
On Set Consensus Numbers?

Eli Gafni1 and Petr Kuznetsov2

1 Computer Science Department, University of California, Los Angeles, USA
eli@ucla.edu

2 TU Berlin/Deutsche Telekom Laboratories, Berlin, Germany
pkuznets@acm.org

Abstract. It is conjectured that the only way a failure detector (FD) can help solving n-process tasks
is by providing k-set consensus for some k ∈ {1, . . . , n} among all the processes. It was recently shown
by Zieliński that any FD that allows for solving a given n-process task that is unsolvable read-write
wait-free, also solves (n− 1)-set consensus.
In this paper, we provide a generalization of Zieliński’s result. We show that any FD that solves a
colorless task that cannot be solved read-write k-resiliently, also solves k-set consensus. More generally,
we show that every colorless task T can be characterized by its set consensus number : the largest
k ∈ {1, . . . , n} such that T is solvable (k − 1)-resiliently. A task T with set consensus number k is, in
the failure detector sense, equivalent to k-set consensus, i.e., a FD solves T if and only if it solves k-set
consensus.
As a corollary, we determine the weakest FD for solving k-set consensus in every environment, i.e., for
all assumptions on when and where failures might occur.

1 Introduction

One of the central challenges in distributed computing is characterizing the conditions under which
a given problem is solvable. In this paper we focus on a class of problems, called distributed tasks.
We consider a system of n processes, subject to the crash failures and communicating via reading
and writing in the shared memory. Informally, the correctness of an algorithm solving a distributed
task depends only on the inputs the processes receive in the beginning of the computation and the
outputs they produce at the end of it.

An example of a distributed task is k-set consensus [7], in which the processes starts with
inputs in {0, . . . , k} and the set of outputs must be a subset of inputs of size at most k. For all
0 < k < n, there is no algorithm that solves k-set consensus tolerating k faulty processes and making
no synchrony assumptions [17, 22, 2, 3]. In other words, the lack of synchrony and the presence of
failures make k-resilient k-set consensus impossible. To circumvent the impossibility, assuming that
we still want to tolerate failures, we need to introduce some synchrony into the system. But how
much synchrony is enough?

Synchrony assumptions can be described using failure detectors (FDs) [5, 4], distributed oracles
that provide processes with some (possibly inaccurate and incomplete) hints about failures. For
example, Ω, the “eventual leader” failure detector [4], outputs, when queried, a process identifier
and guarantees that, eventually, the same correct process identifier is forever output. Ω has been
shown to be sufficient to solve any distributed task tolerating any number of failures. The exact
amount of synchrony needed to circumvent an asynchronous impossibility is captured through the
notion of the weakest FD [4]: D is the weakest FD for solving a problemM if D is both (1) sufficient

? This paper combines results appeared in the Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing (PODC 2009) and the 23rd International Symposium on Distributed Computing (DISC 2009).

to solve M, i.e., there exists an algorithm that solves M using D, and (2) necessary to solve M,
i.e., any FD that is sufficient to solve M provides at least as much information about failures as
D does. For a very general definition of a distributed computing problem, it has been shown that
every problem (and, specifically, every task) has a weakest FD [18]. Thus the question arises “how
many weakest FDs are there?”

We conjecture that for tasks on n processes the answer is n, the weakest FDs to solve k-set
consensus 0 < k ≤ n, i.e., including the “empty” FD, the FD that say nothing and corresponds
to the wait-free solvable tasks and the Ω failure detector that solves any task. More precisely, for
each task T on n processes, there is a k, such that ¬Ωk, the recently introduced anti-Ω-k FD, is
the weakest to solve T . ¬Ωk [21, 24] outputs, when queried, a set of n − k processes so that some
correct process is output only finitely many times.

Zieliński showed recently that ¬Ωn−1 is necessary to any FD that allows for solving any n-process
task not solvable (n − 1)-resiliently (or wait-free) can be used for solving (n − 1)-set consensus.
In this paper, we generalize Zielíski’s result and prove the conjecture for a large class of colorless
tasks. Informally, in a solution of a colorless task, a process is free to adopt the input or output
value of any other participating process.

We show that, for all k ∈ {1, . . . , n}, ¬Ωk is necessary to solve any n-process colorless task that
cannot be solved k-resiliently. On the other hand, we also show that ¬Ωk is sufficient to solve any
colorless task that can be solved (k − 1)-resiliently. Both results hold for all environments, i.e., for
all possible assumptions on when and where failures might occur.

For a given task T , let k be the largest integer in {1, . . . , n) such that T is (k − 1)-resiliently
solvable. We say that k is the set consensus number of T . Our results imply that in every environ-
ment, Ωk is the weakest failure detector to solve any colorless task with set consensus number k.
As a result, any colorless task T is equivalent to some k-set consensus in the sense that a failure
detector D solves T if and only if D solves k-set consensus.

The rest of the paper is organized as follows. Section 2 describes our system model. Section 3
recalls the definition of ¬Ωk and shows that ¬Ωk is sufficient to solve k-set consensus. Section 4
proves that ¬Ωk is necessary to solve any k-resilient unsolvable colorless task, and Section 5 presents
a characterization criterion for distributed tasks. Section 6 overviews the related work. Section 7
concludes the paper by summarizing our results and listing some intriguing open questions.

2 Model

We consider a system of n processes Π = {p1, . . . , pn}. Processes communicate via reading and
writing in the shared memory and can query the failure detector. Processes are subject to crash
failures.

2.1 Failure patterns and failure detectors

Processes can also query failure detectors, i.e., distributed oracles that provide the processes with
information about failures of other processes [5, 4]. The local module of failure detector D at process
pi is denoted by Di. Informally, a failure detector is defined through a map from the current
failure pattern (describing when and where failures occurred) to a set of failure detector histories
(describing the information about failures the failure detector provides).

Formally, a failure pattern F is a function from the time range T = N to 2Π , where F (t)
denotes the set of processes that have crashed by time t. Once a process crashes, it does not

2

recover, i.e., ∀t < t′ : F (t) ⊆ F (t′). We define faulty(F) =
⋃
t∈T F (t), the set of faulty processes in

F . Respectively, correct(F) = Π− faulty(F). A process p ∈ F (t) is said to be crashed at time t. An
environment is a set of failure patterns. By default, we assume that at least one process is correct
in every failure pattern.

A failure detector is associated with a (possibly infinite) range R of values output by that
failure detector. A failure detector history H with range R is a function from Π ×T to R. H(pi, t)
is interpreted as the value output by the failure detector module of process pi at time t. A failure
detector D is a function that maps each failure pattern F to a (non-empty) set of failure detector
histories with range RD (where RD denotes the range of failure detector outputs of D). D(F)
denotes the set of failure detector histories permitted by D for failure pattern F .

2.2 Algorithms

We define an algorithm A using a failure detector D as a collection of deterministic automata, one
automaton Ap for each process p. In each step of Ap, process p performs an atomic operation on a
shared register or queries its failure detector module of D and receives a value, and then performs
a state transition according to its automaton and the received values. A step of A is thus defined
as a tuple (p, tp, x, v) where:

– p is a process id,
– tp is the type of the step (read, write, or query),
– x the accessed register if it is a memory (read or write) step or ⊥ otherwise,
– v the read value if it is a read step, the written value if it is a write step, or the failure detector

value if it is a query step.

A configuration of A specifies the states of each automaton Ap and each register in the system.
In an initial configuration I of A, the state of each Ap is an initial state of the automaton. A step
s = (p, tp, x, v) of A is applicable to a configuration C if the next operation of p enabled by Ap in
C is of type tp and if case tp = read, then v is the value of register x in C. We denote by s(C)
the configuration resulting after s is applied to C: the state of Ap is changed based on C, tp and
v and if s writes v′ to x in C, then x contains v′ in s(C). If s is applicable to C, s(C) is uniquely
determined by C, s and A.

If the steps of A do not depend on the failure detector values, i.e., the types of the steps of A
are only read and write, we say A is asynchronous.

For each process p, the state of the automaton Ap includes a read-only input variable, denoted
INp, and a write-once output variable, denoted OUTp. In each initial state of Ap, the input variable
INp contains the input value of p or the special value ⊥, and the output variable OUTp is initialized
to ⊥ (to denote that it was not yet written by p). We assume that all initial states agree on the
states of shared objects. Therefore, an initial state of A is unambiguously determined by the vector
of IN: ∀p ∈ Π, IN[p] = INp. Therefore, we simply denote an initial state by IN.

