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Transactional Memory 

•  Facilitate concurrent programming 
•  Transactions encapsulate abstract operations 

•  operations appear to take effect atomically 

As a foundation used by other concurrent programs, we 
want to be especially sure that TM implementations 
are correct! 



Vision 

•  Precise formal specifications for transactional memory 
•  one size will not fit all uses 

•  Precise formal models of TM algorithms 
•  Rigorous proofs that algorithms meet specifications 



Our approach 

•  Model algorithms as automata 
•  relatively straightforward 
•  well-developed theory: invariants, etc. 

•  Model specifications as automata 
•  well-developed theory: simulation relations (refinements), etc. 
•  hierarchical proofs: intermediate specifications 

•  Machine-checked proofs 
•  greater confidence; repeatable 
•  reusable: for different algorithms or specifications 



Hierarchical, reusable proofs 

•  High-level specification captures abstract requirements 
•  Intermediate specification for implementation approach 
•  Model algorithms at multiple levels 
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What’s new? 

•  Formalized NOrec algorithm 
•  NOrecAtomicCommitValidate, NOrec, NOrecPseudocode 

•  Proved that NOrec implements TMS2 
•  verified using PVS specification and verification system 
•  (previously proved TMS2 implements TMS1) 

•  Rewrote fundamental definitions 
•  Automata, Simulations, Sequences 

•  Proved basic theorems 
•  e.g., simulation implies (finite) trace inclusion 



This talk 

•  I/O automata and simulations 
•  PVS 
•  TM specifications 
•  NOrec algorithm and automata 
•  Proof 
•  Challenges 



Background: I/O automata (simplified) 

•  states 
•  start states (nonempty) 
•  actions: external (input/output), internal 
•  transition relation: (state, action, state) 

•  execution fragment: state, action, state, action, state,… 
•  each consecutive (state, action, state) triplet is a step 

•  execution: starts with start state 
•  trace: projection onto external actions 



Background: I/O automata (simplified) 

•  Automaton “generates” executions/traces 
•  traces define visible behavior of automaton 

•  as implementation: possible behavior 
•  as specification: allowed behavior 

•  any safety property can be encoded as an automaton  

•  Implementation = trace inclusion 
•  not bisimulation 



Background: Simulation proofs 

•  Forward simulation f from implementation automaton C 
to specification automaton A 
•  relation on states(C) × states(A) 
•  for every start state of C, there is a corresponding start state of A 
•  for every step (s,a,s’) of C and every state u of A corresponding 

to s, there is a state u’ of A corresponding to s’ such that there is 
a (possibly empty) sequence of steps from u to u’ that appears 
identical to the step of C. 

a 
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Background: Simulation proofs 

•  Forward simulation f from implementation automaton C 
to specification automaton A 
•  relation on states(C) × states(A) 
•  for every start state of C, there is a corresponding start state of A 
•  for every step (s,a,s’) of C and every state u of A corresponding 

to s, there is a state u’ of A corresponding to s’ such that there is 
a (possibly empty) sequence of steps from u to u’ that appears 
identical to the step of C. 

•  Similar for backward simulation 
•  Forward and backward simulations are complete. 

•  We’ve used this successfully to verify concurrent data 
structures correct. 



Some alternative approaches 

•  Trace properties 
•  e.g., linearizability, sequential consistency, serializability 
•  graph-based proofs 

•  Operational semantics 



PVS 

•  Typed higher-order logic 
•  Rewriting-based theorem prover 



Automata[State, Action: TYPE+, 
         start: nonempty_pred[State], 
         trans: pred[[State,Action,State]]]: THEORY BEGIN 

FiniteStepSeq: TYPE = [# actions: finseq[Action],  
                         states: { ss: nonempty_finseq[State] |  
                                     length(ss) = length(actions) + 1 } #] 

stepseq: VAR FiniteStepSeq 

length(stepseq): nat = stepseq`actions`length 

steps(stepseq): finseq[Step] =  
  (# length := length(stepseq`actions), 
     seq := LAMBDA (n: below[length(stepseq`actions)]):  
              (stepseq`states(n), stepseq`actions(n), stepseq`states(n+1)) #) 

finiteExecFrag(stepseq): bool =  
  FORALL (n: below[length(stepseq)]): trans(steps(stepseq)(n)) 

finiteExecution(stepseq): bool =  
  finiteExecFrag(stepseq) AND start(first(stepseq)) 



reachable(s): INDUCTIVE bool =  
  start(s) OR (EXISTS s0,a: reachable(s0) AND trans(s0,a,s)) 

reachableAlt: LEMMA 
  reachable(s) IFF  
    EXISTS (fexec, (n: below[length(fexec`states)])):  
      s = fexec`states(n) 

invariant(p: pred[State]): bool = 
  FORALL s: reachable(s) IMPLIES p(s) 

invariantInduction: LEMMA 
  FORALL (p: pred[State]): 
    (FORALL s: start(s) IMPLIES p(s)) 
    AND 
    (FORALL s0, a, s1: 
       reachable(s0) AND reachable(s1) AND p(s0) AND trans(s0,a,s1)  
           IMPLIES p(s1)) 
    IMPLIES invariant(p) 

