
Failure Detectors as Type Boosters ?

Rachid Guerraoui and Petr Kouznetsov

Distributed Programming Laboratory, EPFL

CH-1015, Switzerland

Abstract. The power of an object type T can be measured as the maximum number n of processes

that can solve consensus using only objects of T and registers. This number, denoted cons(T), is called

the consensus power of T . This paper addresses the question of the weakest failure detector to solve

consensus among a number k > n of processes that communicate using shared objects of a type T

with consensus power n. In other words, we seek for a failure detector that is sufficient and necessary

to “boost” the consensus power of a type T from n to k. It was shown in [21] that a certain failure

detector, denoted Ωn, is sufficient to boost the power of a type T from n to k, and it was conjectured

that Ωn was also necessary. In this paper, we prove this conjecture for one-shot deterministic types. We

show that, for any one-shot deterministic type T with cons(T) ≤ n, Ωn is necessary to boost the power

of T from n to any k > n. Our result generalizes, in a precise sense, the result of the weakest failure

detector to solve consensus in asynchronous message-passing systems [6]. As a corollary of our result,

we show that Ωn is the weakest failure detector to boost the resilience of a system of (n− 1)-resilient

objects of any types and wait-free registers with respect to the consensus problem.

1 Introduction

Background. Key agreement problems, such as consensus, are not solvable in an asynchronous

system where processes communicate solely through registers (i. e., read-write shared memory), as

long as one of these processes can fail by crashing [8, 10, 20]. Circumventing this impossibility has

sparked off two research trends:

(1) Augmenting the system model with synchrony assumptions about relative process speeds and

communication delays [9]. Such assumptions could be encapsulated within a failure detector

abstraction [7]. In short, a failure detector uses the underlying synchrony assumptions to pro-

vide each process with (possibly unreliable) information about the failure pattern, i. e., about

the crashes of other processes. A major milestone in this trend was the identification of the

weakest failure detector to solve consensus in the asynchronous read-write model [6, 18]. This

failure detector, denoted Ω, outputs one process at every process so that, eventually, all correct

processes detect the same correct process. The very fact that Ω is the weakest to solve consensus

means that (a) consensus can be solved using Ω, and (b) any failure detector that can be used

? This paper is a revised and extended version of a paper in the Proceedings of the 17th International Symposium

on Distributed Computing (DISC 2003), entitled “On failure detectors and type boosters”.

to solve consensus can be transformed into Ω. In a sense, Ω encapsulates the minimum amount

of synchrony needed to solve consensus among any number of processes communicating through

registers.

(2) Augmenting the system model with more powerful communication primitives, typically de-

fined through shared object types with sequential specifications [13,20]. It has been shown, for

instance, that consensus can be solved among any number of processes if objects of the com-

pare&swap type can be used [13]. A major milestone in this trend was the definition of the power

of an object type T , denoted cons(T), as the maximum number n of processes that can solve

consensus using only objects of T and registers. For instance, the power of the register type is

simply 1 whereas the compare&swap type has power ∞. An interesting fact here is the existence

of types with intermediate power, like test-and-set or queue, which have power 2 [13,20].

Motivation. At first glance, the two trends appear to be fundamentally different. Failure detectors

encapsulate synchrony assumptions and provide information about failure patterns, but cannot

however be used to communicate information between processes. On the other hand, objects with

sequential specifications can be used for inter-process communication, but they do not provide any

information about failures. It is intriguing to figure out whether these trends can be effectively

combined [21]. Indeed, in both cases, the goal is to augment the system model with abstractions

that are powerful enough to solve consensus, and it is appealing to determine whether abstractions

from different trends add up. For instance, one can wonder whether the weakest failure detector to

solve consensus using registers and queues is strictly weaker than Ω.

One way to effectively combine the two trends is to determine a failure detector hierarchy, Dn,

n ∈ N such that Dn would be the weakest failure detector to solve consensus among n+1 processes

using objects of any type T such that cons(T) = n. In the sense of [14], Dn would thus be the

weakest failure detector to boost the power of T to higher levels of the consensus hierarchy.

A reasonable candidate for such a failure detector hierarchy was introduced by Neiger in [21].

This hierarchy is made of weaker variants of Ω, denoted Ωn, n ∈ N, where Ωn is a failure detector

that outputs, at each process, a set of processes so that all correct processes eventually detect the

same set of at most n processes that includes at least one correct process. Clearly, Ω1 is Ω. It was

shown in [21] that Ωn is sufficient to solve consensus among k processes (k > n) using any set

of types T such that cons(T) = n and registers. It was also conjectured in [21] that Ωn is also

necessary to boost the power of T to the level k of the consensus hierarchy. As pointed out in [21],

the proof of this conjecture appears to be challenging and was indeed left open. The motivation of

this work was to take up that challenge.

Contributions. In this paper, we assume that processes communicate using read-write shared mem-

ory (registers) and one-shot deterministic types [14]. Although these types restrict every process to

2

invoke at most one deterministic operation on each object, they include many popular types such

as consensus and test-and-set, and they exhibit complex behavior in the context of the type booster

question [4, 14,16,19].

We show that Ωn is necessary to solve consensus using registers and objects of any one-shot

deterministic type T such that cons(T) ≤ n and 2 ≤ n. As an interesting corollary of our result, we

show that Ωn is the weakest failure detector to boost the resilience of a system of (n− 1)-resilient

objects and registers solving consensus.

Our result is a strict generalization of the fundamental result of [6] where Ω was shown to

be necessary to solve consensus in a message-passing system. We assume that, instead of reliable

channels, processes communicate through registers and objects of a powerful sequential type T . The

only information available on T is the fact that cons(T) ≤ n and T is one-shot and deterministic.

The lack of information forced us to reconsider the proof of [6]. In particular, we revisit and

generalize the notions of simulation tree, decision gadget and deciding process introduced in [6].

As a side result, we give a formal proof that any failure detector that implements consensus in

the read-write memory model can be transformed to Ω. The result was first stated in [18] but, to

our knowledge, its proof has never appeared in the literature.

Related work. The notion of consensus power was introduced by Herlihy [13] and then refined by

Jayanti [16]. Chandra, Hadzilacos and Toueg [6] showed that Ω is the weakest failure detector to

solve consensus in asynchronous message-passing systems with a majority of correct processes. Lo

and Hadzilacos [18] showed that Ω can be used to solve consensus with registers and stated that

any failure detector that can be used to solve consensus with registers can be transformed to Ω.

Neiger [21] introduced the hierarchy of failure detectors Ωn and showed that objects of consensus

power n can solve consensus among any number of processes using Ωn.

Roadmap. Section 2 presents necessary details of the model used in this chapter. Section 3 recalls the

specification of consensus and recalls a few results from the literature used in this paper. Section 4

recalls the hierarchy of failure detectors Ωn. Section 5 shows that Ωn is necessary to boost the

consensus power of one-shot deterministic objects. Section 6 applies our result to the question of

boosting the resilience of a distributed system with respect to the consensus problem.

2 Model

Our model of processes communicating through shared objects is based on that of [15,16] and our

notion of failure detectors follows from [6]. Below we recall what is substantial to show our result.

3

Processes

We consider a set Π of k asynchronous processes p1, p2, . . . , pk (k ≥ 2) that communicate using

shared objects. To simplify the presentation of our model, we assume the existence of a discrete

global clock. This is a fictional device: the processes have no direct access to it. (More precisely,

the information about global time can come only from failure detectors.) We take the range T of

the clock’s ticks to be the set of natural numbers and 0 (T = {0} ∪ N).

2.1 Objects and types

An object is a data structure that can be accessed concurrently by the processes. Every object is

an instance of a sequential type which is defined by a tuple (Q,Q0, O, np, R, δ). Here Q is a set of

states, Q0 ⊆ Q is a set of initial states, O is a set of operations, np is a positive integer denoting the

number of ports (used as an interface between processes and objects), R is a set of responses, and δ

is a relation known as the sequential specification of the type: it carries each state and operation to

a set of response and state pairs. We assume that objects are deterministic: the set of initial states

is a singleton Q0 = {q0} and the sequential specification is a function δ : Q×O → Q×R.

The register type is defined as a tuple (Q, {q0}, O, k,R, δ) where Q is a set of values that can

be stored in a register, q0 ∈ Q is an initial value, O = {read(),write(v) : v ∈ Q}, R = Q∪ {ok} and

∀v, v′ ∈ Q, δ(v,write(v′)) = (v′, ok) and δ(v, read()) = (v, v).

