PageRank optimization applied to spam detection

Olivier Fercoq

The University of Edinburgh Work completed while in INRIA Saclay and CMAP Ecole Polytechnique

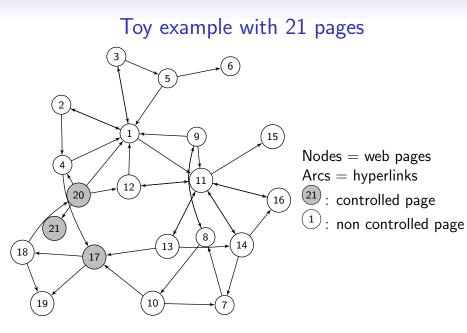
30th November 2012

Context

A webmaster controls a given number of pages:

- May add hyperlinks
- Must respect the content (the goal of a site is to provide information or service)
- Wishes to maximize:
 - Income (number of clicks on ads, number of sales)
 - Visibility (Sum of PageRank values of the site, PageRank of home page in Google)

3 Spam detection



Definition of PageRank [Brin and Page, 1998]

- Random web surfer moves from page *i* to page *j* with probability ¹/_{Di} (*D_i* = degree of page *i*)
- $\pi = \text{invariant}$ measure of the Markov chain

$$\pi_i = \sum_{j: j \to i} \frac{\pi_j}{D_j}$$

- An important page is a page linked to by important pages
- Markov chain model may be reducible

Definition of PageRank [Brin and Page, 1998]

- Random web surfer moves from page *i* to page *j* with probability ¹/_{Di} (*D_i* = degree of page *i*)
- $\pi = \text{invariant}$ measure of the Markov chain

$$\pi_i = \alpha \sum_{j:j \to i} \frac{\pi_j}{D_j} + (1 - \alpha) z_i$$

- An important page is a page linked to by important pages
- Markov chain model may be reducible

 → with probability 1 α, surfer gets bored and teleports:
 new research from page *i* with probability *z_i*
- Transition matrix: $P_{i,j} > 0, \forall i, j$ (usually $\alpha = 0.85$)
- PageRank is the unique invariant measure π of P

The PageRank optimization problem

- Well studied subject: Avratchenkov and Litvak, 2006 Mathieu and Viennot 2006 De Kerchove, Ninove and Van Dooren 2008 Csáji, Jungers and Blondel 2010...
- Obligatory links \mathcal{O} , facultative links \mathcal{F} , prohibited links \mathcal{I} (Strategy set proposed by Ishii and Tempo, 2010)
- Utility $\varphi(\pi, P) = \sum_{i} r_{i,j} \pi_i P_{i,j}$
- $r_{i,j}$ is viewed as reward by click on $i \rightarrow j$
- [Fercoq, Akian, Bouhtou, Gaubert, to appear in IEEE TAC]

Reduction to ergodic control

Proposition

 \mathcal{P}_i = set of admissible transition probabilities from Page i The PageRank Optimization problem is equivalent to the ergodic control problem with process X_t :

$$\begin{split} \max_{(\nu_t)_{t\geq 0}} \liminf_{T\to+\infty} \frac{1}{T} \mathbb{E} \Big(\sum_{t=0}^{T-1} r_{X_t, X_{t+1}} \Big) \\ \nu_t \in \mathcal{P}_{X_t}, \forall t \geq 0 \\ \mathbb{P}(X_{t+1} = j | X_t = i, \nu_t = p) = p_j, \forall i, j \in [n], \forall p \in \mathcal{P}_i, \forall t \geq 0 \\ \text{where } \nu_t \text{ is a function of the history } (X_0, \nu_0, \dots, X_{t-1}, \nu_{t-1}, X_t) \end{split}$$

Exponential size of the action sets

- At each page *i*, an action corresponds equivalently to
 - select $u \in \mathcal{P}_i$, a uniform measure on J
 - select $J \subseteq \mathcal{F}_i$
- 2^{*n*} hyperlink configurations by controlled page
- Classical Markov Decision Process techniques fail
- Csáji, Jungers and Blondel, 2010: graph rewriting to optimize the rank of a single page
- Our solution: action sets have a concise description

Admissible transition probabilities

Theorem

The convex hull of the set of admissible transition probabilities is either a simplex or a polyhedron defined by:

$$\begin{array}{ll} \forall j \in \mathcal{I}_i \ , & x_j = (1 - \alpha) z_j \\ \forall j \in \mathcal{O}_i \setminus \{j_0\} \ , & x_j = x_{j_0} \\ \forall j \in \mathcal{F}_i \ , & (1 - \alpha) z_j \leq x_j \leq x_{j_0} \\ & \text{and} & \sum_{j \in [n]} x_j = 1 \end{array}$$