2.3 Schedules

A schedule S of an algorithm A is a finite or infinite sequence of steps of A. We denote by
participants(S) the set of processes that take at least one step in schedule S. The ith step in
schedule S is denoted by S[i]. A schedule S is applicable to a state C if S is the empty schedule, or

3

S[1] is applicable to C, S[2] is applicable to S[1](C), etc. If S is finite and is applicable to C, S(C)
denotes the configuration that results when we apply schedule S to configuration C.

Let S be a schedule applicable to an initial configuration I of an algorithm A. We say that step
S[i] causally precedes step S[j] in S if and only if one of the following holds [19]:

– S[i] and S[j] are steps of the same process and i < j;
– S[i] is a step in which a process p writes a value v to a register x and S[j] is a step in which a

process q reads v from x;3

– there exists k such that S[i] causally precedes S[k], and S[k] causally precedes S[j] in S.

2.4 Runs

A run of algorithm A using a failure detector D in an environment E is a tuple R = 〈F,H, I, S, T 〉
where F ∈ E is a failure pattern, H ∈ D(F) is a failure detector history, I is an initial state of A,
S is a schedule, and T is a list of values in T such that:

(1) S is applicable to I.
(2) S and T are both finite sequences of the same length, or are both infinite sequences.
(3) For all 1 ≤ j ≤ |S|, if S[j] = (i, tp, x, v), then pi /∈ F (T [j]) and if tp = query, then v =

H(p, T [j]).
(4) For all 1 ≤ i < j ≤ |S|, T [i] ≤ T [j].
(5) For all positive integers i, j ≤ |S|, if step S[i] causally precedes step S[j] in the set of steps of

S then T [i] < T [j].

Property (3) states that a process does not takes steps after crashing, and that the failure
detector value seen in a step is the one dictated by the failure detector history H. Property (4)
states that the sequence of times when processes take steps in a schedule is non-decreasing, and
property (5) states that these times respect causal precedence.

A run R = 〈F,H, I, S, T 〉 is infinite if S is infinite. Otherwise, the run is partial. For an infinite
run R, inf (R) denote the set of processes that take infinitely many steps in S. We say that R is
fair if correct(F) = inf (R), and k-resilient if |inf (R)| ≥ n− k.

Two runs of A that agree on the input configurations I and the schedules S are indistinguishable
to the processes. Therefore, in our reduction algorithm, a run is understood as an equivalence class
of indistinguishable runs that agree on I and S.

2.5 Distributed tasks

A task is defined through a set I of input n-vectors, a set O of output n-vectors and a total relation
∆ that associates each input vector with a set of possible output vectors. If the value of p in a
vector I ∈ I is ⊥, then we say that p does not participate in I. If the value of p in a vector
O ∈ O is ⊥, then we say that p does not decide in O. We require that if (I,O) ∈ ∆, then for all `,
I[`] = ⊥ ⇒ O[`] = ⊥, and for each O′ resulting after replacing some items in O with ⊥, (I,O′) ∈ ∆.
In this paper, we only consider tasks that have finite sets of inputs I.

Let val(U) denote the set of non-⊥ values in a vector U . A task T = (I,O, ∆) is colorless [3]
if, for all input vectors I ∈ I and I ′ ∈ I and all output vectors O ∈ O and O′ ∈ O, such that
3 Without loss of generality, we assume that all values written to the shared memory are unique.

4

– (I,O) ∈ ∆,
– val(I) ⊆ val(I ′),
– val(O′) ⊆ val(O),
– and for all `, I ′[`] = ⊥ ⇒ O′[`] = ⊥,

we have (I ′, O′) ∈ ∆. Thus, ∆ can be defined as a relation in val(I)× val(O), where val(I) denotes
the set of all possible input values and val(O) denotes the set of all possible output values. In
other words, in a solution to T , a process is free to adopt the input and output value of any other
participating process.

In the n-process k-set consensus task (we simply write k-set consensus), I and O consist of
all vectors in which non-⊥ values are in {0, . . . , k}, and (I,O) ∈ ∆ if and only if val(O) ⊆ val(I),
|val(U)| ≤ k. Obviously, k-set consensus is colorless.

2.6 Solving a task

Consider a task T = (I,O, ∆) and an environment E . We say that an algorithm A solves T in
E using D, if in every fair run 〈F,H, IN, S, T 〉 of A, where F ∈ E , IN ∈ I and for each p ∈
participants(S): I[p] 6= ⊥, every process in correct(F) eventually decides, i.e., writes a non-⊥
output value to OUTp, so that the resulting vector OUT satisfies (IN,OUT) ∈ ∆. We say that A
weakly solves T using D in E if it only guarantees that at least one process eventually decides.

It follows immediately from the definition that to solve k-set consensus (or, more generally, any
colorless task), it is sufficient to weakly solve it. Indeed, the decided process can simply write its
output value to the shared memory and the value can be adopted by every other process without
affecting the correctness of decision.

A configuration of an algorithm in which some process decides is called deciding.

2.7 Resilience and active resilience

Let Ek denote the environment that consists of all failure patterns F such that |faulty(F)| ≤ k
(in which any k processes may fail). A task can be (weakly) solved k-resiliently if there is an
asynchronous algorithm that (weakly) solves the task in Ek.

Let Eak denote the environment that consists of all failure patterns F such that |faulty(F) −
F (0)| ≤ k (in which at most k not initially faulty processes may fail). A task can be (weakly) solved
actively k-resiliently if an asynchronous algorithm (weakly) solves the task in Eak .

Since Eak ⊆ Ek, if a task is (weakly) solvable actively k-resiliently, then it is also (weakly) solvable
k-resiliently. It is shown in [2, 3] that k-set consensus is impossible to solve k-resiliently, and thus
also actively k-resiliently.

2.8 Comparing failure detectors

Intuitively, a failure detector D′ is weaker than a failure detector D if processes can use D to emulate
D′; so if a problem is solvable with D′, it can also be solvable it with D.

Intuitively, D can be used to emulate D′ in an environment E if there is an algorithm that
transforms D to D′ in E as follows. The reduction algorithm, denoted TD→D′ , uses D to maintain
a variable D′-outputp at every process p. D′-outputp functions as the output of the emulated failure
detector D′ at p. For each run R of TD→D′ , let OR be the history of all the D′-output variables in

5

R; i.e., OR(p, t) is the value of D′-outputp at time t in R. Algorithm TD→D′ transforms D to D′ in
E if and only if for every fair run R = (F,H, I, S, T) of TD→D′ using D in E , OR ∈ D′(F). We say
that D′ is weaker than D in E if there is an algorithm TD→D′ that transforms D to D′ in E . with
D’ in E can also be solved We say that two failure detectors are equivalent in E if each is weaker
than the other in E .
D is the weakest failure detector to solve a task M in E if (i) there is an algorithm that solves

M using D in E and (ii) D is weaker than any failure detector that can be used to solve M in E .
Every task can be shown to have a weakest failure detector [18] in every environment.

3 Failure detectors and k-set consensus

In this section, we recall the definition of ¬Ωk [21] and show that it is sufficient to solve k-set
consensus.
¬Ωk outputs, at each process and each time, a set of n−k processes. ¬Ωk guarantees that there

is a time after which some correct is never output:

∀F, ∀H ∈ ¬Ωk(F), ∃pi ∈ correct(F), t ∈ T,
∀t′ > t,∀pj ∈ Π : pi /∈ H(pj , t′).

By definition, ¬Ωn−1 is equivalent to anti-Ω [23]. Also, ¬Ω1 is equivalent to Ω [4]. To see this,
we can simply output the complement of ¬Ω1 in Π: eventually, the same correct process will always
be output at all processes.

In every environment, ¬Ωn−1 is the weakest failure detector to solve (n− 1)-set consensus [24].
We also consider the following “vector-Ω” failure detector, denoted

−→
Ω k. This failure detector

outputs a k-vector of process ids and guarantees that, eventually, at least one position in the vector
stabilizes, at all processes, on the same correct process id:

∀F, ∀H ∈
−→
Ω k(F), ∃pi ∈ correct(F), ` ∈ {1, . . . , k}, t ∈ T,

∀t′ > t,∀pj ∈ Π : H(pj , t′)[`] = pi.

