
The weakest failure detectors to solve
Quittable Consensus and Non-Blocking Atomic Commit

Rachid Guerraoui Vassos Hadzilacos Petr Kuznetsov Sam Toueg

July 2, 2012

Abstract

We definequittable consensus, a natural variation of the consensus problem, where processes have the
option to agree on “quit” if failures occur, and we relate this problem to the well-known problem of non-
blocking atomic commit. We then determine the weakest failure detectors for these two problems in all
environments, regardless of the number of faulty processes.

1 Introduction

Non-blocking atomic commit (NBAC) is a well-known problem that arises in distributed transaction process-
ing [23]. Informally, the set of processes that participatein a transaction must agree on whether to commit or
abort that transaction. Initially each process votes Yes (“I am willing to commit”) or No (“we must abort”),
and eventually processes must reach a common decision, Commit or Abort. The decision to Commit can be
reached only if all processes voted Yes. Furthermore, if allprocesses voted Yes and no failure occurs, then the
decisionmustbe Commit. NBAC is similar to the classical problem of consensus, where each process initially
proposes a value, and eventually processes must reach a common decision on one of the proposed values.

It is well-known that NBAC and consensus are unsolvable in asynchronous systems with process crashes
(even if communication is reliable) [20]. One way to circumvent such impossibility results is through the use
of unreliable failure detectors[10]. Intuitively, a failure detector provides each process with some (possibly
incomplete and inaccurate) information about failures, e.g., a list of processes currently suspected to have
crashed.

Failure detectors can be compared by “reduction”: Intuitively, failure detectorD is weaker thanfailure
detectorD′ if there is an algorithm that transformsD′ into D. Note that ifD is weaker thanD′, any problem
that can be solved withD can also be solved withD′. For any problemP , a natural question is to determine the
weakestfailure detector to solveP , i.e., to determine the failure detectorD∗ such that (a) there is an algorithm
that usesD∗ to solveP , and (b)D∗ is weaker than any failure detectorD that can be used to solveP . Finding
the weakest failure detector to solve a problemP amounts to determining the minimum amount of information
about failures that is necessary to solveP . It also provides important intuition about systems in which P is
solvable:P is solvable inany system where the weakest failure detector forP can be implemented. Such a
system may be defined in terms of partial synchrony assumptions, or in terms of other assumptions, e.g., the
number and timing of failures.

Chandraet al. [9] determined the weakest failure detector to solve consensus in systems with a majority of
correct processes, while Delporteet al. [15] generalized this result to all systems, regardless of the number of
correct processes.

As with consensus, failure detectors can be used to solve NBAC [24, 22]. It was an open problem, however,
whether there is a weakest failure detector to solve NBAC and, if so, what that failure detector is. In this paper
we resolve this problem. To do so,

1

(a) we define a natural variation of consensus, calledquittable consensus(QC);

(b) we establish a close relationship between QC and NBAC;

(c) we determine the weakest failure detector to solve QC; and

(d) we use (b) and (c) to derive the weakest failure detector to solve NBAC.

Informally, QC is like consensus except that, in case a failure occurs, processes have the option (but not
the obligation) to agree on a special value Q (for “quit”). This weakening of consensus is appropriate for
applications where, when a failure occurs, processes are allowed to agree on that fact (rather than on an input
value) and resort to a default action.

Despite their apparent similarity, QC and NBAC are different in important ways. In NBAC the two possible
input values Yes and No are not symmetric: A single vote of No is enough to force the decision to abort. In
contrast, in QC (as in consensus) no input value has a privileged role. Another way in which the two problems
differ is that the semantics of the decision to abort (in NBAC) and the decision to quit (in QC) are different. In
NBAC the decision to abort is sometimes inevitable (e.g., ifa process crashes before voting); in contrast, in QC
the decision to quit is never inevitable, it is only an option. Moreover, in NBAC the decision to abort signifies
that either a failure occurredor someone voted No; in contrast, in QC the decision to quit is allowed only if a
failure occurred.

We now describe in more detail our results, which involve thefollowing three failure detectors.

• The leader failure detectorΩ outputs the id of a process at each process. If there is a correct process,
then there is a time after whichΩ outputs the id of the same correct process at all correct processes [9].

• The quorum failure detectorΣ outputs a set of processes at each process. Any two sets (output at any
times and by any processes) intersect, and eventually everyset output at any correct process consists of
only correct processes [15].

• The failure signal failure detectorFS outputsgreen or red at each process. As long as there are no
failures,FS must outputgreen at every process; once a failure occurs, and only if it does,FS must
eventually outputred permanently at every correct process [12, 24].

We show that there is a weakest failure detector to solve QC. This failure detector, which we denoteΨ, is
closely related to the weakest failure detector to solve consensus, namely(Ω,Σ) [15],1 and toFS . Intuitively,
Ψ behaves as follows: For an initial period of time the output of Ψ at each process is⊥. Eventually, however,
Ψ behaves either like the failure detector(Ω,Σ) at all correct processes or like the failure detectorFS at all
correct processes. The switch from⊥ to (Ω,Σ) or FS need not occur simultaneously at all processes, but the
same choice is made by all processes. Furthermore,Ψ can switch from⊥ to FS only if a failure occurred.
This result has an intuitively appealing interpretation: To solve QC, a failure detector must eventually either
truthfully inform all the correct processes that a failure occurred, in which case they can decide Q, or it must be
powerful enough to allow processes to solve consensus on their proposed values. This matches the behaviour
of Ψ.

We also prove that NBAC is in some sense equivalent to QC modulo the failure detectorFS. Intuitively,
(a) givenFS , any QC algorithm can be converted to an algorithm for NBAC, and (b) any algorithm for NBAC
can be converted to an algorithm for QC, and can also be used toimplementFS .

Using this equivalence we prove that(Ψ,FS) is the weakest failure detector to solve NBAC. This result
applies to any system, regardless of the number of faulty processes.

1If D andD′ are failure detectors,(D,D′) is the failure detector that outputs a vector with two components, the first being the
output ofD and the second being the output ofD′.

2

Related work. The model of asynchronous systems augmented with failure detectors was introduced in [10]
as one way to circumvent the impossibility result of [20]. Chandraet. al proved thatΩ is the weakest failure
detector to solve consensus in systems with a majority of correct processes [9]. Delporteet. algeneralized this
result to prove that(Ω,Σ) is the weakest failure detector to solve consensus in any system, regardless of the
number of correct processes [15]. Failure detectors have been used to capture the minimum information about
failures that is necessary to solve other basic problems in distributed computing, such as set agreement [18, 37],
mutual exclusion [17], boosting obstruction-freedom to wait-freedom [25], implementing an atomic register in
message-passing systems [15], and implementing uniform reliable broadcast [5, 29] in systems with lossy com-
munication links. It is worth noting that the result thatΩ is the weakest failure detector for solving consensus
led to the discovery of several consensus algorithms for other important models, in particular, for several weak
models ofpartial synchrony(e.g., see [2, 1, 33, 30, 6]). This was done by implementingΩ in such systems,
and then combining this implementation with any algorithm that solves consensus usingΩ, thus exploiting the
modularity of the failure detector approach.

The NBAC problem has been studied extensively in the contextof transaction processing [23, 36]. Its
relation to consensus was first explored in [28]. Charron-Bost and Toueg [12] and Guerraoui [24] showed that
despite some apparent similarities, in asynchronous systems NBAC and consensus are in general incomparable
— i.e., a solution for one problem cannot be used to solve the other.2 The problem of determining the weakest
failure detector to solve NBAC was explored and settled in special settings. Fromentinet al. [22] determine
that to solve NBAC betweeneverypair of processes in the system, one needs aperfect failure detector[10].
Guerraoui and Kouznetsov [26] determine the weakest failure detector for NBAC for a restricted class of failure
detectors. From results of [12] and [24] it follows that in the special case where at most one process may crash,
FS is the weakest failure detector to solve NBAC. The general question, however, remained open until our
results appeared, in preliminary form, in [16].3

Quittable consensus is closely related to thedetectable broadcastproblem introduced and studied by Fitziet
al. in a different setting, namely, synchronous systems with arbitrary process failures [21]. Roughly speaking,
in the detectable broadcast problem, correct processes either agree on the broadcast value or, if failures occur,
they may agree to “reject” the broadcast; furthermore, if any correct process rejects the broadcast, then the
“adversary gets no information about the sender’s input” — aprivacy requirement that is relevant in the case of
arbitrary failures.

Quittable consensus is also related to theabortable consensusproblem that Chen defined in the context of
message-passing systems with probabilistic message delays and losses [13]. Roughly speaking, in abortable
consensus some processes are allowed to abort when the behavior of the system degenerates (e.g., there are
many process failures or message delays or losses). In contrast to quittable consensus, however, abortable
consensus does not require agreement: some processes may decide the same value while others abort.