A process accesses objects by invoking operations on the ports of the objects. A process can use

at most one port of each object. A port can be used by at most one process. A port of an object

of a one-shot type can be accessed at most once in any execution. If not explicitly specified, the

number of ports of any object is k, and every object is connected to every process.

We consider here linearizable [15] objects: even though operations of concurrent processes may

overlap, each operation takes effect instantaneously between its invocation and response. If a process

invokes an operation on a linearizable object and fails before receiving a matching response, then

the “failed” operation may take effect at any future time. Any execution on linearizable objects

can thus be seen as a sequence of atomic invocation-response pairs.

Unless explicitly stated otherwise, we assume that the objects are wait-free: any operation

invoked by a correct process on a wait-free object eventually returns, regardless of failures of other

processes [13]. In contrast, t-resilient implementations of shared objects (considered in Section 6)

guarantee that a process completes its operation, as long as no more than t processes crash. If more

than t processes crash, no operation on a t-resilient object is obliged to return.

2.2 Failures and failure patterns

Processes are subject to crash failures. We do not consider Byzantine failures: a process either

correctly executes the algorithm assigned to it, or crashes and stops forever executing any action.

4

A failure pattern F is a function from the global time range T to 2Π , where F (t) denotes the

set of processes that have crashed by time t. Once a process crashes, it does not recover, i.e.,

∀t : F (t) ⊆ F (t + 1).

We define correct(F) = Π − ∪t∈TF (t), the set of correct processes in F . Processes in Π −
correct(F) are called faulty in F . A process p /∈ F (t) is said to be up at time t. A process p ∈ F (t)

is said to be crashed at time t. We say that a subset U ⊆ Π is alive if U ∩ correct(F) 6= ∅. We

consider here all failure environments [6], i.e., we make no assumptions on when and where failures

might occur. However, we assume that there is at least one correct process in every failure pattern.

2.3 Failure detectors

A failure detector history H with range R is a function from Π × T to R. H(p, t) is the value of

the failure detector module of process p at time t. A failure detector D with range RD is a function

that maps each failure pattern to a set of failure detector histories with range RD (usually defined

by a set of requirements that these histories should satisfy). D(F) denotes the set of possible failure

detector histories permitted by D for failure pattern F .

When any process p performs a step of computation, it can query its failure detector module

of D, denoted Dp, and obtain a value d ∈ RD that encodes some information about failures. Note

that we do not make any assumption a priori on the range of a failure detector.

The leader failure detector Ω outputs the id of a process at each process. There is a time after

which it outputs the id of the same correct process at all correct processes [6]. Formally, RΩ = Π

and, for each failure pattern F , H ∈ Ω(F) ⇔ ∃t ∈ T∃q ∈ correct(F)∀p ∈ correct(F)∀t′ ≥ t :

H(p, t′) = q

2.4 Algorithms

We define an algorithm A using a failure detector D as a collection of k deterministic automata, one

for each process in the system. A(p) denotes the automaton on which process p runs the algorithm

A. Computation proceeds in atomic steps of A. In each step of A, process p

(i) performs an operation on a shared object or queries its failure detector module Dp (in the latter

case, we say that the step of p is a query step), and

(ii) applies its current state together with the the response received from a shared object or the

value received from Dp during that step to the automaton A(p) to obtain a new state.

A step of A is thus identified by a pair (p, x), where x is either λ (the empty value) or, if the

step is a query step, the failure detector value output at p during that step.

5

2.5 Configurations, schedules and runs

A configuration of A defines the current state of each process and each object in the system. In an

initial configuration of A, every process p is in an initial state of A(p) and every object is an initial

state specified by its object type.

The state of any process p in C determines whether in any step of p applied to C, p accesses

a shared object or queries its failure detector module. Respectively, a step (p, x) is said to be

applicable to C if and only if

(a) x = λ , and p invokes an operation o on a shared object X in its next step in C (we say that p

accesses X with o in C), or

(b) x ∈ RD, and p queries Dp in its next step in C. Here, x is the value obtained from Dp during

that step.

For a step e applicable to C, e(C) denotes the unique configuration that results from applying e to

C.

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A. S⊥ denotes the empty

schedule. We say that a schedule S is applicable to a configuration C if and only if (a) S = S⊥, or

(b) S[1] is applicable to C, S[2] is applicable to S[1](C), etc. For a finite schedule S applicable to

C, S(C) denotes the unique configuration that results from applying S to C.

Let S be any schedule applicable to a configuration C. We say that S applied to C accesses X

if S has a prefix S′ · (p, λ) where p accesses X in S′(C).

For any P ⊆ Π, we say that S is a P -solo schedule if only processes in P take steps in S.

A partial run of algorithm A using a failure detector D is a tuple R = 〈F,HD, I, S, T 〉 where F

is a failure pattern, HD ∈ D(F) is a failure detector history, I is an initial configuration of A, S is

a finite schedule of A, and T ⊆ T is a finite list of increasing time values such that |S| = |T |, S is

applicable to I, and for all 1 ≤ k ≤ |S|, if S[k] = (p, x) then:

(1) Either p has not crashed by time T [k], i.e., p /∈ F (T [k]), or x = λ and S[k] is the last appearance

of p in S, i.e., ∀k < k′ ≤ |S|: S[k′] 6= (p, ∗) (the last condition takes care about the cases when

an operation of p is linearized after p has crashed, and there can be at most one such operation

in a run);

(2) if x ∈ RD, then x is the value of the failure detector module of p at time T [k], i.e., d =

HD(p, T [k]).

A run of algorithm A using a failure detector D is a tuple R = 〈F,HD, I, S, T 〉 where F is a

failure pattern, HD ∈ D(F) is a failure detector history, I is an initial configuration of A, S is an

infinite schedule of A, and T ⊆ T is an infinite list of increasing time values indicating when each

step of S has occurred. In addition to satisfying properties (1) and (2) of a partial run, R should

guarantee that

6

(3) every correct (in F) process takes an infinite number of steps in S.

2.6 Problems and solvability

A problem is a predicate on a set of runs (usually defined by a set of properties that these runs

should satisfy). An algorithm A solves a problem M using a failure detector D if the set of all

runs of A using D satisfies M. We say that a failure detector D solves problem M if there is an

algorithm A which solves M using D.

2.7 A weakest failure detector

Informally, D is the weakest failure detector to solve a problem M if (a) D is sufficient to solve

M, i.e., D can be used to solve M, and (b) D is necessary to solve M, i.e., any failure detector D′

that can be used to solve M can be transformed into D.

More precisely, let D and D′ be failure detectors. If, for failure detectors D and D′, there is

an algorithm TD′→D that transforms D′ into D, we say that D is weaker than D′, and we write

D � D′.

If D � D′ but D′ � D, we say that D is strictly weaker than D′, and we write D ≺ D′. If D � D′

and D′ � D, we say that D and D′ are equivalent, and we write D ≺ D′.

Algorithm TD′→D that emulates histories of D using histories of D′ is called a reduction al-

gorithm. Note that TD′→D does not need to emulate all histories of D; it is required that all the

failure detector histories it emulates be histories of D.

We say that a failure detector D is the weakest failure detector to solve a problem M if the

following conditions are satisfied:

(a) D is sufficient to solve M, i.e., D solves M, and

(b) D is necessary to solve M, i.e., if a failure detector D′ solves M, then D is weaker than D′.

There might be a number of distinct failure detectors satisfying these conditions. (Though all

such failure detectors are in a strict sense equivalent.) With a slight abuse of grammar, it would be

more technically correct to talk about a weakest failure detector to solve M.

3 Preliminaries

In this section, we recall the specifications of consensus and related team consensus and weak

consensus problems.

7

3.1 Consensus

The (binary) m-process consensus problem [10] consists for m processes to decide some final values

(0 or 1) based on their initial proposed values in such a way that: (Agreement) no two processes

decide different values, (Validity) every decided value is a proposed value of some process, and

(Termination) every correct process eventually decides.

It is sometimes convenient to think of the consensus problem in terms of an object type. For-

mally, the m-process consensus type is specified as a tuple (Q,Q0, O, np, R, δ), where Q = {⊥, 0, 1},
Q0 = ⊥, O = {propose(v) : v ∈ {0, 1}}, np = m, R = {0, 1}, and ∀v, v′ ∈ {0, 1}, δ(⊥, propose(v)) =

(v, v) and δ(v′, propose(v)) = (v′, v′).

We say that a set S of types solves m-process consensus if there is an algorithm that solves

consensus among m processes using registers and objects of types in S.

The consensus power of an object type T , denoted cons(T), is the largest number m of processes

such that {T} solves m-process consensus. If no such largest m exists, then cons(T) = ∞.

