
MLS WTTM 2011 /151

Semantics for Transactional
Languages

Michael L. Scott

Workshop on the Theory of Transactional Memory
Rome, Italy

September 2011

MLS WTTM 2011 /15

A Fleeting Opportunity

•HTM is coming
» Azul, Sun Rock, AMD ASF
» IBM has announced for Blue Gene/Q
» ... ?

•STM for backward compatibility, fallback on HW
overflow

•Language support essential
•Narrow window in time to “get the semantics

right”

2

MLS WTTM 2011 /15

Outline

•Assertions
» atomicity is central
» speculation is an implementation issue (only)
» small transactions are what matter
» privatization is essential

– necessary for correctness
– solves the problem of legacy synchronization

•Open Questions
» non-transactional reads and writes
» big transactions, integration with system transactions
» relationship to “deterministic parallel programming”

3

MLS WTTM 2011 /154

Memory Models

•Transactional sequential consistency (TSC)
» ideal but expensive: global total order on accesses

– consistent w/ program order <p

– w/ each transaction contiguous

•Strict serializability (SS)
» txns globally totally ordered wrt one another
» also ordered wrt preceding & following accesses of same

thread (though those accesses aren’t necessarily globally
ordered wrt one another)

•Read r is permitted to see the value of write w if
» r and w access the same location l
» w <p r ∨ w <ss r, and there is no intervening write of l

between w and r

MLS WTTM 2011 /155

Transactional Data Race
Freedom (TDRF)

•An execution E has an (SS) data race if ∄ <t that
induces a <ss that orders all conflicting
accesses and explains E’s reads
» A program has a data race if it has an execution that has

a data race

•In analogy to nontransactional models,
» if implementation guarantees that

– transactions are SS
– non-transactional accesses in thread t happen

•after the commit of the previous transaction in t
•before the commit of the next transaction in t

» and if program P is TDRF
» then all of P’s executions will be TSC

MLS WTTM 2011 /15

Strong Isolation Is a Non-Issue

•Hard to explain to the programmer
» what is a memory access?

•Heavy performance penalty in STM
•Only matters in racy programs

» constrains the behavior of buggy code
» less than you want (TSC); more than you need to build

what you want (TSC given TDRF)
» may be useful for debugging, but a good race

detector is better

6

MLS WTTM 2011 /15

Opacity Is a Semantic Non-Issue

•Aborted transactions do not appear in
(language-level) histories

•Opacity is simply one end of the implementation
spectrum: validate at every read

•Sandboxing is the other end: validate before
every “dangerous” operation (and periodically)

•Some very promising implementations in the
middle: delayed/out-of-band validation
» ask me later!

7

MLS WTTM 2011 /15

Privatization Is Essential

•Definition: transaction T with history prefix P
privatizes datum D if
» ∃ extensions of P in which a first access to D after P

occurs in different threads
» ∀ extensions of P+T, the first access to D after P+T

occurs in the same one thread

•Crucial for performance with STM
•Solves the problem of legacy synchronization

» locking is privatization —
acquire and release are small atomic blocks

•(Publication is a non-issue: implementation
chalenges arise only in racy programs)

8

MLS WTTM 2011 /159

Transactions ≠ Critical Sections

L.acquire() atomic {
 ... ≡ ...
L.release() }

L.acquire() atomic { ... }
 ... ≡ ...
L.release() atomic { ... }

MLS WTTM 2011 /1510

Open Questions

MLS WTTM 2011 /15

Non-transactional Accesses

•Want reads for, e.g., ordered speculation, high-
performance hybrid TM
» clearly important at the HTM ISA level
» not clear whether needed/wanted at language API level

•Want writes out of aborted txns for debugging
» again, clearly important at the HTM ISA level

– and probably more useful if immediate
» probably important at the language level too

– not as clear that these need to be immediate

•Immediate writes, and writes in aborted txns, a
challenge for the memory model

•Other compelling uses? (esp. in small txns)
11

MLS WTTM 2011 /15

Atomicity and Determinism

•Recall Li's talk this afternoon
» languages/idioms that guarantee all abstract executions

will be “equivalent” in some well-defined sense

•Independent split-merge an obvious foundation
for language-level determinism

•Atomic commutative [+associative] ops the
obvious extension

•Is there anything else?

12

MLS WTTM 2011 /15

And of Course...

•Abort, orElse? (conjecture: no)
•Bigger transactions? Integration with system

transactions? (again, conjecture: no)

13

MLS WTTM 2011 /15

The Bottom Line: Keep It Simple!

•Atomicity is central
•Speculation is an implementation issue (only)
•Small transactions are what matter
•Privatization is essential (and solves the

problem of legacy synchronization)

14

MLS WTTM 2011 /15

www.cs.rochester.edu/research/synchronization/

 Thanks to Luke Dalessandro, Li Lu

15