END Automata 



TM specifications (previous work) 

•  Serializability 
•  does not constrain behavior of aborted transactions 

•  Opacity [Guerraoui, Kapalka] 
•  single serialization “explains” aborted and committed txns 

•  Virtual world consistency (VWC) [Imbs, et al.] 
•  different system model (also, read/write memory only) 
•  no external consistency 

•  TMS1: high-level abstract specification 
•  “as permissive as possible” 

•  TMS2: captures intuition of many TM implementations 
•  implies TMS1 (opacity?) 



TMS2: “Write-latest” 

•  beginIdxt: “timestamp” of state at beginning of txn t 
•  mem: sequence of memory states 
•  wrSett: write set of t 
•  rdSett: read set of t 
•  pct: bookkeeping 



TMS2[Txn, Loc, Val: TYPE+, validInit: nonempty_pred[[Loc -> Val]]]: 
THEORY BEGIN 

ActionType: DATATYPE ... 

Action: TYPE+ = [# txn: Txn, acttype: ActionType #] 

State: TYPE = 
  [# pc: [Txn -> PCValue], 
     beginIdx: [Txn -> nat], 
     mem: nonempty_finseq[RWState], 
     wrSet: [Txn -> PartialFunction[Loc,Val]], 
     rdSet: [Txn -> PartialFunction[Loc,Val]] #] 

start(s): bool =  
      s`mem`length = 1 
  AND validInit(last(s`mem)) 
  AND (FORALL t:    s`pc(t) = notStarted 
                AND s`rdSet(t) = emptyMap 
                AND s`wrSet(t) = emptyMap) 

precondition(a)(s): bool = ... 

effect(a,s): State = ... 

trans(s0,a,s1): bool = precondition(a)(s0) AND s1 = effect(a,s0) 

IMPORTING Automata[State, Action, start, trans] 



ActionType: DATATYPE WITH SUBTYPES external, internal 
BEGIN 
  beginTxn: beginTxn?                               : external 
  beginOk: beginOk?                                 : external 
  inv(i: Invocation): inv?                          : external 
  resp(r: Response): resp?                          : external 
  commit: commit?                                   : external 
  commitOk: commitOk?                               : external 
  cancel: cancel?                                   : external 
  abort: abort?                                     : external 
  doReadWritten(l: Loc): doReadWritten?             : internal 
  doReadUnwritten(l: Loc, n: nat): doReadUnwritten? : internal 
  doWrite(l:Loc, v: Val): doWrite?                  : internal 
  doCommitReadOnly: doCommitReadOnly?               : internal 
  doCommitWriter: doCommitWriter?                   : internal 
END ActionType 



precondition(a)(s): bool = LET t = a`txn IN  
  CASES a`acttype OF 
    beginTxn: s`pc(t) = notStarted, 
    beginOk: s`pc(t) = beginPending, 
    inv(i): s`pc(t) = ready, 
    resp(r):   (readResp?(s`pc(t)) AND r = readOk(v(s`pc(t)))) 
            OR (writeRespOk?(s`pc(t)) AND r = writeOk), 
    commit: s`pc(t) = ready, 
    commitOk: s`pc(t) = commitRespOk, 
    cancel: s`pc(t) = ready, 
    abort:   s`pc(t) = beginPending 
          OR reading?(s`pc(t)) 
          OR writing?(s`pc(t)) 
          OR s`pc(t) = doCommit 
          OR s`pc(t) = cancelPending, 
    doReadWritten(l): s`pc(t) = reading(l) AND dom(s`wrSet(t))(l), 
    doReadUnwritten(l,n):    s`pc(t) = reading(l)  
                         AND NOT dom(s`wrSet(t))(l) 
                         AND validIndex(s,t,n), 
    doWrite(l,v): s`pc(t) = writing(l,v), 
    doCommitReadOnly:    s`pc(t) = doCommit 
                     AND dom(s`wrSet(t)) = emptyset, 
    doCommitWriter:    s`pc(t) = doCommit 
                   AND dom(s`wrSet(t)) /= emptyset 
                   AND readCons(last(s`mem),s`rdSet(t)) 
  ENDCASES 