The test-and-set type is defined as a tuple (Q,Q0, O, k,R, δ) where Q = {0, 1}, Q0 = {0}, O =

{test-and-set(), reset()}, R = {0, 1} and δ(0, test-and-set()) = (1, 0), δ(1, test-and-set()) = (1, 1),

and ∀v ∈ {0, 1}, δ(v, reset()) = (0, 0).

By combining the results of [1] and [5], it can be shown that test-and-set objects cannot “boost”

the consensus power of any type:

Lemma 1 Let m ≥ 2 and S be any set of types. If S∪{test-and-set} solve (m+1)-process consensus,

then S solves (m + 1)-process consensus.

Assume that any set S of deterministic types can solve consensus among m processes when every

object X is initialized to some state that results after applying a known sequence of operations on

X (we say that the state is reachable). Then S solves consensus among m processes [4]:

Lemma 2 Let S be any set of deterministic types. If S solves m-process consensus, when every

object is initialized to some reachable state, then S solves m-process consensus.

3.2 Team consensus

We also use a restricted form of consensus, called team consensus. This variant of consensus always

ensures Validity and Termination, but Agreement is ensured only if the input values satisfy certain

conditions. More precisely, assume that there exists a (known a priori) partition of the processes

into two non-empty sets (teams). Team consensus requires Agreement only if all processes on a

team have the same input value. Obviously, team consensus can be solved whenever consensus can

be solved. Surprisingly, the converse is also true [21,22]:

8

Lemma 3 Let S be any set of types. If S solves team consensus among m processes, then S also

solves consensus among m processes.

Proof. We proceed by induction on m. For m = 2, team consensus is consensus. Assume that,

(1) for some m > 2, S solves team consensus among m processes (for non-empty teams A and

B), and (2) for all 2 ≤ l < m, S solves l-process consensus. Thus, A and B can use, respectively,

|A|-process consensus and |B|-process consensus to agree on the teams’ input values (A and B are

non-empty, thus, |A| < m and |B| < m). Once the team input value is known, the processes run

the team consensus algorithm among m processes (with teams A and B). Since all processes on a

team propose the same value, Agreement of m-process consensus is satisfied. 2

3.3 Weak consensus

To prove our result, we also consider a weaker form of consensus, the weak consensus problem [10].

This variant of consensus always ensures Termination and Agreement, but Validity is replaced by

a weaker Non-Triviality property: every algorithm that solves the weak consensus problem has a

run in which 0 is decided and a run in which 1 is decided. Obviously, weak consensus can be solved

whenever consensus can be solved. Surprisingly, if deterministic types are used, the converse is also

true [12] (we give the proof of [12] here for self-consistency):

Lemma 4 Let S be any set of deterministic types. If weak consensus among m processes can be

solved using registers and objects of types in S, then S solves m-process consensus.

Proof. Let A be any algorithm that solves weak consensus among m ≥ 2 processes using registers

and objects of types in S.

Let G be the execution graph of A: the vertices of G are all possible states of A (defined by

the states of the processes and all shared objects); vertices s and s′ are connected with an edge

directed from s to s′ if and only if there is a step of A that, applied to s, results in s′.

A vertex s of G is assigned a tag v ∈ {0, 1} if it has a successor s′ in G (i.e., there exists a path

in G from s to s′) such that some process has decided v in s′. If a state has both tags 0 and 1,

it is called bivalent. If a state has only one tag v, it is called v-valent. A state is univalent if it is

0-valent or 1-valent. The Termination property of weak consensus ensures that any state of A is

either bivalent or univalent [10].

We show first that there exists a critical state in G, i.e., a bivalent state s̄ such that every step

of A applied to s̄ results in a univalent state. Suppose not, i.e., every state in G has a bivalent

successor. Then, starting from the initial state of A, we can build an infinite run R of A that goes

through bivalent states only. By the Agreement property of weak consensus, no process can decide

9

Initially:

all objects are initialized to their states in s̄

Procedure tcPropose(v): { let p ∈ Πi, i ∈ {0, 1} }
1: Xi ← v { write the proposal in the team’s register }
2: let p be initialized to its state in s̄

3: run A until it returns a value j ∈ {0, 1}
4: return Xj

Fig. 1. A team consensus algorithm: process p

in a bivalent state. Thus, no process can ever decide in R — a contradiction with the Termination

property of weak consensus.

Assume now that the system is in a critical state s̄. Since protocol A and all objects that we

use are deterministic, the step of any given process applied to s̄ triggers exactly one transition in

graph G. Thus, for any step of A applied to s̄, the valence of the resulting state is defined by the

identity of the process that takes that step. Now we partition Π into two teams Π0 and Π1: for

each i ∈ {0, 1}, Πi consists of all processes whose steps applied to s̄ result in i-valent states. Since

s̄ is bivalent and any step applied to s̄ results in a univalent state, the two teams are non-empty.

The algorithm in Figure 1 solves team consensus among m processes for teams Π0 and Π1.

Let all objects used by A be initialized to their states in s̄. For each i ∈ {0, 1}, we associate

team Πi with register Xi. Every process writes its input value into its team’s register and then runs

A starting from its state in s̄ until A returns a value j ∈ {0, 1}. Then the process returns Xj .

Consider any run R of the algorithm in Figure 1. The Termination property of weak consensus

ensures Termination of our algorithm. Assume that p returns a value of Xj in R, i.e. A returns j

at p. By the definition of Π0 and Π1, the first step accessing X in R is by a process q ∈ Πj . By

the algorithm, q has previously written its input value in Xj . Thus, Validity of team consensus is

ensured. The Agreement property of weak consensus ensures that A cannot return 1 − j at any

process q in R. Thus, no process can return a value of X1−j in R. Assume now that all processes on

a team propose the same value. Hence, Agreement is ensured, since the processes return the value

previously written in Xj , and no two different values can be written in Xj .

Thus, S solves team consensus among m processes when objects are initialized to their states in

s̄. By the construction, these states are reachable. By Lemmas 2 and 3, S solves consensus among

m processes. 2

10

4 Hierarchy of failure detectors Ωn

The hierarchy of failure detectors Ωn (n ∈ N) was introduced in [21]. Ωn (n ∈ N) outputs a set

of at most n processes at each process so that, eventually, the same alive (including at least one

correct process) set is output at all correct processes.

Formally, RΩn = {P ⊆ Π : |P | ≤ n}, and for each failure pattern F , H ∈ Ωn(F) ⇔

∃t ∈ T∃P ∈ RΩn , P ∩ correct(F) 6= ∅, ∀p ∈ correct(F)∀t′ ≥ t : H(p, t′) = P

Clearly, Ω1 is equivalent to Ω. It was shown in [21] that, for all k ≥ 2 and 1 ≤ n ≤ k − 1:

(a) Ωn+1 ≺ Ωn;

(b) for any type T such that cons(T) = n, Ωn can be used to solve k-process consensus using

registers and objects of type T .

5 Boosting consensus power

In this section, we show that Ωn is necessary to solve consensus among k processes using registers

and objects of type T a one-shot deterministic type T such that cons(T) ≤ n and 2 ≤ n . Our proof

is a natural generalization of the proof that Ω is necessary to solve consensus in message-passing

asynchronous systems [6].

5.1 An overview of the reduction algorithm

Let ConsD be any algorithm that solves consensus using a failure detector D, registers and objects of

a one-shot deterministic type T such that cons(T) ≤ n and 2 ≤ n. Our goal is to define a reduction

algorithm TD→Ωn that emulates the output of Ωn using D and ConsD. The reduction algorithm

should have all correct processes eventually agree on the same alive set of at most n processes.

TD→Ωn consists of two parallel tasks: a communication task and a computation task.

In the communication task, each process p periodically queries its failure detector module of D
and exchanges the failure detector values with the other processes values using read-write memory.

While doing so, p knows more and more of the other processes’ failure detector outputs and temporal

relations between them. All this information is pieced together in a single data structure, a directed

acyclic graph (DAG) Gp.

In the computation task, p periodically uses its DAG Gp to simulate locally, for any initial

configuration I and any set of processes P ⊆ Π, a number of finite runs ConsD. These runs

constitute an ever-growing simulation tree, denoted ΥP,I
p . Since registers provide reliable (though

asynchronous) communication, all such ΥP,I
p tend to the same infinite simulation tree ΥP,I .

