On the Weakest Failure Detector Ever

1,2

Rachid Guerraoui®?, Maurice Herlihy?, Petr Kuznetsov?, Nancy Lynch!, and Calvin Newport!

1 Computer Science and Artificial Intelligence Laboratory, MIT
2 School of Computer and Communication Sciences, EPFL
3 Computer Science Department, Brown University
* Technische Universitit Berlin/Deutsche Telekom Laboratories

Abstract. Many problems in distributed computing are impossible to solve when no information
about process failures is available. It is common to ask what information about failures is necessary and
sufficient to circumvent some specific impossibility, e.g., consensus, atomic commit, mutual exclusion,
etc. This paper asks what information about failures is necessary to circumvent any impossibility and
sufficient to circumvent some impossibility. In other words, what is the minimal yet non-trivial failure
information.

We present an abstraction, denoted 7, that provides very little information about failures. In every run
of the distributed system, 1" eventually informs the processes that some set of processes in the system
cannot be the set of correct processes in that run. Although seemingly weak, for it might provide
random information for an arbitrarily long period of time, and it eventually excludes only one set of
processes (among many) that is not the set of correct processes in the current run, 7" still captures
non-trivial failure information. We show that 7 is sufficient to circumvent the fundamental wait-free
set-agreement impossibility. While doing so, we (a) disprove previous conjectures about the weakest
failure detector to solve set-agreement and we (b) prove that solving set-agreement with registers is
strictly weaker than solving n + 1-process consensus using n-process consensus.

We show that 7" is the weakest stable non-trivial failure detector: any stable failure detector that
circumvents some wait-free impossibility provides at least as much information about failures as 1
does.

Our results are generalized, from the wait-free to the f-resilient case, through an abstraction 7 that
we introduce and prove minimal to solve any problem that cannot be solved in an f-resilient manner,
and yet sufficient to solve f-resilient f-set-agreement.

1 Introduction

Fischer, Lynch, and Paterson’s seminal result in the theory of distributed computing [11] says that
the seemingly easy consensus task (a decision task where a collection of processes starts with some
input values and needs to agree on one of the input values) cannot be deterministically solved
in an asynchronous distributed system that is prone to process failures, even if processes simply
fail by crashing, i.e., prematurely stop taking steps of their algorithm. Later, three independent
groups of researchers [20, 14, 2] extended that result by proving the impossibility of wait-free n-set-
agreement [5], a decision task where processes start with distinct input values and need to agree on
up to n input values, in an asynchronous shared memory model of n + 1-processes among which
n can crash. This result was then extended to prove the asynchronous impossibility of f-resilient
f-set agreement [2], i.e., f-set agreement among n + 1 processes among which f can crash.

Asynchrony refers to the absence of timing assumptions on process speeds and communication
delays. However, some timing assumptions can typically be made in most real distributed systems [9,
10]. In the best case, if we assume precise knowledge of bounds on communication delays and process
relative speeds, then it is easy to show that known asynchronous impossibilities can be circumvented.
Intuitively, such timing assumptions circumvent asynchronous impossibilities by providing processes
with information about failures, typically through time-out (or heart-beat) mechanisms.

In general, although certain information about failures can indeed be obtained in distributed
systems, it is nevertheless reasonable to assume that this information is only partial and might
sometimes be inaccurate. Typically, bounds on process speeds and message delays hold only during
certain periods of time, or only in certain parts of the system. Hence, the information provided
about the failure of a process might not be perfect. It is common to ask what information about
failures is necessary and sufficient to circumvent some specific impossibility, e.g., consensus [3],
atomic commit [7], mutual exclusion [8], etc.

This paper asks, for the first time, what information about failures is necessary to circumvent any
(asynchronous) impossibility and yet sufficient to circumvent some impossibility. In other words,
we seek for the minimal non-trivial information about failures or, in the parlance of Chandra et
al. [3], the weakest failure detector that cannot be implemented in an asynchronous system. By
doing so, and assuming that this minimal information is sufficient to circumvent the impossibility
of some problem T, we can derive that T, from the failure detection perspective, belongs to the
equivalence class of the “weakest” impossible problems in asynchronous distributed computing.

We focus in this paper on the shared memory model. For presentation simplicity, we also consider
first the n-resilient (wait-free) case and assume a system with n + 1 processes among which n can
crash. Then we move to the f-resilient case where f < n processes can crash.

We define a new failure detector oracle, denoted by 7. This oracle outputs, whenever queried
by a process, a non-empty set of processes in the system. The output might vary for an arbitrarily
long period. Eventually, however, the output set should:

(a) be the same at all correct processes and
(b) not be the exact set of correct processes.

Failure detector 7" provides very little information about failures: in each execution, it only
excludes one (among many) set of processes that is not the set of correct processes, and it does so
eventually. In particular, 7 does not say which set of processes are correct, and the set it outputs
might never contain any correct (resp. faulty) process.

To illustrate 7", consider for instance a system of 3 processes, p1, p2, p3, and a run where p; fails
while py and p3 are correct. Oracle 7" can output any set of processes for an arbitrarily long period, it
can keep arbitrary changing this set and can output different sets at different processes. Eventually
however, T should permanently output, at py and ps, either {p1},{p2}, {ps}, {p1,p3}, {p1,p2} or
{p1,p2,ps}, i.e., any subset but {p2,ps}.

We prove that, although seemingly pretty weak, 7 is sufficient to solve n-set-agreement with
read/write objects (registers), in a system of n + 1 processes among which n might crash. In other
words, 7 is sufficient to circumvent the seminal wait-free set-agreement impossibility.

This result (a) disproves the conjecture of [19] about the weakest failure detector to imple-
ment n-resilient n-set agreement and (b) proves that implementing n-resilient n-set agreement
with read/write objects is strictly weaker than solving n + 1-process consensus using n-process
consensus.

We then extend our result to the f-resilient case, and propose an algorithm that solves f-set-
agreement in a system of n + 1 processes where f < n processes can fail, using a generalization of
T, which we denote 7. This oracle outputs a set of processes of size at least n + 1 — f such that
(as for T°) eventually: the same set is permanently output at all correct processes, and this set is
not the exact set of correct processes.

We finally prove that 7’7 encapsulates, in a precise sense, minimal failure information to cir-
cumvent any impossibility in an asynchronous shared memory system where f processes can crash.

This minimality holds even if the shared memory contains any atomic object type, beyond just
registers. Our notion of minimality relies on a restricted variant of the reduction notion of Chan-
dra, Hadzilacos, and Toueg [3]. We show that any oracle that (1) eventually outputs a permanent
(stable) value, as well as (2) helps circumvent some impossibility in an asynchronous system with
f failures, can be used to compute a set of processes of size n + 1 — f that is not the set of cor-
rect processes, i.e., can be used to emulate ¥/, Our necessity result is very general: the minimal
information about failures to solve a non-trivial problem is extracted from the impossibility of the
problem itself, i.e., unlike the classical weakest failure detector result by Chandra et al [3], we do
not explicitly use the problem semantics. Also, our necessity proof is non-constructive: we show
that a reduction algorithm exists, but do not provide an explicit construction of it. As a result, the
proof turns out to be much simpler than the proof of [3].

Roadmap. The rest of the paper is organized as follows. Section 2 discusses some related work on the
weakest failure detector question. Section 3 gives some basic definitions needed to state and prove
our results. Section 4 defines and discusses 7. Section 5 describes our set-agreement algorithm using
Y. Section 6 proves the minimality of 7 and 77 in the class of stable failure detectors. Section 7
concludes the paper with some final remarks.