In every environment, ¬Ωk and
−→
Ω k are equivalent [26]. To obtain ¬Ωk from

−→
Ω k, it is sufficient to

output, at every process, any set of n−k processes that are not output by
−→
Ω k. The other direction

is a simple generalization of the reduction algorithm for the case k = n− 1 in [24] (similar, in turn,
to the reduction of [8]).

Solving k-set consensus with
−→
Ω k is straightforward [24]. Just run k instances of Ω-based con-

sensus protocol [20], C1, . . . , Ck, where each C` uses position ` in the output of
−→
Ω k. As an input in

every instance of consensus, each process uses its input value for k-set consensus. The first value to
be returned by an instance of consensus is used as the output for k-set consensus. By the agreement
property of consensus, at most k distinct values can be output. Since, in at least one position, the
output of

−→
Ω k stabilizes on the same correct process, at least one instance of consensus eventually

returns at every process, and there are at most k different values can be returned. Thus:

Theorem 1. ¬Ωk is sufficient to solve k-set consensus in all environments.

4 ¬Ωk is necessary to circumvent a k-resilient impossibility

This section shows that ¬Ωk is necessary to solve any colorless task T that cannot be solved
k-resiliently. We then use this result to characterize tasks based on their set consensus number.

6

4.1 Overview

Let T = (I,O, ∆) be a colorless task that cannot be solved k-resiliently. Let A be an algorithm
that solves T in E using a failure detector D in a given environment E . Our goal is to construct a
reduction algorithm that, in E , extracts the output of ¬Ωk using A and D. Recall that to extract
the output of ¬Ωk means to output a set of n − k process identifiers and ensure that, eventually,
some correct process is never included in the output sets.

Our reduction algorithm uses the observation that a run of any algorithm using a failure detector
induces a directed acyclic graph (DAG). The DAG contains a sample of failure detector values output
by D in the current run and captures some causal relations between them [4]. Given such a DAG
G, we can construct an asynchronous algorithm A′ that, instead of the failure detector, uses G to
simulate (possibly finite or unfair) runs of A [24].

Our reduction algorithm uses the DAG to allow k+1 locally maintained simulators q1, . . . , qk+1

to simulate multiple k-resilient runs of A′ For this, the algorithm makes use of the BG-simulation
technique [2, 3, 12]. Each simulator qi accepts an input value in val(I) and produces outputs in
val(O) such that the resulting input and output vectors satisfy (val(I ′), val(O′)) ∈ ∆. To simulate
the first step of a simulated process p′j , the simulators use BG-agreement to agree on the input
value of p′j , where each simulator proposes its own input value. Since T ′ is colorless, the run can be
considered deciding if at least one simulated process pi returns an output of T at some simulator
qj .

Since T is not k-resiliently solvable and thus T ′ is not wait-free solvable, the described BG-
simulation must produce at least one infinite non-deciding run that, in turn, corresponds to an
infinite k-resilient non-deciding run of A′. To emulate ¬Ωk, it is thus sufficient to output the set of
n− k processes that appear the latest in the first such run of A′. By showing that every run of A′
containing infinitely many steps of every correct process is deciding (Theorem 2), we derive that at
least one correct process will eventually never be output. Thus, the output of ¬Ωk is extracted.

However, there are two issues we have to address here. One issue is how to make sure that
eventually each correct process forever selects ever-increasing non-deciding partial runs that are in
a strict sense close to such an infinite non-deciding run. E.g., arguably the simplest way to order
simulated schedules is to use the lexicographic order: schedule q1, q2, ... is ordered before schedule
q′1, q

′
2, ... if there exists i such that qi < q′i (assuming a deterministic order on process ids) and for

all 1 ≤ i < j, qj = q′j . However, always choosing the first non-deciding run using the lexicographic
order in the breadth-first exploration of the tree of all possible schedules, we cannot prevent the
case of (temporarily) choosing a prefix of a deciding run that contains steps of arbitrary processes,
thus causing arbitrary output of the emulated failure detector. We address the issue by making sure
that the explored prefixes eventually only include steps of processes that appear infinitely often in
some non-deciding run, and we achieve this by employing the corridor-based depth-first ordering
of runs.

The second issue is that the DAGs constructed at different processes evolve differently. Thus,
the first non-deciding k-resilient runs located at different correct processes can also be different.
We resolve the issue by making sure that the correct processes eventually adopt the most “success-
ful” simulation: whenever a process pi observes that the “smallest” non-deciding simulated run is
considered deciding by another process pj , pi adopts the set of simulated runs of pj , and continues
the simulation from there.

Our reduction algorithm consists therefore of two components that are running in parallel: the
communication component (described in Section 4.2) and the computation component (described in

7

Shared variables:
for all pi ∈ Π: Vi, initially (⊥,⊥,⊥)

1 `i := 0
2 while true do
3 for all pj 6= pi do (Gj , αj , βj) := Vj ; Gi := Gi ∪Gj
4 di := query failure detector D
5 `i := `i + 1
6 add vertex [pi, di, `i] to Gi

for each vertex v of Gi, v 6= [pi, di, `i]:
add edge (v, [pi, di, `i]) to Gi

7 Vi := (Gi, αi, βi)

Fig. 1. Building a DAG: the program code for each process pi

Section 4.5). In the communication component, every process pi maintains the ever-growing directed
acyclic graph (DAG) Gi by periodically querying its failure detector module and exchanging the
results with the others through the shared memory. In the computation component, every process
simulates a set of runs of A using the DAG and extracts the output of ¬Ωk.

4.2 Communication component and DAGs.

The communication component of our reduction algorithm is presented in Figure 1. The component
maintains, for each process pi, an ever-growing DAG Gi that contains a sample of the current failure
detector history. The DAG is stored in a register Vi which can be written by pi and read by all
processes.

In addition, Vi stores two elements, the set αi of runs simulated by pi so far and the delay map
βi that specifies the details of how exactly these runs were simulated by pi. We explain how αi and
βi are maintained and used in Sections 4.3 and 4.5.

DAG Gi has some special properties which follow from its construction [4]. Let F be the current
failure pattern, and H ∈ D(F) be the current failure detector history. Then for any correct process
pi and any time t a fair run of the algorithm in Figure 1 guarantees that (here Gi(t) denotes the
value of Gi at time t):

(1) The vertices of Gi(t) are of the form [pj , d, `] where pj ∈ Π, d ∈ RD and ` ∈ N. There is a map
τ : vertices of Gi(t) 7→ T, such that:
(a) For any vertex v = [pj , d, `], pj /∈ F (τ(v)) and d = H(pj , τ(v)).
(b) For any edge (v, v′), τ(v) + 2 < τ(v′). values are output.

(2) If v = [pj , d, `] and v′ = [pj , d′, `′] are vertices of Gi(t) and ` < `′ then (v, v′) is an edge of Gi(t).
(3) Gi(t) is transitively closed: if (v, v′) and (v′, v′′) are edges of Gi(t), then (v, v′′) is also an edge

of Gi(t).
(4) For all correct processes pj , there is a time t′ ≥ t, a d ∈ RD and an ` ∈ N such that, for every

vertex v of Gi(t), (v, [pj , d, `]) is an edge of Gi(t′), and Gi(t) ⊆ Gj(t′).

Condition 1b means that every edge in Gi reflects the temporal order in which the failure detector
values in v and v′ were output. Also, the inequality τ(v)+2 < τ(v′) means that at least two causally
related events could take place between τ(v) and τ(v′).

In a fair run, the ever-growing DAGs at correct processes tend to the same limit infinite DAG
Ḡ = ∪t∈TGi(t), and the set of processes that obtain infinitely many vertices in Ḡ is the set of

8

correct processes [4]. A subDAG of Ḡ is any DAG that consists of a finite subset of vertices of Ḡ
with the corresponding edges. Trivially, each subDAG satisfies properties (1)–(3) above.

4.3 Asynchronous simulation of A

Let G be a DAG constructed as shown in Figure 1. Let β be any mapping from Π × N to N such
that β(pi, `) = 0 for all ` > `i + 1 where `i is the largest integer such that [pi, d, `′] is in G (if any).
We call β a delay map for G.

We show that G and β can be used to construct an asynchronous algorithm Aβ that, for each
input vector I simulates a run of A (Figure 2). In the algorithm, each process pi starts with its
input value in I and performs a sequence of simulated steps of A. Each simulated step of A is
associated with a vertex in G.

