu = -\log(\sum_{i,j\in[n]} A_{ij}e^{p_i - p_j}) \\ \frac{\partial \theta}{\partial p}(p,\mu) &= 0 \Rightarrow p \text{ is a fixed point of } f, \text{ where} \end{aligned}$$
$$f_i(x) &= \frac{1}{2}\log(A^T e^x)_i - \frac{1}{2}\log(A e^{-x})_i \qquad g_i(d) = \left(\frac{(A^T d)_i}{(A d^{-1})_i}\right)^{1/2} \end{aligned}$$

 e^{p_i} is interpreted as the temperature of page i

The matrix balancing problem

Given a $n \times n$ matrix A, find a diagonal positive matrix D such that $X = DAD^{-1}$ verifies

$$\sum_{j\in[n]}X_{i,j}=\sum_{k\in[n]}X_{k,i}\qquad\forall i\in[n]$$

Proposition (Eaves, Hoffman, Rothblum, HSchneider, 1985) There exists $v \in \mathbb{R}^n$ such that f(v) = v and $\sum_{i \in [n]} v_i = 0$ if and only if A has a diagonal similarity scaling if and only if A is completely reducible.

If in addition A is irreducible, then v is unique.

v minimizes $\theta_0(p) = \theta(p, 0)$

Algorithms for matrix balancing

- Convex optimization algorithms
- Coordinate descent: (M Schneider and Zenios, 1989) select a coordinate *i* and set

$$d_i \leftarrow \left(\frac{(A^T d)_i}{(Ad^{-1})_i}\right)^{\frac{1}{2}}$$

• DomEig (Johnson, Pitkin, Stanford, 2000)

$$\min\left\{\lambda_{\max}(A + \operatorname{diag}(v)) \mid \sum_{i \in [n]} v_i = 0\right\} = \min_{p \in \mathbb{R}^n} \theta_0(p)$$

Fixed point approach for matrix balancing

• Let f and g be the functions defined by

$$f_i(x) = \frac{1}{2} \log(A^T e^x)_i - \frac{1}{2} \log(A e^{-x})_i$$
$$g_i(d) = \left(\frac{(A^T d)_i}{(A d^{-1})_i}\right)^{1/2}$$

• The solution of the matrix balancing problem verifies

$$x = f(x)$$
 or $d = g(d)$

• Ideal HOTS algorithm (irreducible case):

$$x_{k+1} = f(x_k)$$

• Does it converge ? (Knight, 2008: not proved)

Convergence of the fixed point scheme

The fixed point operator

$$f(x) = \frac{1}{2}(\log(A^T e^x) - \log(A e^{-x}))$$

is monotone, additively homogeneous.

Theorem

If A is irreducible and $A + A^T$ is primitive, then $\forall x \in \mathbb{R}^n$,

$$\limsup_{k\to\infty} \left(\|f^k(x) - v\| \right)^{\frac{1}{k}} \le |\lambda_2(P)|$$

 $P = \frac{1}{2} \left(\operatorname{diag}(A^{T} e^{\nu})^{-1} A^{T} \operatorname{diag}(e^{\nu}) + \operatorname{diag}(A e^{-\nu})^{-1} A \operatorname{diag}(e^{-\nu}) \right)$ Proof

Nonlinear Perron-Frobenius theory (Nussbaum and followers)

Comparison of algorithms

	ϵ 1	CMAP	NZ Uni
	$A = \begin{bmatrix} 2 & 0 \end{bmatrix}$	1,500 p	413,639 p
$ \lambda_2(P) $	0.9993	0.8739	0.9774
Matlab's fminunc	0.015 s	948 s	Out of memory
DomEig	0.5 s	> 600 s	> 600 s
Coordinate descent	0.001 s	0.03 s	6.06 s
Fixed point (HOTS)	0.004 s	0.02 s	7.52 s

A is nearly imprimitive.

CMAP website and surroundings

NZ Uni dataset: New Zealand Universities

Irreducibility by adding small positive values to all the entries

Tomlin's HOTS: handling reduciblity

Network flow model with constraints on the modified network

$$\begin{aligned} A' &= \begin{bmatrix} A & 1\\ 1^T & 0 \end{bmatrix} \\ \max_{\rho \ge 0} & -\sum_{i,j \in [n+1]} \rho_{i,j} (\log(\frac{\rho_{i,j}}{A'_{i,j}}) - 1) \\ & \sum_{j \in [n+1]} \rho_{i,j} = \sum_{j \in [n+1]} \rho_{j,i} , \ \forall i \in [n+1] \quad (p_i) \\ & \sum_{i,j \in [n+1]} \rho_{ij} = 1 \qquad (\mu) \\ & \sum_{j \in [n]} \rho_{n+1,j} = 1 - \alpha \qquad (a) \\ & 1 - \alpha = \sum_{i \in [n]} \rho_{i,n+1} \qquad (b) \end{aligned}$$