- Implicitly defined actions: vertices of the polytope
- Concise description ⇒ polynomial time separation oracle
 ⇒ well-described polyhedron
 [Groetschel, Lovász, Schrijver, 1988]

Well-described Markov Decision Processes

Define

A well-described MDP is a finite MDP where the action sets are defined *implicitly* as the vertices of well-described polyhedra (cf Groetschel, Lovász, Schrijver, 1988) and the transitions and rewards are linear

Theorem

The infinite horizon average cost problem on well-described MDP is solvable in polynomial time

Corollary

The PageRank optimization problem with local constraints is solvable in polynomial time

Resolution by Dynamic Programming

• The ergodic dynamic programming equation

$$w_i + \psi = \max_{\nu \in \mathcal{P}_i} \nu(r_{i,\cdot} + w), \quad \forall i \in [n]$$
(1)

has a solution $(w, \psi) \in \mathbb{R}^n \times \mathbb{R}$. The constant ψ is unique and is the value of the ergodic control problem

• To get an optimal strategy, select $\forall i$ a maximizing $u \in \mathcal{P}_i$

Resolution by Dynamic Programming

• The ergodic dynamic programming equation

$$w_i + \psi = \max_{\nu \in \mathcal{P}_i} \nu(r_{i,\cdot} + w), \quad \forall i \in [n]$$
(1)

has a solution $(w, \psi) \in \mathbb{R}^n \times \mathbb{R}$. The constant ψ is unique and is the value of the ergodic control problem

- To get an optimal strategy, select orall i a maximizing $u \in \mathcal{P}_i$
- The unique solution of the discounted equation

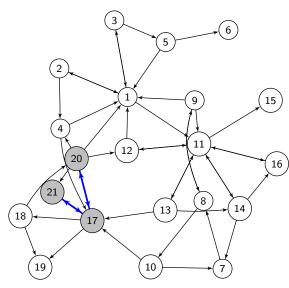
 $w_{i} = \max_{\nu: \alpha\nu + (1-\alpha)z \in \mathcal{P}_{i}} \alpha\nu(r_{i,\cdot} + w) + (1-\alpha)zr_{i,\cdot}, \forall i \in [n] (2)$ is solution of (1) with $\psi = (1-\alpha)zw$

• The fixed point scheme for (2) has contracting factor α independent of the dimension: complexity of optimization

$$\mathsf{O}\Big(\frac{\mathsf{log}(\epsilon)}{\mathsf{log}(\alpha)}\sum_{i\in[n]} |\mathcal{O}_i| + |\mathcal{F}_i|\mathsf{log}(|\mathcal{F}_i|)\Big)$$

3 Spam detection

Web graph optimized for PageRank

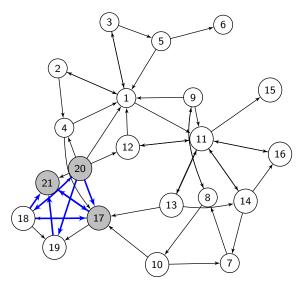


- (21): controlled page
 (1): non controlled page
 - → added links

 $\begin{array}{l} \text{PageRank sum:} \\ 0.10 \rightarrow 0.17 \end{array}$

The clique is not an optimal startegy

Link spamming example



- ²¹⁾: spam web page
- (1): honest page
- (18) : honeypot
- \rightarrow added links

PageRank sum: $0.10 \rightarrow 0.17 \rightarrow 0.31$

Search engine spamming

- Adding many unrelevant keywords
- Adding artificial pages that all point to a given page: Link farm [Gyöngyi and Garcia-Molina, 2005]
- Maximizing PageRank without design constraint [Baeza-Yates, Castillo and López, 2005]
- How to fight web spamming?

TrustRank and AntiTrustRank

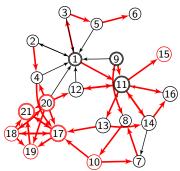
- Sets of hand-labelled trusted and spam pages
- Honest pages point to honest pages
- Spam pages are pointed to by spam pages
- TrustRank is a trust propagation algorithm: Compute PageRank with teleportation vector z such that z_i > 0 if and only if i is a trusted page. [Gyöngyi, Garcia-Molina, Pedersen, 2004]
- Distrust propagation with reversed hyperlinks: AntiTrustRank [Krishna and Raj, 2006]

Minimization of the PageRank of spam pages

- Trusted pages and known spam pages
- All the hyperlinks of the web are facultative
- Minimize the sum of PageRanks of spam pages

Minimization of the PageRank of spam pages

- Trusted pages and known spam pages
- All the hyperlinks of the web are facultative
- Minimize the sum of PageRanks of spam pages
- But no trust propagation