2 Related Work

Chandra, Hadzilacos, and Toueg established in [3] the weakest failure detector to solve consensus,
in the form of a failure detector oracle, denoted by (2. This oracle outputs, whenever queried by
a process, a single leader process. Eventually, the outputs stabilize on the same correct leader
at all processes. {2 is the weakest failure detector to solve consensus in the sense that (a) there
is an algorithm that solves consensus using {2, and (b) for every oracle D that provides (only)
information about failures such that some algorithm solves consensus using D, there is an algorithm
that emulates {2 using D. In short, every such D encapsulates at least as much information about
failures as 2. The motivation of our work is to address the general question of the necessary
information about failures that is needed to circumvent any asynchronous impossibility, i.e., beyond
consensus.

Not surprisingly, in the case of two processes (i.e., the case where set agreement coincides with
consensus), {2 and 7" are equivalent. Our minimality result is more restrictive: it is restricted to
failure detectors that are stable. On the other hand, the proof is significantly simpler than that
of [3]: in short, our approach extracts {2 from the fact of consensus impossibility [11] without having
to go through valence arguments as in [3].

In the same vein, and in the general case of 2 or more processes, our approach extracts 1
directly from the fact of set-agreement impossibility, without having to go through topological
arguments as in [20, 14, 2]. In this case, we prove that 1 is strictly weaker than failure detector
2" introduced in [18]. The latter failure detector outputs, whenever queried by a process, a subset
of n processes such that, eventually, it is the same subset at all correct processes and it contains
at least one correct process. Failure detector 2" was shown to be sufficient to solve (1) n-resilient
n-set-agreement among n + 1 processes using registers [18], and (2) n + 1-process consensus using
n-process consensus [21]. In fact, 2" was also shown to be necessary to implement n + 1-process
consensus using n-process consensus [13] and conjectured to be necessary to solve set-agreement [19].
It was our long quest to prove this conjecture that led us identify 7" and devise our set-agreement
algorithm based on this oracle.

In a prior conference paper [12], we posed the question of the weakest failure detector ever and
showed that 7" is the weakest non-trivial failure detectors among failure detectors that are stable
and depend only on the set of correct processes (not on the finite prefix of a failure pattern). In
this paper, we extend this result by getting rid of the second assumption. Chen et al [6] presented
unstable failure detectors that are weaker than 7" but still strong enough to solve set-agreement.

We also conjectured in [12] that n-set agreement is the easiest problem that cannot be solved
asynchronously by n+ 1 processes communicating via read-write shared-memory. Zielinski recently
proved this conjecture, by introducing anti-f2, an unstable failure that is strictly weaker than
Y, and showing that (1) anti-{2 is the weakest non-trivial eventual failure detector [22], and (2)
anti-{2 is the weakest failure detector for solving set-agreement without any restrictions on failure
detectors [23]. The minimality proof of [23] follows our approach of building upon the very fact that
set-agreement is impossible to solve asynchronously which establishes that set-agreement is indeed
the easiest unsolvable problem. However, the proof of [23] goes through a non-trivial simulation a
la CHT, and it is unclear whether the proof can be generalized to the f-resilient case. In contrast,
our minimality proof is much simpler, and it allows for a straightforward extension to f-resilient
impossible problems.

3 Model

Our model of processes communicating through shared objects and using failure detectors is based
on [15,16, 3]. We recall below the details necessary for describing our results.

3.1 Processes and objects

The distributed system we consider is composed of a set IT of n + 1 processes {pi,...,Dnt1}-
Processes are subject to crash failures. A process that never fails is said to be correct. Process
communicate through applying atomic operations on a collection of shared objects. We assume that
the shared objects include registers, i.e., objects that export only base read-write operations. When
presenting our algorithms (Section 5), we assume that only registers are available. The impossibility
(Theorems 1 and 5) and necessity (Section 6) parts of our results do not restrict the types of shared
objects that can be used in addition to registers.

3.2 Failure patterns and failure detectors

Besides accessing shared objects, processes can also make use of failure detectors, i.e., oracles that
provide them with information about failures of other processes [4, 3]. The local module for process
p; of failure detector D is denoted by D;. Defining the notion of failure detector more precisely goes
through defining the notions of failure pattern and failure detector history. A failure pattern F is a
function from the time range T = {0} UN to 2, where F(t) denotes the set of processes that have
crashed by time ¢. Once a process crashes, it does not recover, i.e., V¢t : F((t) C F'(t +1). We define
faulty(F) = UerF (1), the set of faulty processes in F. Processes in correct(F) = II — faulty(F)
are called correct in F'. A process p € F\(t) is said to be crashed at time t. An environment is a
set of failure patterns. Unless stated otherwise, we assume the environment that includes all failure
patterns in which at least one process is correct, i.e., we assume that n or less processes can fail.
A failure detector history H with range R is a function from IT x T to R. Informally, H(p,t) is
the value output by the failure detector module of process p at time t. A failure detector D with

range Rp is a function that maps each failure pattern to a nonempty set of failure detector histories
with range Rp (usually defined by a set of requirements that these histories should satisfy). D(F)
denotes the set of possible failure detector histories permitted by D for failure pattern F. Note that
we do not restrict possible ranges of failure detectors.

3.3 Algorithms

We define an algorithm A using a failure detector D as a collection of deterministic automata, one
for each process in the system, and an initial memory state, i.e., the initial states of all shared
objects used by the algorithm. A; denotes the automaton on which process p; runs the algorithm
A. Computation proceeds in atomic steps of A. In each step of A, process p;

(i) invokes an operation on a shared object and receives a response from the object, or queries its
failure detector module D; and receives a value from D; (in the latter case, we say that the step
of p; is a query step),

(ii) applies its current state, the response received from the shared object or the value output by
D; to the automaton A; to obtain a new state, and

(iii) accepts an application input in I or produces (according to the automaton A;) an output in O
(I and O here are sets of all possible inputs and outputs, respectively).

A step of A is thus identified by a triple (p;, z,y), where x is either the value returned by the
invoked operation on a shared object and the resulting object state or, if the step is a query step,
the failure detector value output at p during that step, and y is an input or an output. If no input
is accepted and no output is produced in this step, then y = L.

A run of algorithm A using a failure detector D is a tuple R = (F, H, S, T) where F is a failure
pattern, H € D(F) is a failure detector history, S is an infinite sequence of steps of A, and 7' is an
infinite list of non-decreasing time values indicating when each step of S has occurred such that:

(1) For all k € N, if S[k] = (pi,z,y) (x and y denote here any legitimate values), then p; has not
crashed by time T[k], i.e., p; ¢ F(T[k]);

(2) For all k € N, if S[k] = (ps, z,y) and = € Rp, then x is the value of the failure detector module
of p; at time T[k], i.e., x = H(p;, T[k]);

(3) For all k,£ € N, k # ¢, if T[k] = T'[l], then S[k] and S[l| are steps of different processes.

(4) S respects the specifications of all shared objects and all process automata, given their initial
states and sequence of inputs that occur in S}

(5) Every process in correct(F) takes infinitely many steps in S.

A partial run of an algorithm A is a finite prefix of a run of A.%

3.4 Traces and Problems

A trace is a tuple (F,0,T) where F is a failure pattern, o € (I x (I UO))*, and T is a sequence
of non-decreasing time values, such that for all £k € N, if o[k] = (p;, x), then p; ¢ F(T[k]). We say
that a run R = (F, H, S, T) induces a trace (F,o,T), if o contains the sequence of all inputs and
outputs that take place in S and T is the sequence of the corresponding times in 7.