Dual function

$$\theta(p, \mu, a, b) = \sum_{i,j \in [n]} A_{ij} e^{p_i - p_j + \mu} + \sum_{i \in [n]} e^{-b - p_{n+1} + p_i + \mu} + \sum_{j \in [n]} e^{a + p_{n+1} - p_j + \mu} - (1 - \alpha)a - \mu + (1 - \alpha)b \mu(p) = \log(\frac{2\alpha - 1}{\sum_{i,j \in [n]} A_{i,j} e^{p_i - p_j}}) a(p) = \log(\frac{1 - \alpha}{2\alpha - 1} \frac{\sum_{i,j \in [n]} A_{i,j} e^{p_i - p_j}}{\sum_{j \in [n]} e^{p_{n+1} - p_j}}) b(p) = \log(\frac{1 - \alpha}{2\alpha - 1} \frac{\sum_{i,j \in [n]} A_{i,j} e^{p_i - p_j}}{\sum_{i \in [n]} e^{p_i - p_{n+1}}})$$

We denote $\lambda(p) := (\mu(p), a(p), b(p))$

Iterative scheme

Define f^{λ} to be the fixed point operator associated to the matrix balancing problem on the matrix

$$egin{aligned} \mathcal{A} &= egin{bmatrix} e^{\mu}\mathcal{A} & e^{a+\mu}\mathbf{1} \ e^{-b+\mu}\mathbf{1}^{\mathcal{T}} & \mathbf{0} \end{bmatrix} \end{aligned}$$

Tomlin's HOTS algorithm:

$$p_{k+1}=f^{\lambda(p_k)}(p_k)=F(p_k)$$

- *F* is homogeneous but not monotone
- Expansive in Thomson's metric $(d(x, y) = \max_i x_i - y_i - \min_j x_j - y_j)$

Elements of the proof

Theorem (Lyapounov function) The ideal HOTS operator verifies $\theta_0(f(p)) \le \theta_0(p)$

Theorem (local contraction in projective space) Denote $F(p) = f^{\lambda(p)}(p)$ and p^* such that $F(p^*) = p^*$. Then all the eigenvalues of $\nabla F(p^*)$ belong to (-1, 1]and the eigenvalue 1 is simple.

Convergence of HOTS algorithm

Theorem

If there exists a primal feasible point with the same pattern as A, then the HOTS algorithm converges to the HOTS vector (unique up to an additive constant) with a linear rate of convergence equal to $|\lambda_2(\nabla F)|$.

Proof

Use the Lyapunov function Prove that all limit points $(\bar{p}, \bar{\lambda})$ minimize $\theta(p, \lambda)$ Conclude thanks to the local contraction in projective space

Optimization of link-based rankings

Effort concentrated on PageRank

- Avrachenkov and Litvak, 2006, one page
- Matthieu and Viennot, 2006, unconstrained problem
- de Kerchove, Ninove, van Dooren, 2008
- Ishii and Tempo, 2010
- Csáji, Jungers and Blondel, 2010
- F., Akian, Bouhtou, Gaubert, 2011

Perron vector optimization, HITS and HOTS optimization

- Fercoq, 2011 (arXiv:1111.2234)

Tomlin's HOTS optimization

Obligatory links \mathcal{O} , optional links \mathcal{F} , prohibited links \mathcal{I} $N(p) := \log(\sum_{i \in [n]} e^{p_i})$, J is the set of hyperlinks selected The HOTS optimization problem is:

$$\max_{J\subseteq\mathcal{F},p\in\mathbb{R}^n}\{U(p)\ ;\ f^{\lambda(p)}(A(J),p)=p\ ,\ N(p)=0\ ,\}$$

Relaxed HOTS optimization problem:

$$egin{aligned} & \max_{A \in \mathbb{R}^{n imes n}, p \in \mathbb{R}^n} U(p) \ f^{\lambda(p)}(A,p) &= p \;, \;\; \mathcal{N}(p) = 0 \ & A_{i,j} = 1 \;, \; orall (i,j) \in \mathcal{O} \ & A_{i,j} = 0 \;, \; orall (i,j) \in \mathcal{I} \ & 0 \leq A_{i,j} \leq 1 \;, \; orall (i,j) \in \mathcal{F} \end{aligned}$$

Matrix of partial derivatives

Denote
$$F(A, p) = f^{\lambda(p)}(A, p)$$
.

