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Abstract. Many preprocessing techniques have been proposed for
isolated word recognition. However, recently, recognition systems
have dealt with text blocks and their compound text lines. In this
paper, we propose a new preprocessing approach to efficiently
correct baseline skew and fluctuations. Our approach is based on a
sliding window within which the vertical position of the baseline is esti-
mated. Segmentation of text lines into subparts is, thus, avoided.
Experiments conducted on a large publicly available database
(Rimes), with a BLSTM (bidirectional long short-term memory) recur-
rent neural network recognition system, show that our baseline cor-
rection approach highly improves performance. © 2013 SPIE and

IS&T [DOI: 10.1117/1.JEI.22.2.023028]

1 Introduction

Character and word recognition have been studied for more
than 50 years1motivated by the urge of automatic processing
of bank checks, postal envelopes, and forms. The last two
decades have shown an increased activity in the field of
cursive handwriting recognition.2–4

Within this period, the scope of recognition systems has
been enlarged from word recognition to block or text-line
recognition. Such systems allow companies and administra-
tions to automatically sort, search through, and even answer
the large amount of handwritten mail they receive. Beyond
modern documents, a huge amount of archive and historical
documents are still to be exploited by reading systems.5

Text-line recognition is similar to word recognition if text
lines are segmented into words prior to recognition. How-
ever, recognition systems generally avoid the error-prone
text-line segmentation into words.
State-of-the-art handwriting recognition systems are based

on hidden Markov models (HMMs) and, more recently, on
recurrent neural networks (RNNs). Both HMMs and RNNs
take as inputs, sequences of frames provided by sliding win-
dows. The sliding window approach consists of shifting a

narrow window from left to right on the word or text-line
image. In each window, a set of features is extracted, thus,
resulting in a frame. Features often rely on the position of the
baseline since its position is useful for detecting ascenders
and descenders. Therefore, a correct estimation of the base-
line has a strong impact on recognition performance.
In previous works, we have defined sets of statistical and

geometric features for HMM-based recognition systems.6,7

Such features have proven to be powerful for Latin and
Arabic word recognition.8,9 In another work, we have
extended the HMM-based word recognition approach to
text lines by introducing adapted language models.10

Text lines are provided by a segmentation process which
extracts isolated lines from a document image. Such seg-
mented text lines are generally included in handwriting
databases. The segmentation process is relatively easy when
text lines are straight, sufficiently spaced, and oriented in the
same direction. However, when ascenders and descenders in
the inter-line space are present, or when skew is different
from one line to another, fragments from neighboring lines
may appear in the background of text-line images. They are
considered as noise. Handwritten text lines are also charac-
terized by fluctuations. Due to writer movement, changes in
baseline position occur along the text line. The baseline, the
fictitious line which follows and joins the lower part of the
character bodies, may be straight, straight by segments, or
curved.11

For the reasons mentioned above, most recognition
systems start with preprocessing steps. Their objective is
to remove noise, correct slant, and estimate baselines.12

Other preprocessings may consist of reducing the variability
of grey level pixel intensities and normalizing the size
of ascenders and descenders.13 This paper presents a new
approach for processing free-style handwritten text lines.
It consists of normalizing the lower baseline to a horizontal
line using a sliding window approach. Our approach copes
with baselines which are skewed, fluctuating, or both. This
approach differs from machine learning approaches13 which
need manual pixel assignments to baselines. We apply our
baseline correction approach to RNN-based recognition.
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RNNs differ from classical feedforward networks by the fact
that outputs of hidden layers, at time t − 1, are fed as inputs
to hidden layers at time t. This is the so-called recurrent links
within hidden layers. In addition, hidden units, in our recur-
rent networks, are memory blocks called long short-term
memory (LSTM). These blocks which include memory
cells which can keep information through long time intervals
(more than 1000 time samples) and be reset in an instant.
LSTMs are particularly appropriate with tasks with long
periods between pertinent information such as handwriting
sequences. We couple two RNNs into the so-called bidirec-
tional architecture (BLSTM: bi-directional long short term
memory) which has been successfully applied to handwrit-
ing recognition.14,15 In this architecture, two RNNs share the
same input and output layers. The first network scans the text
line from left to right and the second one from right to left.
Thus, both past and future dependencies can be taken into
account in the bidirectional architecture.
Our paper is organized as follows. In Sec. 2, we describe

