
Secure Lookup without (Constrained) Flooding

Bobby Bhattacharjee1∗ Rodrigo Rodrigues2∗ Petr Kouznetsov3

1 University of Maryland, College Park, Maryland, USA
2 Instituto Superior Técnico (Technical Univ. of Lisbon) and INESC-ID, Lisbon, Portugal

3 Max Planck Institute for Software Systems, Saarbrücken, Germany

1 Introduction

We present a new protocol for secure routing in overlay
networks. Our protocol exports the same functionality as
regular decentralized lookup protocols [9, 10, 12, 14, 15].
Moreover, the existing routing protocols can be enriched
with the security primitives we introduce. Recall that a
routing protocol exports a lookup operation that, given a
key in a virtual identifier space (the id space), locates the
node (or the group of nodes) that are, in a well-defined
sense, the closest to the key. The routing primitive can
then be used, e.g., to implement a secure Distributed
Hash Table (DHT), a popular abstraction for publishing
and retrieving items in a decentralized manner.

Originally, decentralized lookup protocols assumed
that nodes are cooperative (follow their specifications un-
less they fail by crashing) and provided the lookup op-
eration in O(log(N)) network hops where N is the num-
ber of participating nodes. There have been a number
of improvements to the base schemes in the cooperative
scenario, including reduction of some of the operations to
an amortized constant [7].

All of these protocols, however, are susceptible to var-
ious attacks if the underlying assumption that nodes are
cooperative is violated. In particular, malicious nodes
may mis-route or simply drop protocol messages. Even
a small fraction of compromised nodes can adversely af-
fect all routing guarantees. There have been a number of
prior efforts towards securing a routing protocol. Castro
et al. [2] and Fiat et al. [4] both consider systems where
at most 1

4 of the nodes are malicious. In order to se-
curely forward messages, Castro et al. relies on redundant
routing, which floods the message along multiple paths.
Fiat et al.’s solution, S-Chord, groups sets of contiguous
nodes into swarms. Nodes flood requests to every node in
a swarm, which requires O(log2 n) messages. A different
attack model is considered in [8] — here, each node can be
mapped to its autonomous system (AS), and adversaries
are constrained to at most k. Within these ASs, there can
be unlimited number of adversaries (perhaps even totaling
more then 1

4 of all nodes in the system). Like S-Chord,
the protocol in [8], also divides the id space into a set of
contiguous neighborhoods, and uses Byzantine agreement

∗Work done while visiting the Max Planck Institute for Soft-
ware Systems

to secure each neighborhood.

In this paper, we propose a decentralized routing pro-
tocol that addresses the security issues by using novel
challenge-response mechanisms and mobile proactive se-
cret sharing. Our protocol was inspired by [8]; however,
we address the general problem of an f -fraction of mali-
cious nodes. Our system is secured using a system-wide
public/private key pair, and the private key is stored in
a distributed manner amongst system participants. We
use threshold cryptography [6, 1, 16, 13] to ensure that no
single (or small set of) node(s) has the system private key
at any point in time. Since the private key is threshold
distributed, some malicious nodes might hold key shares.
Crucially, we show the set of shares held by bad nodes
(including all shares over all time) can never be used to
reconstruct the private key.

The key idea in our protocol is the notion of a chal-
lenge — when a (good) node receives a negative answer
(e.g., when a lookup fails), it can challenge other nodes
whether the routing data they provided is correct. The
nodes must answer the challenge and sign the answer us-
ing the system-wide public key. Since good nodes must
be involved in signing a message, a correctly answered
challenge implies that the negative condition, in fact, ex-
ists in the system. This use of challenges and threshold
cryptography was also inspired by previous work [11].

Our system provides several attractive features com-
pared to prior approaches: the lookup path maintains
the logarithmic complexity of original protocols, and we
provide (easily) provable guarantees. In particular, we
prove that (with configurably high probability) as long as
challenges are correctly answered, the system state is not
compromised. Furthermore, unlike previous secure rout-
ing protocols, we do not impose limits on the fraction of
compromised nodes in the system.

The tradeoff of our protocol is in its computational
complexity — threshold signature and key redistribution
protocols are expensive, and our protocol must periodi-
cally incur a high key re-sharing cost. However, we be-
lieve this high overhead can be reduced using more so-
phisticated cryptography, and the current protocol is in-
structive in its design and in the simplicity with which it
enables global security properties to be asserted. Indeed,
our goal here is not to present a fully optimized (or per-
haps even a deployable) protocol; instead it is to explore

1



a new part of the secure routing design space using first
principles.