Other weakenings of the consensus problem were studied in the context of obstruction-free object imple-
mentations in shared-memory systems. For example, Attiyaet al. defined objects that may reply with a special
value “pause” or “fail” to some processes if there is step contention [7]. Similarly, Aguileraet al. defined
abortable objects that may return “abort” in the event of interval contention [3]. In both works, when the object
is consensus, agreement in not required: some processes may“pause” or “abort” while others agree on the same
value. Furthermore, pausing, failing, or aborting is allowed when there is contention, not failures. In contrast,
in quittable consensus the decision to quit must be agreed byall processes and is allowed only in the case of
failures.

Roadmap. The rest of the paper is organized as follows: In Section 2 we review the model of computation.
Sections 3 and 4 contain the precise specifications of the failure detectors used in this paper, and of QC and

2An exception is the case where at most one process may fail. Inthis case, any algorithm that solves NBAC can be converted into
one that solves consensus, but the reverse does not hold.

3That paper contained additional results by Delporte, Fauconnier and Guerraoui, which have since appeared in full form in [15].

3

NBAC, the two problems we consider. In Section 5 we show that QC and NBAC are closely related. In that
section we also identify the weakest failure detectorΨ to solve QC and prove that(Ψ,FS) is the weakest
failure detector to solve NBAC. In Section 6 we show thatΨ is sufficient to solve QC. Sections 7 and 8 contain
the proof thatΨ is necessary to solve QC. We conclude with some final remarks in Section 9.

2 The model

Our model of asynchronous computation is the one described in [9], which augments the model of Fischer,
Lynch, and Paterson [20] with failure detectors. Henceforth, we assume a discrete global clock to which the
processes do not have access. The range of this clock’s ticksisN.

2.1 Systems

We consider distributed message-passing systems with a setof n ≥ 2 processesΠ = {1, 2, . . . , n}. Processes
execute steps of computation asynchronously, i.e., there is no bound on the delay between steps. (Section 2.4
describes what a process does in each step.) Each pair of processes are connected by a reliable link. The links
transmit messages with finite but unbounded delay. They are modeled as a setM , called themessage buffer,
that contains triples of the form(p, data, q) indicating thatp has sent the messagedata to q, andq has not yet
received it. We assume that each message sent by a processp to a processq is unique; this can be guaranteed
by having the sender include a counter with each message.

2.2 Failures, failure patterns and environments

We consider crash failures only: processes fail only by halting prematurely. Afailure pattern is a function
F : N → 2Π, whereF (t) is the set of processes that have crashed through timet. Since processes never
recover from crashes,F (t) ⊆ F (t+ 1). Let faulty(F) =

⋃

t∈N
F (t) be the set of faulty processes in a failure

patternF ; andcorrect (F) = Π− faulty(F) be the set of correct processes inF . When the failure patternF is
clear from the context, we say that processp is correct if p ∈ correct(F), andp is faulty if p ∈ faulty(F).

An environment, denotedE , is a set of failure patterns. Intuitively, an environmentE describes the number
and timing of failures that can occur in the system. Thus, a result that applies to all environments is one that
holds regardless of the number and timing of failures. We denote byE∗ the set ofall failure patterns. Intuitively,
in a system with environmentE∗ each process may crash, and it may do so any time.

2.3 Failure detectors

A failure detector historyH with rangeR describes the behavior of a failure detector during an execution.
Formally, it is a functionH : Π× N→ R, whereH(p, t) is the value output by the failure detector module of
processp at timet.

A failure detectorD with rangeR is a function that maps every failure patternF to a nonempty set of
failure detector histories with rangeR. D(F) is the set of all possible failure detector histories that may be
output byD in a failure patternF . Typically we specify a failure detector by stating the properties that its
histories satisfy.

Given two failure detectorsD andD′, we denote by(D,D′) the failure detector whose output is an ordered
pair in which the first element corresponds to an output ofD, and the second element corresponds to an output
ofD′. More precisely, ifR andR′ are the ranges ofD andD′, respectively, then the range of(D,D′) isR×R′.
For all failure patternsF ,

(D,D′)(F) =
{

H ′′| ∃H ∈ D(F), ∃H ′ ∈ D′(F), ∀p ∈ Π, ∀t ∈ N : H ′′(p, t) =
(

H(p, t),H ′(p, t)
)}

4

2.4 Algorithms

An algorithmA is modeled as a collection ofn deterministic automata. There is an automatonA(p) for each
processp. Computation proceeds in steps of these automata. In each step, a processp atomically

• receives a single messagem from the message bufferM , or the empty messageλ;

• queries its local failure detector module and receives a valued;

• changes its state; and

• sends a message to every process.

The state transition and the messages thatp sends are all uniquely determined by the automatonA(p), the state
of p at the beginning of the step, the received messagem, and the failure detector valued. Formally, a step is a
tuplee = (p,m, d,A), wherep is the process taking stepe, m is the message received byp duringe, d is the
failure detector value seen byp in e, andA is the algorithm being executed.

The message received in a step is nondeterministically selected fromM ∪{λ}. This reflects the asynchrony
of the communication channels: a processp may receive the empty message despite the existence of unreceived
messages addressed top.

We assume that each processp has a read-onlyinput variable, denotedIN p, and a write-onceoutput
variable, denotedOUT p. Technically, these variables are components of the statesof the automatonA(p). In
each initial state ofA(p), the input variableIN p has some value in{0, 1}∗, and the output variableOUT p is
initialized to the special value⊥ 6∈ {0, 1}∗ (to denote that it was not yet written byp).

2.5 Configurations

A configurationof an algorithmA is a pair(s,M), wheres is a function that maps each processp to a state of
A(p), andM is the message buffer. Recall thatM is a set of triples(p, data, q), wherep sentdata to q, which
has not yet received it. Aninitial configuration of algorithmA is a pair(s,M), whereM = ∅ ands(p) is an
initial state of the automatonA(p).

A step(p,m, d,A) is applicableto a configurationC = (s,M) if and only if m ∈ M ∪ {λ}. If e is a
step applicable to configurationC, e(C) denotes the configuration that results when we applye to C. This is
uniquely determined by the automatonA(p) of the processp that takes stepe.

2.6 Schedules

A scheduleS of an algorithmA is a finite or infinite sequence of steps ofA. We denote byparticipants(S)
the set of processes that take at least one step in scheduleS. The ith step in scheduleS is denoted byS[i].
A scheduleS is applicable to a configurationC if S is the empty schedule, orS[1] is applicable toC, S[2]
is applicable toS[1](C), etc. IfS is finite and is applicable toC, S(C) denotes the configuration that results
when we apply scheduleS to configurationC.

LetS be a schedule applicable to an initial configurationI of an algorithmA, and leti, j be positive integers
such thati, j ≤ |S|. We say that stepi causally precedesstepj in S with respect toI if and only if one of the
following holds [32]:

• S[i] andS[j] are steps of the same process andi < j;

• S[i] is a step in which a messagem is sent andS[j] is a step in whichm is received, i.e., stepS[i] applied
to configurationS[1] · · · S[i− 1](I) results in the sending ofm andS[j] = (−,m,−,A);4 or

4The symbol “−” in a field of a tuple indicates an arbitrary permissible value for that field of the tuple. We use this convention
throughout the paper.

5

• there is a positive integerk ≤ |S| such that stepi causally precedes stepk, and stepk causally precedes
stepj in S with respect toI.

Note that ifS[i] andS[j] are steps involving the sending and receipt of the same message m, then i < j
(because ifj < i, thenS[j] would be receivingm beforem is sent inS[i], contradicting the fact thatS is
applicable toI). This implies:

Observation 1 If stepi causally precedes stepj in S with respect toI theni < j.

2.7 Runs

A run of algorithmA using failure detectorD in environmentE is a tupleR = (F,H, I, S, T) whereF is a
failure pattern inE , H is a failure detector history inD(F), I is an initial configuration ofA, S is a schedule
of A, andT is a list of times inN (informally, T [i] is the time when stepS[i] is taken) such that the following
hold:

(1) S is applicable toI.

(2) S andT are both finite sequences of the same length, or are both infinite sequences.

(3) For all positive integersi ≤ |S|, if S[i] = (p,−, d,A), thenp /∈ F (T [i]) andd = H(p, T [i]).

(4) For all positive integersi < j ≤ |S|, T [i] ≤ T [j].

(5) For all positive integersi, j ≤ |S|, if stepi causally precedes stepj in S with respect toI thenT [i] < T [j].

Property (3) states that a process does not take steps after crashing, and that the failure detector value seen
in a step is the one dictated by the failure detector historyH. Property (4) states that the sequence of times
when processes take steps in a schedule is nondecreasing, and property (5) states that these times respect causal
precedence.

A run whose schedule is finite (respectively, infinite) is called a finite (respectively, infinite) run. Anadmis-
sible runof algorithmA using failure detectorD in environmentE is an infinite runR = (F,H, I, S, T) of A
usingD in E with two additional properties:

(6) Every correct process takes an infinite number of steps inS.