5 A more formal definition of a run of an algorithm using a failure detector can be found in [3,13].

A problem is a set of traces, usually defined by a set of properties traces must satisfy. A
problem thus specifies the permitted sequences of inputs and outputs given the failure pattern and
sequences of times when each input and output in the sequences takes place. In this paper, we
consider problems that are closed under the indistinguishability: if a trace (F,o,T) is in problem
M, then any trace (F',o,T"), such that correct(F) = correct(F"), is also in M.

An algorithm A solves a problem M using a failure detector D, if the trace of every run of A
using D is in M.

3.5 Comparing failure detectors

If, for failure detectors D and D', there is a reduction algorithm using D’ that extracts the output
of D, i.e. implements a distributed variable D-output such that in every run R = (F,H',S,T) of
the reduction algorithm, there exists H € D(F) such that for all p; € IT and ¢t € T, H(p;,t) =
D-output;(t) (i.e., the value of D-output output at p; at time t), then we say that D is weaker than
D'. If D is weaker than D’ but D’ is not weaker than D, then we say that D strictly weaker than
D'. 1If D and D’ are weaker than each other, we say they are equivalent.

If D is weaker than D’, then D’ provides at least as much information about failures as D: every
problem that can be solved using D can also be solved using D’. D is the weakest failure detector
to solve a problem M if there is an algorithm that solves M using D and D is weaker than any
failure detector that can be used to solve M. If the weakest failure detector to solve a problem A
is strictly weaker than the weakest failure detector to solve a problem B, then we say that A is
strictly weaker than B, i.e., A requires strictly less failure information than B.

4 A Very Weak Failure Detector

We introduce failure detector 7, which outputs a non-empty set of processes (Ry = 21 — {(}),
such that for every failure pattern F' and every failure detector history H € 7(F'), eventually:

(1) the same set U € 277 — {(}} is permanently output at all correct processes.
(2) this set U is not the set of correct processes in F', i.e., U # correct(F).

In a system of 2 processes, 7" and (2 [3] are equivalent. (Recall that 2 outputs a leader process
so that eventually the same correct leader is output at all correct processes). Basically, to get 1"
from (2, every process outputs the complement of {2 in II. On the other hand, to get {2 from 7",
every process outputs the complement of 7" if this is a singleton, and outputs the process identifier
otherwise.

2 was generalized to a failure detector 2" [18], which outputs a set of processes of size n so
that, eventually, the same set containing at least one correct process is permanently output at all
correct processes. (Clearly, £2! is £2.) The complement of 2" in IT is a legal output for 7. Hence,
T is weaker than (2". The converse is however not true in the environment where n processes can
fail, as we show below.

Theorem 1 T is strictly weaker than 2" if n > 2.

Proof. We just discussed how to transform 2™ into 7", so it remains to show that 7" cannot be
transformed into {2".

Assume, by contradiction, that we can extract the output of 2" from 7. Extracting the output
of 2™ is equivalent to eventually identifying, in every run and at every correct process, the same
process p. that is not the only correct process in that run. Thus, our assumption implies that there
exists an algorithm A that, using 7", eventually outputs the same p. at every correct process and
IT — {p.} contains at least one correct process. To establish a contradiction, we construct a run of
A in which the extracted failure detector output never stabilizes.

We consider the set of runs of A in which 7" permanently outputs {p1,...,p,} at all processes.
Recall that this is a legitimate output of 1" if either p,41 is correct or there is at least one faulty
process in {p1,...,pn}.

Consider partial runs of A in which no process fails but p,11 is the only process that takes
steps. Note that these partial runs are indistinguishable for p,1 from partial runs in which every
process but p,4q is faulty. Thus, there exists a sufficiently long such partial run R; in which T
always outputs {p1,...,pn} at all processes and A outputs a process p;, € {p1,...,Pn} at Pny1.

Now consider partial runs extending R; in which (1) no process fails, and (2) every process takes
exactly one step after Ry after which p;, is the only process that takes steps. Again, these partial
runs are indistinguishable for p;, from partial runs in which every process but p;, is faulty. Note
that, since n > 2, if p;, is the only correct process in a run, then at least one process in {p1,...,pn}
is faulty, and thus it is still legitimate for 7" to always output {pi,...,pn}. Thus, there exists a
failure-free partial run Rs extending R; in which 7" always outputs {p1,...,p,} at all processes
and A outputs a process p;, € II — {p;, } at p;, after Ry (i.e., after the last step of R; in Ra2).

Now consider partial runs extending Ro in which (1) no process fails, and (2) every process
takes exactly one step after Ry and then p;, is the only process that takes steps. Similarly, there
exists a sufficiently long such partial run in which 7" always outputs {pi,...,p,} at all processes
and A outputs a process p;, € II — {p;,} at p;, after Ra.

By repeating this procedure, we obtain a failure-free run R of A in which 7" always outputs
{p1,...,pn} at all processes, but the extracted failure detector output never stabilizes — a contra-
diction. O

5 Set-Agreement

5.1 The problem

In the k-set-agreement problem, processes need to agree on at most k values out of a possibly larger
set of values. Let V' be the value domain such that L ¢ V. Every process p; starts with an initial
value v in V' (we say p; proposes v), and aims at reaching a state in which p; irrevocably commits
on a decision value v' in V' (we say p; decides on v'). Every run of a k-set-agreement algorithm
satisfies the following properties: (1) Termination: Every correct process eventually decides on a
value; (2) Agreement: At most k values are decided on; (3) Validity: Any value decided is a value
proposed.

In the following, we first focus on solving n-set-agreement in a system of n + 1 processes. We
sometimes also talk about implementing n-resilient n-set agreement. This problem is impossible if
processes can only communicate using registers, n processes can crash, and no information about
failures is available [20, 14, 2].

We show how to circumvent this impossibility using 7": we describe a protocol that solves n-set-
agreement using registers and 7", while tolerating the failure of n processes. Basically, implementing

set-agreement aims at excluding at least one proposed value among the n + 1 possible ones. Our
protocol achieves this by using the output of T to eventually split the processes into two non-
overlapping subsets: those in the subset output by 7', and which we call gladiators, and those
outside that subset, and which we call citizens. Intuitively, gladiators do not decide on any value
until either they make sure one of them gives up its value, which is guaranteed to happen if one of
them crashes, or they see a value of a citizen, in which case they simply decide on that value. The
property eventually ensured by 7" is that either at least one of the gladiators crash or at least one
of the citizens is correct.

Besides putting this intuition to work, technical difficulties handled by our protocol include
coping with the facts that (1) 7" might output random sets for an arbitrarily long periods of time,
providing divergent and temporary information about who is gladiator and who is citizen, and
(2) citizens might be faulty. A key procedure we use to handle these difficulties is the k-converge
routine, introduced in [21]. A process calls k-converge with an input value in V' and gets back an
output value v € V and a boolean c. We say that the process picks v and, if ¢ = true, we say that
the process commits v. The k-converge routine ensures the following properties: (1) C-Termination:
every correct process picks some value; (2) C-Validity: if a process picks v then some process invoked
k-converge with v; (3) C-Agreement: If some process commits to a value, then at most k values
are picked; (4) Convergence: If there are at most k different input values, then every process that
picks a value commits. For any k € {1,...,n+1}, the k-converge routine can be implemented using
registers in an asynchronous system where any number of processes may fail [21]. By definition,
0-converge(v) always returns (v, false).