As a side contribution, we propose an interesting repli-
cation scheme that may be used (outside the context of
this paper) in the design of large-scale intrusion-tolerant
systems. In particular, we use a proactive threshold sig-
nature protocol in a way that provides very strong safety
properties (we can set the failure threshold arbitrarily
high), but may incur liveness problems if there are more
than 1/3 faulty replicas. To address the liveness problems
we present a takeover protocol where the system regains
liveness by having some groups taking over the responsi-
bilities of groups that have halted.

In the rest of this paper, we explain how the protocol
boots and maintains its invariants through node joins,
leaves, and attacks.

2 Protocol

We model the system as a dynamic collection of nodes
that are able to communicate with each other thorup ex-
changing messages.

Each node has a unique id that includes its IP address
and its public key. There exists a one-way function h that
maps every node (every object) to a unique point in the
id space.

We assume a malicious adversary that is able to com-
promise a subset of nodes. We assume, however, that it
is not in the power of the adversary to obtain many node
ids (identities are “expensive”) or to choose the positions
of the nodes it controls in the id space.1 Thus we as-
sume incoming nodes can obtain a join certificate that
can be validated by any system node. This assumption
does not imply the need for an online global PKI. As long
as the participants are willing to trust a certificate au-
thority (CA), they only need to be seeded with this CA’s
public key. New nodes would get their ids generated at
random and certified by the CA, and each node in the
system could verify this new ID by verifying the CA’s
signature (using the CA public key they already have).

Further, we assume that at most fraction f of nodes,
with ids chosen uniformly at random, can be compro-
mised by the adversary within a bounded time period (a
parameter of the system, called the vulnerability window).

The messages can be dropped, though the communi-
cation channels cannot produce or duplicate messages.
We assume, however, that every two correct (non-
compromised) nodes are able to eventually reliably com-
municate.

1Note that this assumption rules out the famous Sybil at-
tack [3]. Relaxing or validating this assumption is left for fu-
ture work.

2.1 The Secure Routing Primitive

A secure key-based routing abstraction exports conven-
tional membership operations for a new node to join and
leave the system and the following operations: lookup(x)
and secure-lookup(x). Both operation return a set of
nodes of size t that are, in a certain sense, close to
x in the id space (we will call these the neighbors of
x). Operation lookup(x) is the best-effort lookup op-
eration exported by the conventional (insecure) routing
schemes [9, 10, 12, 14, 15] and, in the normal operation
case, it returns the set of neighbors of x. Secure lookup is
typically invoked when the conventional lookup does not
return a satisfactory result. E.g., in a typical implemen-
tation of DHT used for storing and locating self-verifiable
data, a secure lookup primitive can be invoked when the
nodes returned by the conventional lookup claim not to
have the required data (i.e., we suspect that either the
lookup instance or the node are compromised).

The secure-lookup(x) operation guarantees that, under
the condition that the system membership eventually sta-
bilizes and liveness properties of our system rely upon the
assumption that there exist bounds on relative process-
ing speeds and communication delays (which are how-
ever unknown to the nodes), there is a time after which
all secure-lookup(x) operations return the same group of
nodes (which are the correct neighbors of x).

2.2 Spans

We dynamically partition the id space into sub-intervals
called spans. Initially, there is a single span in the sys-
tem that consists of the entire id space, but, as we will
detail later, spans can be split or merged as the system
membership evolves.

For each span there is a span committee, a subset of
the span nodes that is responsible for keeping track of
the span membership (i.e., the subset of the current sys-
tem members whose ids lie within the span), and for pro-
ducing and disseminating a span certificate, which is an
authenticated description of the span membership.

We envision that the span committee is chosen when
the span is formed, and its composition will only change
when some number of its members leaves the system, be-
fore the liveness of the committee is affected. Details of
how exactly this choice is made are left for future work.

Our system is still in its design phase, and it is not clear
what the precise span and span committee sizes will be
(partly because this depends on the security parameters
specified by the application). In Section 3 we provide a
resilience analysis for different committee sizes, and we
expect, in practice, the committee sizes to be between
12–25 nodes.

2



2.3 Threshold Cryptography

To authenticate span certificates, we use a proactive
threshold signature scheme [6, 1, 16, 13], which allows
spans certificates to be validated with a single, well-known
public key, without relying on any particular committee
member knowing the corresponding private key (since if
it were faulty it could expose it).

