< redhat.

Draft Specification of Txnal

Language Constructs for C++

Torvald Riegel
Red Hat
11/09/23

Draft specification

Scope:
C++, shared memory
C will be similar

Who:

HP, IBM, Intel, Oracle, Red Hat
External contributors, comments, ...

Implementations:
GCC: transactional-memory branch
ICC: What-if prototype

Torvald Riegel

TM must be practical

Aim for this spec is inclusion in C++ standard (extending
C++11’s successors)

Rather systems research than pure TM theory
Constraints / reguirements:

Integrate well with current C++ ecosystems (language,
libraries, compilers, runtime environments)

Easy to understand and use
Efficient implementations must be possible
Must not slow down nontxnal code

Torvald Riegel

High-level feature overview

Central language construct: Transaction statements
__transaction <statement>

Embedded into C++ memory model
Atomic and relaxed txns

Several C++ thread-related features compatible with
atomic txns, but not all

Commit-on-throw is default

Torvald Riegel

Embedding TM into C++11

Language tie-in is necessary

Abstract machine spec and as-if rules guide implementations
(TM runtime and compiler)

Existing memory model for txnal and nontxnal code
C++11 memory model:

Seqguenced-before * synchronizes-with
= happens-before (HB)

Reliance on data-race freedom (DRF):

Conflicting accesses to same location that are not ordered by
HB -> data race

Data races have catch-fire semantics

Torvald Riegel

Transactions: The basics

Want transactions to virtually execute sequentially in some
total order (like with a global lock)

Txnal Synchronization Order (TSO)

Virtual StartTxn, EndTxn ops for each outermost txn

Demarcate txns in sequenced-before
StartTxn, EndTxn ordered according to TSO

Txns don’t overlap
EndTxn/StartTxn pairs contribute to synchronizes-with

Program cannot enforce a specific TSO directly, can only
constrain choice

Txns thus affect and are affected by happens-before

6 Torvald Riegel

Transactions: The basics (2)

Assuming just ordinary, nonsynchronizing code in txns

Can only observe TSO via txns

Anything else would be a data race!
Txns are atomic and sequentially consistent

TM runtime
Can rely on DRF
Can determine TSO independently
Only has to consider existing nontxnal happens-before

Torvald Riegel

Publication [privatization as example

Responsibilities:
Publication: Programmer and compiler
Privatization: Programmer, compiler, TM runtime

// Publication // Incorrect // Correct
X = new X(); ‘\:transaction{ __transaction{
__transaction y = X; if (xpublic)
Xpublic = true; if (xpublic) foo(x);
} foo(y); b
// Privatizati Data race!

__transactio
Xpublic g7 false;
delete Xx;

Torvald Riegel

Relaxing atomicity

Basic txns on previous slides are atomic txns

But what if they contain sync code? No races anymore..
But what if the compiler can’t instrument the code?

Relaxed txns:

Atomicity wrt. other txns but not wrt. nontxnal code
Can execute unsafe code
More permissive but relaxed atomicity

Open question:

Middle ground?
Can we mix atomic/relaxed in a single txn in a safe way?

Torvald Riegel

)

Syntax

Keywords for txn statements/expressions/functions

Current spec with atomic as default:

_ _transaction,_ transaction [[atomic]],
__transaction [[relaxed]]

Alternative with no default:
__transaction_atomic, transaction_relaxed

Attributes for function types
transaction_safe: No volatile accesses, asm,...
transaction_unsafe: Prevent implicit transaction_safe
transaction_callable: Called from relaxed txn

10 Torvald Riegel

C++ feature compatibility with atomic txns

C++11 atomics: Maybe. IMO: No

Locks: Can be allowed.
Order of acquisition matters (as in publication example)
Locks are held until the end of the transaction

Block-scope static vars (ctors): Allowed
Initialization will appear atomically to other threads

call_once(): Same.
Condition variables: No?
Futures/promises: ?

11 Torvald Riegel

Atomic txns: Static vs. dynamic checking

Current spec: Purely static checking
Atomic txns must contain only safe code (No sync, etc.)
Must only contain calls to transaction_safe functions
Conservative, complete atomicity check at compile time
Fully dynamic checking (runtime)?
Can contain all code, call all functions
Fatal runtime error upon execution of unsafe code
Easier code reuse

Semi-dynamic checking?
Mark unsafe code w/ __not_executed_in_atomic_txns{}
Makes programmers aware, but also requires code changes

12 Torvald Riegel ‘

Exceptions

Default behavior:

Commit on throw
Don’t change exception semantics

Basic support for failure atomicity

__transaction_cancel statement

Rolls back the enclosing atomic txn
With [[outer]], rolls back outermost txn

_ _transaction_cancel throw <expr>

Cancel and throw exception of integral/enumerated type

Extend to std exception types with constraints on derived
classes?

13 Torvald Riegel

Please contribute!

Making the spec robust for the C++ standard

Specification: Use, formalize, verify

We plan to present this draft to the C++ committee in February
Implementations: Use, test, improve

GCC 4.7 feature freeze at end of October

http://groups.google.com/group/tm-languages
http://gcc.gnu.org/lists.html
triegel@redhat.com

14 Torvald Riegel

http://groups.google.com/group/tm-languages
http://gcc.gnu.org/lists.html
mailto:triegel@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

