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Abstract

We introduce theta divisors for vector bundles and relate them
to the ordinariness of curves in characteristic p > 0. We prove,
following M. Raynaud, that the sheaf of locally exact differentials in
characteristic p > 0 has a theta divisor, and that the generic curve in
(any) genus g ≥ 2 and (any) characteristic p > 0 has a cover that is
not ordinary (and which we explicitely construct).

1 Theta divisors for vector bundles

Let k be an algebraically closed field and X a smooth proper connected curve
over Spec k having genus g. We assume throughout that g ≥ 2.

If E is a vector bundle (i.e. a locally free invertible sheaf) of rank r and
degree d over X, we define its slope to be λ = d/r. The Riemann-Roch
formula gives the Euler-Poincaré characteristic of E:

χ(X, E) = h0(X, E)− h1(X,E) = r(λ− (g − 1))

In particular for λ = g − 1 (the critical slope) we have χ(X,E) = 0;
moreover, it is still true for any invertible sheaf L of degree 0 over X that
χ(X, E⊗L) = 0, in other words, h0(X, E⊗L) = h1(X, E⊗L). Under those
circumstances, it is natural to ask the following question:

Question 1.1. Suppose E has critical slope. Then for which invertible
sheaves L of degree 0 (if any) is it true that h0(X, E ⊗ L) = 0 (and
consequently also h1(X, E ⊗ L) = 0)? Is this true for some L, for many
L, or for none?

We start with a necessary condition. Suppose there were some subbundle
F ½ E having slope λ(F ) > λ(E) = g − 1. Then we would have
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χ(X, F ⊗ L) > 0, hence h0(X, F ⊗ L) > 0. Now H0(X,F ⊗ L) ½
H0(X, E ⊗ L), so this implies h0(X,E ⊗ L) > 0. So if we are to have
h0(X, E ⊗ L) > 0 for some L, this must not happen, and we say that E is
semi-stable:

Definition 1.2. A vector bundle E over X is said to be stable (resp. semi-
stable) iff for every sub-vector-bundle F of E (other than 0 and E) we have
λ(F ) < λ(E) (resp. λ(F ) ≤ λ(E)).

Another remark we can make bearing some relation with question (1.1)
is that, by the semicontinuity theorem, if we let L vary on the jacobian of X,
the functions h0(X, E⊗L) and h1(X,E⊗L) are upper semicontinuous. This
means that they increase on closed sets. In particular, if h0(X, E⊗L) = 0 (the
smallest possible value) for some L, then this is true in a whole neighborhood
of L, that is, for almost all L. We then say that this holds for a general
invertible sheaf of degree 0 and we write h0(X, E ⊗ Lgen) = 0.

Now introduce the jacobian variety J of X and let L be the (some)
Poincaré sheaf (universal invertible sheaf of degree 0) on X×Spec k J . We aim
to use L to let L vary and provide universal analogues for our formulæ. Let

X ×Spec k J

f

²²
J

be the second projection.
Consider the sheaf E⊗L (by this we mean the twist by L of the pullback

of E to X ×Spec k J). Our interest is mainly in the higher direct image
Rf∗(E⊗L ), which incorporates information about H i(X,E⊗L) (and much
more).

To be precise, we know that there exists a complex 0 → M0 u−→ M1 → 0
of vector bundles on J that universally computes the Rif∗(E ⊗L ), in the
sense that the i-th cohomology group (i = 0, 1) of the complex is Rif∗(E⊗L )
and that this remains true after any base change J ′ → J . (One particularly
important such base change, of course, is the embedding of a closed point
{L} in J .)

Now M0 and M1 have the same rank, say s (because the Euler-Poincaré

characteristic of E is 0). So we can consider the determinant of u,
∧s M0 det u−→∧s M1, or rather

OJ
det u−→ ∧s M1 ⊗ ( ∧s M0

)⊗−1
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Exactly one of the following two things happens:

• Either the determinant det u is zero (identically). In this case, u is
nowhere (i.e. on no fiber) invertible, it always has a kernel and a
cokernel: we have h0(X, E ⊗ L) > 0 (and of course h1(X, E ⊗ L) > 0)
for all L.