In an (n, t) proactive threshold signature schemes, each
one of n nodes (in this case, the committee members)
holds a share of a secret, and the protocol will only gener-
ate a correct signature if t of these nodes agree on signing
the same statement.

Furthermore, these protocols include a mechanism for
share refreshment that produces a new set of shares from
the old ones. In particular, we require a protocol where
the set nodes that hold the shares can change as part of
the share refreshment protocol (and for this reason we
intend to use MPSS [13]).

Share refreshment is triggered when there is a change
in the span committee. After the share refreshment pro-
tocol ends, the old nodes can discard their shares. This
allows the protocol to work correctly (meaning informally
that malicious nodes cannot produce a valid signature)
provided that less than t in each set of share holders
(committee members) are compromised during a window
of vulnerability, which is the time interval during which
these nodes are holding their shares.

2.4 System Operation

In this section we describe how the system works in the
normal case, assuming, for now, a steady-state operation
where there are no membership changes. This will clarify
the importance of span certificates and span committees.

We explain our system in terms of the Pastry [12] proto-
col, where nodes maintain a leaf set (a set of neighboring
nodes in the id space) and a routing table (a set of nodes
in distant locations of the id space).

Nodes also maintain the current span certificate for
their own span, and, for each entry in the routing table, a
cached copy of the span certificate for the corresponding
span.

The lookup(x) operation works exactly as in Pastry.
Therefore it does not provide any guarantee that the an-
swer is correct. On the contrary, the secure-lookup(x)
operation must ensure that it returns the current set of
neighbors of id x. This primitive starts by performing a
normal lookup but the reply from the neighboring nodes
must be accompanied by the span certificate for that span
that includes id x.

Obtaining the span certificate is not enough, though,
since this could be an old certificate, where a large frac-
tion of the members had left the system or even be com-
promised by now. To ensure the freshness of the span
certificate the client must issue a challenge to the span
committee members. This is a random nonce that the

client sends, which the span committee members must
sign (with the threshold signature protocol) along with
some digest of the span membership. Only the current
span committee can produce such reply since old com-
mittee members would no longer hold the shares of the
secret required to sign.

2.5 Join and Leave

Another crucial function of the span committee is to keep
track of the changes in system membership. We now de-
scribe how the system handles nodes joining and leaving
the system.

To join the system, the node must first obtain its join
certificate and the address of one or more current sys-
tem nodes (the bootstrap nodes) using some out-of-band
mechanism.

Then it asks the bootstrap node to perform a lookup
to the incoming node’s id, and it also asks for the corre-
sponding span certificate. This will enable the incoming
node to find out about its leaf set and span committee.
The incoming node can verify that the span committee is
current in two ways: it can challenge it right now, or it
can wait until the join operation succeeds to see if a new
span certificate is produced containing itself.

The incoming node contacts the span committee mem-
bers, asking them to join the span, and sending them its
join certificate. Span committee members run the thresh-
old signature protocol to produce a new span certificate
that includes the new node. As they do this they exchange
the join request among themselves, to deal with requests
that did not reach all committee members. If multiple
joins occur concurrently, the span committee members
add all incoming nodes to the span certificate they are
trying to produce.

The consequence of this operation is that the node is
added to the span membership, and a new span certifi-
cate is produced and disseminated to the span members
Possibly this may trigger a span split, which we describe
later.

Once the joining node receives the new certificate con-
taining itself, it does a normal Pastry join, which will up-
date the Pastry structures. We need to deal with a bad
incoming node that will run the operation on the span
committee but will not contact its Pastry neighbors. To
handle this case, system nodes will update their leaf sets
when they realize that there is a new node in the span
certificate that should be part of the respective leaf set.

Node departure. Due to space constraints, we
briefly summarize the protocol actions when a node de-
parts (or crashes). We assume that nodes leave ungrace-
fully, i.e. without notifying others. Instead, all nodes
implement a protocol such as Rosebud [11] or PeerRe-
view [5] to monitor and robustly detect when a neighbor
has died or misbehaved. Once sufficient nodes declare a

3



span member to be faulty, they contact the span commit-
tee and a new span certificate is computed.

2.6 Span Split and Merge

There are two system parameters that define the mini-
mum and maximum number of elements in a span, smin
and smax. This is important to avoid overloading span
committees if the span is too populated, and to avoid cre-
ating a liveness problem if there aren’t enough nodes in
the span to form a committee.