It turns out that the processes can eventually detect the same set P ⊆ Π such that P includes

all correct processes, and either (a) there exists a correct critical process whose proposal value

11

Initially:

Gp ← empty graph

kp ← 0

1: while true do

2: for all q ∈ Π do Gp ← Gp ∪Gq

3: dp ← query failure detector D
4: kp ← kp + 1

5: add [p, dp, kp] and edges from all vertices of Gp to [p, dp, kp] to Gp

Fig. 2. Building a DAG: process p

in some initial configuration I defines the decision value in all paths in ΥP,I , or (b) some ΥP,I

has a finite subtree γ, called a complete decision gadget, that provides sufficient information to

compute a set of at most n processes, called the deciding set of γ, that includes at least one correct

process. Eventually, the correct processes either detect the same critical process or compute the

same complete decision gadget and agree on its deciding set. In both cases, Ωn is emulated.

A difficult point here is that sometimes the deciding set is encoded in an object of type T .

We cannot use the sequential specification of type T , and we hence cannot use the case analysis

of [6] to compute the deciding set. Fortunately, in this case, it is possible to locate a special kind

of a decision gadget, which we introduce here and which we call a rake, such that the deciding set

is encoded in the states of the processes at the leaves of the rake and the state of an object of

type T in the pivot of the rake. Using the assumptions that T is a one-shot deterministic type and

cons(T) ≤ n, we compute a set of at most n processes that include at least one correct process.

5.2 The communication task and DAGs

The communication task of algorithm TD→Ω is presented in Figure 2. This task maintains an ever-

growing DAG that contains a finite sample of the current failure detector history. (For simplicity,

the DAG is stored in a register Gp which is periodically updated by p and read by all processes.)

Informally, every vertex [q, d, k] of Gp is a failure detector value “seen” by q in its k-th query of

its failure detector module. An edge ([q, d, k], [q′, d′, k′]) can be interpreted as “q saw failure detector

value d (in its k-th query) before q′ saw failure detector value d′ (in its k′-th query)”.

DAG Gp has some special properties which follow from its construction [6]. Let F be the current

failure pattern and H be the current failure detector history in D(F). Then:

(1) The vertices of Gp are of the form [q, d, k] where q ∈ Π, d ∈ RD and k ∈ N. There is a mapping

τ : vertices of Gp 7→ T, associating a time with every vertex of Gp, such that:

(a) For any vertex v = [q, d, k], q /∈ F (τ(v)) and d = H(q, τ(v)). That is, d is the value output

by q’s failure detector module at time τ(v).

12

(b) For any edge (v, v′) in Gp, τ(v) < τ(v′). That is, any edge in Gp reflects the temporal order

in which the failure detector values are output.

(2) If v′ = [q, d, k] and v′′ = [q, d′, k′] are vertices of Gp and k < k′ then (v, v′) is an edge of Gp.

(3) Gp is transitively closed: if (v, v′) and (v′, v′′) are edges of Gp, then (v, v′′) is also an edge of Gp.

(4) For all correct processes p and q and all times t, there is a time t′ ≥ t, a d ∈ RD and a k ∈ N
such that for every vertex v of Gp(t), (v, [q, d, k]) is an edge of Gp(t′). (x(t) denotes the value

of variable x at time t.)

Note that properties (1)–(4) imply that, for any time t and any set of vertices V of Gp(t), there

is a time t′ ≥ t such that Gp(t′) contains a path g such that every correct process appears in g

arbitrarily often and ∀v ∈ V , v · g is also a path of Gp(t′). Furthermore, every prefix of g is also a

path in Gp(t′).

5.3 Simulation trees

Let I l (l = 0, . . . , k) denote an initial configuration of ConsD in which processes p1, . . . , pl pro-

pose 1 and processes pl+1, . . . , pk propose 0. Let P ⊆ Π be any set of processes, and g =

[q1, d1, k1], [q2, d2, k2], . . . [qs, ds, ks] be any path in Gp such that ∀i ∈ {1, 2, . . . , s} : qi ∈ P . Since

algorithms and shared objects considered here are deterministic, g and I l induce a unique schedule

S = (q1, x1), (q2, x2), . . . , (qs, xs) of ConsD applicable to I l such that:

∀i ∈ {1, 2, . . . , s} : xi ∈ {λ, di}.

For each P ⊆ Π, the set of all P -solo schedules of ConsD induced by Il and paths in Gp are pieced

together in a tree ΥP,l
p , called the simulation tree induced by P , I l and Gp, and defined as follows.

The set of vertices of ΥP,l
p is the set of finite P -solo schedules that are induced by I l and paths in

Gp. The root of ΥP,l
p is the empty schedule S⊥. There is an edge from a vertex S to a vertex S′

whenever S′ = S · e for some step e; the edge is labeled e. Thus, every vertex S of ΥP,l
p is associated

with a unique path e1e2, . . . es in ΥP,l
p .

The construction implies that for any vertex S of ΥP,I
p , there exists a partial run 〈F,H, I, S, T 〉

of ConsD where F is the current failure pattern and H ∈ D(F) is the current failure detector

history.

We tag every vertex S of ΥP,l
p according to the values decided in the descendants of S in ΥP,l

p :

S is assigned a tag v if and only if it has a descendant S′ such that p decides v in S′(I l). The set

of all tags of S is called the valence of S and denoted val(S). If S has only one tag u ∈ {0, 1}, then

S is called u-valent. A 0-valent or 1-valent vertex is called univalent. A vertex is called bivalent if

it has both tags 0 and 1.

Thanks to reliable communication guarantees provided by registers, for any two correct processes

p and q and any time t, there is a time t′ ≥ t such that ΥP,l
p (t) ⊆ ΥP,l

q (t′). As a result, the simulation

13

trees ΥP,l
p of correct processes p tend to the same limit infinite simulation tree which we denote

ΥP,l.

Assume that correct(F) ⊆ P . By the construction, every vertex of ΥP,l has an extension in

ΥP,l in which every correct process takes infinitely many steps. By the Termination property of

consensus, this extension has a finite prefix S′ such that every correct process has decided in S′(I l).

Thus, every vertex S of ΥP,l has a non-empty valence, i.e. S is univalent or bivalent.

More generally:

Lemma 5 Let correct(F) ⊆ P ⊆ Π, 0 ≤ l ≤ k, m ≥ 1, and S0, S1, . . . , Sm be any vertices of ΥP,l.

There exists a finite schedule S′ containing only steps of correct processes such that

(1) S0 · S′ is a vertex of ΥP,l and all correct processes have decided in S0 · S′(I l), and

(2) for any i ∈ {1, 2, . . . ,m}, if S′ is applicable to Si(I l), then Si · S′ is a vertex of ΥP,l.

The following lemma will facilitate the proof of correctness of our reduction algorithm.

Lemma 6 Let correct(F) ⊆ P ⊆ Π. Let S0 and S1 be two univalent vertices of ΥP,l of opposite

valence and V ⊂ Π be a set of processes. If S0(I l) and S1(I l) differ only in the states of processes

in V , then V includes at least one correct process.

Proof. Since S0(I l) and S1(I l) differ only in the states of processes in V , any (Π−V)-solo schedule

applicable to S0(I l) is also applicable to S1(I l). By contradiction, assume that V includes only

faulty processes. By Lemma 5, there is a schedule S containing only steps of correct processes

(and thus no steps of processes in V) such that all correct processes have decided in S0 · S(I l)

and S1 · S is a vertex of ΥP,l. Since no process in Π − V can distinguish S0 · S(I l) and S1 · S(I l),

the correct processes have decided the same values in these two configurations — a contradiction. 2

5.4 Decision gadgets

A decision gadget γ is a finite subtree of ΥP,l rooted at S⊥ that includes a vertex S̄ (called the

pivot of the gadget) such that one of the following conditions is satisfied:

(fork) There are two steps e and e′ of the same process q, such that S̄ · e and S̄ · e′ are univalent

vertices of ΥP,l of opposite valence.

Note the next step of q in S̄(I l) can only be a query step. Otherwise, S̄ · e(I l) = S̄ · e′(I l) and

thus S̄ · e and S̄ · e′ cannot have opposite valence.

(hook) There is a step e of a process q and step e′ of a process q′ (q 6= q′), such that:

(i) S̄ · e′ · e and S̄ · e are univalent vertices of ΥP,l of opposite valence.

(ii) q and q′ do not access the same object of type T in S̄(I l).

14

If for any x ∈ RD ∪ {λ}, S̄ · e · (q′, x) is not a vertex of ΥP,l, then q′ is called missing in the

hook γ. Clearly, if q′ is correct, then it cannot be missing in γ.