To perform the next step of A, pi first scans the shared memory (line 9 in Figure 2) to get the
list of vertices associated with the latest simulated steps of A performed by other processes (every
simulated step is registered in the shared memory). Then pi chooses the earliest vertex [pi, d, `] of
G such that all simulated steps of A currently observed by pi are associated with vertices of G that
precede [pi, d, `] in G. Then pi takes the next step specified by the automaton Ai. In case the next
step is a query step, pi uses d as the corresponding failure detector value. Thus, instead of querying
D, processes use the sample of D’s output contained in G.

To locate `-th vertex of pi in G, the simulation first takes β(pi, `) (in case β(pi, `) > 0) “waiting”
rounds (lines 13–16 in Figure 2). If β(pi, `) = 0 (which means that `-th vertex of pi has not yet
been used in the simulation), then pi waits until the vertex arrives (through the concurrently run
algorithm in Figure 1). If such a vertex never appears in G, then pi waits forever, and therefore
accepts no more steps in the currently simulated run of A. If the vertex arrives after r waiting
rounds, then β(pi, `) is set to r.

Note that if G is fixed, then so is the delay map β. On the other hand, if G is concurrently
maintained by the algorithm in Figure 1, then the delay map is mutable: the value of β(pi, `) may
continue growing as long as `-th vertex of pi is not in G. However, if the vertex is located and pi
went through β(pi, `) waiting rounds (lines 13–16) before reaching line 17, β(pi, `) stops changing.
This helps us in Section 4.5 when we simulate multiple runs of Aβ in the presence of concurrently
run communication component in Figure 1. In all such simulated runs of Aβ, whenever a simulated
process p′i reaches a given state of A, it goes through the same number of waiting rounds before it
simulates the next step of A.

The following theorem shows that, given fixedG and β, the sequence of simulated steps produced
by Aβ indeed belongs to a (possibly unfair) run of A.

Theorem 2. Let G be a DAG produced by the algorithm in Figure 1 in a fair run R with a failure
pattern F . Let β be any delay map for G. Let R′ be any run of Aβ using G and an input vector
I (Figure 2). Then the sequence of steps simulated by Aβ in R′ belongs to a run of A, RA, with
input vector I and failure pattern F , such that inf (RA) = correct(F) ∩ inf (R′). Specifically, if
correct(F) ⊆ inf (R′), then RA is fair.

Proof. Recall that a step of A of a process pi can be either a memory step in which pi accesses
shared memory or a query step in which pi queries the failure detector. If the simulated state of A
at pi implies the next step of A to be a memory step, then the step is performed exactly as in A. If
the next step is a failure detector query, then the step is simulated using the parameters G and β.

9

Shared variables:
W1, . . . ,Wn, initially ⊥, . . . ,⊥
Shared variables of A

Initially: assign processes p1, . . . , pn with states of A using I

To simulate the next step of pi:
8 ` := 0
9 U := [W1, . . . ,Wn]
10 repeat
11 ` := `+ 1
12 r := 0
13 repeat
14 r := r + 1
15 if r > β(pi, `) then β(pi, `) := r
16 until G includes [pi, d, `] for some d and r = β(pi, `)
17 until ∀j, U [j] 6= ⊥: (U [j], [pi, d, `]) ∈ G
18 Wi := [pi, d, `]
19 take the next step of A using d as the output of D

Fig. 2. Aβ : an asynchronous simulation of A with input vector I

Let S be the set of steps of A simulated in R′. We say that steps in S are related by the causal
order, and write (s, s′) ∈ CO, if (1) s and s′ are both performed by the same process pi and s is
performed before s′, or (2) s is a write step, s′ is a read step, and s that returns the value written
by s (recall that we assume that each written value is unique), or (3) there exists s′′ ∈ S such that
(s, s′′) ∈ CO and (s′′, s′) ∈ CO.

Consider a query step s ∈ S, and let [pi, d, `] be the vertex of G that was used for simulating s.
Let τ(s) denote the moment of time at which pi queried the failure detector in R for the `-th time.
Therefore, τ imposes a partial order POτ on S: s precedes s′ in POτ if both are query steps and
τ(s) < τ(s′).

Since POτ is defined on query steps in S only, it is sufficient to show that every two query steps
s0, s1 ∈ S such that (s0, s1) ∈ CO satisfy (s0, s1) ∈ POτ . This would imply that the transitive
closure of CO ∪ POτ contains no loops and, thus, there exists a total order TO on steps in S that
is consistent with both CO and POτ .

Indeed, consider two query steps s0 and s1 simulated by processes pi and pj , respectively, such
that (s0, s1) ∈ CO. Thus, either pi = pj and pi simulated s0 before s1, or pi simulated at least one
write step s′0 after s0, and pj simulated at least one read step s′1 before s1, such that the memory
access of s′1 took place before the memory access of s′0 in R. By the algorithm, before simulating
step s1, pj must have found [pi, di, `] or a later vertex in Wi (line 9) and, thus, the vertex of G used
for simulating s0 must be a descendant of [pj , dj , `′]. By property (1) of DAGs, τ(s0) < τ(s1), and
thus (s0, s1) ∈ POτ .

Thus, there exists TO, a total order on S, which is consistent with both CO and POτ . Confor-
mance with CO implies that the resulting schedule is indistinguishable from the schedule simulated
by R′. Conformance with POτ implies that the resulting schedule indeed belongs to a run of A. In
other words, the sequence of steps of A simulated in R could have happened in some run RA of A
with failure pattern F and input vector I. The schedule of RA is the steps in S ordered by TO and
the increasing time values are of steps in this schedule are chosen consistently with τ . Note that

10

property (1b) of runs implies that if (s0, s1) ∈ CO ∪ POτ , then τ(s0) + 2 < τ(s1) and thus, such a
choice of time values is possible.

Since in Aβ, a simulated step of pi can only be performed by pi itself, inf (RA) ⊆ inf (R′). Also,
since each process in faulty(F) contains only finitely many vertices in G, each process in inf (R′)−
correct(F) is eventually blocked forever in lines 13–16 in Figure 2, and, thus, inf (RA) ⊆ correct(F).
By property (4) of DAGs, for every finite set V of vertices in G, every process in correct(F) obtains
infinitely many vertices in G that succeed every vertex in V . Thus, no process in correct(F)∩inf (R′)
can be blocked forever in lines 13–16. Hence, every process in correct(F)∩inf (R′) simulates infinitely
many steps of Aβ, and, thus, inf (RA) = correct(F)∩ inf (R′). Specifically, if correct(F) ⊆ inf (R′),
then the set of processes that appear infinitely often in RA is correct(F), and the run is fair.

4.4 BG-simulation

BG-simulation is a technique by which k + 1 processes q1, . . . , qk+1, called simulators, can wait-
free simulate a k-resilient execution of any asynchronous n-process protocol [2, 3]. Informally, the
technique operates as follows. Every simulator qi tries to simulate steps of all n processes p1, . . . , pn
in a round-robin fashion. The simulation guarantees that the next step of every process pj is either
agreed on by all simulators, or one less simulator participates further in the simulation for each
step which is not agreed on. Consequently, as long as there is at least one live simulator, at most
k simulated processes may be blocked and at least n− k processes in {p1, . . . , pn} accept infinitely
many simulated steps. A sequence of steps σ of the simulators q1, . . . , qk+1 determines the unique
sequence BG(σ) of processes in p1, . . . , pn that specifies the order in which the processes take steps
in the corresponding simulated k-resilient execution.

Let σ be any infinite execution of simulators q1, . . . , qk+1. A process pi is said to be blocked in
σ if pi appears only finitely often in BG(σ). Let live(σ) denote the set of simulators that appear
infinitely often in σ and faulty(σ) be the complement to live(σ) in {q1, . . . , qk+1}. In our reduction
algorithm, we are going to use the following property of the BG-simulation technique [2, 3]:

(BG1) Let σ′ be the shortest prefix of σ that includes all steps the simulators in faulty(σ) take in σ.
Then for any infinite extension σ′ · ζ such that ζ includes only steps of simulators in live(σ),
every process which is blocked in σ is also blocked in σ′ · ζ, and BG(σ) and BG(σ′ · ζ) agree on
the shortest prefix which contains all steps of the blocked in σ processes.