After each join or leave operation concludes, nodes in
the span must verify if the number of nodes in the span
is still within these limits. If the number of nodes in
the span is too high, the span is split in half, and two
new committess are formed (one for each span). In this
case the old committee must run two parallel instances of
the share refreshment protocol with each one of the new
committees.

If, on the other hand, the number of nodes in the span
becomes too low, the span must merge with its neighbor-
ing span. In this case we can just pick one of the com-
mittees to take over the responsibility of the entire span
to avoid running another share refreshment protocol.

2.7 Span Takeover

In some cases, a span committee may experience live-
ness problems. This could happen because there aren’t
enough non-faulty replicas to meet the threshold for sign-
ing statements, or because the membership turnover re-
quired a change in the composition of the committee, and
the MPSS protocol requires more than 2/3 non-faulty
replicas to provide liveness (even though there is no such
bound for providing safety).

Our system includes a mechanism for recovering live-
ness in such cases called a span takeover. The idea is that
periodically each span committee monitors the liveness
of one of its adjacent span committees (e.g., in clockwise
direction of the circular id space). Monitoring liveness
consists of using the challenge mechanism described in
Section 2.4. If a span committee detects that its neigh-
boring span is not responding to challenges, it takes over
the neighboring span. This means that the monitoring
span will force a merge with its neighboring span, becom-
ing responsible for its id interval.

Note that since we do not rely upon strong syn-
chrony assumptions, the takeover protocol may be ini-
tiated against a live (but slow) span. This might lead
to bounded periods when the ranges of two neighboring
spans overlap. Such a situation is considered normal,
since eventually, the spans’ live nodes will not suspect
each other and spans will resolve the conflict. In some
cases, e.g. if a network partition persists for a long pe-
riod, we may have two disjoint systems with independent
routing guarantees. This is not different from what would
occur in a normal routing overlay.

3 Discussion

Space constraints will not permit us to present a compre-
hensive evaluation of either the security or the overhead
of our protocol. Instead, we begin with a brief summary
of overheads using the base share refreshment protocols
(without optimizations). Next we present two specific at-
tack scenarios and how our protocol is resilient — we be-
lieve the general security “theme” will be apparent from
our informal analysis. Finally, we conclude this paper
with a discussion of open areas of work.

3.1 Overhead

The threshold key redistribution protocol incurs O(n4)
overhead, where n is the size of the span committee. Re-
call that in an (n, t) sharing scheme, n members get a key
share, and at least t members are required to produce a
valid signature. Hence, for the key to be exposed, at least
t members in the committee have to be corrupt. Thus,
given a fixed (fe) expected fraction of malicious nodes, we
can choose the values of n and t to make the probability
of key exposure arbitrarily low.

In Table 1, we present the probabilities of key exposure
for different values of fe and n. For example, suppose 10%
of the nodes are assumed to be malicious (with malicious
node ids picked uniformly at random), and if the commit-
tee size is 20, then the expected number of bad nodes in
the committee is 2. However, suppose we set the thresh-
old t to be 10. Then the probability that all 10 nodes are
corrupt is 0.0003 (second line in the table). These values
were derived by upper bounding the mass in the tail of
the PDF using the Chernoff-Hoeffding bounds.

Assuming reasonable key sizes (1024 bit DSA private
keys), and the O(n4) overhead of the rekeying protocol,
the total amount of data that is exchanged by a node
during the re-key is approximately 8 MB (with a 20 node
committee). The overhead drops to 4 MB per node if the
committee size is reduced to 16.

Total fe Probability of
shares more than t bad nodes

.1 > 8 < 0.0061
20 > 10 < 0.0003

> 12 < 1.01e-05
.25 > 15 < 0.001
.05 > 6.4 < 0.0004

> 7.2 < 8.1e-05
16 .1 > 9.6 < 0.0001

> 11.2 < 5.05e-06

Table 1: Probability of Key Exposure, assuming an
expected fraction fe of bad nodes.

4



3.2 Security Analysis

We consider two different attacks: the eclipse attack (in
which the malicious nodes try to take over the entire
neighborhood of a good node, hence isolating it from the
system), and a data erasure attack (in which a malicious
node pretends that data that was published in a DHT
does not exist).