the preprocessing and feature extraction steps. Preprocessing
includes background cleaning, slant correction, and the
proposed sliding window approach for baseline correction.
It reduces the variability of feature sequences provided to
our RNN classifier, described in Sec. 3. Latin script text-
line recognition experiments as well as a description of

the large and publicly available Rimes database are provided
in Sec. 4. Conclusions and perspectives are given in Sec. 5.

2 Preprocessing Steps

Handwriting in free-style handwritten mails may be slanted,
skewed, or fluctuating. This is due to the style of the writer
and to the lack of guidelines on paper sheets. In addition, due
to imperfect segmentation, text lines may include compo-
nents from neighboring text lines. Such extra components
are considered as noise.
To cope with noisy components, skew, slant and writing

fluctuations (Fig. 1), our preprocessing includes the follow-
ing steps:

• background cleaning;

• baseline correction;

• slant correction.

2.1 Background Cleaning

Text lines result from the segmentation of a document image
[see Fig. 2(a)] into rectangular snippets corresponding to text
lines [see Fig. 2(b)]. Rectangular cropping is a popular way
to segment an image. However, extra components from
preceding and following lines are often included in text line
snippets [see Fig. 3(a)]. The background cleaning prepro-
cessing consists of keeping components of the main text
line and removing noisy components from neighboring
text lines. This process is followed by whitening the back-
ground. Nonetheless, cleaning has to be performed with
caution. Indeed, removing text-line components is highly
damaging for the training and recognition process. Our
approach does not require a training phase such as in
machine-learning approaches.13 It is based on the extraction
of the main text line. Then, components distant from the
main text line are removed. It may be noted that a component
is qualified as close or distant from the main line, through a
threshold directly extracted from writing characteristics of
the input image. The background cleaning approach includes
the following steps:

1. The text-line image is binarized (by Otsu thresholding)
and contours are extracted (by a Canny edge extrac-
tor). A geometric line is then extracted from a Hough
transform on the contour image. This line corresponds
to the highest peak in the Hough (ρ, θ) table [see
continuous line in Fig. 3(a)].

Fig. 1 Text line samples: (a–c) skewed and fluctuating, (d) slanted,
and (e) including background noise from neighboring lines.

Fig. 2 Sample text block with text-line bounding boxes (b) extracted from original mails (a).
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2. hmean and hmax, the average and maximum component
heights are extracted on connected components which
do not reach upper or lower limits of the image.

3. An initial set Sc of candidate noisy components is
composed of connected components which are distant
from the main text line. Their distance is greater than
hmean∕2 computed in Step 2.

4. From previous set Sc, we build set Sn ⊂ Sc of noisy
components to remove. These are Sc components in
contact with the upper and lower edges of the image
as well as Sc components whose gravity center is
peripheral: the distance of their gravity center to the
main text line is greater than hmax computed in Step 2.

Step 1 ensures locating the main text line regardless of
neighboring line fragments or text-line skew. The maximum
peak in the Hough (ρ, θ) table always exists and corresponds
to the actual text line. Step 2 ensures that the average height
of writing components is computed from components which
were not cropped by the text-line segmentation process. Step
3 ensures that components that belong to the main text line
are not removed even if they do not intersect the geometric
Hough-based line. The distance is computed as the nearest
distance of the components’ pixels to the main text line.
Step 4 ensures that peripheral components may be removed
even if they do not touch the edge of the image. See, for
instance, the isolated components of sequence “2007” in
the lower right of Fig. 3.
Components, classified as noisy, are subtracted from the

original grayscale image [see Fig. 3(b)]. Residual errors of
background cleaning may consist of removing accents from
the main text line which are too distant from the geometric
line. It may also consists of accents and comas from neigh-
boring text lines which are too distant from these lines and
which are not removed. In addition, touching components
cannot be separated in this process.They should be processed
during the text-line segmentation step which is out of the
scope of this paper.
Due to scanning and image compression, variations in

background intensities appear on images. Even if it is not
disruptive for human reading, it can have an impact on
our features’ values. To remove such variations, the back-
ground is whitened while preserving grey level foreground
values. Thus, features based on grey level intensities can still

be extracted (see Sec. 3.1). Background pixels are retrieved
using the Otsu thresholding method and saturated to
value 255.16