The BG-simulation technique allows for reducing the question of k-resilient solvability of an
n-process colorless task T = (I,O, ∆) defined for processes p1, . . . , pn, to wait-free solvability of a
k + 1-process task T ′ defined for simulators q1, . . . , qk+1. As an input in task T ′, each simulator
qi obtains a value in val(I), and, as an output in T ′, qi produces a value in val(O) such that
(val(I ′), val(O′)) ∈ ∆, where I ′ and O′ are the input and output vectors in the run, respectively. T
is solvable k-resiliently if and only if T ′ is solvable wait-free [2, 3].

4.5 Extracting ¬Ωk: the reduction algorithm

In our reduction algorithm, every process simulates a system of k + 1 BG-simulators q1, . . . , qk+1.
Every run of BG-simulation on q1, . . . , qk+1 produced at process pi simulates a k-resilient run of Aβi
using the concurrently maintained DAG Gi and delay map βi. In turn, this run of Aβi simulates a
unique run of A. The levels of simulation that takes place at every process pi are summarized in

11

pi
simulates runs of BG-simulation on

q1, . . . , qk+1

simulate runs of Aβi on

p′1, p
′
2, . . . , p

′
n−1, p

′
n

simulate runs of A

⇓

derive ¬Ωk

Fig. 3. Three levels of simulation.

Figure 3. To avoid confusion, for all 1 ≤ j ≤ n, p′j denotes here the process that represents pj in
the local simulation.

The computational component of our reduction algorithm is presented in Figure 4. The emulated
output of ¬Ωk at process pi is maintained in a local variable ¬Ωk-output i: every query of ¬Ωk
performed by pi simply returns the current value of the variable. Each initial state I for task T ′
and each schedule σ, a sequence specifying the order in which simulators q1, . . . , qk+1 take steps of
BG-simulation, determine a unique run of Aβi , denoted by αi(I, σ). For brevity, domI(αi) denotes
here all distinct (not related by containment) schedules σ explored (via recursive function explore)
so far by pi with input vector I, i.e., used for evaluating αi(I, σ) in line 23.

We say that αi(I, σ) is deciding if it simulates a run of A in which at least one process decides.
Respectively, a schedule σ is called deciding at pi with input vector I if αi(I, σ) is deciding.

For all input vectors I of T (chosen in some deterministic order <), the reduction algorithm
simulates longer and longer executions of Aβi , using longer and longer schedules of steps of sim-
ulators. The schedules are selected following the depth-first-search strategy: every next simulated
step extends the longest currently observed non-deciding schedule. Each process pi periodically
registers in the shared memory all currently simulated runs in the form of the simulation map αi
and the delay map βi (Figure 2), and scans the memory to get the latest update on the maps of
other processes. If pi finds out that, at some process pj , all distinct schedules simulated so far by pi
(including the currently simulated schedule σ) are deciding (line 24), then pi adopts all simulations
of pj , rolls back and continues the simulation from the longest non-deciding prefix of σ.

Periodically, pi evaluates the set of n − k processes that appear the latest in the currently
simulated run of Aβi as the output of ¬Ωk. The intuition is that, since the task has no wait-free
solution for k+ 1 processes, eventually, all processes will proceed with longer and longer prefixes of
the some infinite schedule σ̃ that corresponds to a non-deciding k-resilient run of Aβi . Otherwise,
by Theorem 2 and the equivalence result in [2, 3], we would obtain a wait-free solution for T ′, and
thus a k-resilient solution for task T — a contradiction.

Maintaining the simulation corridors. The conventional depth-first-search technique allows
the simulation to temporarily go along a finite deciding “branch” of the ever-growing non-deciding
schedule, and such branches may involve steps of arbitrary simulators in q1, . . . , qk+1. As a result,
the set of n− k process that appear the latest in the currently simulated run of Aβi may infinitely
often include arbitrary processes.

To overcome this issue, we put an additional restriction on the order in which we choose the
next simulator to extend the current non-deciding schedule σ. At each point in the simulation, we

12

20 for all I0, input vectors of T ′ (in a deterministic order <) do { For all possible inputs for q1, . . . , qk+1 }
21 explore(I0,⊥, {q1, . . . , qk+1})

22 function explore(I, σ, S)
23 ¬Ωk-output i := n− k processes that appear the latest in αi(I, σ)

(if possible, any n− k processes otherwise, each p′j is replaced with pj)
24 if ∃pj ∈ Π: ∀σ′ ∈ domI(αi), ∃σ′′, a prefix of σ′: αj(I, σ

′′) is deciding then
{ If all schedules explored so far are deciding at some pj }

25 αi := αj ; βi := βj ; Gi := Gj ∪Gi {adopt pj ’s simulation}
26 else
27 for all non-empty S′ ⊆ S (in a deterministic order consistent with ⊆) do
28 for all qj ∈ S′ (in a deterministic order) do
29 add σ · qj to domI(αi); compute αi(I, σ · qj)
30 explore(I, σ · qj , S′)

Fig. 4. Computational component of the reduction algorithm: the program code for each process pi.

maintain a “corridor” (the third parameter in function explore in Figure 4) — the set of simulators
that can be used for further extensions of the current schedule. The extended schedule can only use
simulators in a sub-corridor of the current corridor, and the sub-corridors are selected in a deter-
ministic order, consistent with the ⊆ relation (lines 27 and 28 in Figure 4). E.g., the algorithm first
explores all “solo” corridors consisting of solo extensions of σ, then all “duet” corridors consisting
of extensions including steps of two given processes, then “trio” extensions, etc. If all extensions
within the chosen sub-corridor turn out to be deciding, the next sub-corridor is selected, etc.4

As a result, eventually, only simulators that appear infinitely often in some never-deciding
run will be output: otherwise, the simulation already operates in proper superset of a more narrow
corridor that contains a never-deciding schedule σ̃, and that contradicts the order in which corridors
are chosen (consistently with ⊆).

At least one simulated process p′j , such that pj ∈ correct(F), must be blocked in σ̃. Otherwise,
the schedule would simulate a fair run of A and thus would be deciding. Moreover, since all correct
processes extend longer and longer prefixes of σ̃, by property (BG1) of BG-simulation, p′j eventually
stops taking steps in runs simulated at correct processes. All simulated runs of Aβi extend ever-
growing prefixes of a k-resilient run, and hence the set of n − k latest processes in them will
eventually never include pj . Thus, the output of ¬Ωk updated in line 23 at each correct process
will eventually never include pj .

Our reduction algorithm therefore outputs, at each time and at every process, a set of n − k
processes, such that, eventually, some correct process is never output — ¬Ωk is extracted.

Correctness. Consider any fair run of the algorithm in Figures 1, 2 and 4. Let F be the failure
pattern of that run. First we prove the following auxiliary lemmas:

Lemma 1. If the currently simulated schedule σ is found deciding by a process pi with the current
input vector I (line 23), then ∀J ∈ I, ∀σ′ ∈ domJ(αi), the execution of Aβi determined by J and
σ′ is deciding.

4 Similar ordering was implicitly used in [24] for simulated executions on processes p1, ..., pn. Here we apply the
ordering to simulators q1, . . . , qk+1.

13

Proof. Suppose that, at some time t, a schedule σ′ was witnessed deciding with an input vector J
by some process pj . Recall that the values of βj stops changing for the vertices of Gj that were used
in the simulated run of Aβj . Moreover, βj records the number of waiting rounds that were made for
vertices of that were not found in Gj used in the simulated run of Aβj (line 15 in Figure 2). Any
extension of βj (a delay map maintained by any process that adopted βj in line 25 in Figure 4)
can only increase the values corresponding to these vertices. Thus, at any later time, σ′, J , and
extensions of βj and Gj would result in the same simulated run of A.

The domain of mapping αi is constantly growing, and a process considers a new schedule σ in
line 24 to be deciding with the current input vector I only if every distinct schedule σ′ considered
up to now was witnessed deciding with I by some process pj that constructed the current value of
βi. Thus, pi would find σ′ deciding with the current value of βi too.

Thus, even though the delay map βi evolves, at any moment of time, all previously explored
schedules and input vectors result in deciding executions of A with the current value of βi.

Lemma 2. If explore(I, σ, S) invoked by a correct process pi in line 21 or 30 returns, then it returns
at every correct process.