Eclipse Attack. Suppose node i joins the system and
i’s ID is hashes to a malicious node j (i.e. j is the clos-
est node to i in the system). Node j wants to isolate
i, and provides i with a “bad” neighborhood certificate
C. Note that if C is simply signed with the wrong key, i
can immediately discard it. However, suppose C is signed
with the correct key, but is old. Many more nodes have
joined (and left) the system since C was produced, and
moreover, many (or even all) of the alive nodes pointed
to by C are now corrupt, but perhaps belong to different
spans. If i were to use this certificate to seed its routing
table, then it could be isolated (or eclipsed), since all its
neighbors would always return other bad nodes as neigh-
bors and so on. However, before accepting the certificate,
i produces a nonce and challenges j to produce a valid
signature that binds the nonce to C. Since the bad nodes
do not have sufficient shares to sign (any statement), the
challenge will fail, and i will not accept C. The only cer-
tificate that can be signed is the current valid one, which
will ensure that i joins the group correctly.

Data Erasure. Now consider a DHT implementation
based on our secure routing primitive. Assume that a
data item d is (successfully) published, and then i per-
forms a lookup for it. The lookup reaches malicious node
j, which tries to convince i that the item does not ex-
ist. First, j has to convince i that j belongs to the span
which covers d. If j does belong to the correct span, then
it can just produce the current (valid) certificate. It is
possible that j does not belong to the correct span, but
has an old cached span certificate which did cover d. In
both cases, when j returns a negative answer, i will issue
a challenge, which j will not be able to respond to. Node
i can then sequentially contact other nodes in the j’s span
and either get a pointer to a closer span or get the item d
itself. (Note that the same argument also applies during
forwarding, in case j asserts that it is not in d’s span and
is not aware of a closer span id).

4 Summary
We have presented a new protocol for securing distributed
hash tables. Our protocol does not penalize the lookup
path, but does currently impose a periodic heavy over-
head (due to the proactive secret sharing protocol we have
used). Perhaps more importantly, the security properties
of our protocol are relatively easy to verify, and a sin-
gle challenge mechanism is used to secure the protocol
against all forms of attacks.

References

[1] C. Cachin, K. Kursawe, A. Lysyanskaya, and
R. Strobl. Asynchronous verifiable secret sharing and
proactive cryptosystems. In Proc. 9th (ACM) con-
ference on Computer and Communications Security,
pages 88–97. (ACM) Press, 2002.

[2] M. Castro, P. Druschel, A. Ganesh, A. Rowstron,
and D. S. Wallach. Secure routing for structured
peer-to-peer overlay networks. In OSDI, 2002.

[3] J. Douceur. The Sybil attack. In IPTPS, 2002.

[4] A. Fiat, J. Saia, and M. Young. Making Chord ro-
bust to Byzantine attacks. In ESA, 2005.

[5] A. Haeberlen, P. Kouznetsov, and P. Druschel. The
case for Byzantine fault detection. In HotDep, 2006.

[6] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk,
and M. Yung. Proactive public key and signature sys-
tems. In ACM Conference on Computer and Com-
munications Security, pages 100–110, 1997.

[7] P. Maymounkov and D. Mazières. Kademlia: A peer-
to-peer information system based on the xor metric.
In IPTPS, pages 53–65, 2002.

[8] R. Morselli. Lookup Protocols and Techniques for
Anonymity. PhD thesis, University of Maryland,
College Park, 2006.

[9] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Ac-
cessing nearby copies of replicated objects in a dis-
tributed environment. In SPAA, 1997.

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network.
In SIGCOMM, 2001.

[11] R. Rodrigues and B. Liskov. Rosebud: A scalable
byzantine-fault-tolerant storage architecture. MIT
LCS TR/932, Dec. 2003.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, dis-
tributed object location and routing for large-scale
peer-to-peer systems. In Middleware, 2001.

[13] D. Schultz, B. Liskov, and M. Liskov. Mo-
bile proactive secret sharing. MIT CSAIL Re-
search Abstract. http://publications.csail.mit.
edu/abstracts/abstracts06/das/das.html, 2006.

[14] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,
and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for internet applications. In SIG-
COMM, 2001.

[15] B. Zhao, K. Kubiatowicz, and A. Joseph. Tapestry:
An infrastructure for fault-resilient wide-area loca-
tion and routing. Technical Report UCB//CSD-01-
1141, University of California, Berkeley, 2001.

[16] L. Zhou, F. B. Schneider, and R. van Renesse. Apss:
Proactive secret sharing in asynchronous systems.
ACM Transactions on Information and System Se-
curity, 8(3):259–286, August 2005.

5