(rake) There is a set U ⊆ P , |U | ≥ 2, and an object X of type T such that each q ∈ U accesses

X in S̄(I l) (U is called the participating set of γ). Let E denote the set of all vertices of ΥP,l

of the form S̄ · S where S = (q1, λ), (q2, λ), . . . , (q|U |, λ) and q1, q2, . . . , q|U | is a permutation of

processes in U (E can be empty). S̄, U and E satisfy the following conditions:

(i) There do not exist a (Π − U)-solo schedule S′ and a process q′ ∈ Π − U , such that ∀S ∈
{S̄} ∪ E, S · S′ · (q′, λ) is a vertex of ΥP,l and q′ accesses X in S · S′(I l).

(ii) If S ∈ E, then S is univalent.

(iii) If |E| = (|U |)!, i.e., E includes all vertices S̄ · (q1, λ) ·(q2, λ) · · · (q|U |, λ) such that q1, q2,

· · · , q|U | is a permutation of processes in U , then there are at least one 0-valent vertex and

at least one 1-valent vertex in E.

Note that if |E| < (|U |)!, then there is at least one process q ∈ U such that for some

{q1, q2, . . . , qs} ⊆ U − {q}, S̄ · (q1, λ) · (q2, λ) · · · (qs, λ) is a vertex of ΥP,l, and S̄ · (q1, λ) ·
(q2, λ) · · · (qs, λ) · (q, λ) is not a vertex of ΥP,l. We call such processes missing in the rake.

Clearly, every missing process is in faulty(F).

Examples of decision gadgets are depicted in Figure 3: (a) a fork where e = (q, d) and e′ = (q, d′),

(b) a hook where e = (q, x), e′ = (q′, x′), and q and q′ do not access the same object of type T in

S̄(I l); (c) a rake with a participating set U = {q1, q2} and a set of leaves E = {S̄ · (q1, λ) · (q2, λ), S̄ ·
(q2, λ) · (q1, λ)}, where q1 and q2 access the same object of type T in S̄(I l).

0-valent

1-valent

1-valent 0-valent

0-valent 1-valent

(a) (b)

S⊥S⊥ S⊥

S̄ S̄ S̄

e

(c)

e′e e′e (q1, λ)

(q2, λ)

(q2, λ)

(q1, λ)

Fig. 3. A fork, a hook, and a rake

Lemma 7 Let correct(F) ⊆ P ⊆ Π and l ∈ {0, 1, . . . , k}. If the root of ΥP,l is bivalent, then ΥP,l

contains a decision gadget.

15

Proof. Using arguments of Lemma 6.4.1 of [6], we can show that there exist a bivalent vertex S∗

and a correct process p such that:

(*) For all descendants S′ of S∗ (including S′ = S∗) and all x ∈ RD ∪ {λ} such that S′ · (p, x) is a

vertex of ΥP,l, S′ · (p, x) is univalent .

Moreover, one of the following conditions is satisfied:

(1) There are two steps e and e′ of p, such that S∗ · e and S∗ · e′ are vertices of ΥP,l of opposite

valence. That is, a fork is identified and we have the lemma.

(2) There is a step e of p and a step e′ of a process q such that S∗ · e and S∗ · e′ · e are vertices of

ΥP,l of opposite valence.

Consider case (2). If p = q, then by condition (*), S∗ · e′ is a univalent vertex of ΥP,l, and a fork

is identified.

Now assume that p 6= q. If p and q do not access the same object of type T in S∗(I l), we have

a hook.

Thus, the only case left is when p and q access the same object X of type T in S∗(I l). The

hypothetical algorithm of Figure 4 locates a rake in ΥP,l.

1: U ← {p, q}
2: S̄ ← S∗

3: if 〈S̄ · e · e′ is vertex of Υ P,l 〉 then

4: E ← {S̄ · e′ · e, S̄ · e · e′}
5: else

6: E ← {S̄ · e′ · e}
7: while true do

8: if 〈 there exists a (Π − U)-solo schedule S′ and a process q′ ∈ Π − U

such that ∀S ∈ {S̄} ∪ E, S · S′ · (q′, λ) is a vertex of Υ P,l

and q′ accesses X in S · S′(Il) 〉
9: then

10: let S′ · (q′, λ) be the shortest such schedule

11: S̄ ← S̄ · S′

12: U ← U ∪ {q′}
13: E ← the set of all vertices S̄ · S of Υ P,l

such that S = (q1, λ), (q2, λ), . . . , (q|U|, λ)

where q1, q2, . . . , q|U| is a permutation of processes in U

14: else exit

Fig. 4. Locating a rake in Υ P,l

16

We show first that the hypothetical algorithm terminates. Indeed, eventually either U = Π and,

trivially, there is no q′ ∈ Π − U , or the algorithm terminates earlier with some U ⊂ Π.

Thus, we obtain a set U (|U | ≥ 2) and a vertex S̄ = S∗ · S′′ such that p and q take no steps in

S′′, S′′ applied to S∗(I l) does not access X, and every q′ ∈ U accesses X in S̄(I l). Furthermore:

(i) There do not exist a (Π−U)-solo schedule S′ and a process q′ ∈ Π−U , such that ∀S ∈ {S̄}∪E,

S · S′ · (q′, λ) is a vertex of ΥP,l and q′ accesses X in S · S′(I l).

(ii) If S ∈ E, then S is univalent.

Indeed, take any S ∈ E. By the algorithm in Figure 4, S = S∗ · S′ such that every process

in U takes exactly one step in S′. Since p ∈ U , p takes exactly one step in S′. By (*), S is

univalent.

(iii) If |E| = (|U |)!, i.e., E includes all vertices S̄ ·(q1, λ) ·(q2, λ) · · · (q|U |, λ) such that q1, q2, . . . , q|U |

is a permutation of processes in U , then there is at least one 0-valent vertex and at least one

1-valent vertex in E.

Indeed, assume that |E| = (|U |)!. By the algorithm, S∗ ·S′′ ·e′ ·e, S∗ ·S′′ ·e ·e′, S∗ ·e′ ·e ·S′′ and

S∗ · e′ · e · S′′, where e = (p, λ) and e′ = (q, λ), are vertices of ΥP,l. Since S′′ applied to S∗(I l)

does not access X, S∗ ·S′′ · e′ · e(I l) = S∗ · e′ · e ·S′′(I l) and S∗ ·S′′ · e · e′(I l) = S∗ · e · e′ ·S′′(I l).

But S∗ · e · e′ and S∗ · e′ · e are univalent vertices of opposite valence. Thus, S∗ · S′′ · e · e′

and S∗ · S′′ · e′ · e are also univalent vertices of opposite valence. Since E includes at least one

descendant of S∗ ·S′′ · e · e′ and at least one descendant of S∗ ·S′′ · e′ · e, there are at least one

0-valent vertex and at least one 1-valent vertex in E.

Hence, a rake with pivot S̄ and participating set U is located. 2

5.5 Complete decision gadgets

If a decision gadget γ has no missing processes, we say that γ is complete. If γ (a hook or a rake)

has a non-empty set of missing processes, we say that γ is incomplete.

Lemma 8 Let W be the set of missing processes of an incomplete decision gadget γ. Then W ⊆
faulty(F).

Proof. Let γ be an incomplete decision gadget of ΥP,l and q be a missing process of γ. By definition,

q ∈ P and there is a vertex S of ΥP,l such that for any x ∈ RD ∪ {λ}, S · (q, x) is not a vertex of

ΥP,l. Thus, q is faulty in F . 2

Lemmas 7 and 8 imply the following:

Corollary 9 Let C = correct(F). Every decision gadget of ΥC,l is complete, and if the root of ΥC,l

is bivalent, then ΥC,l contains at least one decision gadget.

17

5.6 Confused processes

Lemma 10 Let correct(F) ⊆ P ⊆ Π and γ be a complete hook in ΥP,l defined by a pivot S̄, a step

e of q, and a step e′ of q′ (q 6= q′). There exists a process p ∈ {q, q′} and two vertices S0 and S1 in

{S̄ · e, S̄ · e′ · e, S̄ · e · e′} such that:

(a) S0 and S1 are univalent vertices of ΥP,l of opposite valence, and

(b) S0(I l) and S1(I l) differ only in the state of p.

Proof. By the definition of γ, S̄ · e and S̄ · e′ · e are univalent vertices of ΥP,l of opposite valence, q

and q′ do not access the same object of type T , and there is a vertex S̄ · e · (q′, x) in ΥP,l for some

x ∈ RD ∪ {λ}.
Assume that e′ = (q′, λ), and q and q′ do not access the same register in S̄(I l). Thus, S̄ · e · e′ is

a vertex of ΥP,l such that S̄ · e · e′(I l) = S̄ · e′ · e(I l). But S̄ · e and S̄ · e′ · e have opposite valences —

a contradiction. Thus either (1) e′ is a query step in S̄(I l), or (2) q and q′ access the same register

in S̄(I l).