5.2 The protocol

The abstract pseudo-code of the protocol that solves n-set agreement using 7" and registers is
described in Figure 1.

The protocol proceeds in rounds. In every round r, the processes first try to reach agreement
using n-convergence (line 4). If a process p; commits to a value v, then p; writes v in register D
and returns v. If p; fails to commit (which can only happen if all n 4 1 processes take part in the
n-convergence instance), then p; queries 7. Let U be the returned value.

Now p; cyclically executes the following procedure (lines 12-17). If p; does not belong to U (p;
believes it is a citizen), then p; writes its value in a shared register D[r] and proceeds to the next
round. Otherwise (p; believes it is a gladiator), p; takes part in the (|U| — 1)-convergence protocol
trying to eliminate one of the values concurrently proposed by processes in U. (Recall that, by
definition, 0-converge(v) always returns (v, false).) The procedure is repeated as long as none of
the conditions in line 17 is satisfied, i.e., (a) no process participating in the current round r reports
that the output 7" has not yet stabilized, (b) (U] — 1)-convergence does not commit to a value, and
(c) no non-_L value is found in D[r] or D (line 17). If p; finds D[r] # L, then p; adopts the value
in D[r] and proceeds to round r + 1. If p; finds D # L then p; returns D.

Remember that there is a time after which 7" permanently outputs, at all correct processes, the
same set U that is not the set of correct processes: U either contains a faulty process or there is
a correct process outside U. Thus, no process can be blocked in round r by repeating forever the
procedure described above: eventually, either some process outside U writes its value in D[r], or
some process is faulty in U and (|U| — 1)-convergence returns a committed value.

As a result, eventually, there is a round in which at least one input value is eliminated: either
some process in U adopts a value from outside U, or processes in U commit to at most |U| — 1

Shared abstractions:
Registers D, D[], initially L
Binary registers Stable] |, initially true
Convergence instances: n-converge[|,
j-converge[][], for all j =0,...,n

Code for every process p;:
v; := the input value of p;; 7 : =0
repeat
ri=r+1
(vi, ¢) := n-converge[r](v;)
if ¢ = true then
D := v;; return (v;)
U := query(73)
if p; ¢ U then { p: is a citizen }
D[r] :=v;
else { pi is a gladiator }
k:=0
repeat
k=k+1
(vi, ¢) :== (JU| — 1)-converge[r][k](v:)
if ¢ = true then D[r] :=v;
if U # query(Y;) then Stable[r] := false
until D # 1 or D[r] # L or —Stable[r]
if D[r] # L then
v; := D[r] { Adopt a value from a citizen or a committed gladiator }
until D # L
return (D)

© 00 9 O g W N =

I N R S e e e T
=~ O © X N O oA W N~ O

Fig. 1. T-based set agreement protocol.

input values. In both cases, every process that participates in n-convergence in round r + 1 (line 4)
commits one of at most n “survived” values.

Theorem 2 The algorithm in Figure 1 solves n-set agreement using T and registers.

Proof. Consider an arbitrary run R of the algorithm in Figure 1.

Validity immediately follows from the protocol and the C-Validity property of k-converge.

Agreement is implied by the fact that every decided value is first committed by n-convergence
(line 4). Indeed, let r be the first round in which some process p; commits to a value after in-
voking n-converge[r]. By the C-Agreement property of n-convergence, every process that invoked
n-converge[r] picked at most n different values. Thus, no more than n different values can ever be
written in register D. Since a process is allowed to decide on a value only if the value was previously
written in D (lines 6 and 21), at most n different values can be decided on.

Now consider Termination. We observe first that no process can decide unless D contains a non-
1 value, and if D # L, then every correct process eventually decides. This is because the converge
instances are non-blocking and every correct process periodically checks whether D contains a non-
1 value and, if there is one, returns the value (lines 20 and 17). Assume now, by contradiction,
that D = 1 forever and, thus, no process ever decides in R.

Let U be the stable output of 7" in R, i.e., at every correct process, " eventually permanently
outputs U. Whenever a process observes that the output of 7" is not stable in round r, it sets register

Stable[r] to true (line 16) and proceeds to the next round. Further, if a process finds D[r] # L,
then eventually every correct process finds D[r] # L and proceeds to the next round. Moreover, by
our assumption, no process ever writes in D and returns in line 6. Thus, there exists a round r such
that every correct process reaches r, and the observed output of T at every process that reached
round 7 has stabilized on U.

Recall that U is a non-empty set of processes that is not the set of correct processes in R, i.e.,
U # 0 and U # C, where C is the set of correct processes in R. Thus, two cases are possible: (1)
C is a proper subset of U, and (2) C' — U # 0.

In case (1), there is at least one faulty process in U. Since every faulty process eventually crashes,
there exists k € N, such that at most |U|— 1 values are proposed to (|U|— 1)-converge[r][k]. By the
Convergence property of the (|[U|—1)-converge procedure, every correct process eventually commits
to a value, writes it in D[r] and proceeds to round r + 1.

In case (2), there is at least one correct process p; outside U. Thus, p; eventually reaches round
r and writes its current value in D[r]|. Thus, every correct process eventually reads the value, adopts
it and proceeds to round r + 1.

In both cases, every correct process reaches round r + 1. By the algorithm, every process that
reaches round r + 1 adopted a value previously written in D]r].

A process is allowed to write a value in D[r] only if (a) the process is in II — U, or (b) a process
is in U and the value is committed in (|U| — 1)-converge[r][k] for some k.

If (b) does not hold, then at most n + 1 — |U| < n distinct values can be found in D[r].
Otherwise, consider the first sub-round k£ such that some process in U has committed a value in
(|U] — 1)-converge|r|[k]. By the C-Agreement property of (JU| — 1)-convergence, at most |U| — 1
distinct values are picked by processes in U in (|U| —1)-converge[r|[k]. If a process does not commit
on a value picked in (|U|—1)-converge[r][k], it uses the value in (|U|—1)-converge[r][k+1] (line 14).
By the Convergence, C-Agreement, and C-Validity properties of (|U|—1)-convergence, every correct
process in U commits on one of at most |U| — 1 distinct proposed values in sub-round & or k + 1.

In both cases, at most n+1—|U|+|U|—1 = n distinct values can ever be found in D]r]. Hence, at
most n distinct values can be proposed to n-convergence (line 4) in round r+1. By the Convergence
property of n-convergence, every correct process commits and decides — a contradiction.

Thus, eventually, every correct process decides. O

Remark. Our algorithm actually solves a stronger version of set-agreement that terminates even
if not every correct process participates, i.e., proposes a value and executes the protocol. Indeed,
assume (by slightly changing the model) that some (possibly correct) process does not participate
in a given run of the algorithm in Figure 1. Thus, in round 1, at most n different values are proposed
to n-converge (line 4) and, by the Convergence property of n-converge, every correct participant
commits to a value. Thus, every correct participant returns in line 6 of round 1.

As a corollary to Theorems 1 and 2, we disprove the conjecture of [19] by showing that:

Corollary 3 For all n > 2, 2" is not the weakest failure detector to implement n-resilient n-set-
agreement among n + 1 processes using registers.

As a corollary to Theorems 1 and 2, and the fact that 2" is the weakest failure detector to
implement n 4 1-process consensus using n-process consensus [13], we obtain that implementing
n-set-agreement using registers is strictly easier than solving consensus using n-process consensus
objects and registers:

10

Corollary 4 For all n > 2, in a system of n + 1 processes where up to n can fail, every failure
detector that can be used to solve consensus using n-consensus objects and registers can also be used
to solve n + 1-set-agreement using registers, but not vice versa.