(7) Each message sent to a correct process is eventually received. More precisely, for every finite prefix
S′ of S, and everyq ∈ correct(F), if the message buffer in configurationS′(I) contains a message
m = (−,−, q), then for somei ∈ N, S[i] = (q,m,−,A).

The input and output of a runR = (F,H, I, S, T) of an algorithmA are defined as follows. Theinput
of R, denotedI(R), is the vector(I1, . . . ,In) whereIp is the value of the input variableIN p in the initial
configurationI of R. Theoutput ofR, denotedO(R), is the vector(O1, . . . ,On) whereOp is the pair(v, t)
such thatp writesv in its output variableOUT p at timet in runR (Op = ⊥ if p never writesOUT p in runR).

2.8 Problems

We considerinput/output problems, i.e., problems where each process has an input value and produces an output
value. We can specify such a problemP as a set of triples of the form(F,I,O): intuitively, (F,I,O) ∈ P if
and only if, when the failure pattern isF and the processes’ input isI, the processes’ outputO is acceptable,
i.e., it “satisfies” problemP . More precisely, a problemP is a set of triples(F,I,O) whereF is a failure
pattern,I is a vector(I1, . . . ,In) of input values (each one in{0, 1}∗), andO is a vector(O1, . . . ,On) where
eachOp is either⊥ or a pair(v, t) such thatv is an output value in{0, 1}∗ andt is a time inN. We say thatI
is an input vector ofP if (F,I,O) ∈ P for someF andO.

6

2.9 Solving a problem

Let P be a problem,A an algorithm,D a failure detector, andE an environment. We say that:

• A run R = (F,H, I, S, T) of A usingD in E satisfiesP if and only if (F,I(R),O(R)) ∈ P , or there is
noO such that(F,I(R),O) ∈ P .5

• A solvesP usingD in E if and only if

(a) every admissible runR of A usingD in E satisfiesP , and

(b) for every input vectorI = (I1, . . . ,In) of P , there is an initial configurationI ofA with this input
(i.e., in configurationI we haveIN p = Ip for every processp).

• D can be used to solveP in E (or simplyP can be solved withD in E) if and only if there is an algorithm
that solvesP usingD in E .

2.10 Comparing failure detectors

Intuitively, a failure detectorD′ is weaker than a failure detectorD if processes can useD to emulateD′; so if
they can solve a problem withD′, they can also solve it withD. We say that processes can useD to emulate
D′ in an environmentE if there is an algorithm that transformsD to D′ in E as follows. The transformation
algorithm, denotedTD→D′, usesD to maintain a variableD′-outputp at every processp; D′-outputp functions
as the output of the emulated failure detectorD′ at p. For each admissible runR of TD→D′, let OR be the
history of all theD′-output variables inR; i.e.,OR(p, t) is the value ofD′-outputp at timet in R. Algorithm
TD→D′ transformsD to D′ in environmentE if and only if for every admissible runR = (F,H, I, S, T) of
TD→D′ usingD in E , OR ∈ D

′(F).
We say thatD′ is weaker thanD in E if there is an algorithmTD→D′ that transformsD toD′ in E . It is easy

to see that ifD′ is weaker thanD in E , then every problem that can be solved withD′ in E can also be solved
with D in E . We say that two failure detectors areequivalent inE if each is weaker than the other inE .

2.11 Weakest failure detector

A failure detectorD∗ is theweakest failure detector to solve problemP in environmentE if and only if:

Sufficiency. D∗ can be used to solveP in E .

Necessity.For any failure detectorD, if D can be used to solveP in E thenD∗ is weaker thanD in E .

Note that there may be several distinct failure detectors that are the weakest to solve a problemP . It is easy
to see, however, that they are all equivalent: IfD andD′ are two failures detectors that are weakest to solve the
same problemP , D′ can be used to solveP (by sufficiency ofD′) and soD is weaker thanD′ (by necessity
of D). Symmetrically,D′ is weaker thanD, and soD andD′ are equivalent. For this reason, we speak ofthe
weakest, rather thana weakest failure detector to solveP .

3 The failure detectors used in this paper

We now define the failure detectorsΩ, Σ, FS, andΨ that we informally described in Section 1.

5Intuitively, this means that when the failure pattern isF and the input isI(R) the problemP does not care what the output is.

7

• At each process, theleader failure detectorΩ outputs the id of a process; furthermore, if a correct process
exists, then there is a time after whichΩ outputs the id of the same correct process at every correct process.
Formally:

The range ofΩ isΠ. For every failure patternF ,

Ω(F) =
{

H | correct(F) 6= ∅ ⇒
(

∃q ∈ correct(F), ∀p ∈ correct (F), ∃t ∈ N, ∀t′ ≥ t : H(p, t′) = q
)}

• The quorum failure detectorΣ outputs a set of processes at each process. Any two sets output at any
times and by any processes intersect, and eventually every set output at any correct process consists of
only correct processes. Formally:

The range ofΣ is 2Π. For every failure patternF ,

Σ(F) =
{

H |
(

∀p, p′ ∈ Π, ∀t, t′ ∈ N : H(p, t) ∩H(p′, t′) 6= ∅
)

∧
(

∀p ∈ correct (F), ∃t ∈ N, ∀t′ ≥ t : H(p, t′) ⊆ correct (F)
)}

• The failure signal failure detectorFS outputsgreen or red at each process. As long as there are no
failures,FS outputsgreen at every process; once a failure occurs, and only if it does,FS eventually
outputsred permanently at every correct process. Formally:

The range ofFS is {green, red}. For every failure patternF ,

FS(F) =
{

H | ∀p ∈ Π, ∀t ∈ N :
(

H(p, t) = red⇒ F (t) 6= ∅
)

∧
(

faulty(F) 6= ∅ ⇒ ∀p ∈ correct(F), ∃t ∈ N, ∀t′ ≥ t : H(p, t′) = red
)}

• The failure detectorΨ initially outputs⊥ and may eventually switch to behaving permanently like(Ω,Σ)
or likeFS. This switch has the following properties: (a) it must occurat all correct processes; (b) it must
be consistent (it is not possible forΨ to behave like(Ω,Σ) at a processp at timet and likeFS at process
p′ at timet′); and (c)Ψ may start behaving likeFS at a process only if a failure occurred. Formally:

The range ofΨ is {⊥} ∪ {green, red} ∪ {(p, P) | p ∈ Π ∧ P ∈ 2Π}. For every failure patternF ,

Ψ(F) =
{

H
∣

∣

∣
∃H ′ ∈ (Ω,Σ)(F) ∪ FS(F), ∀p ∈ Π :

(

p ∈ faulty(F) ∧ ∀t ∈ N : H(p, t) = ⊥) ∨

∃t ∈ N :
(

∀t′ < t : H(p, t′) = ⊥ ∧ ∀t′ ≥ t : H(p, t′) = H ′(p, t′) ∧ H ′ ∈ FS(F)⇒ F (t) 6= ∅
)

}

4 Specification of Consensus, QC and NBAC

In this section we define the three problems considered in this paper, namely, consensus, quittable consensus,
and non-blocking atomic commit. Each one of these problems is an input/output problem that can be formally
specified as explained Section 2.8; our definitions are more informal here.

4.1 Consensus and QC

In the consensus problem, each processp has some input valuev ∈ V = {0, 1}∗ (we say thatp proposesv)
and must write some output valuev ∈ V (we say thatp decidesv) such that the following properties hold:

Termination: Every correct process eventually decides some value.

8

Uniform Agreement: No two processes (whether correct or faulty) decide different values.

Validity: If a process decidesv then some process proposesv.

Quittable consensus is similar to consensus, except that processes are allowed to decide a special value
Q 6∈ V (which means “quit”) if a failure occurred. More precisely,QC has the same requirements as consensus,
except that the above validity property is replaced by the following one:

Validity: Each process may only decide some value inV ∪ {Q}, where Q6∈ V . Moreover,

(i) If a process decidesv 6= Q then some process proposesv.

(ii) If a process decides Q then a failure occurred.6

A straightforward proof by indistinguishable scenarios leads to:

Observation 2 LetA be an algorithm that solves consensus, or quittable consensus, using a failure detectorD
in an environmentE . In every runR of A usingD in E , if a process decides some valuev ∈ V at some timet,
then there is a process that proposesv and takes at least one step inR by timet.

4.2 Non-blocking atomic commit

In the NBAC problem, each processp has some input valuev ∈ {Yes,No} (we say thatp votesv) and must
write some output valuev ∈ {Commit,Abort} (we say thatp decidesv) such that the following properties hold:

Termination: Every correct process eventually decides some value.

Uniform Agreement: No two processes (whether correct or faulty) decide different values.

Validity: Each process may only decide Commit or Abort. Moreover,

(i) If a process decides Commit then all processes vote Yes.

(ii) If a process decides Abort then either some process voteNo or a failure occurred.