(1) If e′ is a query step in S̄(I l), then S0 = S̄ · e and S1 = S̄ · e′ · e are univalent vertices of ΥP,l of

opposite valence such that S0(I l) and S1(I l) differ only in the state of q′.

(2) Assume now that e and e′ access the same register X in S̄(I l). Thus, e = (q, λ), e′ = (q′, λ),

and S̄ · e · e′ is a univalent vertex of ΥP,l.

– If q writes in X in S̄(I l), then S0 = S̄ · e and S1 = S̄ · e′ · e are univalent vertices of ΥP,l of

opposite valence such that S0(I l) and S1(I l) differ only in the state of q′.

– If q reads X in S̄(I l), then S0 = S̄ · e · e′ and S1 = S̄ · e′ · e are univalent vertices of ΥP,l of

opposite valence such that S0(I l) and S1(I l) differ only in the state of q.

In each case, we obtain a process p ∈ {q, q′} and two vertices S0 and S1 in {S̄ ·e, S̄ ·e′ ·e, S̄ ·e ·e′}
such that (a) S0 and S1 are univalent vertices of ΥP,l of opposite valence, and (b) S0(I l) and S1(I l)

differ only in the state of p. 2

The following lemma uses the assumptions that type T is deterministic, cons(T) ≤ n and 2 ≤ n.

Lemma 11 Let correct(F) ⊆ P ⊆ Π and γ be a complete rake in ΥP,l with a pivot S̄ and a

participating set U such that |U | ≥ n + 1. Let E be the set of leaves of γ. There exist a set W ⊂ U

and two univalent vertices S̄ · S0 and S̄ · S1 in E such that

(a) |W | = |U | − n,

(b) val(S̄ · S0) 6= val(S̄ · S1), and

(c) processes in W have the same states in S̄ · S0(I l) and S̄ · S1(I l).

18

Proof. Let γ be a complete rake with a pivot S̄ and a participating set U such that |U | = m ≥ n+1.

Let X be the object of type T such that each process q ∈ U accesses X in S̄(I l). Let σX be the

state of X in S̄(I l).

Construct a graph K as follows. The set of vertices of K is E. Two vertices S̄ · S and S̄ · S′ of

K are connected with an edge if at least m − n processes p have the same states in S̄ · S(I l) and

S̄ · S′(I l). Now we color each vertex S̄ · S of K with val(S̄ · S).

Claim 12 Vertices of K are colored 0 or 1, and K has at least one vertex of color 0 and at least

one vertex of color 1.

Proof of Claim 12. Immediate from the definition of K. ut

Now we show that K is connected. By contradiction, assume that K consists of two or more

connected components. Let K0 be any connected component of K and K1 = K−K0. Note that for

any two vertices S ∈ K0 and S′ ∈ K1, there are at most m − n − 1 processes that have the same

states in S(I l) and S′(I l). We establish a contradiction by showing consensus can be solved among

n + 1 processes using registers and objects of type T .

Claim 13 There is an algorithm that solves n-resilient weak consensus among m processes using

registers and one object of type T , initialized to σX .

Proof of Claim 13. Let X, an object of type T , be initialized to σX . Every process p ∈ U executes

one step of ConsD determined by p’s state in S̄(I l) (by the definition of γ, in this step, p accesses

X). Process p writes its resulting state (a view) in register Yp and then keeps collecting registers

{Yq}q∈Π until at least m − n distinct views are collected. If the collected views belong to a state

S(I l) such that S ∈ K0, then p decides 0. Otherwise, p decides 1.

Termination is ensured as long as not more than n processes fail. Since any m−n distinct views

identify to which component the resulting state belongs, Agreement is satisfied. Non-Triviality

follows from the fact that K0 and K1 are not empty. ut

Claim 14 There is an algorithm that solves weak consensus among n+1 processes using registers,

test-and-set objects, and one object of type T , initialized to σX .

Proof of Claim 14. Let A′ be an algorithm that solves n-resilient weak consensus among set U of

m processes, q1, q2, . . . , qm, using registers and one objects of type T , initialized to σX (by Claim 13,

such an algorithm exists). In Figure 5, we describe an algorithm that solves weak consensus among

n + 1 processes p1, p2, . . . , pn+1 using registers, test-and-set objects and one object of type T ,

initialized to σX .

19

Initially:

∀qj ∈ U , Zj contains the initial state of A′(qj)

X and {Yj}qj∈U are as in the initial state of A′

Procedure weakConsensus():

1: repeat

2: qj ← 〈 the next process in U in a fair order 〉
3: 〈 the current state of qj 〉 ← Zj

4: if 〈 Tj .test-and-set() = 0 〉
5: then { p wins Tj }
6: perform one step of qj defined by A′

7: Zj ← 〈 the new state of qj 〉
8: Tj .reset() { reset Tj }
9: until 〈 qj decides a value v in its current state 〉
10: return v

Fig. 5. Simulating m processes with registers and test-and-set objects: process pi

In the algorithm, by employing the technique of [5], we make processes p1, p2, . . . , pn+1 simulate

processes q1, q2, . . . , qm running algorithm A′. For this, each process pi attempts to perform steps

of all m processes q1, q2, . . . , qm in a “fair” fashion, so that every simulated process qj gets infinitely

many chances to get its steps of A′ performed.

To prevent multiple processes from performing the same step of a simulated process qj , we

require that a process gain exclusive access to qj before performing qj ’s steps. This is implemented

by associating with qj a test-and-set object Tj . When a process pi is about to perform a step of A′

prescribed for a simulated process qj , it first performs a test-and-set operation on Tj . If pi wins Tj

(i.e., Tj .test-and-set() returns 0), then pi gets the current simulated state of qj stored in register

Zj , performs the next step of qj defined by A′ and updates the state of qj in Zj . Then pi resets Tj

so that some other process could perform the next step of qj . If pi loses Tj (i.e., Tj .test-and-set()

returns 1), then pi moves on to the next simulated process in a fair fashion. If in its simulated state,

qj decides v, then pi returns v.

Note that at any time, pi is preventing at most one simulated process from being accessed by

other processes. Hence, a crash of pi can make at most one simulated process inaccessible. Thus,

even if n processes crash, the remaining process will still be able to simulate infinitely many steps

of at least m−n simulated processes. Thus, the algorithm of Figure 5 simulates runs of A′ in which

at most n processes are faulty. Since A′ solves n-resilient weak consensus, our algorithm satisfies

the Termination and Agreement properties of weak consensus.

Now we show that our algorithm satisfies Non-Triviality. For this, we put some additional

restrictions on the fair order in which processes p1 and p2 simulate the steps of processes in U . Let

20

R0 be a run of A′ in which 0 is decided and R1 be a run of A′ in which 1 is decided (these runs

exist, since A′ satisfies Non-Triviality of weak consensus). In our algorithm, p1 cyclically simulates

the steps of processes in U in the order determined by R0. Respectively, p2 cyclically simulates the

steps of processes in U in the order determined by R1. Hence, if p1 is the only correct process, then

p1 eventually decides 0. Respectively, if p2 is the only correct process, then p2 decides 1. Thus, the

Non-Triviality property of weak consensus is ensured. ut

By Claim 14 and Lemma 4, we can solve consensus among n+1 processes using registers, test-and-

set objects, and one object of type T , initialized to σX . By Lemma 1, we can solve consensus among

n + 1 processes using only registers and objects of type T , initialized to σX . By the construction,

σX (the state of X in S̄(I l)) is reachable. By Lemma 2, {T} solves consensus among n+1 processes

— a contradiction with the assumption that cons(T) ≤ n.

Thus, K is connected. By Claim 12, there are at least two vertices S̄ · S and S̄ · S′ in E of

different colors, connected with an edge. Thus, there is a set W of |U | − n process that have the

same states in S̄ · S(I l) and S̄ · S′(I l), and we have the lemma. 2

5.7 Critical index

We say that index l ∈ {1, 2, . . . , k} is critical in P if either ΥP,l contains a decision gadget or the

root of ΥP,l−1 is 0-valent, and the root of ΥP,l is 1-valent. In the first case, we say that l is bivalent

critical. In the second case, we say that l is univalent critical.

Lemma 15 Let correct(F) ⊆ P ⊆ Π. There exists a critical index in P .

