

<Insert Picture Here>

Formal Machine-Checked Verification
of a Real Transactional Memory Algorithm
Victor Luchangco (joint work with Mark Moir)
Oracle Labs

Copyright © 2011 Oracle and/or its affiliates (“Oracle”).
All rights are reserved by Oracle except as expressly
stated as follows. Permission to make digital or hard
copies of all or part of this work for personal or
classroom use is granted, provided that copies are not
made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post
on servers, or to redistribute to lists, requires prior
specific written permission of Oracle.

Transactional Memory

•  Facilitate concurrent programming
•  Transactions encapsulate abstract operations

•  operations appear to take effect atomically

As a foundation used by other concurrent programs, we
want to be especially sure that TM implementations
are correct!

Vision

•  Precise formal specifications for transactional memory
•  one size will not fit all uses

•  Precise formal models of TM algorithms
•  Rigorous proofs that algorithms meet specifications

Our approach

•  Model algorithms as automata
•  relatively straightforward
•  well-developed theory: invariants, etc.

•  Model specifications as automata
•  well-developed theory: simulation relations (refinements), etc.
•  hierarchical proofs: intermediate specifications

•  Machine-checked proofs
•  greater confidence; repeatable
•  reusable: for different algorithms or specifications

Hierarchical, reusable proofs

•  High-level specification captures abstract requirements
•  Intermediate specification for implementation approach
•  Model algorithms at multiple levels

<Insert Picture Here>

Towards Formal Specification and Verification of
Transactional Memory: Machine-Checked Proofs
Victor Luchangco (joint work with Simon Doherty and Mark Moir)
Sun Labs
Scalable Synchronization Research Group

What’s new?

•  Formalized NOrec algorithm
•  NOrecAtomicCommitValidate, NOrec, NOrecPseudocode

•  Proved that NOrec implements TMS2
•  verified using PVS specification and verification system
•  (previously proved TMS2 implements TMS1)

•  Rewrote fundamental definitions
•  Automata, Simulations, Sequences

•  Proved basic theorems
•  e.g., simulation implies (finite) trace inclusion

This talk

•  I/O automata and simulations
•  PVS
•  TM specifications
•  NOrec algorithm and automata
•  Proof
•  Challenges

Background: I/O automata (simplified)

•  states
•  start states (nonempty)
•  actions: external (input/output), internal
•  transition relation: (state, action, state)

•  execution fragment: state, action, state, action, state,…
•  each consecutive (state, action, state) triplet is a step

•  execution: starts with start state
•  trace: projection onto external actions

Background: I/O automata (simplified)

•  Automaton “generates” executions/traces
•  traces define visible behavior of automaton

•  as implementation: possible behavior
•  as specification: allowed behavior

•  any safety property can be encoded as an automaton

•  Implementation = trace inclusion
•  not bisimulation

Background: Simulation proofs

•  Forward simulation f from implementation automaton C
to specification automaton A
•  relation on states(C) × states(A)
•  for every start state of C, there is a corresponding start state of A
•  for every step (s,a,s’) of C and every state u of A corresponding

to s, there is a state u’ of A corresponding to s’ such that there is
a (possibly empty) sequence of steps from u to u’ that appears
identical to the step of C.

a

a

f f

Background: Simulation proofs

•  Forward simulation f from implementation automaton C
to specification automaton A
•  relation on states(C) × states(A)
•  for every start state of C, there is a corresponding start state of A
•  for every step (s,a,s’) of C and every state u of A corresponding

to s, there is a state u’ of A corresponding to s’ such that there is
a (possibly empty) sequence of steps from u to u’ that appears
identical to the step of C.

•  Similar for backward simulation
•  Forward and backward simulations are complete.

•  We’ve used this successfully to verify concurrent data
structures correct.

Some alternative approaches

•  Trace properties
•  e.g., linearizability, sequential consistency, serializability
•  graph-based proofs

•  Operational semantics

PVS

•  Typed higher-order logic
•  Rewriting-based theorem prover

Automata[State, Action: TYPE+,
 start: nonempty_pred[State],
 trans: pred[[State,Action,State]]]: THEORY BEGIN