2.2 Baseline Correction

Baseline correction is a major step for robust handwriting
recognition. It is a necessary step for normalizing handwrit-
ing components such as descenders, ascenders, and text
body. It also improves feature extraction when features
depend on baseline positions. The novel approach, we
propose for baseline correction, copes with both skew and
fluctuation. It is based on a sliding-window approach
which takes into account both inter-word and intra-word
fluctuations.
Baseline correction has been addressed mostly at word

level and is tightly linked to deskew. Deskew consists of esti-
mating a global skew angle on the word image and rotating
the word according to this skew angle. Thus, word baseline is
corrected through the global rotation of the word. Word
deskew approaches are based on linear regressions per-
formed on sets of points. These points may be the centers
of mass of word components or the lowest points of the
word excluding descenders.17–19 Word-based deskewing
approaches can be extended to text-lines when lines are
straight along one direction [see Fig. 4(a)], thus, assuming
a single skew angle for each line.20 This assumption is
valid for forms or paper sheets including guidelines or for
ancient documents when scribes traced marks with lead
points. However, this assumption is no longer valid for free-
style handwritten documents, since words can be skewed dif-
ferently alongside text line [see Fig. 4(b)]. Moreover, a hand-
written line can be seen quite straight if considered globally,
whereas, at word level, baseline position fluctuates greatly
[see Fig. 4(c)].
To our knowledge, there is one approach for baseline

correction specific to text-line level. It consists of splitting
a text line image into vertical strips. A single skew angle
is assumed within each strip and a word-based deskewing
approach is applied to each strip based on linear regres-
sion.13,21,22 A refined approach consists in selecting the
extrema points on which the regression is applied through
classification.13 A trained neural network classifies contour
points as belonging to the lower baseline or not. However,

Fig. 3 Background cleaning: (a) noisy text line including fragments from two neighboring lines. Gravity centers of connected components
(crosses), geometric Hough-based line (continuous) and decision lines (dashed) (b) cleaned line (noisy components removed).
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this machine-learning approach needs training from labeled
samples which is time consuming due to data preparation.
Baseline correction needs a further step since within word

fluctuations are not corrected. It is performed in the so-called
normalization phase.13A second neural network is trained on
the deskewed lines in order to classify points as belonging to
the lower baseline or not. The lower baseline is then

corrected jointly with writing height normalization. Such
machine-learning approach can also correct within-word
baseline fluctuations but needs training.
We propose, in this work, an efficient baseline correction

approach specific to free-style text-line images. Deskew is
performed jointly with baseline correction. Our approach
does not require preliminary tasks such as text-line segmen-
tation into words, connected components detection, or run-
length analysis.23 Indeed, text-line segmentation into words,
or other subparts, is prone to error and does not guarantee a
single skew in each subpart. The principle of our approach is
to estimate the lower baseline position for each image
column, by a sliding window approach, and correct it by
a vertical shift. This approach copes with rapid and slow
variations of baseline position.
Our approach starts with a sliding window of size we

which scans the text line image from left to right (see Fig. 5).
Using an analysis window allows us to cope with descenders
and blank spaces. For the central pixel of the sliding window,
the local baseline y position is computed using the projection
profile approach19:

• First, the vertical projection profile (PP) is created by
counting at each y position the number of foreground
pixels along the horizontal direction. [see Fig. 6(a)].