Proof. By Validity of consensus, ΥP,0 is 0-valent and ΥP,k is 1-valent. Hence, there exists l ∈
{1, 2, . . . , k} such that the root of ΥP,l−1 is 0-valent and the root of ΥP,l is either 1-valent or biva-

lent. If the root of ΥP,l is 1-valent, l is univalent critical. If the root of ΥP,l is bivalent, by Lemma 7,

ΥP,l contains a decision gadget. Thus, l is critical. 2

5.8 Deciding sets

Instead of the notion of a deciding process used in [6], we introduce the notion of a deciding set

V ⊂ Π. The deciding set V of a complete decision gadget γ is defined as follows:

(1) Let γ be a fork defined by pivot S̄ and steps e and e′ of the same process q, such that S̄ · e and

S̄ · e′ are univalent vertices of ΥP,l of opposite valence.

Then V = {q}.

21

(2) Let γ be a complete hook defined by a pivot S̄, a step e of q, and a step e′ of q′ (q 6= q′).

By Lemma 10, there exists a process p ∈ {q, q′} and two vertices S0 and S1 in {S̄·e, S̄·e′·e, S̄·e·e′}
such that (a) S0 and S1 are univalent vertices of opposite valence, and (b) S0(I l) and S1(I l)

differ only in the state of p. Then we define the deciding set of γ as V = {p′} where p′ is the

smallest such process..

(3) Let γ be a complete rake defined by a pivot S̄, a participating set U , and a set of leaves E.

– If |U | ≤ n, then we define the deciding set of γ as V = U .

– If |U | ≥ n+1, then by Lemma 11 there is a set W ⊂ U of |U |−n “confused” processes such

that, for some S̄ · S and S̄ · S′ in E, processes in W have the same states in S̄ · S(I l) and

S̄·S′(I l), and val(S̄·S) 6= val(S̄·S′). Then we define the deciding set of γ as V = U−W ′ where

W ′ is the smallest such set (it is well-defined, since subsets U of can be totally ordered).

By the construction, in each case, V is a set of at most n processes. The following lemma uses the

assumption that type T is one-shot.

Lemma 16 The deciding set of a complete decision gadget contains at least one correct process.

Proof. There are two cases to consider:

(1) Let γ be a fork with leaves S0 and S1 and a deciding set {p}. The difference between S0(I l)

and S1(I l) consists only in the state of p. By Lemma 6, V = {p} includes exactly one correct

process.

(2) Let γ be a hook with a deciding set V = {p}. By Lemma 6, p is correct.

(3) Let γ be a complete rake defined by a pivot S̄, a participating set U , and a set of leaves E. Let

X be the object of type T accessed by steps of processes in U in S̄(I l). The following cases are

possible:

(3a) |U | ≤ n.

Assume, by contradiction, that all processes in deciding set V = U are faulty.

There exist two vertices S̄ · S0 and S̄ · S1 in E such that val(S̄ · S0) = 0 and val(S̄ · S1) = 1.

Since only processes in U take steps in S0 and S1 and each process p ∈ U accesses X in

S̄(I l), the difference between S̄(I l), S̄ · S0(I l) and S̄ · S1(I l) consists only in the states of

processes in U and object X.

By Lemma 5, there is a schedule S containing only steps of correct processes (and thus no

steps of processes in U) such that all correct processes have decided in S̄ ·S(I l) and, for any

S′ ∈ E, if S is applicable to S′(I l), then S′ · S is a vertex of ΥP,l.

Suppose that S applied to S̄(I l) accesses X, i.e., S′ has a prefix S′′ · (q, λ) such that S′′

applied to S̄(I l) does not access X and q accesses X in S̄(I l). Let S′ ∈ E. Since S′ and S̄

differ only in the states of processes in U and X, and S′′ includes no steps of processes in

22

X and, applied to S̄(I l), does not access X, S′′ · (q, λ) is applicable to S′, and q accesses X

in S′(I l). This contradicts the definition of γ.

Thus, S applied to S̄(I l) does not access X. Thus, S is also applicable to S̄ · S0(I l) and

S̄ · S1(I l). Thus, S̄ · S0 · S and S̄ · S1 · S are vertices of ΥP,l.

But no process in Π −U can distinguish S̄ · S(I l), S̄ · S0 · S(I l) and S̄ · S1 · S(I l). Thus, the

correct processes have decided the same values in these configurations — a contradiction.

(3b) |U | ≥ n + 1, i.e., U = Π. Let V = U − W be the deciding set of γ, i.e., processes in W

cannot distinguish S̄ · S0(I l) and S̄ · S1(I l), the vertices of ΥP,l of opposite valence. Thus,

the difference between S̄ · S0(I l) and S̄ · S1(I l) consists only in the states of processes in V

and object X.

By Lemma 5, there is a schedule S containing only steps of correct processes (and thus no

steps of processes in V) such that all correct processes have decided in S̄ · S0 · S(I l) and if

S is applicable to S̄ · S1 · S(I l), then S̄ · S1 · S is a vertex of ΥP,l.

Again, by the definition of γ, S applied to S̄ · S0(I l) does not access X. Hence, S is also

applicable to S̄ · S1(I l). Thus, S̄ · S1 · S is a vertex of ΥP,l.

But no process in Π − V can distinguish S̄ · S0 · S(I l) and S̄ · S1 · S(I l). Thus, the correct

processes have decided the same values in these configurations — a contradiction.

In each case, the deciding set V is of size at most n and contains at least one correct process. 2

5.9 The reduction algorithm

Theorem 17 Let T be any one-shot deterministic type, such that cons(T) ≤ n and 2 ≤ n. If a

failure detector D solves consensus using only registers and objects of type T , then Ωn � D.

Proof. The communication task presented in Figure 2 and the computation task presented in

Figure 6 constitute the reduction algorithm TD→Ωn . The current estimate of Ωn at process p is

stored in variable Ωn-outputp.

In the communication task described in Figure 2, every process p maintains an ever-growing

DAG Gp.

In the computation task described in Figure 6, for each P ⊆ Π and each l ∈ {0, . . . , k}, process

p constructs a finite simulation tree ΥP,l
p induced by P , I l and Gp and tags each vertex S of ΥP,l

p

with a set of decisions taken in all S′(I l) such that S′ is a descendant of S in ΥP,l
p . Initially P = Π.

Let P have a critical index and let l be the smallest critical index in P . If l is univalent, then

p outputs {pl} (line 12). If l is bivalent, and the smallest decision gadget in ΥP,l
p , denoted γ, is

complete, then p outputs the deciding set of γ (line 16). If l is bivalent, and γ is incomplete, then

p removes missing (in γ) processes from P and proceeds to the next iteration (line 19).

23

Initially:

Ωn-outputp ← {p}

1: while true do

2: for all P ⊆ Π and l ∈ {0, 1, . . . , k} do

3: Υ P,l
p ← simulation tree induced by P , Il and Gp

4: V ← ∅
5: P ← Π

6: repeat

7: if P has no critical index then

8: V ← {p}
9: else

10: let l be the smallest critical index of P

11: if l is univalent critical then

12: V ← {pl}
13: else

14: γ ← the smallest decision gadget in Υ P,l
p

15: if γ is complete then

16: V ← the deciding set of γ

17: else

18: let W be the set of missing processes in γ

19: P ← P −W

20: until V 6= ∅ or P = ∅

21: if P = ∅ then V ← {p}
22: Ωn-outputp ← V

Fig. 6. Extracting Ωn: process p

24

Note that the “repeat-until” cycle in lines 6–20 is non-blocking. Indeed, p eventually sets V to

a non-empty value (in lines 8, 12 or 16), or sets P to ∅ in line 19. In both cases, p eventually exits

the “repeat-until” cycle.

Recall that finite simulation trees ΥP,l
p at all correct processes p tend to the same infinite

simulation tree ΥP,l. Let F be the current failure pattern.

Claim 18 There exist P ∗ ⊆ Π, correct(F) ⊆ P ∗, such that there is a time after which every correct

process p has P = P ∗ in line 21.

Proof of Claim 18. By Lemma 15, every P ⊆ Π such that correct(F) ⊆ P has a critical index.

Thus, there is a time after which the correct processes compute the same critical index l in every

such P , and if l is bivalent, then the correct processes locate the same smallest (complete or

incomplete) decision gadget in ΥP,l.

By Lemma 8, there is a time after which whenever a correct process p reaches line 19, W ⊆
faulty(F). Thus, there is a time after which one of the following cases always holds:

(a) p exits the “repeat-until” cycle in line 12 after having located a univalent critical index in some

P such that correct(F) ⊆ P .

(b) p exits the “repeat-until” cycle in line 16 after having located a complete decision gadget in

univalent critical index in ΥP,l where P ⊆ Π and correct(F) ⊆ P .

(c) p reaches line 14 with P = correct(F).