FiniteStepSeq: TYPE = [# actions: finseq[Action],
 states: { ss: nonempty_finseq[State] |
 length(ss) = length(actions) + 1 } #]

stepseq: VAR FiniteStepSeq

length(stepseq): nat = stepseq`actions`length

steps(stepseq): finseq[Step] =
 (# length := length(stepseq`actions),
 seq := LAMBDA (n: below[length(stepseq`actions)]):
 (stepseq`states(n), stepseq`actions(n), stepseq`states(n+1)) #)

finiteExecFrag(stepseq): bool =
 FORALL (n: below[length(stepseq)]): trans(steps(stepseq)(n))

finiteExecution(stepseq): bool =
 finiteExecFrag(stepseq) AND start(first(stepseq))

reachable(s): INDUCTIVE bool =
 start(s) OR (EXISTS s0,a: reachable(s0) AND trans(s0,a,s))

reachableAlt: LEMMA
 reachable(s) IFF
 EXISTS (fexec, (n: below[length(fexec`states)])):
 s = fexec`states(n)

invariant(p: pred[State]): bool =
 FORALL s: reachable(s) IMPLIES p(s)

invariantInduction: LEMMA
 FORALL (p: pred[State]):
 (FORALL s: start(s) IMPLIES p(s))
 AND
 (FORALL s0, a, s1:
 reachable(s0) AND reachable(s1) AND p(s0) AND trans(s0,a,s1)
 IMPLIES p(s1))
 IMPLIES invariant(p)

END Automata

TM specifications (previous work)

•  Serializability
•  does not constrain behavior of aborted transactions

•  Opacity [Guerraoui, Kapalka]
•  single serialization “explains” aborted and committed txns

•  Virtual world consistency (VWC) [Imbs, et al.]
•  different system model (also, read/write memory only)
•  no external consistency

•  TMS1: high-level abstract specification
•  “as permissive as possible”

•  TMS2: captures intuition of many TM implementations
•  implies TMS1 (opacity?)

TMS2: “Write-latest”

•  beginIdxt: “timestamp” of state at beginning of txn t
•  mem: sequence of memory states
•  wrSett: write set of t
•  rdSett: read set of t
•  pct: bookkeeping

TMS2[Txn, Loc, Val: TYPE+, validInit: nonempty_pred[[Loc -> Val]]]:
THEORY BEGIN

ActionType: DATATYPE ...

Action: TYPE+ = [# txn: Txn, acttype: ActionType #]

State: TYPE =
 [# pc: [Txn -> PCValue],
 beginIdx: [Txn -> nat],
 mem: nonempty_finseq[RWState],
 wrSet: [Txn -> PartialFunction[Loc,Val]],
 rdSet: [Txn -> PartialFunction[Loc,Val]] #]

start(s): bool =
 s`mem`length = 1
 AND validInit(last(s`mem))
 AND (FORALL t: s`pc(t) = notStarted
 AND s`rdSet(t) = emptyMap
 AND s`wrSet(t) = emptyMap)

precondition(a)(s): bool = ...

effect(a,s): State = ...

trans(s0,a,s1): bool = precondition(a)(s0) AND s1 = effect(a,s0)

IMPORTING Automata[State, Action, start, trans]

ActionType: DATATYPE WITH SUBTYPES external, internal
BEGIN
 beginTxn: beginTxn? : external
 beginOk: beginOk? : external
 inv(i: Invocation): inv? : external
 resp(r: Response): resp? : external
 commit: commit? : external
 commitOk: commitOk? : external
 cancel: cancel? : external
 abort: abort? : external
 doReadWritten(l: Loc): doReadWritten? : internal
 doReadUnwritten(l: Loc, n: nat): doReadUnwritten? : internal
 doWrite(l:Loc, v: Val): doWrite? : internal
 doCommitReadOnly: doCommitReadOnly? : internal
 doCommitWriter: doCommitWriter? : internal
END ActionType

precondition(a)(s): bool = LET t = a`txn IN
 CASES a`acttype OF
 beginTxn: s`pc(t) = notStarted,
 beginOk: s`pc(t) = beginPending,
 inv(i): s`pc(t) = ready,
 resp(r): (readResp?(s`pc(t)) AND r = readOk(v(s`pc(t))))
 OR (writeRespOk?(s`pc(t)) AND r = writeOk),
 commit: s`pc(t) = ready,
 commitOk: s`pc(t) = commitRespOk,
 cancel: s`pc(t) = ready,
 abort: s`pc(t) = beginPending
 OR reading?(s`pc(t))
 OR writing?(s`pc(t))
 OR s`pc(t) = doCommit
 OR s`pc(t) = cancelPending,
 doReadWritten(l): s`pc(t) = reading(l) AND dom(s`wrSet(t))(l),
 doReadUnwritten(l,n): s`pc(t) = reading(l)
 AND NOT dom(s`wrSet(t))(l)
 AND validIndex(s,t,n),
 doWrite(l,v): s`pc(t) = writing(l,v),
 doCommitReadOnly: s`pc(t) = doCommit
 AND dom(s`wrSet(t)) = emptyset,
 doCommitWriter: s`pc(t) = doCommit
 AND dom(s`wrSet(t)) /= emptyset
 AND readCons(last(s`mem),s`rdSet(t))
 ENDCASES