• Second, the distribution (histogram) [see Fig. 6(b)] of
these projection values is computed. This histogram is
expected to have a principal mode corresponding to the
text-line core zone since the core zone is assumed to

Fig. 5 Sliding window approach: a window is shifted from left to right along the text line. Within each window, local baseline position is estimated.

Fig. 6 (a) Projection profile (PP) is obtained by a projecting pixels on the vertical axis along horizontal direction. (b) Distribution of PP values and
Otsu threshold. Threshold value is then used on PP to extract lower and upper baseline positions.

Fig. 4 (a) Skewed baseline: bottom positions of writing components
lay on a line with angle α ≠ 0. (b) Multiskewed baseline. (c) Fluctuating
baseline: bottom positions of writing components deviate from a
horizontal line. (d) Multiskewed and fluctuating baseline.
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have a higher pixel density than the zones correspond-
ing to ascenders and descenders.

• Third, a thresholding algorithm (Otsu’s method) is
applied to the above distribution. The text core zone
corresponds to the largest continuous core zone
above threshold on the PP profile (see Fig. 6(a) and
Algorithm 1).

Baseline position curve is then smoothed with a Gaussian
filter of width wsmooth to get rid of discontinuities [see
Figs. 7(b) and 8(d)]. Gaussian distribution standard deviation
is σ ¼ wsmooth∕ð4

ffiffiffi

2
p
Þ. Without this smoothing, shearing arti-

facts can appear on corrected images. The correction step
corresponds to a vertical translation. Pseudo-code of the
baseline correction algorithm is provided in Algorithms 1
and 2. Figures 7(a) and 8(c) show sample text lines. The fluc-
tuating text line in Fig. 7(a) is corrected in Fig. 7(c). The
skewed and fluctuating text line in Fig. 8(c) is corrected in
Fig. 8(e). The resulting text line shows fluctuations which

are now too small to impact the feature extraction process
described in Sec. 3.1.

2.3 Slant Correction

The last preprocessing consists of deslanting previous base-
line-corrected text lines [see Fig. 8(f)]. Deslanting consists in
horizontally shifting writing strokes, such as descenders and
ascenders, in order they seem vertical. This step is necessary
since our feature extraction step relies on a sliding window
approach (see Sec. 3.1). Thus, it is desirable that the feature
extraction window only includes parts of a single character.
However, the feature extraction sliding window is distinct
from the window used for preprocessing (Sec. 2.2). They dif-
fer both in size and shift. We use the Vinciarelli’s approach
which relies on histograms of projection values along several
angle directions.19

A single slant angle is presently assumed for a text line.
This could be refined by local approaches such as proposed
by Uchida et al.24 However, we have noticed that skew and
baseline fluctuations are more varying than slant in our data.

3 Free-Style Text-Line Recognition

BLSTMs are recurrent networks which take as input sequen-
ces of frames. These frames are extracted from a sliding win-
dow shifted from left to right on the text-line image (Fig. 9).
This feature extraction process is quite similar to feature
extraction for HMMs. However, in BLSTMs, frames are
processed both from left to right and right to left, thanks to
the bidirectional architecture. Thus, past and future long-
term dependencies can be taken into account. This is the
so called contextual information relevant for recognizing a
piece of handwriting. This differs from HMMs where con-
text-dependent character models take into account the pre-
ceding and following characters only.

Algorithm 1 Pseudo-code for lower baseline extraction

function FINDLOWERBASELINE(PP, threshold_value)

inside region ¼ 0 ▹ Boolean value

for i ¼ 1→ lengthðPPÞ do

if PPðiÞ ≥ threshold value and inside region ¼ 0 then ▹ Entering a core zone

inside region←1 ▹ Create new core region

append [i,.] to core_regions ▹ Higher baseline

else if PPðiÞ ≤ threshold value and inside region ¼ 1

inside region←0 ▹ Leaving a core zone

core regions½lengthðcore regionsÞ%½2%←i ▹ Lower baseline

end if

end for

if lengthðcore regions½lengthðcore regionsÞ − 1%Þ ¼ 1 then

append length(PP)-1 to core_regions[length(core_regions)-1]

end if

for k ¼ 1 → lengthðcore regionsÞ do
add core_regions[k][2]-core_regions[k][1] to size_regions ▹ Length of k-th core zone

end for

Let i_max the index of max(size_regions) ▹ Index of larger core zone

return core regions½i max%½2% ▹ Lower baseline
end function

Fig. 7 Baseline correction steps: (a) local baseline position estima-
tion, (b) baseline smoothing, and (c) baseline correction.
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3.1 Feature Extraction