• Or det u is a nonzero section of the invertible sheaf
∧s M1 ⊗( ∧s M0

)⊗−1
on J and it defines a positive divisor θE on J , whose

support is precisely the locus of L such that h0(X,E ⊗ L) > 0. We
then have h0(X, E ⊗ Lgen) = 0.

In other words, precisely in the case where h0(X,E ⊗ Lgen) = 0 we can
define a positive divisor θE on J which tells us “where the bundle E has
cohomology”. We call this divisor the theta divisor of the vector bundle E.
And we will use the expression “to admit a theta divisor” as synonymous
for h0(X, E ⊗ Lgen) = 0. For example, a vector bundle that admits a theta
divisor is semi-stable (but the converse is not true, cf. [1]).

2 Enters the Frobenius morphism

We now assume that the base field k has characteristic p > 0. We then have
a relative Frobenius morphism

X
π //

$$HHHHH X1

zzuuu
uu

Spec k

which is obtained by factoring the absolute Frobenius morphism through the
pullback to X of the Frobenius on k (more descriptively, π has the effect, in
projective space, of raising the coordinates to the p-th power, while X1 is the
curve obtained by raising to the p-th powers the coefficients in the equations
defining X).

The curve X1 has the same genus g as X. The morphism π is flat,
finite and purely inseparable of degree p. From it we deduce a morphism
OX1 → π∗OX (of OX1-modules), which is mono because π is surjective. Call
B1 the cokernel, so that we have the following short exact sequence:

0 → OX1 → π∗OX → B1 → 0 (1)
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Now the sheaf B1 can be viewed in a different way: if we call d the differential
OX → Ω1

X (between sheaves of Z-modules) then π∗(d) is OX1-linear and has
OX1 as kernel. Consequently, B1 can also be seen as the image of π∗(d),
hence its name of sheaf of locally exact differentials . As a subsheaf of the
locally free sheaf π∗Ω1

X , it is itself a vector bundle.
In the short exact sequence (1) above, the vector bundles OX1 and π∗OX

have rank 1 and p respectively, so that B1 has rank p−1. On the other hand,
since OX1 and π∗OX each have Euler-Poincaré characteristic g − 1, we have
χ(X1, B1) = 0, or in other words, λ(B1) = g − 1 (the critical slope), and
what we have said in the previous section applies to the sheaf B1.

More precisely, we have the following long exact sequence in cohomology,
derived from (1):

k ˜−−−−−→ k
‖ ‖

0 → H0(X1,OX1) → H0(X,OX) → H0(X1, B1) →
→ H1(X1,OX1) → H1(X,OX) → H1(X1, B1) → 0

Here the first arrow is an isomorphism as shown. Consequently, the
arrow H1(X1,OX1) → H1(X,OX) is also an isomorphism if and only if
h0(X1, B1) = 0, or, what amounts to the same, h1(X1, B1) = 0. This is
again the same as saying that B1 has a theta divisor (something which we
will see is always true) and that it does not go through the origin.

Definition 2.1. When the equivalent conditions mentioned in the previous
paragraph are satisfied, we say that the curve X is ordinary.

3 The sheaf of locally exact differentials has

a theta divisor

In this section we prove the following result due to M. Raynaud ([1]):

Theorem 3.1. If X is a smooth projective connected curve over an
algebraically closed field k of characteristic p > 0 and B1 is the sheaf
of locally exact differentials on X1, as introduced above, then we have
h0(X1, B1 ⊗ Lgen) = 0, i.e. the vector bundle B1 admits a theta divisor (in
particular, it is semi-stable).
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Thus we can state the fact that a curve is ordinary simply by saying that
the theta divisor of B1 does not go through the origin.