As with Observation 2, an obvious proof by indistinguishable scenarios leads to:

Observation 3 Let A be an algorithm that solves NBAC using a failure detectorD in an environmentE . In
every runR of A usingD in E , if a process decides Commit at some timet, then all processes vote Yes and
take at least one step inR by timet.

4.3 Using a consensus, QC, or NBAC algorithm inside another algorithm

An algorithmA can use an algorithmAc that solves consensus by emulatingAc as follows. In the pseudocode
of A, a processp can execute a statement of the form “d := PROPOSE(v)” to start an emulated execution of
Ac with input (i.e., proposal) valuev. This statement first sets up the initial state ofAc(p) to correspond to the
input valuev, and then starts to execute the steps ofAc(p) with this initial state. If and whenp decides in this
emulated execution ofAc(p), the decision value is assigned to the variabled, andp resumes executing the steps
ofA. Concurrently,p continues to execute the steps ofAc(p) until Ac(p) halts. Similar comments apply for an
algorithmA that uses a QC or NBAC algorithm.

6Throughout this paper, when we say “if eventx occurs then eventy occurred” we mean, more precisely, “if eventx occurs at timet
then eventy occurred by timet′ ≤ t”.

9

CODE THAT PROCESSp EXECUTES TO VOTEv, WHEREv IS YES ORNO, FOR NBAC:

1 sendv to all /* send votev to all processes*/
2 wait until [(∀q ∈ Π, receivedq’s vote) orFSp = red]
3 if the votes of all processes are received and are Yesthen
4 myproposal:= 1
5 else /* some vote was No or there was a failure*/
6 myproposal:= 0
7 mydecision:= PROPOSE(myproposal) /*executeAqc usingD to solve an instance of QC*/
8 if mydecision= 1 then
9 decideCommit
10 else /* mydecision= 0 or Q */
11 decideAbort

Figure 1: AlgorithmAnbac uses(D,FS) to solve NBAC

5 Relating NBAC and QC and their weakest failure detectors

NBAC is in some sense equivalent to the combination of QC and failure detectorFS. More precisely:

Theorem 4 In every environmentE :

(1) If a failure detectorD can be used to solve QC inE , then(D,FS) can be used to solve NBAC inE .

(2) If a failure detectorD′ can be used to solve NBAC inE , then

• D′ can be used to solve QC inE , and

• D′ can be transformed toFS in E .

PROOF. Let E be an arbitrary environment.

(1) Suppose that failure detectorD can be used to solve QC inE , i.e., there is an algorithmAqc that usesD to
solve QC inE . Figure 1 shows an algorithmAnbac that uses(D,FS) to solve NBAC inE . Anbac works as
follows. Each processp sends its vote to every process, and waits until it receives avote from every process
or theFS component of(D,FS) indicates that a failure occurred. Ifp receives a vote from every process
and all the votes are Yes, it setsmyproposalto 1; otherwise some vote was No or a failure occurred, andp
setsmyproposalto 0. Then, in line 7,p participates in an execution of the QC algorithmAqc (which uses
theD component of(D,FS)) wherep’s initial value is set tomyproposal(as explained in Section 4.3). If
p decides1 in this execution ofAqc, thenp decides Commit for NBAC; ifp decides0 or Q in this execution
of Aqc, thenp decides Abort for NBAC.

We now prove that, in every admissible run, algorithmAnbac satisfies all the properties of NBAC.

Termination. This property holds trivially if all processes are faulty, so assume that some process is correct.
Let p be any correct process. Since every correct process executes the algorithm in Figure 1, ifp never
receives the vote of some processq, thenq must have crashed. In that case, by the specification of the
failure detectorFS, eventuallyFSp = red forever. Thus,p eventually completes the wait statement on
line 2. Therefore, eventually every correct process startsthe execution ofAqc in line 7 (as explained in
Section 4.3). By the termination property of QC, every correct process completes its execution of line 7,
and eventually decides.

Uniform agreement.Follows from the uniform agreement property of QC.

10

CODE THAT PROCESSp EXECUTES TO PROPOSEv FOR QC:

1 sendv to all /* send QC proposalv to all processes*/
2 d := VOTE(Yes) /* executeBnbac usingD′ to solve an instance of NBAC*/
3 if d = Abort then
4 decideQ
5 else
6 wait until [∀q ∈ Π, receivedq’s proposal]
7 decidesmallest proposal received

Figure 2: AlgorithmBqc usesD′ to solve QC

Validity. Let p be any process.

(a) Supposep decides Commit (line 9). Thenp decided1 in its execution ofAqc on line 7. By part (i) of
validity of QC, some processq proposes1 on line 7 (i.e.,q starts its emulation ofAqc with initial value1
on that line). Before doing so,q must have received Yes votes from all processes (see lines 3–4). So, if a
process decides Commit, all processes vote Yes.

(b) Supposep decides Abort (line 11). Thenp decided0 or Q in its execution ofAqc on line 7. If p
decided Q, then by part (ii) of validity of QC, a failure occurred. If p decided0 then, by Observation 2,
there is a processq that proposes0 and took a step in the emulation ofAqc on line 7. Before doing so,q
must have received a vote No from some process or found thatFSq = red (see lines 3, 5, 6). The latter
can happen only if a failure occurred. We conclude that if a process decides Abort, some process votes No
or a failure occurred.

(2) Suppose that failure detectorD′ can be used to solve NBAC inE , i.e., there is an algorithmBnbac that uses
D′ to solve NBAC inE .

(a) D′ can be used to solve QC inE . An algorithmBqc that usesD′ to solve QC inE is shown in Figure 2.
Informally, it works as follows. Each processp first sends its QC proposal, some valuev ∈ V , to all
processes. Then, in line 2,p participates in an execution of the NBAC algorithmBnbac (which uses
D′) with initial value Yes, i.e., an execution of NBAC wherep votes Yes. If this execution returns
Abort, p decides Q; if it returns Commit,p waits to receive a proposal from every process and decides
the smallest of these proposals.
We now prove that, in every admissible run, algorithmBqc satisfies all the properties of QC.

Termination. This property holds trivially if all processes are faulty, so assume that some process is
correct. Every correct process executes the statementd := VOTE(Yes) on line 2 to participate in an
execution of NBAC (as explained in Section 4.3). By the termination property of NBAC, all correct
processes eventually decide, i.e., they complete the execution of this statement. If line 2 setsd to
Abort, thenp decides Q on line 4. Otherwise, it must setd to Commit. By Observation 3, every
processq votes Yes and took a step in the emulation ofBnbac on line 2. Before doing so,q sent its
QC proposal to all processes (on line 1). So,p eventually receives a proposal from every process,
completes the wait statement on line 6, and decides some value for QC on line 7.

Uniform agreement.By the uniform agreement property of NBAC, all the processesthat set their
variabled in line 2, set it to the same value. Thus, all the processes that decide some value (for QC)
do so on line 4, or they all decide on line 7. In the first case they all decide Q, and in the second case
they all decide the smallest proposal of all processes inΠ. So no two processes decide differently.

Validity. Let p be any process. Ifp decidesv 6= Q (on line 7), thenv is the smallest proposal thatp
received, and thus some process proposesv. Now supposep decides Q (on line 4). Thus,p’s execution

11

CODE FOR EACH PROCESSp:

1 FS-outputp ← green
2 repeat
3 d := VOTE(Yes) /* executeBnbac usingD′ to solve an instance of NBAC*/
4 until d = Abort
5 FS-outputp ← red

Figure 3: Transforming anyD′ that can be used to solve NBAC intoFS

of the statementd := VOTE(Yes) on line 2 setsd to Abort. By part (ii) of validity of NBAC, either
some process votes No or a failure occurred. But no process votes No. Thus, a failure occurred.

(b) D′ can be transformed toFS in E (this result can be found in [12, 24]). The transformation algorithm
is shown in Figure 3. At each processp, the variableFS-outputp (which emulates the output of
FS at p) is initially green. Processes emulate consecutive and independent executions of Bnbac
usingD′ to solve consecutive instances of NBAC while voting Yes in every instance. If and when a
processp decides Abort in an instance of NBAC, thenp setsFS-outputp to red, and never changes
FS-outputp thereafter.

From the agreement and termination properties of NBAC, it iseasy to show by induction that the
following holds (the proof is omitted here):

Claim 4.1 Either all correct processes execute therepeat-until loop of lines 2–4 infinitely many
times, or they all exit this loop and execute line 5.

Suppose no failures occur. Since (a) all the processes are correct, and (b) they all vote Yes in every
instance of NBAC executed in line 2, then by part (ii) of validity of NBAC no process ever decides
Abort on line 2, and soFS-output remainsgreenat all processes, forever.