Frame sequences are extracted from previous preprocessed
text-line images by a sliding window of size w and shift δ
(Fig. 9). Each frame consists of a set of 28 features which
have been successfully applied to Latin and Arabic hand-
written word recognition and, recently, to text-line recogni-
tion.7,10,25 According to previous work, each feature of this
set has a positive impact on recognition performance.6,25,26

Indeed, the feature extraction step, in isolation, takes
about one second. In order to extract features, each window
is divided into a fixed number of cells. This allows feature
extraction to cope with different image heights. Experimental
setup of parameters δ and w is discussed in Sec. 4.
These 28 features (F1 to F28) are the following:

1. F1: foreground pixel density

2. F2: number of foreground/background transitions
between adjacent cells

3. F3: gravity center position difference with following
window

4. F4: relative position of gravity center

5. F5: pixel density above upper baseline (ascend-
ers zone)

6. F6: pixel density under lower baseline (descend-
ers zone)

7. F7: number of foreground/background transitions
between cells above lower baseline (ascendersþ
core zone)

8. F8: relative position of gravity center wrt baselines

9. F9 to F20: local convexity features

10. F21 to F28: pixel density for each frame column
(considering a window size w ¼ 8)

Derivative features are obtained by taking the first-order
derivatives of the above 28 features. The derivation is com-
puted with a regression which takes into account the two
neighboring frames. This is similar to the delta coefficients
in speech recognition domain. Thus, the total set of features
for each frame consists of 56-features. Feature sequences are
provided to the BLSTM recognizer (see Sec. 3.2).

3.2 BLSTM Recognizer

The BLSTM recognizer consists of the coupling of two
RNNs. Each recurrent network takes as input a frame
sequence as described in Sec. 3.1. However, one network
(called the forward network) takes the original frame
sequence as input (from t ¼ 1 to T) while the backward
network takes as input the reversed sequence (from t ¼ T
to 1) (Fig. 10).
A recurrent network consists of an input layer, an output

layer and an hidden layer. At each time step t, the input layer
consists of the frame extracted at t. The output layer consists
of 91 units, each unit being associated with a given character
(A to Z, a to z, numerals, symbols). The two networks, for-
ward and backward, share the same input and output layers.
They differ in their hidden layers. Hence, the value of an out-
put unit at time-step t is the linear combination of the outputs
of the forward and backward hidden layers at this time-step t.
The outputs of the forward hidden layer, at time-step t,
depend on the inputs at t and the outputs of the hidden
layer at t − 1 and, subsequently, depend on all previous
frames (1 to t − 1). Similarly, the backward hidden layer,
at time t, depends on all following frames (tþ 1 to T). In
theory long-term dependencies can thus be taken into
account. However in practice there is an important decay
in the error signals during gradient-based learning. This
issue is described as “vanishing gradient.”27 It has been par-
tially addressed by replacing in the hidden layer, classical
neural network cells (performing input summation and pass-
ing the result through an activation function) with memory
blocks. These blocks, called LSTM contain a memory cell
(Fig. 11) which either keeps information through long
time intervals (more than 1000 time samples) or can be
reset in an instant.15

An LSTM block includes a memory cell and multiplica-
tive logical gates which are specifically designed to memo-
rize or forget relevant information through time. Those gates
can pass or block signals.

• Input gate is placed before the cell unit (at the center of
the block in Fig. 11).15 Its main design is to protect the

Fig. 8 Preprocessing steps: (a) original cropped line, (b) background
cleaning, (c) local baseline estimation, (d) baseline smoothing,
(e) baseline correction, and (f) after deslant.
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cell’s memory from nonrelevant inputs. Thus, cell can
keep relevant information through time via its recur-
rent loop.