To start with, introduce the jacobians J and J1 of X and X1 respectively.
Then J1 is the Frobenius image of J , and we have a relative Frobenius
morphism F : J → J1 that is purely inseparable of degree pg; it corresponds
to taking the norm on invertible sheaves of degree 0 — or, if we prefer
using points, it takes OX(Σnixi) to OX1(Σniπ(xi)). On the other hand,
we also have the Verschiebung morphism in the other direction V : J1 → J ,
which corresponds to pulling back by π — or again, it takes OX1(Σnixi) to
OX(Σpniπ

−1(xi)). The Verschiebung map also has degree pg. The composite
of the Verschiebung and Frobenius morphisms, in any direction, is the raising
to the p-th power.

We will show something more precise than just saying that B1 has a theta
divisor: we will actually show that this theta divisor does not contain all of
ker V in the neighborhood of 0. However, we will see from actual equations
that it “almost” does.

If L1 is an invertible sheaf of degree 0 on X1 (that is, a k-point of J1),
the short exact sequence (1) becomes, after tensoring by L1:

0 → L1 → π∗π∗L1 → B1 ⊗ L1 → 0 (2)

Now let L1 be the Poincaré bundle on X1×Spec k J1. The universal analogue
of (2) above is

0 → L1 → (π × 1J1)∗(π × 1J1)
∗L1 → B1 ⊗L1 → 0

But by the definition of the Verschiebung, the sheaf (π × 1J1)
∗L1 is also

(1X × V )∗L so that the exact sequence can be written as

0 → L1 → (π × 1J1)∗(1X × V )∗L → B1 ⊗L1 → 0

We now introduce projections as designated on the following diagram:

X × J

f

²²

X × J1
1X×Voo

π×1J1//

g

²²
¤

X1 × J1

f1xxrrrrrrrrrrr

J J1
Voo

(3)

Now we want to calculate the R(f1)∗ of this. For one thing, looking at the
diagram (3) above, we see that R(f1)∗(π×1J1)∗(1X×V )∗L is Rg∗(1X×V )∗L ,
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and by base change (note that the morphism V is flat), this is V ∗Rf∗L . Thus
we have the following distinguished triangle, in the derived category of the
category of sheaves on J1:

R(f1)∗(B1 ⊗L1)
+1

w wppppppppppp

R(f1)∗L1
a // V ∗Rf∗L

ggNNNNNNNNNNNN

(4)

And the corresponding long exact sequence of cohomology is

0 → (f1)∗(B1 ⊗L1) → R1(f1)∗L1
a→ V ∗R1f∗L → R1(f1)∗(B1 ⊗L1) → 0

(the two first terms cancel). We want to show that a is generically invertible.
To start with, consider a minimal resolution of Rf∗L in the neighborhood

of the origin. It has the form

OJ,0
u′→ Og

J,0

where u′(1) = (x1, . . . , xg) is a system of parameters around 0. Indeed, this
last statement is the same as saying, if u is the transpose of u′, that the
image of u is the maximal ideal of the regular local ring OJ,0, and this is
easy because {0} is the largest closed subscheme of SpecOJ,0 on which L is
trivial.

Now apply what we have just proven to J1 on the one hand, and to J
on the other, but pulling back by V , we find the following resolution for the
arrow a in triangle (4):

R
a0 //

u′
²²

R

v′
²²

Rg a1 // Rg

(5)

where we have written R = OJ1,0, and where u′(1) = (x1, . . . , xg) is a system
of parameters of J1 around 0 and v′(1) = (y1, . . . , yg) is a regular sequence
that gives an equation of ker V around 0. Now of course a0 is just an element
of R, and it is invertible because modulo the maximal ideal of R (that is, at
the origin) the arrow a is just the identity on k. So we can assume that a0 is
the identity. What we want to prove is that det a1 is not zero (of course, it
is invertible precisely when the curve is ordinary).
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Consider the diagram (5) and its transpose (i.e. its image by the functor
HomR(·, R)), and complete them both by adding the Koszul complex on
either column. That is, consider the diagrams:

0

²²

0

²²
R

1 //

u′
²²

R

v′
²²

Rg a1 // Rg

∧gRg det a1 //

²²

∧gRg

²²
M ′ h′ //

²²

N ′

²²
0 0

and 0

²²

0

²²
∧gRg det a1 // ∧gRg

Rg
a∨1 //

v

²²

Rg

u

²²
R

1 //

²²

R

²²
N

h //

²²

M

²²
0 0

in which we have written u, v and a∨1 for the transposes of u′, v′ and a1

respectively and M and N for the cokernels of u and v respectively. Since
u′(1) and v′(1) are regular sequences, M and N are modules of finite length,
and the Koszul complex is a resolution of them: the columns of both diagram
are exact. We have M ′ = Extg

R(M, R) and N ′ = Extg
R(N, R) (since we have

taken a resolution, transposed it, and shifted in g degrees). But since the
Koszul complex is autodual (that is, the left column of the right diagram is
the same as the right column of the left diagram, and vice versa), M and
M ′ are the same and so are N and N ′. Finally, it is known that (R being
a regular local ring) the functor Extg

R(·, R) is dualizing on modules of finite
length. Now h is surjective as is seen on the diagram on the right, so that
its image h′ by the functor in question is injective. Hence det a1 is nonzero,
what we wanted.

We can be more precise than this. As we have seen, M is isomorphic to k,
and N to the local ring of ker V at 0: the support of θB1 swallows everything
in ker V around the origin but just one k. (Incidentally, X is ordinary if
and only if the support of θB1 does not contain the origin, so we recover the
known fact that X is ordinary if and only if the local ring of ker V at the
origin is k, i.e. V is étale.)
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4 Constructing a non ordinary cover

We now present another result of M. Raynaud’s ([2]), namely the fact that a
finite étale cover of an ordinary curve is not necessarily ordinary, even when
the base curve is generic. In fact, we obtain a cover Y ³ X such that the
image of the map J(X1) ½ J(Y1) on the jacobians is completely contained
in the support of the theta divisor of B1 on Y1 — and in particular 0 is, so
that Y is not ordinary. The construction is sufficiently general to apply to
the generic curve (for a given genus g ≥ 2 and characteristic p). We also get
estimations on the Galois group of Y over X; a theorem of Nakajima states
that an abelian cover of the generic curve is ordinary, so we have to work
with non abelian groups if we want a non ordinary cover — however, we will
see that a nilpotent group can suffice.

We start with a few generalities on representations of the fundamental
group of curves. We refer to [2] for details. If ρ : π1(X) → GL(r, k) is a
representation of the fundamental group of X in k-vector spaces of rank r,
and ρ has open kernel (or, which amounts to the same, ρ is continuous and
has finite image), then ρ defines a locally constant étale sheaf in k-vector
spaces of rank r on X, written Vρ (very succintly, Vρ can be obtained as
follows: find a Galois cover Y ³ X whose Galois group factors through the
kernel of ρ, then make π1(X)/ ker ρ act on Y × kr componentwise, and take
the fixed points of that action). Tensoring Vρ by OX gives a Zarisky sheaf Vρ

which is locally free of rank r and has degree 0, i.e. a vector bundle of rank
r and slope 0 on X. Among the functoriality properties of Vρ cited in [2], we

will need the fact that if Y
a³ X is finite étale and ρ is a representation of

π1(Y ) as above then a∗Vρ is precisely Vρ′ , where ρ′ is the representation of
π1(X) induced by ρ.

We say that a representation ρ as above has a theta divisor (respectively,
is ordinary) if and only if the sheaf V1,ρ ⊗ B1 on X1 has a theta divisor
(respectively, has a theta divisor that does not go through the origin), V1,ρ

being the bundle Vρ as above constructed on X1. Thus, we have seen that
the trivial representation has a theta divisor, and it is ordinary precisely
when the curve X is ordinary. The existence of a theta divisor for B shows
that if L is a general invertible sheaf of finite order n prime to p then the
representation ρ of rank 1 associated to it is ordinary.