Suppose a failure occurs. Then there is a processp that crashes and ak such thatp does not participate
(i.e., does not take any step) in thek-th instance of NBAC. We claim that every correct process
eventually setsFS-output to red on line 5. Suppose, for contradiction, that some correct process
never setsFS-output to red on line 5. By Claim 4.1, it must be that all correct processes execute the
repeat-until loop of lines 2–4 infinitely many times, and so they participate in thek-th instance of
NBAC. Sincep takes no steps in this instance, then, by Observation 3, correct processes cannot decide
Commit in that instance. So, by Claim 4.1, they all decide Abort in thek-th instance of NBAC, and
then they they exit therepeat-until loop — a contradiction. Thus, every correct process eventually
setsFS-output to red on line 5.

Finally, suppose some processp setsFS-output to red on line 5 at some timet. Thenp must have
decided Abort in an instance of NBAC on line 2 by timet. By part (ii) of validity of NBAC, some
process votes No in that instance of NBAC, or a failure occurred by timet. Since no process ever
votes No, a failure occurred by timet.

The close relationship between NBAC and QC established in Theorem 4 allows us to relate the weakest
failure detectors to solve these problems.

Theorem 5 For every environmentE , if D is the weakest failure detector to solve QC inE , then(D,FS) is
the weakest failure detector to solve NBAC inE .

12

PROOF. Let E be an arbitrary environment, andD be the weakest failure detector to solve QC inE . This
means that: (i)D can be used to solve QC inE and (ii) if a failure detectorD′ can be used to solve QC inE
thenD′ can be transformed toD in E .

To prove that(D,FS) is the weakest failure detector to solve NBAC inE , we now show two facts:

(1) (D,FS) can be used to solve NBAC inE . This follows directly from (i) and Theorem 4(1).

(2) If a failure detectorD′ can be used to solve NBAC inE , thenD′ can be transformed to(D,FS).

To see this, letD′ be a failure detector that can be used to solve NBAC inE . By Theorem 4(2):

• D′ can be used to solve QC inE . So by (ii) above,D′ can be transformed toD in E .

• D′ can be transformed toFS in E .

Thus,D′ can be transformed to(D,FS) in E .

The weakest failure detectors to solve QC and NBAC.In Section 6 we show thatΨ can be used to solve QC
in every environment (Theorem 8). In Section 8 we show that, in every environmentE , any failure detector that
can be used to solve QC inE can be transformed toΨ in E (Theorem 30). From these two facts, we have:

Corollary 6 For every environmentE , Ψ is the weakest failure detector to solve QC inE .

Theorem 5 relates the weakest failure detector to solve QC tothe weakest failure detector to solve NBAC.
So by Corollary 6 and Theorem 5, we have:

Corollary 7 For every environmentE , (Ψ,FS) is the weakest failure detector to solve NBAC inE .

6 Ψ is sufficient to solve QC

Recall that, intuitively,Ψ behaves as follows (see Section 3 for a precise definition). For an initial period of
time the output ofΨ at each process is⊥. Eventually, however,Ψ behaves either like the failure detector(Ω,Σ)
at all correct processes or like the failure detectorFS at all correct processes. The switch from⊥ to (Ω,Σ) or
FS is consistent at all processes, and a switch from⊥ toFS can happen only if a failure occurred.

In Figure 4 we show an algorithm that usesΨ to solve QC in any environment. This algorithm uses an
algorithmAc that solvesconsensususing(Ω,Σ) in any environment. Delporteet al. have shown that such an
algorithm exists [15].

Informally, the algorithm in Figure 4 works as follows. To propose some valuev ∈ V for QC, a processp
waits untilΨp (p’s module of failure detectorΨ) outputs a value different from⊥. At that time, eitherΨp starts
behaving likeFS or it starts behaving like(Ω,Σ). If Ψp behaves likeFS (which happens only if a failure
occurred), thenp decides Q. If, on the other hand,Ψp behaves like(Ω,Σ), thenp participates in an execution
of the consensus algorithmAc where it proposesv (it does so by executing thed := PROPOSE(v) statement on
line 5, as explained in Section 4.3). Processp adopts the decision value of this execution ofAc, as its decision
for QC.

Theorem 8 For every environmentE , the algorithm in Figure 4 usesΨ to solve QC inE .

13

CODE THAT PROCESSp EXECUTES TO PROPOSEv FOR QC:

1 wait until [Ψp 6= ⊥]
2 if Ψp ∈ {green, red} then /* Ψ behaves likeFS and, thus, a failure occurred*/
3 decideQ
4 else /* henceforthΨ behaves like(Ω,Σ) */
5 d := PROPOSE(v) /* executeAc usingΨ to solve an instance of consensus*/
6 decided

Figure 4: UsingΨ to solve QC.

PROOF. Consider any admissible run of the algorithm in Figure 4. Wewill prove that this run satisfies the
properties of QC.

Termination. This property holds trivially if all processes are faulty, so assume that some process is correct.
Let p be any correct process. By the specification ofΨ, there is a time after whichΨp has values in the range of
eitherFS or (Ω,Σ); thus,p completes the wait statement on line 1. If eventuallyΨp has values in the range of
FS thenp decides Q (see lines 2-3). Otherwise,Ψ never outputs values in the range ofFS at any process, and
there is a time after whichΨ outputs only values in the range of(Ω,Σ) at all correct processes. Thus, eventually
every correct process executes the statementd := PROPOSE(v) for somev on line 5, i.e., every correct process
participates in an execution ofAc. By the termination property of consensus, this execution terminates, and so
p decidesd on line 6.

Uniform agreement.By the specification ofΨ, it is not possible thatΨ outputs a value in the range ofFS at one
process and a value in the range of(Ω,Σ) at another. From this observation and the fact thatAc satisfies uniform
agreement (for consensus), it follows that the algorithm inFigure 4 satisfies uniform agreement (for QC).

Validity. Let p be any process.
(i) Supposep decides some valuev 6= Q for QC (on line 6). Thus,p also decidesv in its execution of the
consensus algorithmAc on line 5. From Observation 2, at least one processq starts to execute the statement
d := PROPOSE(v) on line 5. Therefore, processq executes the algorithm in Figure 4 with QC proposalv. So,
if a process decidesv 6= Q (for QC), some process proposesv (for QC).
(ii) Supposep decides Q for QC at some timet (on line 3) . Thus,Ψp ∈ {green, red} by time t. By the
specification ofΨ, a failure occurred by timet.

7 Some auxiliary results

In this section we present some technical lemmas used in our proof that in every environmentΨ is necessary to
solve QC, presented in Section 8. The lemmas in Section 7.2 appeared in [9], sometimes in different form.

7.1 Mergeable runs

Several proofs in distributed computing employ a techniqueknown as the “partition argument”. At the heart of
this technique is the ability to combine two different runsR0 andR1 of an algorithmA that involvedisjoint
sets of processesP0 andP1, respectively, into a single run ofA in which the processes inP0 behave as inR0

and the processes inP1 behave as inR1. We now formalize this, and prove that in our model it is possible to
combine such “mergeable” runs in this manner.

Let R0 = (F,H, I, Ŝ · S0, T̂0 · T0) andR1 = (F,H, I, Ŝ · S1, T̂1 · T1) be two finite runs of an algo-
rithm A using failure detectorD in some environmentE , such that|T̂0| = |T̂1| = |Ŝ| andparticipants(S0) ∩
participants(S1) = ∅. Note that the schedules of these two runs start with the sameprefix Ŝ, while their

14

continuationsS0 and S1 involve disjoint sets of processes. Amerging of two such runs is a tupleR =
(F,H, I, Ŝ ·S, T̂ ·T) where (a)T̂ is whichever ofT̂0 or T̂1 has the smaller last element (either one, if both have
the same last element); (b)T is the sequence consisting of the times inT0 andT1 in nondecreasing order, and
(c) S is the sequence consisting of the steps inS0 andS1 merged in the same order as the elements ofT0 and
T1 were merged intoT . For example, suppose thatS0 = a1, a2, a3, T0 = 3, 5, 7; andS1 = b1, b2, b3, b4,
T1 = 2, 4, 5, 6. ThenT = 2, 3, 4, 5, 5, 6, 7, and the two possibilities forS are b1, a1, b2, b3, a2, b4, a3 or
b1, a1, b2, a2, b3, b4, a3. More formally, the requirements forR = (F,H, I, Ŝ · S, T̂ · T) to be a merging of
R0 andR1 are:

• |S| = |S0|+ |S1| and|T | = |T0|+ |T1|;

• T̂ = T̂b for someb ∈ {0, 1} such that the last element ofTb is less than or equal to the last element ofTb̄;

• T is nondecreasing;

• for eachb ∈ {0, 1} and eachi ∈ {1, 2, . . . , |Sb|} there is aj ∈ {1, 2, . . . , |S|} such thatSb[i] = S[j] and
Tb[i] = T [j]; and

• for eachj ∈ {1, 2, . . . , |S|} there is ab ∈ {0, 1} and ani ∈ {1, 2, . . . , |Sb|} such thatS[j] = Sb[i] and
T [j] = Tb[j].