• Output gate is placed after the cell unit.15 Similarly,
output gate protects output layer from current informa-
tion contained in the cell if it is not yet relevant for
outputting.

• Forget gate is a more recent improvement designed to
reset the cell’s value and to avoid its endless growth.29

Moreover, forget gate can erase the cell’s memory once
its content is irrelevant to present inputs.

• Peepholes are connexions between the cell and the dif-
ferent gates which allow those gates to spy on current
cell state (dotted lines in Fig. 11).

The inputs of the gates are the input data from the input layer
at t, the outputs of all LSTM blocks of the hidden layer at t − 1
as well as the cell state at t − 1. Inputs of the LSTM block are
the input data at t and the outputs of all LSTM blocks at t − 1.

Fig. 10 Bidirectional network unfolded through 3 time steps.Fig. 9 Feature extraction with a sliding window.

Algorithm 2 Pseudo-code for baseline correction.

Ið1∶m; 1∶nÞ ▹ Text-line image with m lines and n columns

Define wew smooth values

Local baseline estimation

Let baselineðjÞ ¼ 0 (j ¼ 1∶n)

for j ¼ 1 → n do

Iw ¼ Ið1∶m; j − we∕2∶j þ we∕2Þ
PP ¼ projectionprofileðIw Þ
hist ¼ histogramðPPÞ
threshold value ¼ Otsu methodðhistÞ
baselineðjÞ ¼ FINDLOWERBASELINE (PP; threshold value) ▹ Program detailed in Algorithm 1

end for

Baseline smoothing with gaussian filter

Let baseline smoothedðjÞ ¼ 0 (j ¼ 1∶n)

Create gaussian_filter of width wsmooth and standard deviation σ ¼ wsmooth∕ð4
ffiffiffi

2
p
Þ

baseline smoothed ¼ filterðbaseline;gaussian filterÞ

Correction

Let Icorrð1∶m;1∶nÞ ▹ Corrected image

baselinemean ¼ 1

n

P

n
i¼1 baseline smoothedðiÞ ▹ Mean of local baseline

for j ¼ 1 → n do

for i ¼ 1 → m do

if Iði ; jÞ is foreground pixel then

Let Δ ¼ baseline smoothedðjÞ − baselinemean ▹ Vertical shift for correction

if 0 < i þ Δ < m then

Icorrði þ Δ; jÞ←Iði ; jÞ
end if

end if

end for
end for
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Inputs at the entrance of gates, or LSTM block, are summed
and passed through an activation function. The cell state
depends on its previous state (multiplied by the output of
the forget gate) and the output of the activation function g
(multiplied by the output of the input gate) (see Fig. 11).
We use a BLSTM with one hidden layer containing 100

blocks as in Ref. 14. The BLSTM recognizer is trained with
a gradient-based method, “Back-Propagation Through
Time.”30,31 After each training epoch, the recognition error
rate is evaluated on a validation set. If error rate does not
decrease for twenty epochs, network training is stopped.
This strategy avoids data over-fitting.
We use the BLSTM implementation detailed in Ref. 14.

The BLSTM computes, for each frame its outputs, each asso-
ciated to a character class. These outputs are normalized,
thus, providing the posterior probability for each character
class. Then, a backward-forward token passing algorithm,
referred to as connectionist temporal classification (CTC),
takes the posteriors as input and provides a sequence of
words given the dictionary and the language model. We
use the CTC implementation introduced in the works of
Graves14 and Frinken.14,32 Our dictionary and language
model are based on training set transcriptions (see Sec. 4).

4 Experiments

4.1 Rimes Database

The Rimes database of handwritten letters was created in
2006 with the funding of French Defense and Research
Ministries in order to evaluate automatic recognition and
indexing systems.33 The database was collected by asking
volunteers to write letters (on white paper, without guide-
lines) according to nine realistic scenarios which include
change of personal information, information request,
opening and closing account, modification of contract or
order, complaint, payment difficulties, reminder letter, and

damage declaration. The volunteers composed a letter
with those pieces of information using their own words.
Two word recognition competitions and one text block rec-
ognition competition took place between 2009 and 2011.9,34

Thus, Rimes 2011 includes a word database and a text-line
database. We use both of them since the word database is
useful for setting up parameters (see Sec. 4.2).