In case (c), by Corollary 9, there is a time after which the smallest decision gadget in ΥP,l is

complete and p exits the “repeat-until” cycle in line 16. In all cases, there exists P ∗ ⊆ Π such that

correct(F) ⊆ P , and there is a time after which every correct process has P = P ∗ in line 21. ut

Thus, there exist P ⊆ Π and V ∗ 6= ∅ such that every correct process eventually reaches line 21 with

P = P ∗ and V = V ∗. Let l be the smallest critical index in P ∗. By the algorithm, the following

cases are possible:

(1) l is univalent critical. That is, the root of ΥP ∗,l−1 is 0-valent and the root of ΥP ∗,l is 1-valent. In

this case, eventually, every correct process p permanently outputs V ∗ = {pl}. I l−1 and I l differ

only in the state of process pl. By Lemma 5, pl is correct.

(2) l is bivalent critical. Moreover, the smallest decision gadget in ΥP ∗,l is complete. In this case,

eventually, every correct process p permanently outputs the deciding set V ∗ (of size at most

n) of the complete decision gadget. By Lemma 16, the deciding set of γ includes at least one

correct process.

In both cases, eventually, the correct processes agree on a set of at most n processes that include

at least one correct process. Thus, our reduction algorithm (Figures 2 and 6) emulates the output

25

of Ωn. 2

Theorem 17 and the algorithm of [21] imply the following:

Theorem 1. Let T be any one-shot deterministic type such that cons(T) = n and n ≥ 2. Then Ωn

is the weakest failure detector to solve consensus using registers and objects of type T .

As a corollary of Theorem 1, assuming that only registers are available, we obtain the following

result, stated in [18].

Corollary 19 Ω is the weakest failure detector to solve consensus using only registers.

6 Boosting object resilience

So far we considered systems in which processes communicate through wait-free linearizable im-

plementations of shared objects. Every process can complete every operation on a wait-free object

in a finite number of its own steps, regardless of the behavior of other processes. In contrast, in

this section we consider t-resilient linearizable implementations (we will simply call these t-resilient

objects). These implementations only guarantee that a process completes its operation, as long as

no more than t processes crash, where t is a specified parameter. If more than t processes crash, no

operation on a t-resilient implementation is obliged to return.

It is impossible to solve (t + 1)-resilient consensus among n > t + 1 processes using only wait-

free registers and t-resilient objects. An indirect proof that of this statement, based on the results

of [5, 13, 17], appeared in [11]. A direct self-contained proof of this statement appeared in [2], and

then it was extended to more general classes of distributed services in [3].

Not surprisingly, this impossibility can be circumvented by augmenting the system with a

failure detector abstraction. Assume that k processes communicate through wait-free registers and t-

resilient objects. In this section, we show that Ωt+1 is the weakest failure detector to solve consensus

in this system.

The following two lemmas are restatements in our terminology of the “necessity” part and the

“sufficiency” part of Theorem 4.1 in [5], respectively.

Lemma 1. Let t and n be integers, 0 ≤ t, 1 ≤ n. Then there exists a t-resilient n-process imple-

mentation of consensus from wait-free (t + 1)-process consensus objects and wait-free registers.1

Lemma 2. Let t and n be integers, 2 ≤ t < n. Then there exists a wait-free (t + 1)-process

implementation of consensus from t-resilient n-process consensus objects and wait-free registers.

The following result follows easily from Herlihy’s universal construction [13]:
1 Theorem 4.1 in [5] assumes 2 ≤ t. However, the necessity part of the theorem requires only 0 ≤ t.

26

Lemma 3. Let t and n be integers, 0 ≤ t, 1 ≤ n. Let T be any type. Then there exists a t-resilient

n-process implementation of an atomic object of type T from t-resilient n-process consensus objects

and wait-free registers.

The following result is shown in [17]:

Lemma 4. Let n be integer, n ≥ 0. There does not exist a wait-free (n+1)-process implementation

of consensus from wait-free n-process consensus objects and wait-free registers.

Our result on boosting the consensus power of one-shot deterministic types implies the following

result:

Theorem 20 Let t be any integer, t ≥ 2. Let T be any type (not necessarily one-shot deterministic),

such that registers and t-resilient objects of type T solve t-resilient consensus. Ωt+1 is then the

weakest failure detector to solve consensus using wait-free registers and t-resilient objects of type T .

Proof. By Lemma 2, (t + 1)-process consensus can be implemented from wait-free registers and

t-resilient objects of type T . The algorithm of [21] implements wait-free consensus using registers,

(t + 1)-process consensus objects and Ωt+1. This gives the sufficient part of the theorem.

Assume now that a failure detector D solves consensus using registers and t-resilient objects of

type T . By Lemmas 1, 2 and 3 any t-resilient object can be implemented from wait-free registers and

(t+1)-process consensus objects. By Lemma 4, cons((t + 1)-process consensus) ≤ t+1. Furthermore,

(t + 1)-process consensus is a one-shot deterministic type.

Thus, D solves consensus using registers and objects of one-shot deterministic of consensus

power t + 1. By Theorem 17, Ωt+1 � D. This gives the necessary part of the theorem. 2

References

1. Y. Afek, D. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faulty shared memory. In Proceedings

of the 11th Annual ACM Symposium on Principles of Distributed Computing (PODC), 1992.

2. P. Attie, N. A. Lynch, and S. Rajsbaum. Boosting fault-tolerance in asynchronous message passing systems is

impossible. Technical report, MIT Laboratory for Computer Science, MIT-LCS-TR-877, 2002.

3. P. C. Attie, R. Guerraoui, P. Kouznetsov, N. A. Lynch, and S. Rajsbaum. The impossibility of boosting distributed

service resilience. In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems

(ICDCS’05), June 2005. Available at http://theory.lcs.mit.edu/tds/papers/Attie/boosting-tr.ps.

4. E. Borowsky, E. Gafni, and Y. Afek. Consensus power makes (some) sense! In Proceedings of the 13th Annual

ACM Symposium on Principles of Distributed Computing (PODC), pages 363–372, August 1994.

5. T. D. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Wait-freedom vs. t-resiliency and the robustness of

wait-free hierarchies. In Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing

(PODC), pages 334–343, August 1994.

6. T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal of the

ACM, 43(4):685–722, July 1996.

27

7. T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,

43(2):225–267, March 1996.

8. D. Dolev, C. Dwork, and L. J. Stockmeyer. On the minimal synchronism needed for distributed consensus.

Journal of the ACM, 34(1):77–97, January 1987.

9. C. Dwork, N. A. Lynch, and L. J. Stockmeyer. Consensus in the presence of partial synchrony. Journal of the

ACM, 35(2):288 – 323, April 1988.

10. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty process.

Journal of the ACM, 32(3):374–382, April 1985.

11. R. Guerraoui and P. Kouznetsov. On failure detectors and type boosters. In Proceedings of the 17th International

Symposium on Distributed Computing (DISC’03), October 2003.

12. R. Guerraoui and P. Kouznetsov. The gap in circumventing the consensus impossibility. Technical report, EPFL,

ID:IC/2004/28, January 2004. Available at http://icwww.epfl.ch/publications/.

13. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems, 13(1):124–

149, January 1991.

14. M. Herlihy and E. Ruppert. On the existence of booster types. In Proceedings of the 41st IEEE Symposium on

Foundations of Computer Science (FOCS), pages 653–663, 2000.

15. M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM Transactions

on Programming Languages and Systems, 12(3):463–492, June 1990.

16. P. Jayanti. Robust wait-free hierarchies. Journal of the ACM, 44(4):592–614, 1997.

17. P. Jayanti and S. Toueg. Some results on the impossibility, universability and decidability of consensus. In

Proceedings of the 6th International Workshop on Distributed Algorithms (WDAG’92), volume 647 of LNCS.

Springer Verlag, 1992.

18. W.-K. Lo and V. Hadzilacos. Using failure detectors to solve consensus in asynchronous shared-memory systems.

In Proceedings of the 8th International Workshop on Distributed Algorithms (WDAG’94), volume 857 of LNCS,

pages 280–295. Springer Verlag, 1994.

19. W.-K. Lo and V. Hadzilacos. All of us are smarter than any of us: Nondeterministic wait-free hierarchies are not

robust. SIAM Journal of Computing, 30(3):689–728, 2000.

20. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous processes.

Advances in Computing Research, pages 163–183, 1987.

21. G. Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th Annual ACM Symposium on

Principles of Distributed Computing (PODC), pages 100–109, August 1995.

22. E. Ruppert. Determining consensus numbers. SIAM Journal of Computing, 30(4):1156–1168, 2000.

28