Lemma 9 Let R0 = (F,H, I, Ŝ · S0, T̂0 · T0) andR1 = (F,H, I, Ŝ · S1, T̂1 · T1) be two finite runs of an
algorithmA using failure detectorD in some environmentE , such that|T̂0| = |T̂1| = |Ŝ| and participants(S0)∩
participants(S1) = ∅. LetR = (F,H, I, Ŝ · S, T̂ · T) be a merging ofR0 andR1. Then

(a) R is also a run ofA usingD in E .

(b) For eachb ∈ {0, 1} and each processp ∈ participants(Ŝ · Sb), the state ofp is the same in̂S · S(I) as in
Ŝ · Sb(I).

The proof of Lemma 9 is straightforward though somewhat tedious; it is given in Appendix A.

7.2 DAGs and simulations

To complete the proof that, for any environmentE , Ψ is the weakest failure detector to solve QC inE , it remains
to show that any failure detector that can be used to solve QC in E can be transformed toΨ in E . In this section
we review a technique for proving statements of this type. The technique was introduced by Chandra et al.,
who used it to prove that any failure detector that can be usedto solve consensus can be transformed toΩ [9].
We will use it in this paper to prove that any failure detectorthat can be used to solve QC can be transformed
toΨ (see Section 8).

Suppose we want to prove thatD∗ is the weakest failure detector to solve some problemP in some envi-
ronmentE . LetD be any failure detector that can be used to solveP in E , i.e., there is an algorithmA that uses
D to solveP in E . We need to show thatD can be transformed toD∗. The proof technique of [9] shows how
to useD andA to emulateD∗ in E . This emulation consists of two interacting components: the communica-
tion component and the computation component. In the communication component, each process continuously
“samples” its local module ofD and exchanges messages with other processes to construct anever-growing
directed acyclic graph (DAG) of failure detector samples ofD. In the computation component,p uses this DAG
to simulate schedules of the algorithmA (which usesD to solveP). Based on these simulated schedules,p
simulates the output of the failure detectorD∗ that we want to emulate.

We now explain in more detail how each process builds its DAG of failure detector samples and how it uses
this DAG to simulate schedules ofA.

15

CODE FOR EACH PROCESSp:

1 initialize
2 kp ← 0
3 Gp ← empty graph

4 loop
5 receive a messagem
6 dp ← Dp

7 if m 6= λ thenGp ← Gp ∪m
8 kp ← kp + 1
9 vp ← (p, dp, kp)

10 add nodevp toGp and an edge from every other node inGp to vp
11 sendGp to every process

Figure 5: AlgorithmADAG builds DAGs of failure detector samples ofD

7.2.1 Building DAGs of failure detector samples

The DAG-building algorithm, denotedADAG, is shown in Figure 5. In our algorithm descriptions, which we
give in pseudocode, we use the following conventions. Variables of processp are subscripted withp. If D is a
failure detector, thenDp denotes the function call by whichp can access its local module ofD; this call returns
the current value ofp’s local module ofD. The pseudocode of each process begins with aninitialize clause,
which defines the process’ state in the initial configuration. (Variables whose values are not explicitly set in this
clause, can be assigned arbitrary values in the initial configuration.)

In ADAG, each processp maintains a DAG of failure detector samples ofD in the variableGp. Each node
of this DAG is of the form(q, d, k); such a triple indicates that processq obtained valued when it queried its
failure detector moduleDq for thekth time. (The third component is included to ensure that distinct samplings
of the failure detector result in distinct nodes.) We call such triplessamples; a sample(q,−,−) is said to beof
or taken byprocessq. We use the terms “node (of the DAG)” and “sample” interchangeably.

Processp periodically performs the following actions:

(a) it receives a message, which is either a DAG previously sent top by another process, or the empty message
(line 5);

(b) it queries its local failure detector moduleDp, receiving a value that it stores in variabledp (line 6);

(c) it updates its DAGGp by first adding to it the DAG that it received in (a), and then adding to it a new
node with the failure detector value it got in (b), as well as edges from all other nodes to the new node
(lines 7-10); and

(d) it sends the updatedGp to all processes (line 11).

Note that this sequence of actions (receiving a message, querying the local failure detector module, changing
local state, and sending messages to other processes) corresponds exactly to the sequence of actions taken in a
single step in our model. Thus, each iteration of the loop in Figure 5 is executed as a single step.

We now present some properties of the DAGs of samples computed by algorithmADAG. In the following,
we consider an arbitrary admissible runR = (F,H, I, S, T) ofADAG using failure detectorD in some arbitrary
environmentE . We use the following notation throughout this section: In the context of a given run of an

16

algorithm, the value of variablexp at timet is denotedxtp; if p takes a step at timet, thenxtp is the value ofxp
after that step.

We start with some simple observations, in each of whichp is an arbitrary process. Sincep never removes
any nodes or edges fromGp, the DAG contained in this variable is monotonically nondecreasing. That is,

Observation 10 For all t, t′ ∈ N, if t ≤ t′ thenGt
p is a subgraph ofGt′

p .

We define thelimit DAG of a processp to beG∞
p = ∪t∈NG

t
p.

In the same step that a process updates its DAG (line 10), it also sends the new DAG to all processes
(line 11); thus each correct process will eventually receive that DAG and will incorporate it into its own. Thus,

Observation 11 For every correct processp, every processq, and every timet ∈ N, Gt
q is a subgraph ofG∞

p .

From this it follows immediately that

Observation 12 If p andq are correct processes thenG∞
p = G∞

q .

Sincekp is incremented in each iteration ofp’s loop, whenp takes sample(p,−, k), it has already taken
samples(p,−, k′) for all k′ < k; and, at that time, it adds edges from all such nodes to(p,−, k). Thus,

Observation 13 If v = (p,−, k) andv′ = (p,−, k′) are nodes ofG∞
p andk ≥ k′, thenv is a descendant ofv′

in G∞
p .

Let v = (q, d, k) be any node ofG∞
p . It is obvious from the code ofADAG that processq receivedd from

its failure detector module in itskth step. Letτ(v) to be the time whenq takes this step. More precisely, ifS[i]
is thekth step ofq in S, thenτ(v) = T [i]. (Recall thatS is the schedule andT is the sequence of times of the
runR of ADAG that we are considering.) From property (3) of runs, we have:

Observation 14 If v = (q, d, k) is a node ofG∞
p , thenq /∈ F (τ(v)) andd = H(q, τ(v)).

From the algorithmADAG, it is clear that if(u, v) is an edge of the limit DAGG∞
p , then the step in which

sampleu was taken causally precedes the step in which samplev was taken in scheduleS with respect toI
(the initial configuration of runR). From property (5) of the runs ofADAG (see Section 2.7), it follows that
τ(u) < τ(v). By induction we can generalize this observation from single edges to finite or infinite paths of
G∞

p :

Observation 15 If g = v0, v1, . . . is a finite or infinite path inG∞
p , then the sequence of timesτ(v0), τ(v1), . . .

is strictly increasing.

Let G be any DAG; ifv is a node ofG, thenG|v is the subgraph ofG induced by the descendants ofv in
G; otherwise,G|v is the empty graph. Informally, the next lemma states that any finite path in processp’s limit
DAG eventually appears permanently inp’s DAG.

Lemma 16 Let p be a process andv be a node ofG∞
p . For each finite pathg in G∞

p |v, there is a timet such
that, for allt′ ≥ t, g ∈ Gt′

p |v.

PROOF. In G∞
p |v, let g be any finite path,g′ be a finite path fromv to the first node ofg, andh be the path

consisting ofg′ followed byg. SinceG∞
p = ∪t∈NG

t
p, it is clear that for each edgee of h there is a timet(e)

such thate is in G
t(e)
p . Let t = max{t(e) : e is an edge ofh}. By Observation 10, every edgee of h (and

hencev and the entire pathg) is in Gt′

p for all t′ ≥ t. Sinceg is in G∞
p |v, every node ing is a descendant ofv.

Thus,g is inGt′

p |v, for all t′ ≥ t.

17

Since faulty processes eventually crash and cease to take steps, from a certain point on only correct pro-
cesses take samples. This is the basic intuition underlyingthe next lemma.

Lemma 17 For every correct processp, there is a samplev∗ of p in G∞
p such thatG∞

p |v
∗ contains only samples

of correct processes. Furthermore,

(a) There is a time after which any nodev in variablevp (line 9) is a descendant ofv∗ in G∞
p .

(b) For any descendantv of v∗ in G∞
p and anyt ∈ N, Gt

p|v contains only samples of correct processes.

PROOF. Sincep is correct, it takes infinitely many steps. Lett∗ be the first time thatp takes a step after all
faulty processes have crashed, and letv∗ be the sample thatp takes in that step. Consider any nodev of G∞

p |v
∗.

Sincev is a descendant ofv∗ in G∞
p , by Observation 15,τ(v) ≥ τ(v∗) = t∗. Since all faulty processes have

crashed by timet∗, the process that takes samplev (at timeτ(v) ≥ t∗) must be correct. So,G∞
p |v

∗ contains
only samples of correct processes.