5.3 f-Resilient Set-Agreement

For pedagogical purposes, we focused so far on the environment where n out of n 4+ 1 processes can
crash, i.e., on the “wait-free” case. In this section, we consider the more general environment where
f processes can crash, and 0 < f < n + 1. More specifically, we consider the environment £f that
consists of all failure patterns F' such that faulty(F) < f.

By reduction to the impossibility of wait-free set agreement, Borowsky and Gafni showed that
f-set agreement is impossible in £/ [2]. We present a failure detector, which generalizes 7, and
which circumvents this impossibility. This failure detector, which we denote by 7/, outputs a set
of processes of size at least n +1 — f (Ryy = {U C II : |U| > n+ 1 — f}), such that, for every
failure pattern F' € £/ and every failure detector history H € Y (F), eventually (as for 7): (1) the
same set is permanently output at all correct processes, and (2) this set is not the set of correct
processes in F'. Clearly, T is T.

Failure detector £2f can also be used to solve f-resilient f-set agreement [17,18]. Tt is easy to
see that 77 is weaker than 2/ in £7: to emulate Y/, every process simply outputs the complement
of 27 in IT. Eventually the correct processes obtain the same set of n+ 1 — f processes that is not
the set of correct processes: the output of 2/ eventually includes at least one correct process.

It is also straightforward to extract 2! = (2 from 7! in £'. In the reduction algorithm, every
process p; periodically writes ever-growing timestamps in the shared memory. If Til outputs a proper
subset of IT (of size n), then p; elects the process py = II — 15, otherwise, if Y1 outputs IT (i.e.,
exactly one process is faulty), then p; elects the process with the smallest id among n processes with
the highest timestamps. Eventually, the same correct process is elected by the correct processes —
the output of (2 is extracted. However, in general, 7/ is strictly weaker than £27:

Theorem 5 17 is strictly weaker than 27 in EF if 2 < f <n.

Proof. We generalize the proof of Theorem 1. By contradiction, assume there exists an algorithm
A using 77 that, in every run with at least n+ 1 — f correct processes, eventually outputs at every
correct process the same set of processes L such that |L| = f and L contains at least one correct
process. To establish a contradiction, we construct a run of A in which the extracted output never
stabilizes.

We consider the set of runs of A in which 7/ permanently outputs U = {py,...,p,} at all
processes. Recall that this is a legitimate output if either p,41 is correct or there is at least one
faulty process in {p1,...,pn}.

Let Ry be any partial run of A in which no process fails and 77/ always outputs U. Let L; be
the set output by A at some process in run R;.

Now consider partial runs that extend R; in which (1) no process fails, and (2) every process
takes exactly one step after the last step of R; and then only processes in II — L take steps. These
partial runs are indistinguishable for processes in I — L; from partial runs in which the processes
in Ly are faulty. Note that, since 2 < f < n, U # IT — Ly, and it is thus legitimate for 7/ to output
U in any run in which every process in L is faulty. Thus, there exists such a partial run Rs in
which 7/ always outputs U and A outputs a set Lo # L; at some process after R;.

11

Now consider partial runs that extend R in which (1) no process fails, and (2) every process
takes exactly one step after the last step of Ry and then only processes in II — Lo take steps.
Similarly, there exists such a partial run Rs in which ¥/ always outputs U and A outputs a set
L3 # Lo at some process after Ro.

Following this procedure, we obtain a failure-free run of A in which 7/ always outputs U =
{p1,...,pn} but the extracted output of £27 never stabilizes — a contradiction. O

A generalized f-resilient f-set-agreement algorithm using 7/ is presented in Figure 2. The
algorithm essentially follows the lines of our “wait-free” algorithm described in Figure 1, except
that now the set U of n + 1 — f or more gladiators (processes that are eventually permanently
output by 7'7) have to be able to eventually commit on at most |U| + f —n — 1 distinct values, so
that, together with at most n 4+ 1 — |U| values chosen by the citizens, there would eventually be at
most f distinct values in the system. To achieve this, we add a simple mechanism based on the use
of atomic snapshots [1].

An atomic snapshot object has n + 1 positions and exports two atomic operations: update and
snapshot. Operation update(i,v) writes value v in position i, and snapshot() returns the content
of the object. Note that the results of every two snapshots are related by containment, i.e., one of
them contains, in each position, the same or more recently written value than the other. Atomic
snapshots can be implemented in an asynchronous system using registers [1].

In our algorithm, the use atomic snapshots ensures that, if at least one gladiator is faulty and
all citizens are faulty, then the correct gladiators eventually eliminate at least n+ 1 — f values, and,
thus, at most f values will eventually be decided. In each iteration (r, k) (lines 15-30 in Figure 2),
every gladiator (process in U) first updates its value in atomic snapshot object A[r][k], and then
repeatedly takes snapshots of A[r|[k] until a snapshot with at least n + 1 — f non-L values is
obtained (line 19). Since all snapshots of A[r][k] are related by containment, and assuming that
each resulting snapshot contains at least n+ 1 — f and at most |U| — 1 values (at least one process
does not access A[r][k]), at most |U| + f —n — 1 distinct snapshots of A[r|[k] can be obtained
by processes in U. Every process in U adopts the minimal value in its latest snapshot of A[r][k]
(line 25), and, thus, at most |U| + f —n — 1 distinct values can be adopted. As a result, gladiators
commit on at most |U|+ f —n — 1 values using the (|U| 4+ f — n — 1)-converge[r][k] procedure
(line 26).

Theorem 6 There is an algorithm that implements f-set agreement using Y¥ and registers in EF.

Proof. Consider an arbitrary run of the protocol in Figure 2. The Agreement and Validity properties
are immediate from the algorithm. Termination is shown along the lines of the proof of our “wait-
free” algorithm described in Figure 1, except that now we have a new potentially blocking loop (in
lines 17-19).

Suppose, by contradiction, that some correct process is blocked in the loop of lines 17-19, while
executing a sub-round k of a round r (let k£ and r be the earliest sub-round and round, respectively,
in which this happens). It is easy to see that, if a correct process exits the loop (by evaluating the
condition of line 19 to true), then eventually every correct process is freed too. Further, since no
correct process was blocked in the loop of lines 17-19 before sub-round k of round r, using the
arguments presented in the proof of Theorem 2, we observe that every correct process also reached
round r. Note that in round 7, no process has written a non-_L value in D[r| (line 11): otherwise,
every correct process that is blocked in lines 17-19 would eventually read the value and escape.

12

Shared abstractions:
Registers D, D]], initially L
Atomic snapshot objects A[][], initially L
Binary registers Stable[], initially true
Convergence instances: n-converge] |,
j-converge[][], for all 5 =0,...,n

Code for every process p;:

1 v; := the input value of p;

2 r:=0

3 repeat

4 ri=r+1

5 (vi, ¢) := f-converge[r](v;)

6 if ¢ = true then

7 D :=wv;

8 return (v;)

9 U := query(73)

10 if p; € U then

1 Dir] :==v;

12 else

13 k=0

14 repeat

15 k=k+1

16 Alr]k]. update(i, v;)

17 repeat

18 V = Alr][k].snapshot()

19 until D # | or D[r] # L or —Stable[r]
or V contains > n + 1 — f non-_L entries

20 if D # | then

21 return(D)

22 else if D[r] # L then

23 v; := DJr]

24 else if Stable[r] then

25 v; := min non-_L value in V'

26 (vi,¢) == (|U| + f — n — 1)-convergelr|[k] (v;)

27 if ¢ = true then

28 Dir] :==v;

29 if U # query(;) then

30 Stable[r] := false

31 until D # | or D[r] # L or —Stable[r]

32 if D[r] # L then

33 v; := D[r]

34 until D # 1
35 return (D)

Fig. 2. T7/-based f-resilient f-set agreement protocol.

