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Characterization T1 of wait-free computable
decision tasks [Herlihy and Shavit, 1993, 1994]

• representing decision tasks through simplicial complexes
and simplicial maps

• a task is solvable iff the corresponding complexes satisfy a
topological property T1

• long-standing impossibility results: set agreement [BG93,
SZ93] and (n, 2n)-renaming
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[Borowsky and Gafni, 1997]: a “stronger”
geometric property T2

• a “simpler” algorithmic proof of T2

• the equivalence of the properties: T1 = T2 (through
proving a geometric result with a distributed algorithm)

Why “stronger” and “simpler” ?
What is the distributed algorithm?
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Decision task T = (I,O,∆) [HS93]

• I — chromatic input complex (a set of possible input
simplexes)

• O — chromatic output complex (a set of possible output
simplexes)

• ∆ ⊆ I × O — task specification (a color-preserving
map that carries every input simplex to a set of output
simplexes)
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Wait-free protocols

Every process starts with an input value, executes a number
of writes and reads of the shared memory, and finishes with
an output value (applies a decision map to its final state).

A protocol solves a task T = (I,O,∆) if it satisfies the task
specification: for any input simplex S ∈ I, any resulting
output simplex O ∈ ∆(S).

A protocol wait-free if every process finishes in a bounded
number of its own steps, no matter how other processes
behave.
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Herlihy and Shavit’s criterion [HS94]

Theorem 1. A decision task (I,O,∆) is wait-free solvable

using read-write memory if and only if (T1) there exists a

chromatic subdivision σ of I and a color-preserving simplicial

map µ : σ(I) → O such that for each simplex S ∈ σ(I),
µ(S) ∈ ∆(carrier(S, I)).
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Immediate snapshot [BG93]

Standard chromatic subdivision (SDS) χ(S):
P:p

Q:q R:r

Q:pq

P:pq

R:pr

P:pr

R:qr Q:qr

P:pqr

R:pqr Q:pqr

Oneroundof IS execution:
each process writes and immediately
takes an atomic snapshot
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Iterated immediate snapshot model

Processes proceed in rounds.

Every process consequently takes immediate snapshots of
M0,M1, . . ..

The resulting K-round protocol complex corresponds to the
recursive SDS χK(S).

[BG93]: the (iterated) IS snapshot model can be
implemented in the read write memory model.
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[HS94]: necessity part

Assume a task T = (I,O,∆) has a wait-free solution using
read-write memory.

The aim is to find σ and µ such that (T1) for each simplex
S ∈ σ(I), µ(S) ∈ ∆(carrier(S, I)).

Let P(I) be the corresponding protocol complex and δ be
the decision map.
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[HS94]: protocol complex P(I)

P:p

Q:q R:r

Q:pq

P:pq

R:pr

P:pr

R:qr Q:qr

P:pqr

R:pqr Q:pqr

Oneroundprotocol complex:

andscansthememory
each process writes

P(I) is not a chromatic subdivision of an input complex.
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[HS94]: locating a span

But every protocol complex P(I) has a span: a chromatic
subdivision σ(I) and a color and carrier preserving map φ

from σ(I) to P(I).

σ and a composition of φ and δ gives the result.
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[HS94]: sufficiency part

Assume now that, for a given task T = (I,O,∆), there is a
subdivision σ(I) and a map µ satisfying T1.

The aim is to find a protocol that solves T .
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Chromatic simplex agreement task, CSA(σ)

The task CSA(σ) has an simplex Sn ∈ I as an input
complex and σ(Sn) as an output complex. Every process
starts with a vertex of Sn of its color and finishes with a
vertex of σ(Sn) of its color, so that all decided vertexes
constitute a simplex of σ(Sn).

Solving T = (I,O,∆) given σ and µ is equivalent to solving
CSA(σ)!
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[HS94]: sufficiency part (contd.)

The chromatic simplex agreement task is solved in the IIS
model by using ε-perturbation of χK(Sn).

The fact that IIS is implementable in RW [BG93] implies
the result.
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Borowsky and Gafni’s criterion[BG97]

Theorem 2. A decision task (I,O,∆) is wait-free solvable

using read-write memory if and only if (T2) there exists an

iterated standard chromatic subdivision χK of I and a color-

preserving simplicial map µ : χK(I) → O such that for each

simplex S ∈ χK(I), µ(S) ∈ ∆(carrier(S, I)).
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[BG97]: IIS is equivalent to RW for decision
tasks!

Any read-write protocol that employs a bounded number of
reads and writes can be simulated in the IIS model.

By König’s lemma, any read-write memory protocol that
solves a task employs only a bounded number of reads and
writes.
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[BG97]: computability in the IIS model

A task T = (I,O,∆) is solvable in the IIS model iff for
some sufficiently large K, there exists a color-preserving
map µ that carries every simplex S of χK(I) to a simplex
of ∆(carrier(S, I)).

Since IIS is equivalent to RW, we have T2!



GETCO 2004 18/23

T1 and T2 must be equivalent!

T1 requires any subdivision, while T2 requires iterated SDS.

=⇒ T2 is at least as strong as T1.

• Any task that satisfies T2, satisfies T1.

• Any task that is unsolvable by T1 is unsolvable by T2.
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T1 ⇒ T2?

In the IIS model, we must solve chromatic simplex
agreement task over σ(Sn), CSA(σ).

The corollary to the simplicial approximation theorem
(NB: can be derived algorithmically):

Lemma 3. There exists K and a carrier preserving map φ

from the iterated standard chromatic subdivision χK(Sn) to

σ(Sn).
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How to get the colors?

Subdivision preserves connectivity of the original simplex.

⇒ Every k + 1 ≤ n + 1 vertexes of Sn imply an image of a
subdivided k-simplex.

⇒ k + 1 processes can solve NCSA over this image.
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The convergence algorithm: the general idea

Processes start from solving NCSA(σ) on Sn.

In every round, a process advertises the decided vertex and
scans the memory, then posts the seen vertexes, and scans
the memory. If a vertex of its color is found in the
intersection, the process decides on it.

In every round, at least one process decides. The rest
continue with NCSA on the link of the decided vertexes.
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Conclusions

• T1 and T2 are equivalent.

• T2 is shown by simple algorithmic reductions.

• T1 is derived from T2 by proving a geometric result with
a distributed algorithm.
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Thank you!
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