• The Rimes 2011 word database is divided into training,
validation, and test sets including 51,738, 7484 files
and 9880 word images, respectively.

• The Rimes 2011 text-line training database includes
11,329 text-line images. They are extracted from 1500
text blocks and text-line bounding boxes are provided
by database creators. Typical size of a text-line image
is 2000 × 150 pixels. We divide this database into
two sets: 10,329 text lines (from 1370 text blocks)
for training and 1000 lines (from 130 text blocks)
for validation. The test set is composed of the 778
text lines (100 text blocks) provided for the ICDAR
2011 competition.34

Table 1 Error rates obtained on Rimes 2011
validation word database with various feature
extraction window widths w and shifts δ (diction-
ary size: 5334).

w δ Error rates (%)

4 4 19.64

8 4 18.77

8 8 24.61

9 4 18.53

9 3 17.74

9 2 15.72

9 1 20.71

10 3 19.35

Fig. 11 LSTM memory block with one cell and three gates: multipli-
cative units are represented by full black circles, f , g, and h are acti-
vation functions (adapted from Graves).28

Table 2 Word error rates (WER) obtained on Rimes 2011 test
text-line database according to preprocessing steps and various com-
bination of dictionary (dic.) and language model (LM).

Preprocessing

WER
(no dic./no LM)

(%)

WER
(dic./no LM)

(%)

WER
(dic./LM)

(%)

No background cleaning
and no baseline
correction

64.4 31.6 19.9

Background cleaning and
no baseline correction

60.7 27.9 18.0

Background cleaning and
baseline correction

56.8 26.0 15.8
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The dictionary is built from train text-line transcriptions
and contains 6000 entries. A bigram language model is also
built from train transcriptions following previous work.10

As in ICDAR 2011 competition, all results for text-line
recognition are provided through word error rates (WER).
This rate includes all word substitutions, insertions, and dele-
tions. Thus, a WER can be greater than 100% if many word
insertions occur.

WER¼word substitutionsþword insertionsþword deletions

ground truth number of words in text lines

(1)

4.2 Parameter Setup

To build our text-line recognizer, four parameters are to be
set up. Two parameters deal with baseline correction which
are the width of the baseline extraction window we and the
width of the smoothing filter of the baseline positions
wsmooth. The other two are related to the feature extraction
process which are the width w and the shift δ of the feature
extraction window (δ < w). All parameters are set up on a
validation database which is distinct from the test database.
Feature extraction parameters w and δ can be optimized

on the word database. Indeed, both text lines and words are
extracted from the same documents and have identical pixel

Table 3 Sample text-lines, ground-truth, and BLSTM recognition outputs, according to different dictionary and language model conditions. Bold
characters indicate recognition errors.
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resolutions. For our feature extraction optimization, we use
the Rimes 2011 word database (see Sec. 4.1).
Table 1 shows that optimal extraction parameters are w ¼

9 and δ ¼ 2. This optimum window width is intrinsic to
image resolution and is directly correlated to character
width and to the kind of features. On the other hand, an opti-
mal shift value equal to two is more interesting. This yields a
great overlap in extraction windows and, thus, creates infor-
mation redundancy in frame sequences.
The interest of overlapped sequences for BLSTM recog-

nizer was not obvious since those networks are specially
engineered to keep information through time due to its recur-
rent architecture and its LSTM cells. However, the shift value
should not be less than two pixels. Overlapping feature
extraction has one main drawback which means it leads
to longer frame sequences and, thus, to longer training
and decoding phases.
Baseline correction parameters, we and wsmooth (see

Sec. 2.2), are both optimized on the validation text-line
database: optimal values are we ¼ 225 pixels and wsmooth ¼
350 pixels. Both values are quite large in order to cope with
long blank sequences between words. Indeed, window size
we is related to image resolution and should be set in order to
avoid blank windows. Rimes parameter values we ¼ 225,
wsmooth ¼ 350 pixels have been applied to sample text-
lines of IAM and OpenHart databases, thus, yielding good
visual results.