Thus, every correct process is eventually blocked in lines 17-19, while executing sub-round k of
round r. Previously, every correct process p; has written a non-_L value in A[r][k][i] (line 16). But
since there are at least n+1— f correct processes in R, A[r][k] eventually contains at least n+1— f
non-_| entries and, thus, the condition in line 19 is eventually satisfied — a contradiction. Thus, no
correct process can be blocked forever, while executing lines 17-19.

13

Suppose, by contradiction, that there is a run R of our algorithm in which some correct process
never decides. By repeating the arguments presented in the proof of Theorem 2, D always contains
1 in R, and there exists a round r such that every correct process reached round r, and the observed
output of T/ at every process that reached round r has stabilized on some set U in round r. By
the properties of Y/, U is of size at least n + 1 — f and U is not the set of correct processes in R.

Hence, II — U contains no correct process: otherwise, some correct process in Il — U would
eventually write a non-_L value in D[r] in line 11, and every correct process would eventually exit
the loop. Thus, every correct process p; belongs to U and eventually writes a non-L value in
Alr][k][i] (line 16). But since there are at least n + 1 — f correct processes in R, A[r][k] eventually
contains at least n + 1 — f non-L entries and, thus, the condition in line 19 is eventually satisfied
— a contradiction.

In every sub-round k of round r, each correct process eventually exits the loop in lines 17-19
and, since D is never L, reaches line 23 (if D[r] # L) or line 26 (otherwise).

Note that at most n+ 1 — |U| different non-_L values can be written in D[r| by processes not in
U. On the other hand, a process in U is allowed to write v in D]r| only if it has committed on v in
some instance of (f + |U| — n — 1)-converge[r]|[k]. By the C-Agreement and Validity properties of
(f+|U|—n—1)-convergence and the fact that every value returned by (f+|U|—n—1)-converge[r][k]
is adopted, at most f + |[U| — n — 1 distinct values can ever written by processes in U. Thus, at
most n+ 1 —|U|+ f+|U| —n — 1 = f distinct values can ever be written in D[r].

Suppose that D[r| # L at some point in R. Thus, eventually every process either fails or adopts
one of at most f values written in D[r] (line 23 or 33), and then proceeds to round r + 1. Hence, by
the Convergence property of f-convergence, every correct process commits a value after invoking
f-converge[r + 1] and decides — a contradiction.

Now suppose that D[r] = L forever. By the algorithm, there are no correct processes outside
U and, thus, there is at least one faulty process in U (otherwise, U would be the set of correct
processes, violating the properties of 7'/). Let k be a sub-round of round r in which no faulty
process participates (every faulty process fails before starting the sub-round). Since there is at least
one faulty process in U, at most |U| — 1 values can be written in A[r][k].

Now consider all sets that can be returned by A[r|[k]snapshot() at different processes right before
the process exits the repeat-until loop in lines 17-31. Every such set contains at least n+1— f and
at most |U| — 1 non-_L values. Moreover, by the properties of atomic snapshot [1], all these sets are
related by containment. Thus, there can be at most |U| -1 —-(n+1—-f)+1=|U|+f—-n—1
distinct sets, and, thus, at most |U| + f —n — 1 different values can be computed by the processes
in line 25. Hence, by the Convergence property of (|[U|+ f —n — 1)-converge[r][k], every correct
process that invokes the operation, commits on a value and writes it in D[r] — a contradiction.

Thus, eventually, every correct process decides.]

6 The Necessity of Tf

In this section we show that, in a certain sense, 7/ is minimal in systems where up to f processes can
crash. Our minimality result holds within the class of stable failure detectors that eventually stick
to the same information about failures, say after all faulty processes have crashed. More specifically,
we show that 77 is weaker than any stable f-non-trivial failure detector, i.e., any stable failure

14

detector that cannot be implemented in an f-resilient asynchronous system. This implies that 7" is
also minimal when up to n processes can crash.

6.1 Intuition

To get intuition about our minimality result, let us consider the case f = n and focus on a restricted
class of ”faithful” non-trivial failure detectors that, in every run, output the same value at every
correct process, and the output value depends only on the set of correct processes. The immediate
observation is that for each faithful failure detector D, and for each value d € Rp, there exists
C € 2 — {()} such that, for all F with correct(F) = C, D cannot output d for F. Indeed, if there
is a value that can be output by D in every failure pattern, then D can be implemented from the
”dummy” failure detector that always outputs d. But this would contradict the assumption that D
is non-trivial. Thus, in every run, by observing the output of a “faithful” failure detector D, we can
deterministically choose a non-empty set of processes that cannot be the set of correct processes in
that run — this is sufficient for emulating 7.

Note that the sketched necessity proof is non-constructive. Indeed, determining the set of pro-
cesses C' that is “incompatible” with d is in general undecidable. However, to show that a reduction
algorithm exists, it is sufficient to show that there exists a deterministic map from Rp

In the following, we extend this intuition to the class of stable failure detectors.

6.2 Stable failure detectors

Establishing our most general necessity result goes through delimiting the scope of failure detec-
tors within which 7/ is minimal. We consider the class of stable failure detectors. We say that a
failure detector, D, is stable if the same value is eventually permanently output by D at all correct
processes. Formally, for every failure pattern F' and every H € D(F'), there exists a value d € Rp
and t € N such that for all ¢ > t and p; € correct(H), H(p;,t') = d (we say that d is stable in
H).% Most failure detectors proposed in the literature for solving decision problems in the shared
memory model [4,3,18,7] are stable or equivalent to some stable failure detectors. Some failure
detectors are nevertheless unstable and cannot be shown equivalent to a stable one [22, 23].

6.3 Minimality

Before we proceed with the minimality proof, we introduce some auxiliary notions.

Let D be a failure detector with range R. Let o be an element in (IT x R)*, i.e., a sequence
(q1,d1),(q2,d2), ..., where for all k € N, g € II and d € R. We denote by correct(o) the set
of processes that appear infinitely often in o. We say that o is an f-resilient sample of D if
|correct(o)] > n+ 1 — f and there exist a failure pattern F' € &, a history H € D(F) and a list T'
of non-decreasing time values such that,

(i) for all k € N, ¢ ¢ F(T[k]),
(ii) for all k € N, di, = H(qy, T[k]), and
(iii) for all k,¢ € N, k # ¢, if T'[k] = T[l], then qx # qs.
5 Our lower bound proofs actually work also for “locally stable” failure detectors that eventually permanently output

a “stable” value at every correct process (the stable values output at different correct processes can be different
though).

15

Intuitively, o = (q1,d1), (g2,d2), . .. is an f-resilient sample of D if failure-detector values dy,da, . ..
could have been observed (in this order) by processes ¢, g2, ... in a run of some algorithm using D
in F' € £. The following observation is immediate from the definition.

Lemma 7 Let o € (I x R)* be an f-resilient sample of D, and o’ be a subsequence of o such that
correct(o) = correct(c’). Then o' is also an f-resilient sample of D.