Theorem 4.1. Let k be an algebraically closed field of characteristic p > 0,
and let X be the generic curve of any genus g ≥ 2 over Spec k. Then there
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exists a Galois cover of X with solvable Galois group of order prime to p that
is not ordinary.

Let X be as stated, and let J be its jacobian. If we choose a base point
on X then we get a map Sg−1X → J from the (g − 1)-th symmetric power
of X, whose image defines a positive divisor on J , called the classical theta
divisor , and written Θ. Let N = OJ(Θ) be the invertible sheaf defined by
Θ. We can assume that N is symmetric (i.e. that if ι : J → J is the inverse
map then ι∗N = N) and we will do so.

Let n be a positive integer that is prime to p, and denote by α the
multiplication by n map on J , which is étale of degree n2g. Call A the
kernel of α, the (étale) set of points of J whose order divides n. Because we
have chosen N symmetric, we have α∗N = N⊗n2

.
We recall (cf. [3]) that the kernel H(N⊗n) is the subgroup of closed x in

J such that T ∗
xN⊗n ∼= N⊗n (where Tx denotes translation by x). This kernel

is obviously A. Now in [3], D. Mumford defines another, more interesting,
group associated to an invertible sheaf on an abelian variety. In our case, it
is the group

G (N⊗n) = {(x, ϕ) | ϕ : N⊗n→̃T ∗
xN⊗n}

with multiplication defined in the obvious way. There is a short exact
sequence

1 → k× → G (N⊗n) → H(N⊗n) → 1

and in fact k× is precisely the center of G (N⊗n). The commutator of two
elements of G (N⊗n) is an element of k× and it depends only on the class
in H(N⊗n) of the two elements. Thus, the commutator defines a skew-
symmetric biadditive form 〈·, ·〉 : A × A → k×. It is moreover shown in [3]
that this form is non degenerate.

Let B a maximal totally isotropic subgroup of A for the form we have
just defined. So B has order ng, and C = A/B has order ng. We factor α as
follows

J
β

$$IIIIIIIIII

α

²²

J ′ = J/B

γ
zzuuuuuuuuuu

J

where β has kernel B and γ has kernel (identified with) C.
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Because B is isotropic, by a result in [3], the sheaf N⊗n descends to an
invertible sheaf M on J ′, i.e. a sheaf such that N⊗n = β∗M . And M is a
principal polarization on J ′. Now note that γ∗N and M⊗n have the same
pullback (namely N⊗n2

) by β; if n is odd we can choose M to be symmetric,
so that γ∗N and M⊗n coincide. We will now suppose this to be the case.

If L is an invertible sheaf on J that is algebraically equivalent to 0
(that is, a closed point of J∨) then we have γ∗(M ⊗ γ∗L) ∼= (γ∗M) ⊗ L,
so that h0(J ′,M ⊗ γ∗L) = h0(J, (γ∗M) ⊗ L). Now the point is that
M ⊗ γ∗L is a principal polarization on J , so this number is 1. In particular
h0(J, (γ∗M) ⊗ L) > 0, and this implies that for any invertible sheaf L of
degree 0 on X we have h0(X, F ⊗ L) > 0, where F is the restriction of γ∗M
to X. This is a good first step, but we need to twist F by an invertible sheaf
having the right degree to compensate for the slope of F (since the sheaves
Vρ have slope zero).

