On the Asynchronous Computability Theorem

Rachid Guerraoui Petr Kouznetsov Bastian Pochon

Distributed Programming Laboratory EPFL

Characterization T1 of wait-free computable decision tasks [Herlihy and Shavit, 1993, 1994]

- representing decision tasks through simplicial complexes and simplicial maps
- a task is solvable iff the corresponding complexes satisfy a topological property T1
- long-standing impossibility results: set agreement [BG93, SZ93] and (n, 2n)-renaming

[Borowsky and Gafni, 1997]: a "stronger" geometric property T2

- a "simpler" algorithmic proof of T2
- the equivalence of the properties: T1 = T2 (through proving a geometric result with a distributed algorithm)

Why "stronger" and "simpler" ? What is the distributed algorithm?

Decision task $T = (\mathcal{I}, \mathcal{O}, \Delta)$ **[HS93]**

- \mathcal{I} chromatic *input complex* (a set of possible input simplexes)
- \mathcal{O} chromatic *output complex* (a set of possible output simplexes)
- $\Delta \subseteq \mathcal{I} \times \mathcal{O}$ task specification (a color-preserving map that carries every input simplex to a set of output simplexes)

Wait-free protocols

Every process starts with an *input* value, executes a number of writes and reads of the shared memory, and finishes with an *output* value (applies a *decision map* to its final state).

A protocol solves a task $T = (\mathcal{I}, \mathcal{O}, \Delta)$ if it satisfies the task specification: for any input simplex $S \in \mathcal{I}$, any resulting output simplex $O \in \Delta(S)$.

A protocol *wait-free* if every process finishes in a bounded number of its own steps, no matter how other processes behave.

Herlihy and Shavit's criterion [HS94]

Theorem 1. A decision task $(\mathcal{I}, \mathcal{O}, \Delta)$ is wait-free solvable using read-write memory if and only if (T1) there exists a chromatic subdivision σ of \mathcal{I} and a color-preserving simplicial map $\mu : \sigma(\mathcal{I}) \to \mathcal{O}$ such that for each simplex $S \in \sigma(\mathcal{I})$, $\mu(S) \in \Delta(carrier(S, \mathcal{I})).$

Immediate snapshot [BG93]

Standard chromatic subdivision (SDS) $\chi(S)$:

Iterated immediate snapshot model

Processes proceed in rounds.

Every process consequently takes immediate snapshots of M_0, M_1, \ldots

The resulting K-round protocol complex corresponds to the recursive SDS $\chi^{K}(S)$.

[BG93]: the (iterated) IS snapshot model can be implemented in the read write memory model.

[HS94]: necessity part

Assume a task $T = (\mathcal{I}, \mathcal{O}, \Delta)$ has a wait-free solution using read-write memory.

The aim is to find σ and μ such that (T1) for each simplex $S \in \sigma(I), \, \mu(S) \in \Delta(carrier(S, \mathcal{I})).$

Let $\mathcal{P}(\mathcal{I})$ be the corresponding *protocol complex* and δ be the decision map.

[HS94]: protocol complex $\mathcal{P}(\mathcal{I})$

 $\mathcal{P}(\mathcal{I})$ is *not* a chromatic subdivision of an input complex.

[HS94]: locating a span

But every protocol complex $\mathcal{P}(\mathcal{I})$ has a span: a chromatic subdivision $\sigma(\mathcal{I})$ and a color and carrier preserving map ϕ from $\sigma(\mathcal{I})$ to $\mathcal{P}(\mathcal{I})$.

 σ and a composition of ϕ and δ gives the result.

[HS94]: sufficiency part

Assume now that, for a given task $T = (\mathcal{I}, \mathcal{O}, \Delta)$, there is a subdivision $\sigma(\mathcal{I})$ and a map μ satisfying T1.

The aim is to find a protocol that solves T.

Chromatic simplex agreement task, $CSA(\sigma)$

The task $CSA(\sigma)$ has an simplex $S^n \in \mathcal{I}$ as an input complex and $\sigma(S^n)$ as an output complex. Every process starts with a vertex of S^n of its color and finishes with a vertex of $\sigma(S^n)$ of its color, so that all decided vertexes constitute a simplex of $\sigma(S^n)$.