(a) Let v∗ = (p,−, k∗). Sincekp increases in each iteration ofp’s loop, eventuallykp has values that are
more thank∗. Therefore, eventually only nodes whose third entry is morethank∗ are assigned tovp. By
Observation 13 all these nodes are descendants ofv∗ in G∞

p .

(b) Consider any descendantv of v∗ in G∞
p and any timet ∈ N. Clearly,Gt

p|v is a subgraph ofG∞
p |v, and

G∞
p |v is a subgraph ofG∞

p |v
∗. SinceG∞

p |v
∗ contains only samples of correct processes, so does its subgraph

Gt
p|v.

Since correct processes keep taking samples and exchangingtheir DAGs forever, every correct process’
limit DAG has an infinite path with infinitely many samples of each correct process. This observation is for-
malized by Lemma 19. To prove it, it is convenient to prove thefollowing lemma first.

Lemma 18 Supposep is a correct process and letG be a subgraph ofGt
p for some timet. For every correct

processq, there is a timet′ such thatGt′

p contains a samplew of q and an edge from every node ofG to w.

PROOF. Let s be the first step thatp takes after timet. By Observation 10,G is still in p’s DAG just before
this step. There are two cases:

p = q. In steps, p adds to its DAG a new samplew = (p,−,−), and edges from every other node in its DAG
(in particular, from every node inG) tow. Thus, when this step is completed, say at timet′, Gt′

p has the desired
properties.

p 6= q. In steps, p sends to all processes a DAG that containsG. Now consider the step in whichq receives that
DAG. In that step,q first incorporates the DAG it receives, which containsG, into its own DAG. Thenq adds
to its DAG a new samplew = (q,−,−), and edges from every other node in its DAG (in particular, from every
node inG) tow. Finally, q sends the resulting DAG to all processes. Consider the step in whichp receives that
DAG. When it does so,p incorporates the DAG it receives into its own DAG. Thus, whenthis step is completed,
say at timet′, Gt′

p has the desired properties.

Lemma 19 If p is a correct process andv is a node ofG∞
p , thenG∞

p has an infinite path that starts withv and
contains infinitely many samples of each correct process.

PROOF. Sincev is a node ofG∞
p , there is a timet0 such thatv is inGt0

p . By repeated application of Lemma 18,
there is an infinite sequence of timest0, t1, . . . and an infinite sequence of pathsg0, g1, . . . such that for alli ∈ N,
(a) gi is in Gti

p and starts withv, (b) gi is a prefix ofgi+1, and (c) each correct process has at leasti samples
in gi.

18

Let g∞ be the “limit” of sequenceg0, g1, . . . That is,g∞ is the infinite path which, up to length|gi|, is
identical togi. (This is well-defined because of (b).) It is now easy to see that g∞ is a path inG∞

p that starts
with v and contains infinitely many samples of each correct process.

7.2.2 Simulating schedules of an algorithmA

In the previous section, we saw how each processp can execute algorithmADAG using a failure detectorD to
build an ever-increasing DAG of samples ofD (under the “current” failure patternF and failure detector history
H ∈ D(F)). We now explain how each processp can use its DAG of samples ofD to simulate schedules of
runs ofany algorithmA usingD (with failure patternF and failure detector historyH ∈ D(F)). These are
called simulated schedulesof A. Another way of thinking about these simulated schedules isthat they are
schedules of runs that could have occurred if processes wererunning algorithmA usingD, instead of running
ADAG usingD.

Fix an initial configurationI of algorithmA, and a pathg = (p1, d1, k1), (p2, d2, k2), . . . of the DAG
contained inGp at some timet, or of the limit DAGG∞

p . Our goal is to define the set of simulated schedules
determined by pathg and initial configurationI. Pathg tells us that the following could have happened in an
execution of algorithmA under the current failure patternF and failure detector historyH ∈ D(F): process
p1 takes the first step and sees valued1 from its failure detector module; then processp2 takes the second
step and sees valued2 from its failure detector module; and so on. This sequence ofprocess ids and failure
detector values, along with the initial configurationI, define asetof schedules ofA, each schedule in this set
corresponding to different delays that the messages sent might experience.

More precisely, we say that a scheduleS is compatiblewith the pathg = (p1, d1, k1), (p2, d2, k2), . . . if
and only if it has the same length asg, andS = (p1,m1, d1,A), (p2,m2, d2,A), . . . for some (possibly null)
messagesm1,m2, . . . The set of simulated schedules determined byg and initial configurationI is the set of
all schedules that are compatible withg and applicable toI.

LetG be any DAG of samples andI be any initial configuration ofA. Sch(G, I) denotes the set of schedules
of A that are compatible with some path inG and are applicable toI. Note that ifG is finite thenSch(G, I)
contains a finite number of finite schedules.

We now present some properties of simulated schedules. In the following, we consider an arbitrary admis-
sible runR ofADAG using failure detectorD in some arbitrary environmentE . LetF ∈ E be the failure pattern
of this run andH ∈ D(F) its failure detector history.

The first lemma justifies the name “simulated schedules”; it states that these schedules really are schedules
of runs of algorithmA usingD, with failure patternF and failure detector historyH.

Lemma 20 Let p be a process,t ∈ N ∪ {∞}, G be a subgraph ofGt
p, andI be an initial configuration of

algorithmA. For each scheduleS ∈ Sch(G, I), there is a list of timesT , all at mostt, such thatRA =
(F,H, I, S, T) is a run ofA usingD in E .

PROOF. LetS be any schedule inSch(G, I). Thus,S is a schedule ofA that is applicable toI and compatible
with some pathg = v1, v2, . . . in G. Let T = τ(v1), τ(v2), . . . Recall that for each positive integeri ≤ |S|,
τ(vi) is the time when samplevi was taken. A sample can’t appear in any DAG until the time it istaken. Since
vi is a node in a subgraph ofGt

p, τ(vi) ≤ t.
We claim thatRA = (F,H, I, S, T) is a run ofA usingD in E . SinceF ∈ E , H ∈ D(F) andI is an

initial configuration ofA, it suffices to verify thatRA satisfies properties (1)–(5) of runs.S is applicable toI
(property (1)) by definition ofSch(G, I). S andT have the same length (property (2)) because each of them
has the same length asg. The fact that inR no process takes a step after it has crashed, and that the failure
detector value in each step is consistent with the historyH (property (3)) follows from Observation 14, since
S is compatible with pathg = v1, v2, . . . andT = τ(v1), τ(v2), . . . Observation 15 implies thatT is strictly

19

increasing, and so property (4) is also satisfied. To show property (5), we must prove that if stepi causally
precedes stepj in S with respect toI thenT [i] < T [j]. This follows from Observation 1 and the factT is
strictly increasing.

By Lemma 20, every infinite scheduleS∞ ∈ Sch(G∞
p , I) is a schedule of an infinite run ofA usingD in E .

However,S∞ is not necessarily a schedule of anadmissiblerun, i.e., a run where each correct process takes an
infinite number of steps (property (6)) and eventually receives every message sent to it (property (7)). The next
lemma, however, states that every finite scheduleS ∈ Sch(G∞

p , I) can be extended tosomeinfinite schedule
S∞ ∈ Sch(G∞

p , I) of anadmissiblerun ofA.

Lemma 21 Supposep is a correct process and letI be an initial configuration ofA. For any finite schedule
S ∈ Sch(G∞

p , I) there is a scheduleS∞ ∈ Sch(G∞
p , I) that extendsS and a list of timesT∞ such that

RA = (F,H, I, S∞, T∞) is an admissiblerun ofA usingD in E . Furthermore, for any nodeu in G∞
p , S∞

can be chosen so thatS∞ = S · σ∞, for a scheduleσ∞ that is compatible with a path inG∞
p |u.

PROOF. LetS be any finite schedule inSch(G∞
p , I) andu be any node inG∞

p . ThusS is applicable toI and
compatible with a finite pathg of G∞

p . By Lemma 18 (applied withq = p andG consisting of the pathg and
the nodeu) and the monotonicity of the DAGs (Observation 10),G∞

p contains a samplev of p and an edge
from every node ofg and fromu to v. By Lemma 19,G∞

p has an infinite pathγ that starts withv and contains
infinitely many samples of each correct process. Note thatg · γ is a path inG∞

p (because there are edges from
every node ing to the first node ofγ); andγ is a path inG∞

p |u (because there is an edge fromu to the first node
of γ).

We define an infinite sequence of schedulesσ0, σ1, . . . such that for eachi ∈ N, (a)σi has lengthi, (b) σi

is compatible with the path consisting of the firsti nodes ofγ, (c) σi is applicable toS(I), and (d) if i > 0,
σi−1 is a prefix ofσi. The definition is by induction:

Basis. σ0 is the empty schedule. It is obvious that this has the required properties.