Proof. Suppose explore(I, σ, S) invoked by a correct process pi returns. In other words, every suf-
ficiently long extension of σ (within the corridor S) is considered deciding with I at pi. Thus,
eventually, pi registers αi in the shared memory (line 7 in Figure 1) and it will be read (line 3 in
Figure 1) and adopted by every correct process pj in line 25: thus every sufficiently long extension
of σ (within the corridor S) will be considered deciding with I at pj .

Lemma 3. There exists an input vector Ī, such that each correct process pi eventually invokes
explore(Ī ,⊥, {q1, . . . , qk+1}) in line 21 and the invocation never returns.

Proof. Suppose that, at some correct process pi, explore(I,⊥, {q1, . . . , qk+1}) returns for all input
vectors I. Let β be the value of βi and α be the value of αi when the last such invocation returns.
By Lemma 1, for all input vectors I and for all schedules σ, there exists σ′, a prefix of σ, such that
α(I, σ′), i.e., the run of BG-simulation with input vector I and schedule σ′ simulates a deciding
run of Aβ.

Note that Aβ uses vertices of a DAG G instead of the failure detector output. For all possible
input vectors I, consider the tree of all schedules σ of steps of the simulators that are deciding with
I. All such trees have finite branching (each vertex has at most k + 1 descendants) and contain no
infinite paths. By König’s lemma, the trees have finitely many vertices. Thus, the set of vertices
of G used by the runs of Aβ simulated by deciding schedules of BG(Aβ) is also finite. Let Ḡ be a
finite subgraph of G that includes all vertices used by these runs.

Thus, q1, . . . , qk+1 can wait-free solve T ′ as follows. Each simulator qi registers its input value
of T ′ in the shared memory and then runs BG-simulation of Aβ using the finite DAG Ḡ as a
parameter. To simulate the first step of a process p′j , qi proposes its own input value as the input
value of p′j in a BG-agreement protocol.

When qi simulates a step of Aβ in which a simulated process p′j decides, qi writes the decided
value in the shared memory and returns the value (which is sufficient for every other process to
decide). Since every simulated run is deciding, each qi eventually simulates a deciding step or finds
a decided value in the shared memory. Since the decided values are coming from a run of the failure-
detector-based algorithm A, and the inputs are provided by q1, . . . , qk+1, the output satisfies the
specification of T — a contradiction

14

Thus, there exists Ī such that explore(Ī ,⊥, {q1, . . . , qk+1}) invoked by a correct process pi never
returns. By the algorithm, the invocation previously returned for all input vectors J < Ī. By
Lemma 2, explore(Ī ,⊥, {q1, . . . , qk+1}) is also invoked by every other correct process and never
returns.

Lemma 4. There exists an infinite schedule σ̃ and an input vector I such that eventually, all correct
processes perform the same infinite sequence of recursive invocations of explore with parameters
(I, σ0, S0), (I, σ1, S1), . . ., (I, σ`′ , live(σ̃)), (I, σ`′+1, live(σ̃)), . . . that never return.

Proof. By Lemma 3, eventually, every correct process pi invokes explore(I,⊥, {q1, . . . , qk+1}) in
line 21 and the invocation never returns. Thus, every correct process pi makes an infinite sequence
of recursive invocations of explore with parameters (I, σ0, S0), (I, σ1, S1), . . ., where (line 27) ∀` ∈ N:
S` 6= ∅, S`+1 ⊆ S`. By Lemma 2, all correct processes agree on the sequence (I, σ0, S0), (I, σ1, S1),
. . ..

Since all S` are non-empty, there exist S̃ 6= ∅ and `′ ∈ N, such that ∀` ≥ `′: S` = S̃. Also, each
σ` is a prefix of some infinite schedule that is never considered deciding with I by any process pi.
Now we show that for every such schedule σ̃, we have S̃ = live(σ̃), the set of processes that appear
infinitely often in σ̃.

By construction (line 28), live(σ̃) ⊆ S̃. Suppose, by contradiction, that live(σ̃) is a proper subset
of S̃. Let S′0, S

′
1, . . . be the sequence of non-empty subsets of {q1, . . . , qk+1} such that ∀0 ≤ ` < `′:

S′` = S` and ∀` ≥ `′: S` = live(σ̃). Thus, the non-deciding schedule σ̃ = qi0 , qi1 , . . . fits the
corridor specified by S′0, S

′
1, . . ., i.e., ∀` ∈ N : qi` ∈ S′0. By the algorithm, before making the infinite

sequence of invocations explore(I, σ0, S0), explore(I, σ1, S1), . . ., pi has previously explored prefixes
of all schedules that fit S′0, S

′
1, . . ., including a prefix of σ̃, and found all of them deciding — a

contradiction.
Thus, eventually, all correct processes perform the same infinite sequence of recursive invocations

of explore with parameters (I, σ0, S0), (I, σ1, S1), . . ., (I, σ`′ , live(σ̃)), (I, σ`′+1, live(σ̃)),

Theorem 3. Let E be any environment and T be any colorless task that cannot be solved k-
resiliently. Let D be a failure detector that solves T in E. Then ¬Ωk is weaker than D in E.

Proof. By Lemma 4, eventually, every correct process goes through the same infinite sequence of re-
cursive never-returning invocations of explore with parameters (I, σ0, S0), (I, σ1, S1), . . ., (I, σ`′ , live(σ̃)),
(I, σ`′+1, live(σ̃)), Here σ̃ is an infinite schedule such that no process ever considers a prefix of
σ̃ to be deciding with I.

Let σ′ be the shortest prefix of σ̃ that contains all appearances of the simulators that appear only
finitely often in σ̃, faulty(σ̃). Eventually, all correct processes simulate extensions of σ′ in which
simulators in faulty(σ̃) do not appear. Let W be the set of simulated processes in {p′1, . . . , p′n}
that are blocked in σ̃ (Section 4.4). We argue that W contains at least one process p′j such that
pj ∈ correct(F).

Consider pj ∈ correct(F). The communication component described in Figure 1 makes sure
that, for all ` ∈ N, the DAG Gi maintained at each correct process pi eventually contains a vertex
[pj , d, `]. Thus, in simulating runs of Aβi using the algorithm in Figure 2, every correct process pi
eventually finds the vertex [pj , d, `] in Gi and stops incrementing βi(pj , `). Hence, for all ` ∈ N,
βi(pj , `) maintained at each correct process pi eventually stops growing.

Also, each faulty process pi eventually stops updating its αi and βi in the shared memory. Thus,
there is a time after which no correct process adopts delay maps of faulty processes in line 25.

15

Therefore, there exists a delay map β defined on the limit infinite DAG G̃ such that, eventually,
every finite prefix σ̃ stabilizes on simulating the same finite run of Aβ.

By contradiction, suppose that no process in correct(F) is blocked in σ̃. Thus, every correct pi
simulates a run of Aβ in which every p′j such that pj ∈ correct(F) appears arbitrarily often. But
by Theorem 2, eventually, the run of Aβ with input vector I simulated by q1, . . . , qk+1 in schedule
σ̃ produces a fair and thus deciding run of A— a contradiction with the assumption that no prefix
of σ̃ is ever considered deciding with I.

Thus, there exists p′j ∈W such that pj ∈ correct(F). Now, by property (BG1) of BG-simulation,
p′j eventually stops participating in all runs of Aβi simulated at every correct process pi. Moreover,
since pi simulates extensions of longer and longer prefixes of some k-resilient run R′, eventually,
the latest n − k processes seen in every run of Aβi simulated by pi will include only processes in
inf (R) and, thus, pj will eventually never be output in line 23.

To summarize, we have an algorithm that outputs, at each time and at every process, a set of
n− k processes, such that, eventually, some correct process is never output — ¬Ωk is extracted.

The fact that k-set consensus cannot be solved k-resiliently, combined with Theorem 1 and 3,
implies:

Corollary 1. For all environments E, ¬Ωk is the weakest failure detector to solve k-set consensus
in E.

5 Set consensus number: categorizing distributed tasks

This section presents the sufficiency part of our result: every (k− 1)-resiliently solvable task can be
solved (in every environment) if, in addition to read-write registers, we are allowed to use ¬Ωk.