effect(a,s): State =  
  IF precondition(a)(s) THEN LET t = a`txn IN  
    CASES a`acttype OF 
      beginTxn: s WITH [`pc(t) := beginPending, 
                        `beginIdx(t) := s`mem`length-1], 
      beginOk: s WITH [`pc(t) := ready], 
      inv(i): s WITH [`pc(t) :=  
        IF read?(i) THEN reading(l(i)) ELSE writing(l(i),v(i)) ENDIF], 
      resp(r): s WITH [`pc(t) := ready], 
      commit: s WITH [`pc(t) := doCommit], 
      commitOk: s WITH [`pc(t) := committed], 
      cancel: s WITH [`pc(t) := cancelPending], 
      abort: s WITH [`pc(t) := aborted], 
      doReadWritten(l): s WITH [`pc(t) := readResp(down(s`wrSet(t)(l)))], 
      doReadUnwritten(l,n): (s WITH [`pc(t) := readResp(v), 
                                     `rdSet(t)(l) := up(v)] 
                             WHERE v = s`mem(n)(l)), 
      doWrite(l,v): s WITH [`pc(t) := writeRespOk, 
                            `wrSet(t)(l) := up(v)], 
      doCommitReadOnly: s WITH [`pc(t) := commitRespOk], 
      doCommitWriter: s WITH [`pc(t) := commitRespOk, 
                              `mem := s`mem o oride(last(s`mem), 
                                                    s`wrSet(t))] 
    ENDCASES 
  ELSE 
    arbitraryState 
  ENDIF 



NOrec algorithm [Dalessandro, et al.] 

•  Simple deferred-update alg: “no ownership records” 
•  write shared memory on commit 
•  maintain private read and write sets 
•  reads are invisible 

•  Sequence lock to protect writeback 
•  serializes commit of writing transactions 
•  readers check that lock is not held 

•  Value (re)validation when sequence lock changes  
•  Low overhead 

•  good when conflicts are rare 



NOrec automata 

•  NOrecAtomicCommitValidate 
•  NOrecDerived 
•  NOrec 
•  NOrecPaperPseudocode 



NOrecAtomicCommitValidate[Txn, Loc, Val: TYPE+,  
                          validInit: nonempty_pred[[Loc -> Val]]]: THEORY  
BEGIN 

ActionType: DATATYPE ... 

Action: TYPE+ = [# txn: Txn, acttype: ActionType #] 

State: TYPE =  
  [# pc: [Txn -> PCValue], 
     currMem: RWState, 
     globalSN: nat, 
     snapshotSN: [Txn -> nat], 
     wrSet: [Txn -> PartialFunction[Loc,Val]], 
     rdSet: [Txn -> PartialFunction[Loc,Val]] 
   #] 

start(s): bool = ... 

precondition(a)(s): bool = ... 

effect(a,s): State = ... 

trans(s0,a,s1): bool = precondition(a)(s0) AND s1 = effect(a,s0) 

IMPORTING Automata[State, Action, start, trans] 



ActionType: DATATYPE WITH SUBTYPES external, internal 
BEGIN 
  beginTxn: beginTxn?                       : external 
  beginOk: beginOk?                         : external 
  inv(i: Invocation): inv?                  : external 
  resp(r: Response): resp?                  : external 
  commit: commit?                           : external 
  commitOk: commitOk?                       : external 
  cancel: cancel?                           : external 
  abort: abort?                             : external 
  doBegin: doBegin?                         : internal 
  readValidate: readValidate?               : internal 
  doReadWritten(l: Loc): doReadWritten?     : internal 
  doReadUnwritten(l: Loc): doReadUnwritten? : internal 
  doWrite(l:Loc, v: Val): doWrite?          : internal 
  doCommitReadOnly: doCommitReadOnly?       : internal 
  doCommitWriter: doCommitWriter?           : internal 
END ActionType 



precondition(a)(s): bool = LET t = a`txn IN  
  CASES a`acttype OF 
    beginTxn: s`pc(t) = notStarted, 
    beginOk: s`pc(t) = begun, 
    ... 
    doBegin: s`pc(t) = beginPending, 
    readValidate: readCons(s`currMem, s`rdSet(t)), 
    doReadWritten(l): s`pc(t) = reading(l) AND dom(s`wrSet(t))(l), 
    doReadUnwritten(l):    s`pc(t) = reading(l)  
                       AND NOT dom(s`wrSet(t))(l) 
                       AND s`snapshotSN(t) = s`globalSN, 
    doWrite(l,v): s`pc(t) = writing(l,v), 
    doCommitReadOnly:    s`pc(t) = doCommit 
                     AND dom(s`wrSet(t)) = emptyset, 
    doCommitWriter:    s`pc(t) = doCommit 
                   AND dom(s`wrSet(t)) /= emptyset 
                   AND s`snapshotSN(t) = s`globalSN 
  ENDCASES 