We also introduce the notion of a dummy failure detector, which always outputs the same value
(i.e., its range is a singleton {d}). Clearly, a dummy failure detector D can be emulated in an
asynchronous system. If a problem can be solved in £ using a dummy failure detector, then we say
that the problem is f-resilient solvable. Otherwise, we say that the problem is f-resilient impossible.
We say that a failure detector is f-non-trivial if it can be used to solve an f-resilient impossible
problem in £7. By definition, an n-resilient impossible problem is wait-free impossible.

First we observe that the output of an f-non-trivial failure detector can be associated with a
sequence in (II x R)* that is “incompatible” with the current run:

Lemma 8 Let D be an f-non-trivial failure detector. Let R be the range of D. Then, for alld € R,
there exists a sequence o € (I x{d})* such that |correct(c)| > n+1— f and o is not an f-resilient
sample of D.

Proof. Let A be an algorithm that solves an f-resilient impossible problem M using D.

By contradiction, suppose that there exists a value d € R such that each o € (IT x {d})* with
|correct(o)| > n+ 1 — f is an f-resilient sample of D, i.e., there exist a failure pattern F' € &, a
history H € D(F) and a list T of increasing time values such that for all k € N, (i) ¢ ¢ F(T[k]),
(ii) d = H(qx, T[k]), and (iii) for all £ € N, k # ¢, if T[k] = Tl], then g\ # qo.

Consider algorithm A’ that is defined exactly like A except that, instead of D, A’ uses a dummy
failure detector Z, that always outputs d: each time a process is expected (according to its state in
A) to query D we substitute D with Z,.

For each run R’ = (F',H',S,T') of A’ where F' € &;, there exists a run R = (F,H,S,T)
of A. Indeed, let ¢i,q2,... be the sequence of process ids such that Vk € N, S[k] = (¢, —, —)
and H'(qy,T'[k]) = d. Let F be a failure pattern in &, H be a history in D(F), and T be a
list of non-decreasing time values such that correct(F) = correct(F'), and Vk € N, ¢ ¢ F(T[k]),
H(q,T[k]) = d, and for all k,¢ € N, k # £, if T[k] = T[¢], then ¢ # ¢. By construction,
R = (F,H,S,T) is a run of A, and, thus, the trace of R is in M. But the traces of R and R’
are indistinguishable, and, thus, the trace of R is also in M. Hence, A’ solves M using Zy - a
contradiction to the assumption that M is f-resilient impossible.

Thus, for all d € R, there exists a sequence o € (II x {d})*, with |correct(c)| > n+1— f, that
is not an f-resilient sample of D. O

For a sequence o € (I x {d})*, let w(o) denote the length of the shortest prefix of o that includes
all steps that processes in IT — correct(o) take in o; if correct(o) = II, then w(o) = 0. The following
corollary follows immediately from Lemma 8:

Corollary 9 For each f-non-trivial failure detector D with range R, there exists a map op that
carries each d € R to a tuple (correct(o),w(o)), where o € (II x {d})*, |correct(c)] > n+1— f,
and o is not an f-resilient sample of D.

Note that we do not construct the map @p here: it is sufficient for us to know that such a map
exists for each f-non-trivial failure detector.

16

Now we are ready to prove the necessity part of our result. Roughly, we extract the output of
T from the output of an f-non-trivial failure detector D as follows. Processes periodically query
their modules of D and report the obtained values by writing the values equipped with increasing
timestamps in the shared memory. Each output failure detector value d is associated with an
sequence o € (IT x R)* (|correct(c)| > n+ 1 — f) that is suspected to be ”incompatible” with the
current run (here we use the map ¢p the existence of which is guaranteed by Corollary 9).

For a stabilized value d, if the shortest prefix of o that includes all steps of processes appearing
only finitely often in o was observed in the current run (could have taken place with the current
failure pattern), then the processes evaluate the extracted output of 7 as the set of processes that
appear infinitely often in o. Indeed, correct(c) cannot be the set of correct processes: otherwise, by
Lemma 7, o0 would be an f-resilient sample of D. Here to make sure that a given finite schedule of
length r could have happened with the current failure pattern, it is sufficient for some process to
observe r consecutive batches of steps such that, in every batch, every process queried its failure
detector module and obtained d at least once.

On the other hand, as long as the finite prefix of ¢ is not observed, the processes evaluate the
extracted output of 7y as II. Note that a given finite prefix of o is never observed only if some
process is faulty. In that case, II cannot be the set of correct processes.

In both cases, every process evaluates an extracted value of 77. If a value different from d is
reported, then the extraction procedure is restarted. Eventually, the values will stabilize, and the
extracted output will conform with the specification of 1/,

Theorem 10 Y/ is weaker than any f-non-trivial stable failure detector.

Proof. Let D be any stable failure detector that can be used to solve an f-resilient impossible
problem M. Let A be the corresponding algorithm. Let R be the range of D.

The reduction algorithm that transforms D into 7 is presented in Figure 3. In the algorithm,
every process p; runs two parallel tasks, Task 1 and Task 2. Here ¢p denotes a map that carries
each d € R to a tuple (correct(o), w(o)), where o € (II x {d})*, |correct(c)| >n+1— f, and o is
not an f-resilient sample of D. (By Corollary 9, such a map exists.)

In Task 1, p; periodically queries its module of D and writes the returned value, equipped with
an ever-increasing timestamp, in a register R[i] that is periodically read by all. The ever-increasing
timestamps allows p; to detect when a given process p; reports a new failure detector value: it is
sufficient to wait until p; increases its timestamp (i.e., writes in R[j]) at least twice.

In Task 2, p; proceeds in rounds. In every round, consisting of steps described in lines 7-21 of
Figure 3, p; tries to compute the stable output of 7/, as long as the observed output of D at every
process does not change (lines 15 and 21). When some process reports that its output of D has not
stabilized yet, p; proceeds to the next round. Since D eventually outputs the same value at every
correct process, every correct process is eventually blocked forever in line 15 or line 21.

Let d be the output of D at p; in a given round of Task 2. In the beginning of the round, p;
sets 1/ -output; to IT (line 8), and deterministically evaluates (S,r) as (correct(c),w(c)), where
o € (II x{d})*, |correct(c)| > n+1— f, and o is not an f-resilient sample of D (line 10). If S = 11,
then p; simply waits until some process reports that its module of D outputs a value different from
d (line 21).

If S # II, then p; first waits until any process observes r = w(o) batches of steps such that, in
every batch, every process took at least one new query step in which D returned d (line 15). If r

17

Shared variables
Registers: R[1,...,n+ 1], D[1,...,n+ 1]
Vi=1,...,n+ 1, initially L, written by p; and read by all
Local variable at every process p;
Rr: Tf—outputi, initially I7T
Boolean: Stable, initially true

Code for every process p;:

Task 1:

1 r:=0

2 repeat forever

3 r:=r-+1

4 d = query(D;)

5 R[3) :=[d,] {Report a new step with failure detector value d}
Task 2:

6 repeat forever

7 Stable := true

8 Y7 -output, := II

9 d := query(D;)

10 (S,7) := ¢p(d) {Compute S = correct(c) and r = w(o)}

{where o is defined as in Corollary 9}
11 if S # II then

12 k:=0
13 repeat
14 k=k+1
15 wait until every process in II reports d
or 3j: D[j] = d or some process reports d’' # d
16 if some process reported d’ # d then Stable := false
17 until k£ = r or —Stable
18 if —Stable then proceed to line 7
19 Dli] :=d
20 ! -output, := S
21 wait until some process reports d’ # d

Fig. 3. Transforming D into 1.

such batches are observed, then p; concludes that S cannot be the set of correct processes in the
current run, sets 7f -output; to S, and blocks in line 21.