Solving $T = (\mathcal{I}, \mathcal{O}, \Delta)$ given σ and μ is equivalent to solving $CSA(\sigma)!$

[HS94]: sufficiency part (contd.)

The chromatic simplex agreement task is solved in the IIS model by using ε -perturbation of $\chi^{K}(S^{n})$.

The fact that IIS is implementable in RW [BG93] implies the result.

Borowsky and Gafni's criterion[BG97]

Theorem 2. A decision task $(\mathcal{I}, \mathcal{O}, \Delta)$ is wait-free solvable using read-write memory if and only if (T2) there exists an iterated standard chromatic subdivision χ^K of \mathcal{I} and a colorpreserving simplicial map $\mu : \chi^K(\mathcal{I}) \to \mathcal{O}$ such that for each simplex $S \in \chi^K(I), \mu(S) \in \Delta(carrier(S, \mathcal{I})).$

[BG97]: IIS is equivalent to RW for decision tasks!

Any read-write protocol that employs a bounded number of reads and writes can be simulated in the IIS model.

By König's lemma, any read-write memory protocol that solves a task employs only a bounded number of reads and writes.

[BG97]: computability in the IIS model

A task $T = (\mathcal{I}, \mathcal{O}, \Delta)$ is solvable in the IIS model iff for some sufficiently large K, there exists a color-preserving map μ that carries every simplex S of $\chi^K(\mathcal{I})$ to a simplex of $\Delta(carrier(S, \mathcal{I}))$.

Since IIS is equivalent to RW, we have T2!

T1 and T2 must be equivalent!

T1 requires any subdivision, while T2 requires *iterated SDS*. $\implies T2$ is at least as strong as T1.

- Any task that satisfies T2, satisfies T1.
- Any task that is unsolvable by T1 is unsolvable by T2.

$T1 \Rightarrow T2$?

In the IIS model, we must solve chromatic simplex agreement task over $\sigma(S^n)$, $CSA(\sigma)$.

The corollary to the simplicial approximation theorem (NB: can be derived algorithmically):

Lemma 3. There exists K and a carrier preserving map ϕ from the iterated standard chromatic subdivision $\chi^K(S^n)$ to $\sigma(S^n)$.

How to get the colors?

Subdivision preserves connectivity of the original simplex.

 \Rightarrow Every $k + 1 \le n + 1$ vertexes of S^n imply an image of a subdivided k-simplex.

 $\Rightarrow k+1$ processes can solve NCSA over this image.

The convergence algorithm: the general idea

Processes start from solving $NCSA(\sigma)$ on S^n .

In every round, a process advertises the decided vertex and scans the memory, then posts the seen vertexes, and scans the memory. If a vertex of its color is found in the intersection, the process decides on it.

In every round, at least one process decides. The rest continue with *NCSA* on the link of the decided vertexes.

Conclusions

- T1 and T2 are equivalent.
- T2 is shown by simple algorithmic reductions.
- T1 is derived from T2 by proving a geometric result with a distributed algorithm.

Thank you!

References

- [BG93] Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for *t*-resilient asynchronous computations. In Proceedings of the 25th ACM Symposium on Theory of Computing (STOC), pages 91–100, May 1993.
- [BG97] Elizabeth Borowsky and Eli Gafni. A simple algorithmically reasoned characterization of wait-free computation. In *Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing (PODC97)*, August 1997.
- [HS93] Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for *t*-resilient tasks. In *Proceedings of the 25th ACM Symposium on Theory of Computing (STOC)*, May 1993.
- [HS94] Maurice Herlihy and Nir Shavit. A simple constructive computability theorem for wait-free computation. In *Proceedings of the 26th ACM Symposium on Theory of Computing (STOC)*, July 1994.
- [SZ93] Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge. In Proceedings of the 25th ACM Symposium on Theory of Computing (STOC), pages 101–110, May 1993.