We now calculate the slope of F . Its rank is ng. Introduce the curves Y
and Z that are inverse image of X by γ and α respectively, thus:

Z
β

ÃÃA
AA

AA
AA

α

²²

Y

γ
~~~~

~~
~~

~~

X

The degree of N restricted to X is well-known: it is g. Pulling this back by
α, we see that the degree of N⊗n2

restricted to Z is gn2g, and that of N⊗n|Z
is gn2g−1. Descending to Y , we see that the degree of M |Y is gng−1. So the
slope of F is finally g/n.

Now assume that g divides n, i.e. that g/n = d, the slope of F , is an
integer. The degree of N |X is g = nd, so there exists an invertible sheaf P
of degree d on X such that N |X = P⊗n. Let L′ = (M |Y ) ⊗ γ∗P⊗−1, which
is an invertible sheaf of degree zero. Its inverse image L′′ = β∗L′ is such that
L′′⊗n is trivial on Z, so that the order of L′′ divides n (in fact, it is exactly
n, but we won’t need this). If E = γ∗L′ then E = F ⊗ P⊗−1, which is an
invertible sheaf of degree 0 on X and satisfies h0(X, E ⊗ Ld,gen) > 0 for a
general invertible sheaf Ld,gen of degree d on X.

Now L′′ is of order dividing n, so there is a cyclic covering of degree
n Z ′′ ³ Z which trivializes it. It is Z ′′ that we will prove not to be
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ordinary (under certain numerical conditions at least). The invertible sheaf
L′ of degree 0 corresponds to an abelian representation of π1(Y ) that factors
trough π1(Z

′′), and when we induce that representation to π1(X) we see that
E = γ∗L′ is of the form Vρ for some representation ρ of π1(X) that factors
through π1(Z

′′) (and which can actually be described: see [2]).
All these constructions were performed on X and J . They could equally

well have been performed on X1 and J1. We now consider E as a sheaf of X1.
We have seen h0(X, E⊗Ld,gen) > 0 and we wish to have h0(X, E⊗B1⊗Lgen) >
0. We are therefore done if we can show that B1 contains an invertible
subsheaf of degree d.

But A. Hirschowitz claims in [4] and proves in [5] that a general bundle
of rank r0 and slope λ0 contains a subbundle of rank r′ and slope λ′ (the
quotient having rank r′′ = r0 − r′ and slope λ′′) if λ′′ − λ′ ≥ g − 1. If we
are looking for r′ = 1 and λ′ = d, with r0 = p − 1 and λ0 = g − 1 (the
numerical values of B1), so r′′ = p− 2 and λ′′ = [(g − 1)(p− 1)− d]/(p− 2),
this condition is satisfied iff (g − 1 − d)(p − 1)/(p − 2) ≥ g − 1, that is iff
d ≤ g−1

p−1
. By deforming and specializing to B1, we see that if this inequality

is satisfied then B1 contains an invertible sheaf of degree d.
Finally, we have shown that if p and g are such that there exists a positive

odd integer n, prime to p, dividing g, and satisfying g
n
≤ g−1

p−1
then the generic

curve X of genus g in characteristic p has a covering that is not ordinary.
This is not always the case, but we can always reduce to that case by first
taking a cyclic cover X ′ of degree m prime to p of X (X ′ then has genus
g′ = 1 + m(g − 1)), and apply the result to X ′. Here are the details:

• If p is odd, take m even, not multiple of p and large enough so that
g′ = 1 + m(g − 1) ≥ p.

– If p does not divide g′, then n = g′ works (it is odd because m is
even, it is prime to p, and g′

n
= 1 ≤ g′−1

p−1
because g′ ≥ p).

– If p does divide g′ then we double m and this is no longer the case,
so we are reduced to the previous point.

• If p = 2, write g = 2rs with s odd.

– If s ≥ 3, take m = 1, n = s. (Then n is odd, and g
n

= 2r ≤ g− 1.)

– If s = 1 then g = 2r.

∗ If r ≥ 2, take m = 3, n = g′/2 = 3 × 2r−1 − 1. (Then n is
odd, and g′

n
= 2 ≤ g′ − 1.)
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∗ If r = 1 so g = 2 and we take m = 5, g′ = 6, n = 3.

Finally, we note that our final covering was constructed as a composite
Z ′′ ³ Y ³ X ′ ³ X of coverings all of which are abelian: it is therefore
solvable.
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[4] A. Hirschowitz, “Problèmes de Brill-Noether en rang
supérieur”, C. R. Acad. Sci , 307 (1988), p. 153–156.
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