
Torvald Riegel1

Draft Specification of Txnal

Language Constructs for C++

Torvald Riegel
Red Hat
11/09/23

Torvald Riegel2

Draft specification

● Scope:
● C++, shared memory
● C will be similar

● Who:
● HP, IBM, Intel, Oracle, Red Hat
● External contributors, comments, ...

● Implementations:
● GCC: transactional-memory branch
● ICC: What-if prototype

Torvald Riegel3

TM must be practical

● Aim for this spec is inclusion in C++ standard (extending
C++11’s successors)

● Rather systems research than pure TM theory
● Constraints / requirements:

● Integrate well with current C++ ecosystems (language,
libraries, compilers, runtime environments)

● Easy to understand and use
● Efficient implementations must be possible
● Must not slow down nontxnal code

Torvald Riegel4

High-level feature overview

● Central language construct: Transaction statements
● __transaction <statement>
● Embedded into C++ memory model

● Atomic and relaxed txns
● Several C++ thread-related features compatible with

atomic txns, but not all
● Commit-on-throw is default

Torvald Riegel5

Embedding TM into C++11

● Language tie-in is necessary
● Abstract machine spec and as-if rules guide implementations

(TM runtime and compiler)
● Existing memory model for txnal and nontxnal code

● C++11 memory model:
● Sequenced-before * synchronizes-with

= happens-before (HB)
● Reliance on data-race freedom (DRF):

● Conflicting accesses to same location that are not ordered by
HB -> data race

● Data races have catch-fire semantics

Torvald Riegel6

Transactions: The basics

● Want transactions to virtually execute sequentially in some
total order (like with a global lock)

● Txnal Synchronization Order (TSO)
● Virtual StartTxn, EndTxn ops for each outermost txn

● Demarcate txns in sequenced-before
● StartTxn, EndTxn ordered according to TSO

● Txns don’t overlap
● EndTxn/StartTxn pairs contribute to synchronizes-with
● Program cannot enforce a specific TSO directly, can only

constrain choice
● Txns thus affect and are affected by happens-before

Torvald Riegel7

Transactions: The basics (2)

● Assuming just ordinary, nonsynchronizing code in txns
● Can only observe TSO via txns

● Anything else would be a data race!
● Txns are atomic and sequentially consistent

● TM runtime
● Can rely on DRF
● Can determine TSO independently
● Only has to consider existing nontxnal happens-before

Torvald Riegel8

Publication / privatization as example

● Responsibilities:
● Publication: Programmer and compiler
● Privatization: Programmer, compiler, TM runtime

// Publication // Incorrect // Correct
x = new X(); __transaction{ __transaction{
__transaction y = x; if (xpublic)
 xpublic = true; if (xpublic) foo(x);
 foo(y); }
 }
// Privatization
__transaction
 xpublic = false;
delete x;

Data race! Correct dependency:
x only read if xpublic is true

Torvald Riegel9

Relaxing atomicity

● Basic txns on previous slides are atomic txns
● But what if they contain sync code? No races anymore..
● But what if the compiler can’t instrument the code?

● Relaxed txns:
● Atomicity wrt. other txns but not wrt. nontxnal code
● Can execute unsafe code
● More permissive but relaxed atomicity

● Open question:
● Middle ground?

Can we mix atomic/relaxed in a single txn in a safe way?

Torvald Riegel10

Syntax

● Keywords for txn statements/expressions/functions
● Current spec with atomic as default:

● __transaction, __transaction [[atomic]],
__transaction [[relaxed]]

● Alternative with no default:
● __transaction_atomic, __transaction_relaxed

● Attributes for function types
● transaction_safe: No volatile accesses, asm,...
● transaction_unsafe: Prevent implicit transaction_safe
● transaction_callable: Called from relaxed txn

Torvald Riegel11

C++ feature compatibility with atomic txns

● C++11 atomics: Maybe. IMO: No
● Locks: Can be allowed.

● Order of acquisition matters (as in publication example)
● Locks are held until the end of the transaction

● Block-scope static vars (ctors): Allowed
● Initialization will appear atomically to other threads

● call_once(): Same.
● Condition variables: No?
● Futures/promises: ?

Torvald Riegel12

Atomic txns: Static vs. dynamic checking

● Current spec: Purely static checking
● Atomic txns must contain only safe code (No sync, etc.)
● Must only contain calls to transaction_safe functions
● Conservative, complete atomicity check at compile time

● Fully dynamic checking (runtime)?
● Can contain all code, call all functions
● Fatal runtime error upon execution of unsafe code
● Easier code reuse

● Semi-dynamic checking?
● Mark unsafe code w/ __not_executed_in_atomic_txns{}
● Makes programmers aware, but also requires code changes

Torvald Riegel13

Exceptions

● Default behavior:
● Commit on throw
● Don’t change exception semantics

● Basic support for failure atomicity
● __transaction_cancel statement

● Rolls back the enclosing atomic txn
● With [[outer]], rolls back outermost txn

● __transaction_cancel throw <expr>
● Cancel and throw exception of integral/enumerated type
● Extend to std exception types with constraints on derived

classes?

Torvald Riegel14

Please contribute!

● Making the spec robust for the C++ standard
● Specification: Use, formalize, verify

● We plan to present this draft to the C++ committee in February
● Implementations: Use, test, improve

● GCC 4.7 feature freeze at end of October

http://groups.google.com/group/tm-languages

http://gcc.gnu.org/lists.html

triegel@redhat.com

http://groups.google.com/group/tm-languages
http://gcc.gnu.org/lists.html
mailto:triegel@redhat.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

