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A Fleeting Opportunity

•HTM is coming
» Azul, Sun Rock, AMD ASF
» IBM has announced for Blue Gene/Q
» ... ?

•STM for backward compatibility, fallback on HW 
overflow

•Language support essential
•Narrow window in time to “get the semantics 

right”
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Outline

•Assertions
» atomicity is central
» speculation is an implementation issue (only)
» small transactions are what matter
» privatization is essential

– necessary for correctness
– solves the problem of legacy synchronization

•Open Questions
» non-transactional reads and writes
» big transactions, integration with system transactions
» relationship to “deterministic parallel programming”
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Memory Models

•Transactional sequential consistency (TSC)
» ideal but expensive: global total order on accesses

– consistent w/ program order <p

– w/ each transaction contiguous

•Strict serializability (SS)
» txns globally totally ordered wrt one another
» also ordered wrt preceding & following accesses of same 

thread (though those accesses aren’t necessarily globally 
ordered wrt one another)

•Read r is permitted to see the value of write w if
» r and w access the same location l
» w <p r ∨ w <ss r, and there is no intervening write of l 

between w and r
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Transactional Data Race 
Freedom (TDRF)

•An execution E has an (SS) data race if ∄ <t that 
induces a <ss that orders all conflicting 
accesses and explains E’s reads
» A program has a data race if it has an execution that has 

a data race

•In analogy to nontransactional models,
» if implementation guarantees that

– transactions are SS
– non-transactional accesses in thread t happen

•after the commit of the previous transaction in t
•before the commit of the next transaction in t

» and if program P is TDRF
» then all of P’s executions will be TSC
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Strong Isolation Is a Non-Issue

•Hard to explain to the programmer
» what is a memory access?

•Heavy performance penalty in STM 
•Only matters in racy programs

» constrains the behavior of buggy code
» less than you want (TSC); more than you need to build 

what you want (TSC given TDRF)
» may be useful for debugging, but a good race

detector is better
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Opacity Is a Semantic Non-Issue

•Aborted transactions do not appear in 
(language-level) histories

•Opacity is simply one end of the implementation 
spectrum: validate at every read

•Sandboxing is the other end: validate before 
every “dangerous” operation (and periodically)

•Some very promising implementations in the 
middle: delayed/out-of-band validation
» ask me later!
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Privatization Is Essential

•Definition: transaction T with history prefix P 
privatizes datum D if
» ∃ extensions of P in which a first access to D after P 

occurs in different threads
» ∀ extensions of P+T, the first access to D after P+T 

occurs in the same one thread

•Crucial for performance with STM
•Solves the problem of legacy synchronization

» locking is privatization —
acquire  and  release  are small atomic blocks

•(Publication is a non-issue: implementation 
chalenges arise only in racy programs)
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Transactions ≠ Critical Sections

L.acquire()               atomic {
  ...             ≡         ...
L.release()               }

L.acquire()            atomic { ... }
  ...            ≡       ...
L.release()            atomic { ... }
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Open Questions
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Non-transactional Accesses

•Want reads for, e.g., ordered speculation, high-
performance hybrid TM
» clearly important at the HTM ISA level
» not clear whether needed/wanted at language API level

•Want writes out of aborted txns for debugging
» again, clearly important at the HTM ISA level

– and probably more useful if immediate
» probably important at the language level too

– not as clear that these need to be immediate

•Immediate writes, and writes in aborted txns, a 
challenge for the memory model

•Other compelling uses?  (esp. in small txns)
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Atomicity and Determinism

•Recall Li's talk this afternoon
» languages/idioms that guarantee all abstract executions 

will be “equivalent” in some well-defined sense

•Independent split-merge an obvious foundation 
for language-level determinism

•Atomic commutative [+associative] ops the 
obvious extension

•Is there anything else?
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And of  Course...

•Abort, orElse?  (conjecture: no)
•Bigger transactions?  Integration with system 

transactions?  (again, conjecture: no)
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The Bottom Line: Keep It Simple!

•Atomicity is central
•Speculation is an implementation issue (only)
•Small transactions are what matter
•Privatization is essential (and solves the 

problem of legacy synchronization)
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www.cs.rochester.edu/research/synchronization/

         Thanks to Luke Dalessandro, Li Lu
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