effect(a,s): State =  
  IF precondition(a)(s) THEN LET t = a`txn IN  
    CASES a`acttype OF 
      beginTxn: s WITH [`pc(t) := beginPending], 
      ... 
      doBegin: s WITH [`pc(t) := begun, 
                       `snapshotSN(t) := s`globalSN ], 
      readValidate: s WITH [`snapshotSN(t) := s`globalSN ], 
      doReadWritten(l): s WITH [`pc(t) := readResp(down(s`wrSet(t)(l)))], 
      doReadUnwritten(l,n): (s WITH [`pc(t) := readResp(v), 
                                     `rdSet(t)(l) := up(v)] 
                             WHERE v = s`mem(n)(l)), 
      doWrite(l,v): s WITH [`pc(t) := writeRespOk, 
                            `wrSet(t)(l) := up(v)], 
      doCommitReadOnly: s WITH [`pc(t) := commitRespOk], 
      doCommitWriter: s WITH [`pc(t) := commitRespOk, 
                              `currMem := oride(s`currMem, s`wrSet(t)), 
                              `globalSN := s`globalSN + 1 ]  
    ENDCASES 
  ELSE 
    arbitraryState 
  ENDIF 



NOrec[Txn, Loc, Val: TYPE+,  
      validInit: nonempty_pred[[Loc -> Val]]]: THEORY  
BEGIN 

ActionType: DATATYPE ... 

Action: TYPE+ = [# txn: Txn, acttype: ActionType #] 

State: TYPE =  
  [# pc: [Txn -> PCValue], 
     currMem: RWState, 
     globalSN: nat, 
     commitLock: Lock, 
     l: [Txn -> Loc], 
     v: [Txn -> Val], 
     snapshotSN: [Txn -> nat], 
     wrSet: [Txn -> PartialFunction[Loc,Val]], 
     rdSet: [Txn -> PartialFunction[Loc,Val]], 
     validationSN: [Txn -> nat], 
     validated: [Txn -> setof[Loc]], 
     writtenBack: [Txn -> setof[Loc]] 
   #] 



ActionType: DATATYPE WITH SUBTYPES external, internal 
BEGIN 
  beginTxn: beginTxn?                       : external 
  beginOk: beginOk?                         : external 
  inv(i: Invocation): inv?                  : external 
  resp(r: Response): resp?                  : external 
  commit: commit?                           : external 
  commitOk: commitOk?                       : external 
  cancel: cancel?                           : external 
  abort: abort?                             : external 
  doBegin: doBegin?                         : internal 
  doReadWritten(l: Loc): doReadWritten?     : internal 
  doReadUnwritten(l: Loc): doReadUnwritten? : internal 
  validateNewRead: validateNewRead?         : internal 
  doWrite(l:Loc, v: Val): doWrite?          : internal 
  startValidation: startValidation?         : internal 
  validateLoc(l: Loc): validateLoc?         : internal 
  confirmValidation: confirmValidation?     : internal   
  doCommitReadOnly: doCommitReadOnly?       : internal 
  doCommitWriter: doCommitWriter?           : internal 
END ActionType 



Machine-checked proofs using PVS 

•  Formalize automata in PVS language 
•  need to formalize basic tools: automata, sequences 

•  State lemmas (also in PVS language) 
•  invariants, “unchanged lemmas”, simulation theorem 
•  also lots of basic lemmas about automata, sequences, etc. 

•  Prove lemma using PVS prover 
•  theorem prover (not model checker) 

•  equational rewriting-based, with decision procedures 



Our experience 

•  Learning how to use prover takes time 
•  Lots of “obvious” lemmas needed 
•  Typed logic is mixed blessing 
•  Better “development environment” would help 



Previous TM verification work 

•  Guerraoui, Henzinger, Jobstmann, Singh [PLDI’08] 
•  verify “abort consistency” (like opacity) using model checkers 

•  impl must satisfy certain structural properties (not verified) 
•  Cohen, O’Leary, Pnueli, Tuttle, Zuck [FMCAD’07] 

•  automata-based models formalized in PVS 
•  does not constrain aborted transactions, not real protocol 

•  O’Leary, Saha, Tuttle [ICDCS’09] 
•  Use Spin to model check small instances of McRT STM 

•  only serialisability, no constraints on aborted transactions 

•  Moore, Grossman [POPL’07] 
•  small step operational semantics for language level 
•  no real implementation 



Summary 

•  Verified real TM algorithm (NOrec) 
•  Developed libraries for modeling and verifying 

algorithms using PVS 



Future directions 

•  Verify other TM algorithms 
•  Specify opacity as automaton 

•  prove that it implements TMS1 and is implemented by TMS2 

•  Extend to infinite traces 
•  Extend interface/specification 

•  nontransactional operations 
•  weakly consistent memory models 
•  nested transactions 
•  … 