Let a task T be actively (k − 1)-resilient solvable, and let A be the corresponding algorithm.
Intuitively, if k or less processes participate in the computation, we can simply use A to solve the
task. However, we also need to account for the case when k + 1 or more processes participate and
more than k of them can fail. This is exactly the case when we use ¬Ωk (or, more precisely, the
equivalent failure detector

−→
Ω k). Our goal is to simulate an execution of A in which at most k − 1

participating processes fail, and thus some process must eventually decide.
First we describe an abstract simulation technique that uses

−→
Ω k to simulate, in a system of n

processes, a run of an arbitrary asynchronous k-process algorithm A′.
Then we apply this technique to show that, in every environment, we can use

−→
Ω k to simulate

an execution e of A such that (1) e only contains steps of participating processes, (2) at least
one simulated process takes infinitely many steps, (3) at most k − 1 participating processes fail.
Therefore, the simulated execution of A must be deciding, which is sufficient to solve the task.

5.1 Simulating k codes using ¬Ωk

Suppose we are given a read-write algorithm A′ on k processes, p′1, . . . , p
′
k. Suppose that A′ requires

no inputs. Assuming that
−→
Ω k is available, the algorithm in Figure 5 describes how n simulators,

p1, . . . , pn can simulate an infinite execution of A′.
The simulation is similar in spirit to BG-simulation [2, 3]. Every simulator pi first registers its

participation in the shared memory and then tries to advance simulated processes p′1, . . . , p
′
min(k,m),

where m is the number of simulators that pi has witnessed participating.

16

Shared variables:
Rj , j = 1, . . . , n, initially ⊥
Vj , j = 1, . . . , k, initially the initial state of p′j

Local variables:
Leaderj , j = 1, . . . , k, initially p1

`j , j = 1, . . . , k, initially 1
vj , j = 1, . . . , k, initially ⊥

Task 1:
31 Ri := 1
32 for j = 1, . . . , k do vj := {V1, . . . , Vk}
33 while undecided do
34 for j = 1, . . . ,min(|pars|, k) do
35 perform one more step of Consj,`j (vj) using Leaderj as a leader
36 if Consj,`j (vj) returns v then { The next state of p′j is decided }
37 Vj := v { Adopt the decided state of p′j }
38 simulate the next step of p′j in A′
39 if v allows pi to decide then { The simulator can depart }
40 undecided := false
41 Ri := ⊥
42 vj := {V1, . . . , Vk} { Evaluate the next state of p′j }
43 `j := `j + 1

Task 2:
44 while true do
45 pars := {pj , Rj 6= ⊥}
46 if |pars| ≤ k then
47 for j = 1, . . . , |pars| do Leaderj := the j-th smallest process in pars
48 else

49 for j = 1, . . . , k do Leaderj :=
−→
Ω k[j]

Fig. 5. Simulating k codes using vector-Ωk: the program code for simulator pi

To simulate a step of p′j , simulators agree on the view of the process after performing the step.
However, instead of the BG-agreement protocol of [2, 3], we use here a leader-based consensus
algorithm [4]. This algorithm terminates under the condition that all processes eventually agree
on the same correct leader. The instance of the consensus algorithm used to simulate `-th step of
process p′j is denoted by Consj,`.

As long as the number of participating simulators is k or less, the participating simulator with
the j-th smallest id acts as a leader for simulating steps of p′j . When the number of participating

simulators exceeds k, the leader for simulating steps of p′j is given by the output of
−→
Ω [j].

In both cases, at least one simulated process is eventually associated with the same correct
leader. Thus, at least one simulated process makes progress in the simulation.

The algorithm also assumes that a simulator pi may decide to leave the simulation if the
simulated execution produced a desired output (line 41). We use this option in the next section.

Theorem 4. In every environment, the protocol in Figure 5 simulates an infinite execution of
any k-process algorithm A′. Moreover, if m simulators participate, i.e., |pars| = m, then at most
min(k,m) processes participate in the simulated execution.

17

Proof. Consider an infinite run of the algorithm. Since every next state of each simulated process
p′j is decided using a consensus algorithm, every simulator observes exactly the same evolution of
states for every simulated process. Thus, the simulated schedule indeed belongs to a run of A′

Now consider the construction of variables Leader1, . . ., Leaderk used by the consensus algo-
rithms Cons1,`, . . ., Consk,` (lines 44-49). Let m be the number of participating simulators.

If m ≤ k, the simulator with the j-th smallest id in pars is assigned to be the leader of exactly
one simulated process p′j . Since at least one simulator is correct, there exists p′j (j = 1, . . . , |pars|)
such that all instances Consj,`j using Lj eventually terminate. Thus, p′j accepts infinitely many
steps in the simulated execution.

If m > k, at least one Lj (j = 1, . . . , k) eventually stabilizes on some correct process id,
as guaranteed by the properties of

−→
Ω k. Again, p′j takes infinitely many steps in the simulated

execution.
In both cases, at most min(m, k) simulated processes appear in the produced execution of A′,

and at least one simulated process takes infinitely many steps.

5.2 Active k-resilience and ¬Ωk

Theorem 5. Let T be any actively (k−1)-resiliently solvable task. In every environment E, T can
be solved using ¬Ωk.

Proof. Let A be the algorithm that solves T actively (k − 1)-resiliently. We simply employ the
simulation protocol in Figure 5 (Theorem 4), and suppose that the simulated algorithm A′ is BG-
simulation [2, 3]. More precisely, A′ simulates algorithm A of participating processes in p1, . . . , pn.

The double simulation is built as follows. Every process pi writes its input value of T to the
shared memory and starts the simulation of k processes p′1, . . . , p

′
k using the algorithm in Figure 5

running, in turn, BG-simulation of A on n processes p′′1, . . . , p
′′
n.

Each simulated process p′′j is simulated only if the corresponding pj has written its input of T
in the shared memory and p′′j has not yet obtained an output in the simulated execution.

When p′′j obtains an output, the corresponding simulator pj considers itself “decided” (line 39)
and writes ⊥ in Ri (line 41) and stops taking steps in the algorithm in Figure 5 (but continues to
take steps in algorithms Conss,r in case it is elected Leaderr).

Thus, as long as m processes {p`1 , . . . , p`m} participate, only m processes {p′′`1 , . . . , p
′′
`m
} take

steps in the resulting simulated execution.
Moreover, as long as m processes in {p1, . . . , pn} participate, at most min(m, k) BG-simulators

in {p′1, . . . , p′k} take steps and at least one of them takes infinitely many steps. The double simulation
results in an execution of A in which at most min(k,m)− 1 out of m participating processes fail.

Recall that A solves T actively k-resiliently. Since in the simulated execution at most k partici-
pating simulated processes fail and at least one simulated process takes infinitely many steps, some
process pi must eventually decide. As soon as the decided process pi departs by writing ⊥ to Ri,
we have one simulator pi and one simulated process p′′i less. The argument is repeated, as long as
there is at least one correct participating simulator with an output. Thus, we obtain an algorithm
that, in every environment, solves T .

5.3 Set consensus number

The set consensus number of a task T is the largest k ∈ {1, . . . , n} such that T can be solved
(k − 1)-resiliently.

18

First, we observe that a colorless task with set consensus number k can be solved actively
(k − 1)-resiliently.

Theorem 6. Let T be any colorless task. If T can be solved (k−1)-resiliently, then T can be solved
actively-(k − 1)-resiliently.

Proof. Now let A be an algorithm that solves T (k − 1)-resiliently. We build an algorithm A′ that
solves T actively (k − 1)-resiliently as follows. In A′, each process pi acts as a BG-simulator of
the system of n processes p′1, . . ., p′n running A. When simulating the first step of p′j , processes
agree on its input value in the simulated execution, each proposing its own input values. Since T
is colorless, every input value can be adopted by any participating process, and thus the algorithm
indeed simulates an execution of A. Since in the resulting execution, at most k − 1 simulated
processes take only finitely many steps, eventually some simulated process p′j decides, and, since T
is colorless, the value can be returned by every participating process pi.

Now Theorems 3, 5 and 6 imply:

Corollary 2. Let T be any colorless task with set consensus number k. Then, in every environment
E, the weakest failure detector to solve T in E is ¬Ωk.

Hence, in any environment E , any colorless task T is equivalent to some k-set consensus in the
failure detector sense: a failure detector D solves T in E if and only if D solves k-set consensus in E .

6 Related work

The notion of the weakest failure detector was introduced by Chandra et al [4] who showed that
Ω, the failure detector that eventually outputs the identifier of the same correct process, is the
weakest failure detector to solve consensus (1-set consensus) in the message-passing model with a
majority of correct processes. An extension of this result to the read-write shared memory model
appears in [20, 15].

