Lifting the Barriers — Integration of Monitors
into a Distributed Transactional Memory System

Annette Bieniusa

University of Freiburg, Germany
bieniusa@informatik.uni-freiburg.de

Our work aims at exploring the potential of virtual machines
(VM) that can provide a single system image across a potentially
large number of heterogeneous processor cores. DecentVM [1] is a
fully decentralized, proof-of-concept interpreting VM, which runs
on clusters of many-core processors as well as in networks of em-
bedded processors. Its memory structure reflects the requirements
for consistency and coherence needed in multi-threaded applica-
tions. The primary consistency model in the DecentVM is trans-
actional memory [2], but it offers backwards compatibility and
integration with Java’s synchronization techniques: monitors and
volatiles.

In this talk, we discuss how transactional memory can carry
over to code that uses Java’s synchronization means such as moni-
tors and volatiles. The Java memory model (JMM) specifies when
write operations have to become visible to other threads. Cache co-
herency protocols — typically implemented in the processor hard-
ware — further help to keep up the illusion of a single, system-wide
control flow. It further defines the relation between thread-local op-
erations and the system-wide behavior. In particular, it defines that
the VM and its just-in-time (JIT) compiler must not reorder instruc-
tions that access volatile fields or monitors. On some processor
architectures, the JIT compiler must even insert specific memory
barrier instructions to keep the processor from reordering access to
volatile fields.

Transactional memory (TM), on the other hand, defines explicit
barriers for publishing modifications on shared data data. Usually,
the updates becomes only visible after the transaction has success-
fully committed. Thus, ideally, a thread operates solely on its pri-
vate cache, which is atomically written back to shared memory
when the transaction commits.

Mapping Java synchronization to transactions

Monitor enter and volatile load instructions both constitute the
same kind of memory barrier which we call LOAD instructions.
Monitor exit and volatile store instructions constitute another kind
of memory barrier, which we summarize as STORE instructions.
In the instruction sequence as executed by one thread, LOAD in-
structions can be moved up, i.e. to an earlier position (prefetching)
whereas STORE instructions can be moved down, i.e. to a later po-
sition (delayed write), provided they maintain the program order.

In particular, the instructions can be reordered so that they form
blocks that begin with one or more LOAD instructions and end with
one or more STORE instructions. All other instructions such as non-
volatile load and store instructions are executed inside these LOAD-
STORE blocks (Fig. 1).

Even though the Java specification requires the VM to synchro-
nize each access to a volatile field, it does not require the scheduler
to schedule other threads so that they actually see each write ac-
cess, or that they can modify a field between two read accesses.
Thus, for each LOAD-STORE block the processor can first load all

Thomas Fuhrmann

Technical University Munich, Germany
fuhrmann@in.tum.de

STORE One or more STORE operations

LOAD One or more LOAD operations

Move operations
up or down

Other operations

—

Iﬁ

STORE Memory barrier

LOAD

Figure 1. Load-store-blocks and memory barriers.

required data, then process that data, and finally publish all modifi-
cations. This execution scheme is similar to an atomic transaction,
but the JMM does not require the load and the publish action to be
atomic. Thus, in the system as described so far, there are no read or
write conflicts. In general, this ability to bundle instructions is not
limited to one LOAD-STORE block. However, when extending this
scheme to multiple blocks, conflict detection needs to be performed
and rollbacks must be triggered if the mutual exclusion or visibility
guarantees of the JMM are violated.

To show the correctness of our approach, we develop a hierar-
chy of formal models with the standard JMM implementation, sin-
gle LOAD-STORE blocks, and multiple LOAD-STORE blocks with
transactional execution, and prove their semantical equivalence.

Integrating 1/0

To treat the occasional rollback of critical sections, we assume
buffering structures for (almost) all I/O devices. These buffers
are treated similarly to all other memory objects — in fact, they
are memory objects, which are only modified in form of their
thread local copies. When a thread rolls back, no output has to be
undone because nothing has been actually written to any device,
and, conversely, all input can be processed again, as if it had not
been touched before. Since I/O devices are shared resources, they
are typically already protected with monitors so that their access
induces a synchronization barrier.

Acknowledgements This work was supported by the German
Ministry of Education and Research under grant number 01IHO8011.

References

[1] A. Bieniusa, J. Eickhold, and T. Fuhrmann. The architecture of the
DecentVM: Towards a decentralized virtual machine for many-core
computing. In VMIL ’10, pages 5:1-5:10, 2010.

[2] A. Bieniusa and T. Fuhrmann. Consistency in hindsight: A fully decen-
tralized STM algorithm. In IPDPS, pages 1-12. IEEE, 2010.