4.3 Evaluation

To evaluate our baseline correction algorithm, we conduct
text-line recognition experiments including various combi-
nations of preprocessing steps. In order to distinguish the
improvement brought by language help (dictionary and lan-
guage model) from the brute BLSTM recognition, we pro-
vide all results with and without a dictionary and with or
without a language model. Indeed, the recognition system
can provide character strings from activation lattices without
any dictionary. We will refer to this in Table 2 as the “no
dictionary/no LM” case. Recognition can also be constrained
by a dictionary. Only character strings from the dictionary
can be output: this is the “dictionary/no LM” case. Then,
an language model can be added to the dictionary: the bi-
gram transition probabilities between words are taken into
account by the CTC token passing algorithm: This is the
“dictionary/LM” case. We provide results for all these
cases in Table 2.
Our dictionary and language model are built on train and

validation text-line databases which include 6000 different
words. For each major preprocessing step (background
cleaning and baseline correction), we go through the com-
plete process (feature extraction, training, decoding) on the
original text-line images and on the preprocessed ones. The
effect of our preprocessing(s) is measured through WER (see
Sec. 4.1) provided in Table 2.
The WER obtained without preprocessing and language

help (no dictionary, no LM) is about 64.4%. Due to our pre-
processing steps (background cleaning and baseline correc-
tion), WER is reduced by 7.6% in absolute value. The WER
reduction brought by our preprocessings using a language
model and a dictionary is 4.1% in absolute value which is
lower than without language help since language model
and dictionary compensate for recognition errors. This

corresponds to a relative 20% reduction in error rate. The
baseline correction step accounts for a relative reduction
of 11% in error rate after background cleaning. The improve-
ment brought by our baseline correction and background
cleaning is, thus, significant. An example of BLSTM recog-
nition is provided in Table 3 for different cases, with and
without dictionary or language modeling. In this example,
the BLSTM recognizer (case dic./LM) is only challenged by
out-of-vocabulary words, here, a code sequence. Even with-
out any language help (no dictionary/no LM), the BLSTM
outputs a number of real word sequences. Most errors are
missing or doubled letters. These recognition outputs clearly
show the discriminative power of BLSTMs.
Our 5.6% WER reduction, for the dictionary/no LM case,

can be related to the 8.1% WER reduction observed in a
recent study on the preprocessing of Rimes isolated word
images.35 Both WER reductions show that preprocessing
brings significant improvement. Our 15.8% WER achieved
for text-line recognition is similar to the 16.8% WER
obtained in Ref. 35 for word recognition, although text-
line recognition is a more complex task.
Our 15.8% WER is a state-of-the-art result very close to

the 15.2% WER of the best system of the Rimes text-line
recognition competition.34 This WER was achieved by com-
bining three recognition systems at the decision level while
we use a single system.

5 Conclusions

Given the recent development of text-line recognizers, it is
necessary to develop preprocessing approaches at line level.
Considering a single skew value, as for isolated words, is not
relevant for free-style handwritten text lines. In this paper, we
have proposed an efficient algorithm for baseline correction
which copes with a great variety of skew and fluctuating sit-
uations. This approach uses a sliding window, thus, avoiding
the segmentation of text lines into subparts. We have shown
that a state-of-the-art BLSTM recognizer performs signifi-
cantly better using this preprocessing. Such performance
was obtained on the large Rimes database of French hand-
written mails. Our approach can easily be extended to other
Latin or non-Latin scripts such as Arabic. The letters of such
scripts should rest on a baseline.
We have conducted experiments with a BLSTM recog-

nizer. Other recognizers can also benefit from our baseline
correction. Popular ones are HMMs whose feature extraction
process is quite similar from that of BLSTMs.
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