The task of k-set consensus was introduced in [6], and shown to be k-resilient impossible in [17,
22, 2, 3].

Zieliński [23, 24] introduced anti-Ω (¬Ωn−1 in our notation) and proved that it is the weakest
failure detector to solve (n−1)-set consensus, for every environment. The result has been generalized
to the case of ¬Ωk and k-set consensus in [14]. Delporte et al. [10] claimed to have concurrently
derived the same result. Anta et al.[1] showed that ¬Ωk is the weakest failure detector for solving
k-set consensus in the special case of k-resilient environment Ek.

Our reduction algorithm employed the BG-simulation technique [2, 3]. The DAG-based simula-
tion framework follows the strategy proposed in [4]. Unlike [4], however, the computation component
of our algorithm does not use the task specification explicitly and bases solely on the fact that the
given task is k-resilient impossible.

This paper combines results appeared previously in [14, 13]. ¬Ωk was originally shown to be the
weakest failure detector for k-set agreement in [14]. In [13], the result was extended to a larger class
of tasks using unpublished work [12]. More precisely, the result in [13] relies on the equivalence of
k-set agreement and active k-resilience informally stated in [12]. To make the paper self-consistent,
here we derive a strictly weaker result that any actively (k − 1)-resiliently solvable task can be
solved using ¬Ωk (Theorem 5). Our constructions explicitly use the properties of ¬Ωk, and not a
solution to k-set consensus as a “black box” as in [12].

19

7 Concluding remarks

Viewed collectively, our results imply that colorless n-process distributed tasks can be categorized
into n equivalence classes, C(1), . . . , C(n). For each k = 1, . . . , n, the weakest failure detector for
solving any task in class C(k) is ¬Ωk. Class C(1) consists of universal tasks: whenever a universal
task is solvable, any other task is solvable [16]. Class C(n) consists of trivial tasks that can be
solved asynchronously. More generally, a task T is in class k is equivalent to k-set consensus: any
failure detector that solves T can solve k-set consensus, and vice versa. The classes are totally
ordered in decreasing strength: any failure detector that solves a task T in class C(k) solves any
task in classes C(k′), k′ ≥ k.

The techniques presented in this paper can be used to show a more general result: ¬Ωk is the
weakest failure detector for solving every task that can be solved actively-(k − 1)-resiliently but
not weakly k-resiliently. Indeed, the necessity of Section 4 can be extended to general tasks that
cannot be solved weakly-(k-resiliently using Extended BG-simulation [12]. The sufficiency part in
Section 5 works for all tasks (not necessarily colorless) that can be solved actively (k−1)-resiliently.
However we could not find a convincing example of a “colored” (not colorless) task T for which
such a “threshold” k exists.

Characterizing solvability of “colored” tasks is generally an open question. Consider, for in-
stance, a task T k+1,k which requires each subset of k+ 1 processes to solve (k+ 1, k)-set consensus
(T 2,1, the consensus variant of this task, was considered in [9]). This task is weakly solvable k-
resiliently. Moreover, there is an algorithm which makes at least n−k− 1 processes decide in every
k-resilient run: every process tries to solve, one by one, k-set consensus for each set of k+1 processes
it belongs to. For each k-set consensus, the process uses the k-BG-agreement protocol, a variant of
BG-agreement [2, 3] that returns at most k proposed values and guarantees termination under the
condition that at most k − 1 processes that invoke the protocol fail. Since at most k processes can
fail, at most one of these protocols (for some set S of k + 1 processes) can block forever, and thus,
at least n− k − 1 processes that do not belong to S will output.

Note that the algorithm described above also solves T k,k+1 actively (k−1)-resiliently: if at most
k−1 participating processes fail, no k-BG-agreement will block and every participating process will
eventually output. On the other hand, T k,k+1 cannot be solved actively k-resiliently: otherwise, we
obtain a wait-free solution to (k+1)-process k-set consensus, contradicting [17, 22, 2]. Thus, T k+1,k

does not belong to any of the classes C(1), . . . , C(n).

Therefore, the techniques developed in this paper do not allows us to show that ¬Ωk is nec-
essary to solve T k+1,k. This, once proved, would give a natural generalization of the fundamental
equivalence result [9] that solving consensus among any pair of processes requires exactly the same
amount of synchrony as solving consensus among all processes (Ω).

The conjecture that the weakest FD for solving any given task is in {¬Ω1, . . . ,¬Ωn} and, thus,
every task is equivalent to some form of set consensus does not, unfortunately, hold. There are
many tasks that cannot be solved with ¬Ωk but do not require ¬Ωk−1 to be solved [25], e.g., a task
which only requires to solve k-set agreement among a given subset of k+1 processes. Characterizing
tasks for which the conjecture holds is therefore an interesting open question.

So we have here a number of very interesting open questions which, once answered, can imply
a more general categorization of distributed tasks.

20

References

1. A. F. Anta, S. Rajsbaum, and C. Travers. Weakest failure detectors via an egg-laying simulation (brief announce-
ment). In PODC, 2009.

2. E. Borowsky and E. Gafni. Generalized FLP impossibility result for t-resilient asynchronous computations. In
STOC, pages 91–100. ACM Press, May 1993.

3. E. Borowsky, E. Gafni, N. A. Lynch, and S. Rajsbaum. The BG distributed simulation algorithm. Distributed
Computing, 14(3):127–146, 2001.

4. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. J. ACM,
43(4):685–722, July 1996.

5. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM, 43(2):225–267,
Mar. 1996.

6. S. Chaudhuri. Agreement is harder than consensus: Set consensus problems in totally asynchronous systems. In
PODC, pages 311–324, Aug. 1990.

7. S. Chaudhuri. More choices allow more faults: Set consensus problems in totally asynchronous systems. Infor-
mation and Computation, 105(1):132–158, 1993.

8. F. Chu. Reducing Ω to ♦W . Information Processing Letters, 67(6):298–293, Sept. 1998.
9. C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. Tight failure detection bounds on atomic object imple-

mentations. J. ACM, 57(4), 2010.
10. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and A. Tielmann. The disagreement power of an adversary

(brief announcement). In PODC, 2009.
11. E. Gafni. The extended BG-Simulation. In STOC, 2009. Available at: http://www.cs.ucla.edu/∼eli/eli/230-

gafni1.pdf.
12. E. Gafni and R. Guerraoui. Simulating few by many: Limited concurrency=set consensus. Unpublished

manuscript, available at http://www.cs.ucla.edu/∼eli/eli/kconc.pdf, May 2009.
13. E. Gafni and P. Kuznetsov. On set consensus numbers. In DISC, pages 35–47, 2009.
14. E. Gafni and P. Kuznetsov. The weakest failure detector for solving k-set agreement. In PODC, 2009. Full

version: http://www.net.t-labs.tu-berlin.de/∼petr/pubs/wfd-kset.pdf.
15. R. Guerraoui and P. Kuznetsov. Failure detectors as type boosters. Distributed Computing, 20(5):343–358, 2008.
16. M. Herlihy. Wait-free synchronization. ACM Trans. Prog. Lang. Syst., 13(1):123–149, Jan. 1991.
17. M. Herlihy and N. Shavit. The asynchronous computability theorem for t-resilient tasks. In STOC, pages 111–120,

May 1993.
18. P. Jayanti and S. Toueg. Every problem has a weakest failure detector. In PODC, pages 75–84, 2008.
19. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21(7):558–565,

July 1978.
20. W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asynchronous shared memory systems.

In WDAG, LNCS 857, pages 280–295, Sept. 1994.
21. M. Raynal. K-anti-Omega, August 2007. Rump session at PODC 2007.
22. M. Saks and F. Zaharoglou. Wait-free k-set agreement is impossible: The topology of public knowledge. In

STOC, pages 101–110. ACM Press, May 1993.
23. P. Zieliński. Automatic classification of eventual failure detectors. In DISC, 2007.
24. P. Zieliński. Anti-omega: the weakest failure detector for set agreement. In PODC, Aug. 2008.
25. P. Zieliński. Sub-consensus hierarchy is false (for symmetric, participation-aware tasks).

https://sites.google.com/site/piotrzielinski/home/symmetric.pdf?attredirects=0, November 2009.
26. P. Zieliński. Anti-omega: the weakest failure detector for set agreement. Distributed Computing, 22(5-6):335–348,

2010.

21