effect(a,s): State =
 IF precondition(a)(s) THEN LET t = a`txn IN
 CASES a`acttype OF
 beginTxn: s WITH [`pc(t) := beginPending,
 `beginIdx(t) := s`mem`length-1],
 beginOk: s WITH [`pc(t) := ready],
 inv(i): s WITH [`pc(t) :=
 IF read?(i) THEN reading(l(i)) ELSE writing(l(i),v(i)) ENDIF],
 resp(r): s WITH [`pc(t) := ready],
 commit: s WITH [`pc(t) := doCommit],
 commitOk: s WITH [`pc(t) := committed],
 cancel: s WITH [`pc(t) := cancelPending],
 abort: s WITH [`pc(t) := aborted],
 doReadWritten(l): s WITH [`pc(t) := readResp(down(s`wrSet(t)(l)))],
 doReadUnwritten(l,n): (s WITH [`pc(t) := readResp(v),
 `rdSet(t)(l) := up(v)]
 WHERE v = s`mem(n)(l)),
 doWrite(l,v): s WITH [`pc(t) := writeRespOk,
 `wrSet(t)(l) := up(v)],
 doCommitReadOnly: s WITH [`pc(t) := commitRespOk],
 doCommitWriter: s WITH [`pc(t) := commitRespOk,
 `mem := s`mem o oride(last(s`mem),
 s`wrSet(t))]
 ENDCASES
 ELSE
 arbitraryState
 ENDIF

NOrec algorithm [Dalessandro, et al.]

•  Simple deferred-update alg: “no ownership records”
•  write shared memory on commit
•  maintain private read and write sets
•  reads are invisible

•  Sequence lock to protect writeback
•  serializes commit of writing transactions
•  readers check that lock is not held

•  Value (re)validation when sequence lock changes
•  Low overhead

•  good when conflicts are rare

NOrec automata

•  NOrecAtomicCommitValidate
•  NOrecDerived
•  NOrec
•  NOrecPaperPseudocode

NOrecAtomicCommitValidate[Txn, Loc, Val: TYPE+,
 validInit: nonempty_pred[[Loc -> Val]]]: THEORY
BEGIN

ActionType: DATATYPE ...

Action: TYPE+ = [# txn: Txn, acttype: ActionType #]

State: TYPE =
 [# pc: [Txn -> PCValue],
 currMem: RWState,
 globalSN: nat,
 snapshotSN: [Txn -> nat],
 wrSet: [Txn -> PartialFunction[Loc,Val]],
 rdSet: [Txn -> PartialFunction[Loc,Val]]
 #]

start(s): bool = ...

precondition(a)(s): bool = ...

effect(a,s): State = ...

trans(s0,a,s1): bool = precondition(a)(s0) AND s1 = effect(a,s0)

IMPORTING Automata[State, Action, start, trans]

ActionType: DATATYPE WITH SUBTYPES external, internal
BEGIN
 beginTxn: beginTxn? : external
 beginOk: beginOk? : external
 inv(i: Invocation): inv? : external
 resp(r: Response): resp? : external
 commit: commit? : external
 commitOk: commitOk? : external
 cancel: cancel? : external
 abort: abort? : external
 doBegin: doBegin? : internal
 readValidate: readValidate? : internal
 doReadWritten(l: Loc): doReadWritten? : internal
 doReadUnwritten(l: Loc): doReadUnwritten? : internal
 doWrite(l:Loc, v: Val): doWrite? : internal
 doCommitReadOnly: doCommitReadOnly? : internal
 doCommitWriter: doCommitWriter? : internal
END ActionType

precondition(a)(s): bool = LET t = a`txn IN
 CASES a`acttype OF
 beginTxn: s`pc(t) = notStarted,
 beginOk: s`pc(t) = begun,
 ...
 doBegin: s`pc(t) = beginPending,
 readValidate: readCons(s`currMem, s`rdSet(t)),
 doReadWritten(l): s`pc(t) = reading(l) AND dom(s`wrSet(t))(l),
 doReadUnwritten(l): s`pc(t) = reading(l)
 AND NOT dom(s`wrSet(t))(l)
 AND s`snapshotSN(t) = s`globalSN,
 doWrite(l,v): s`pc(t) = writing(l,v),
 doCommitReadOnly: s`pc(t) = doCommit
 AND dom(s`wrSet(t)) = emptyset,
 doCommitWriter: s`pc(t) = doCommit
 AND dom(s`wrSet(t)) /= emptyset
 AND s`snapshotSN(t) = s`globalSN
 ENDCASES