Now we show that, in every run of our algorithm, variables {Tf —outputj} satisfy the properties
of T4, i.e., there is a time after which the correct processes output the same non-empty set of
processes that is not the current set of correct processes.

Consider any run of the reduction algorithm. Let F' be the failure pattern and H be the failure
detector history in that run. Consider the time after which no process ever observes that a new value
other than d is output by D at any process, i.e., no process ever reports a new step with a value
d #d.Let (S,r) = ¢p(d), S = correct(c), r = w(o), where o € (II x{d})*, |correct(c)| > n+1—f,
and o is not an f-resilient sample of D.

If correct(o) = II, then every correct process eventually sets Y/ -output; to IT in line 8 and blocks
forever in line 21. Note that o is a subsequence of every o’ € (II x {d})* such that correct(c’) = II.

18

Suppose, by contradiction, that correct(F') = II. Since d is the failure detector value that every
process eventually obtains, there exists o/ € (II x {d})* such that correct(c’) = II and ¢’ is an
f-resilient sample of D. By Lemma 7, o is also an f-resilient sample of D — a contradiction. Hence,
correct(F) # IT, and IT is a legitimate stable output of 77/ in this case.

Now assume that correct(c) # II. Suppose that a correct process is blocked forever in line 15.
Thus, eventually, every correct process is also blocked in line 15. Indeed, since we assume that no
process observes a failure detector value other than d, no process can proceed to the next round in
line 18. Thus, when a correct process p; exits the wait clause, it sets D[j] = d in line 19 and blocks
in line 21. Every correct process blocked in line 15 will eventually find D[j] = d and exit the wait
clause.

Hence, we only need to consider two cases: (1) all correct processes are blocked forever in the
wait clause in line 15, and (2) all correct processes exit the wait clause in line 15 and block forever
in line 21.

In case (1), every correct process p; sets ¥ -output; to IT and blocks forever waiting for some
process p; to take one more step in Task 1. This can only happen if p; is faulty. Thus, correct(F') #
II, and II is a legitimate stable output of D.

In case (2), some process previously observed w(o) batches of steps such that, in every batch,
every process p; reported, at least twice, that its module of D output d by writing new values
in register R[j]. By our algorithm (Task 1), between these two writing steps, p; queried D and
obtained d. Thus there exists ¢/, an f-resilient sample of D, where correct(c’) = correct(F), that
begins with w(o) batches of the form (q1,d), (q2,d), ..., (gn+1,d), where {q1,q2,...,qn+1} = II.

Suppose now that correct(o) = correct(F) = correct(o’). Note that the prefix of o of length
w(o) is a subsequence of the prefix of ¢’ of length w(c)(n+ 1). Since the prefix of o of length w(o)
includes all steps that processes in IT — correct(F') take in o, o is a subsequence of ¢’. By Lemma 7,
o is an f-resilient sample of D — a contradiction. Thus, correct(o) # correct(F'), and correct(o) is
a legitimate stable output of 1/.

Thus, in every run, the correct processes eventually set their emulated outputs of ¥/ to the
same non-empty set of at least n + 1 — f processes that is not the set of correct processes in that
run — the output of 7/ is extracted. O

7 Concluding Remarks

We established in this paper that 1" (resp. rf) is weaker than any stable failure detector that
circumvents a wait-free (resp. f-resilient) impossibility. Most failure detectors (we are aware of)
that have been proposed to capture minimal information to circumvent asynchronous impossibilities
in the shared memory model are stable or have stable equivalents [4, 3, 18, 7].

An interesting aspect of our minimality result is that it holds regardless of which shared objects
are used to circumvent an impossibility. Indeed, the only fact we use to extract the output of
Y7 is the very impossibility to solve a given problem in a given model. On the other hand, our
T (Y7)-based algorithms work in the “weakest” shared memory model where processes communicate
through registers.

19

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. Atomic snapshots of shared

memory. Journal of the ACM, 40(4):873-890, 1993.

Elizabeth Borowsky and Eli Gafni. Generalized FLP impossibility result for t-resilient asynchronous computa-
tions. In Proceedings of the 25th ACM Symposium on Theory of Computing, pages 91-100. ACM Press, May
1993.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving consensus.
Journal of the ACM, 43(4):685-722, July 1996.

. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. Journal

of the ACM, 43(2):225-267, March 1996.

Soma Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous systems.
Information and Computation, 105(1):132-158, 1993.

Wei Chen, Jialin Zhang, Yu Chen, and Xuezheng Liu. Weakening failure detectors for k-set agreement via
the partition approach. In Proceedings of the 21st International Symposium on Distributed Computing, pages
123-138, 2007.

Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr Koutnetzov, and Sam
Toueg. The weakest failure detectors to solve certain fundamental problems in distributed computing. In
Proceedings of the 23th ACM Symposium on Principles of Distributed Computing, 2004.

Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Petr Kouznetsov. Mutual exclusion in asyn-
chronous systems with failure detectors. J. Parallel Distrib. Comput., 65(4):492-505, 2005.

Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for distributed
consensus. Journal of the ACM, 34(1):77-97, January 1987.

Cynthia Dwork, Nancy A. Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal
of the ACM, 35(2):288-323, April 1988.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM, 32(2):374-382, April 1985.

Rachid Guerraoui, Maurice Herlihy, Petr Kouznetsov, Nancy A. Lynch, and Calvin C. Newport. On the weakest
failure detector ever. In Proceedings of the 26th ACM Symposium on Principles of Distributed Computing, pages
235-243, 2007.

Rachid Guerraoui and Petr Kouznetsov. Failure detectors as type boosters. Distributed Computing, 20(5):343—
358, 2008.

Maurice Herlihy and Nir Shavit. The asynchronous computability theorem for t-resilient tasks. In Proceedings
of the 25th ACM Symposium on Theory of Computing, pages 111-120, May 1993.

Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst., 12(3):463-492, 1990.

Prasad Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592-614, 1997.

Achour Mostéfaoui, Michel Raynal, and Corentin Travers. Exploring Gafni’s reduction land: From omega to
wait-free adaptive (2p-[p/k])-renaming via k-set agreement. In Proceedings of the 20th International Symposium
on Distributed Computing, pages 1-15, 2006.

Gil Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th ACM Symposium on Principles
of Distributed Computing, 1995.

Michel Raynal and Corentin Travers. In search of the holy grail: Looking for the weakest failure detector for
wait-free set agreement. In Proceedings of the 10th International Conference on Principles of Distributed Systems,
pages 3-19, 2006.

Michael Saks and Fotios Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge.
In Proceedings of the 25th ACM Symposium on Theory of Computing, pages 101-110. ACM Press, May 1993.
Jiong Yang, Gil Neiger, and Eli Gafni. Structured derivations of consensus algorithms for failure detectors. In
Proceedings of the 17th ACM Symposium on Principles of Distributed Computing, pages 297-306, 1998.

Piotr Zielinski. Automatic classification of eventual failure detectors. In Proceedings of the 21st International
Symposium on Distributed Computing, pages 465-479, 2007.

Piotr Zielinski. Anti-Omega: the weakest failure detector for set agreement. In Proceedings of the 27th ACM
Symposium on Principles of Distributed Computing, 2008.

20