Proposition

The derivative of $U \circ p$ is given by $g_{i,j} = \sum_{I} w_{I} \frac{\partial F^{I}}{\partial A_{i,j}}$ where $w = (-\nabla U^{T} + (\nabla U^{T} e) \nabla N^{T}) (\nabla_{p} F - I)^{\#}$

Moreover, the matrix $(g_{i,j})_{i,j}$ has rank at most 3.

Proposition

Let $z = -\nabla U^T + (\nabla U^T e) \nabla N^T$ and v s.t. $v^T \nabla_p F = v^T$. The fixed point scheme defined by

$$\forall k \in \mathbb{N}, \quad w_{k+1} = (z + w_k \nabla_p F)(I - \frac{1}{v^T e} ev^T)$$

converges in geometric speed to w.

Polak's Master algorithm model

- For any weighted adjacency matrix A, J(A) = U(p(A)) J_n(A) = U(p_{k_n}) where k_n is the first nonnegative integer k such that ||p_{k+1} - p_k|| ≤ Δ(n) B_n(A) an approximate gradient iteration
- Let ω ∈ (0, 1), σ' ∈ (0, 1), n₋₁ ∈ N and A₀ ∈ C,
 For i ∈ N, compute A_{i+1} and the smallest n_i ∈ N s.t.

$$egin{aligned} n_i &\geq n_{i-1} \ A_{i+1} &= \mathcal{B}_{n_i}(A_i) \ J_{n_i}(A_{i+1}) - J_{n_i}(A_i) &\leq -\sigma'(\Delta(n_i))^{\omega} \end{aligned}$$

Interrupted Armijo line search

Let
$$(\bar{M}_n)_{n\geq 0}$$
 be a sequence diverging to $+\infty$, $\sigma \in (0, 1)$,
 $\alpha^0 > 0$, $\beta \in (0, 1)$ and $\gamma > 0$.
Given $n \in \mathbb{N}$, $J_n = U(p_{k_n})$ and g_n is an approximate gradient.
Let m_n be the first $\mathbf{m} \in \mathbb{N}$ such that

$$J_n\left(\mathcal{P}_{\mathcal{C}}(A-\beta^{\mathbf{m}}\alpha^0 g_n(A))\right)-J_n(A)\leq -\sigma\frac{\|A-\mathcal{P}_{\mathcal{C}}(A-\beta^{\mathbf{m}}\alpha^0 g_n(A))\|_2^2}{\beta^{\mathbf{m}}\alpha^0}$$

If $m_n \leq \bar{M}_n$, then

$$\mathcal{B}_n(A) = \mathcal{P}_{\mathcal{C}}(x - \beta^{m_n} \alpha^0 g_n(A))$$

Otherwise $\mathcal{B}_n(A) = \emptyset$.

Convergence theorem for HOTS optimization

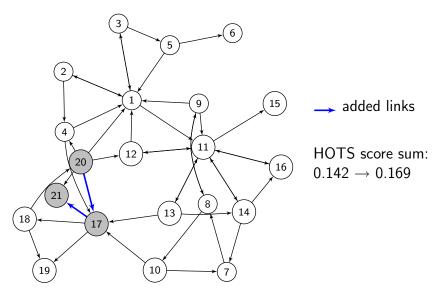
Theorem

Let $(A_i)_{i\geq 0}$ be a sequence constructed by the Master Algorithm Model for the resolution of the HOTS optimization problem such that $\mathcal{B}_n(A)$ is the Interrupted Armijo line search

Then every accumulation point of $(A_i)_{i\geq 0}$ is a stationary point of the optimization problem.

HOTS optimization

Web graph optimized for HOTS



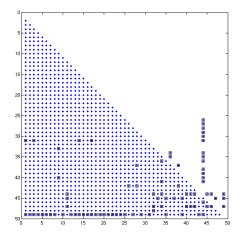
Numerical results

	CMAP	NZ Uni
Gradient (linear system)	0.82 s/it	out of memory
Gradient (iterative scheme)	0.12 s/it	62 s/it
Coupled iter. (master algo.)	0.04 s/it	2.9 s/it

Comparison of algorithms for HOTS optimization

- CMAP website: 1,500 pages New Zealand universities websites: (413,639 pages)
- The iterative scheme formulation makes the problem scalable The Master algorithm model gives a speedup from 3 to 30

Locally optimal solution



Local optimal solution of the HOTS optimization problem on CMAP website (1,500 pages)

Adjacency matrix restricted to the set of controlled pages

Pages sorted by w values

Squares: obligatory links

Conclusion

- General convergence proof: nonexpansive maps, nonlinear Perron-Frobenius theory
- Low rank property of derivatives Iterative scheme to compute it Scalable optimization algorithm
- Better understanding of HOTS algorithm:
 - quality of the convergence rate
 - spamming techniques / search engine optimizations