effect(a,s): State =
 IF precondition(a)(s) THEN LET t = a`txn IN
 CASES a`acttype OF
 beginTxn: s WITH [`pc(t) := beginPending],
 ...
 doBegin: s WITH [`pc(t) := begun,
 `snapshotSN(t) := s`globalSN],
 readValidate: s WITH [`snapshotSN(t) := s`globalSN],
 doReadWritten(l): s WITH [`pc(t) := readResp(down(s`wrSet(t)(l)))],
 doReadUnwritten(l,n): (s WITH [`pc(t) := readResp(v),
 `rdSet(t)(l) := up(v)]
 WHERE v = s`mem(n)(l)),
 doWrite(l,v): s WITH [`pc(t) := writeRespOk,
 `wrSet(t)(l) := up(v)],
 doCommitReadOnly: s WITH [`pc(t) := commitRespOk],
 doCommitWriter: s WITH [`pc(t) := commitRespOk,
 `currMem := oride(s`currMem, s`wrSet(t)),
 `globalSN := s`globalSN + 1]
 ENDCASES
 ELSE
 arbitraryState
 ENDIF

NOrec[Txn, Loc, Val: TYPE+,
 validInit: nonempty_pred[[Loc -> Val]]]: THEORY
BEGIN

ActionType: DATATYPE ...

Action: TYPE+ = [# txn: Txn, acttype: ActionType #]

State: TYPE =
 [# pc: [Txn -> PCValue],
 currMem: RWState,
 globalSN: nat,
 commitLock: Lock,
 l: [Txn -> Loc],
 v: [Txn -> Val],
 snapshotSN: [Txn -> nat],
 wrSet: [Txn -> PartialFunction[Loc,Val]],
 rdSet: [Txn -> PartialFunction[Loc,Val]],
 validationSN: [Txn -> nat],
 validated: [Txn -> setof[Loc]],
 writtenBack: [Txn -> setof[Loc]]
 #]

ActionType: DATATYPE WITH SUBTYPES external, internal
BEGIN
 beginTxn: beginTxn? : external
 beginOk: beginOk? : external
 inv(i: Invocation): inv? : external
 resp(r: Response): resp? : external
 commit: commit? : external
 commitOk: commitOk? : external
 cancel: cancel? : external
 abort: abort? : external
 doBegin: doBegin? : internal
 doReadWritten(l: Loc): doReadWritten? : internal
 doReadUnwritten(l: Loc): doReadUnwritten? : internal
 validateNewRead: validateNewRead? : internal
 doWrite(l:Loc, v: Val): doWrite? : internal
 startValidation: startValidation? : internal
 validateLoc(l: Loc): validateLoc? : internal
 confirmValidation: confirmValidation? : internal
 doCommitReadOnly: doCommitReadOnly? : internal
 doCommitWriter: doCommitWriter? : internal
END ActionType

Machine-checked proofs using PVS

•  Formalize automata in PVS language
•  need to formalize basic tools: automata, sequences

•  State lemmas (also in PVS language)
•  invariants, “unchanged lemmas”, simulation theorem
•  also lots of basic lemmas about automata, sequences, etc.

•  Prove lemma using PVS prover
•  theorem prover (not model checker)

•  equational rewriting-based, with decision procedures

Our experience

•  Learning how to use prover takes time
•  Lots of “obvious” lemmas needed
•  Typed logic is mixed blessing
•  Better “development environment” would help

Previous TM verification work

•  Guerraoui, Henzinger, Jobstmann, Singh [PLDI’08]
•  verify “abort consistency” (like opacity) using model checkers

•  impl must satisfy certain structural properties (not verified)
•  Cohen, O’Leary, Pnueli, Tuttle, Zuck [FMCAD’07]

•  automata-based models formalized in PVS
•  does not constrain aborted transactions, not real protocol

•  O’Leary, Saha, Tuttle [ICDCS’09]
•  Use Spin to model check small instances of McRT STM

•  only serialisability, no constraints on aborted transactions

•  Moore, Grossman [POPL’07]
•  small step operational semantics for language level
•  no real implementation

Summary

•  Verified real TM algorithm (NOrec)
•  Developed libraries for modeling and verifying

algorithms using PVS

Future directions

•  Verify other TM algorithms
•  Specify opacity as automaton

•  prove that it implements TMS1 and is implemented by TMS2

•  Extend to infinite traces
•  Extend interface/specification

•  nontransactional operations
•  weakly consistent memory models
•  nested transactions
•  …