11 Trusted pages
 21 Spam page
 18 Detected spam
 → Removed link

Penalty for hyperlink removals

- D_i hyperlinks in Page i in the original graph
- Selection of a set $J \in \mathcal{F}_i$ among the D_i hyperlinks
- A priori cost c'_i plus penalty for hyperlink removals ($\gamma > 0$)

$$c(i,J) = c'_i + \gamma \frac{D_i - |J|}{D_i}$$

• Additional control of teleportation vector:

$$z_j(I) = \begin{cases} 0 & \text{if } j \notin I \\ \frac{1}{N} & \text{if } j \in I \end{cases} \quad \text{for } I \subset [n], |I| = N < n \end{cases}$$

The MaxRank problem

Minimization of the PageRank of known spam pages with hyperlink removal penalty

$$\inf_{(I_t)_{t\geq 0}, (J_t)_{t\geq 0}} \limsup_{T \to +\infty} \frac{1}{T} \mathbb{E} \Big(\sum_{t=0}^{T-1} c(X_t, J_t) \Big)$$

For all t, the currently visited page is X_t The transitions are determined by:

$$I_t \subseteq [n], |I_t| = N$$
 and $J_t \subseteq \mathcal{F}_{X_t}$

Well-described MDP formulation

 \mathcal{P}_i is the set of $(\sigma, \nu, w) \in \mathbb{R}^{D_i+1} \times \mathbb{R}^n$ such that

$$\begin{cases} \sum_{d=0}^{D_i} \sigma^d = 1 \\ \sigma^d \ge 0 , & \forall d \in \{0, \dots, D_i\} \\ \nu_j = \sum_{d=0}^{D_i} w_j^d , & \forall j \in [n] \\ \sum_{j \in [n]} w_j^d = \sigma^d , & \forall d \in \{0, \dots, D_i\} \\ 0 \le w_j^0 \le \frac{\sigma^0}{N} , & \forall j \in [n] \\ w_j^d = 0 , & \forall j \notin \mathcal{F}_x, \forall d \in \{1, \dots, D_i\} \\ 0 \le w_j^d \le \frac{\sigma^d}{d} , & \forall j \in \mathcal{F}_x, \forall d \in \{1, \dots, D_i\} \end{cases}$$

$$\begin{split} \tilde{c}(i,\sigma,\nu,w) &= c'_i + \gamma \frac{D_i - \sum_{d=0}^{D_i} d\sigma^d}{D_i}, \\ \tilde{p}(y|i,\sigma,\nu,w) &= \alpha \nu_y + (1-\alpha) w_y^0 \end{split}$$

Fixed point operator

Proposition

Let T defined by

$$T_i(\mathbf{v}) = \min_{(\sigma,\nu,w)\in\mathcal{P}_i} c'_i + \gamma \frac{D_i - \sum_{d=0}^{D_i} d\sigma^d}{D_i} + \alpha \sum_{j\in[n]} \nu_j \mathbf{v}_j , \ \forall i\in[n]$$

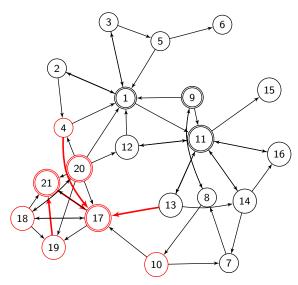
T is α -contracting with fixed point v

 $(1 - \alpha) \min_{w^0 \in Z} w^0 \cdot v$ is the value of the MaxRank problem

MaxRank bias

- The fixed point v is the bias of the ergodic control problem
- If $\gamma > \frac{2\alpha}{1-\alpha} \|c'\|_{\infty}$, then v_i is the expected mean number of spam pages visited before teleportation But no hyperlink is removed
- v_i gives a measure of the "spamicity" of Page i

Toy example with $\gamma = 4$



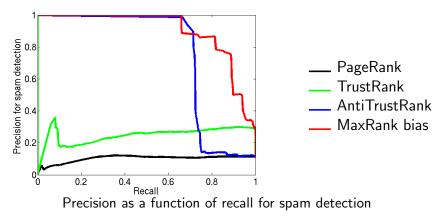
⁽¹¹⁾ Trusted pages

- 21) Spam page
- ¹⁸ Detected spam
- 🔶 Removed link

Score sum: $0.31 \rightarrow 0.08$

Spam detection by MaxRank bias

WEBSPAM-UK2007 dataset: 105,896,555 pages Training set: 452,128 spam pages; 3,608,461 honest pages Test set: 238,844 spam pages; 1,758,705 honest pages



Conclusion

- Polynomial time solvability of the PageRank optimization problem
- Very fast optimization algorithm based on value iteration
- MaxRank: trust propagation algorithm based on PageRank optimization and well-described MDPs
- AUC = 0.78 within the range of WEBSPAM 2008 challengers [0.73, 0.85]