Induction step. Let i be an arbitrary positive integer, and assume thatσi−1 with the required properties has
been defined. Let theith node ofγ be(p, d,−). Thenσi = σi−1 · (p,m, d,A), wherem is the message defined
as follows: If the message buffer of configurationS · σi−1(I) has no message top (i.e., no message of the form
(−,−, p)), thenm = λ; otherwise,m is theoldestmessage top in the message buffer ofS ·σi−1(I) (i.e., there
is no messagem′ to p in the message buffer ofS · σi−1(I) and prefixS′ of S · σi−1 such that the message
buffer ofS′(I) containsm′ but notm). It is straightforward to verify thatσi has the required properties: length
i, compatible with the firsti nodes ofγ, applicable toS(I), and an extension ofσi−1.

Now defineσ∞ to be the “limit” of the sequenceσ0, σ1, . . . — i.e., the infinite schedule whose prefix of
lengthi is σi. (This is well-defined because, for alli ∈ N, σi has lengthi and is a prefix ofσi+1.) Clearlyσ∞

is compatible withγ and applicable toS(I). LetS∞ = S · σ∞. We have:

• S∞ ∈ Sch(G∞
p , I). This follows from the fact thatS∞ is compatible with pathg · γ in G∞

p , andS∞ is
applicable toI (becauseS is applicable toI, andσ∞ is applicable toS(I)).

• σ∞ is compatible with pathγ in G∞
p |u.

By Lemma 20, there is a time listT∞ such thatRA = (F,H, I, S∞, T∞) is a run ofA usingD in E . It
remains to prove thatRA is admissible. We first note that each correct process takes infinitely many steps in
RA; this is becauseS∞ is compatible withg ·γ andγ contains infinitely many samples of each correct process.
Furthermore, from the way we choose the message received in each step ofσ∞, every message sent to a correct
process is eventually received inRA. So,RA has the required properties (6) and (7) of admissible runs.

The following lemma is an immediate consequence of Observation 11 and the definition ofSch(−,−):

20

Lemma 22 For every correct processp, every processq, every timet ∈ N, and every initial configurationI of
A, Sch(Gt

q, I) ⊆ Sch(G∞
p , I).

The following lemma is an immediate consequence of Lemma 16 and the definition ofSch(−,−):

Lemma 23 Let p be a process andI be an initial configuration ofA. For each finite scheduleS ∈ Sch(G∞
p , I),

there is a timet such that, for allt′ ≥ t, S ∈ Sch(Gt′

p , I).

8 Ψ is necessary to solve QC

In this section, we show thatΨ is necessary to solve QC. LetD be any failure detector that can be used to solve
QC in some environmentE , i.e., there is an algorithmA that usesD to solve QC inE . We must show that there
is an algorithm that transformsD into Ψ in E . We do so by giving a transformation algorithm that usesA and
D to emulate the output ofΨ — a failure detector that initially outputs⊥ and later behaves either like(Ω,Σ)
or likeFS. This transformation algorithm, denotedTD→Ψ, is shown in Figures 6–7, and is explained below.

8.1 Overview of the transformation

To make the presentation clearer, the code of each processp in algorithmTD→Ψ is given by three concurrent
threads.7 In Thread 1,p builds a DAG of samples of failure detectorD using the algorithm discussed in
Section 7.2.1. In Thread 2,p uses its current DAG to determine whether (a) it is legitimate forΨ to behave like
FS and outputred permanently (because a failure occurred in the current run)or (b) it is possible to “extract”
(Ω,Σ) in the current run. Thenp participates in an instance of QC to reach agreement with theother processes
on (a) or (b). In Thread 3,p produces the output of failure detectorΨ according to the agreement reached in
Thread 2. We now explainTD→Ψ in more detail.

First recall that in the algorithmA that solves QC, the value that a processp proposes (i.e., its input value)
is encoded in the initial state ofA(p). For eachj ∈ [0..n], let Ij be the initial configuration ofA in which every
processq ∈ [1..j] proposes1 and every processq ∈ [j + 1..n] proposes0. Thus in any run starting fromI0, all
processes propose0, and starting fromIn they all propose1.

In TD→Ψ, each processp starts by outputting⊥ (line 4), and then it executes three concurrent threads:

• In Thread 1,p buildsGp, a DAG of failure detector values seen by processes in the current run.

• In Thread 2,p repeatedly examinesn+1 sets of simulated schedules of algorithmA, namelySch(Gp, I
0),

. . . ,Sch(Gp, I
n) (line 21), until it finds that for everyj ∈ [0..n], Sch(Gp, I

j) contains a scheduleSj
p such

thatp decides some valuexjp in Sj
p(Ij) (line 22). If for somej ∈ [0..n], xjp = Q, then a failure occurred

(in the failure pattern of the current run), and sop knows that it is legitimate to extractFS and output
red in this run. Otherwise for everyj ∈ [0..n], xjp is either 0 or 1, and in this casep determines that it is
possible to extract(Ω,Σ) in the current run.

At this pointp participates in an instance of QC (by using the algorithmA and failure detectorD) to agree
with the other processes on whether to extractFS and outputred, or to extract(Ω,Σ). Specifically, ifp
has determined that it is legitimate to outputred then it proposes0 in this execution of QC (lines 25–26).
Otherwise,p proposes a tuple(Ii, Ii+1, Si

p, S
i+1
p), wherei ∈ [0..n− 1] is such thatxip = 0 andxi+1

p = 1
(lines 27–29). Note that such an indexi must exist: Sincep reaches line 27, by the condition on line 25
everyxjp is either0 or 1; by the validity property of QC,x0p = 0 andxnp = 1; thus, for somei ∈ [0..n−1],
xip = 0 andxi+1

p = 1.

7It is straightforward to write the code ofp as the code of a sequential process that can be directly expressed in our model (e.g.,p
can execute the three concurrent threads in round-robin fashion).

21

CODE FOR EACH PROCESSp:

1 initialize
2 Ω-outputp ← p
3 Σ-outputp ← Π
4 Ψ-outputp ← ⊥
5 kp ← 0
6 Gp ← empty graph
7 decisionp ← ⊥

8 cobegin
9 /* T HREAD 1 — BUILD DAG OFD-SAMPLES */

10 loop
11 receive a messagem
12 dp ← Dp

13 if m 6= λ thenGp ← Gp ∪m
14 kp ← kp + 1
15 vp ← (p, dp, kp)
16 add nodevp toGp and an edge from every other node inGp to vp
17 sendGp to every process

18 || /* T HREAD 2 — CHOOSE BEHAVIOUR OFΨ */
19 ∀j ∈ [0..n], Ij ← initial configuration ofA where the initial state of eachq ∈ [1..j] corresponds to proposal1

and the initial state of eachq ∈ [j + 1..n] corresponds to proposal0
20 repeat
21 ∀j ∈ [0..n], Sch(Gp, I

j)← set of schedules ofA compatible withGp and applicable toIj

22 until ∀j ∈ [0..n], ∃Sj
p ∈ Sch(Gp, I

j) : p decides inSj
p(Ij)

23 ∀j ∈ [0..n − 1], letSj
p ∈ Sch(Gp, I

j) andxjp be such thatp decidesxjp in Sj
p(Ij)

24 /* executeA usingD to solve an instance ofQC */

25 if ∃j ∈ [0..n] such thatxjp = Q then
26 decisionp := PROPOSE(0) /∗ propose0 in this instance ofQC ∗/
27 else
28 let i ∈ [0..n − 1] be such thatxip = 0 andxi+1

p = 1

29 decisionp := PROPOSE(Ii, Ii+1, Si
p, S

i+1
p) /∗ propose(Ii, Ii+1, Si

p, S
i+1
p) in this instance ofQC ∗/

30 || /* T HREAD 3 — OUTPUT VALUE OFΨ */
31 wait until decisionp 6= ⊥
32 if decisionp = 0 or decisionp = Q then /∗ a failure occurred∗/
33 Ψ-outputp ← red
34 else /∗ p’s decision is a tuple with two initial configurations and twoschedules∗/
35 (I0, I1, S0, S1) := decisionp
36 up ← vp
37 loop
38 Ω-outputp ← extract-leader() /∗ see Figure7 ∗/
39 Σ-outputp ← extract-quorum() /∗ see Figure7 ∗/
40 Ψ-outputp ← (Ω-outputp,Σ-outputp)
41 coend

Figure 6: AlgorithmTD→Ψ

22

CODE FOR EACH PROCESSp:

42 function extract-leader():
43 determine the current leaderℓp of p usingGp as in [9]
44 return ℓp

45 function extract-quorum():
46 ∀b ∈ {0, 1}, ∀S prefix ofSb, Sch(Gp|up, S(Ib))← set of schedules ofA compatible withGp|up

and applicable toS(Ib)
47 if ∀b ∈ {0, 1}, ∀S prefix ofSb, ∃σS ∈ Sch(Gp|up, S(Ib)) : p decides inS · σS(Ib) then
48 /∗ return new quorum∗/
49 new-quorump ←

⋃
{

participants(σ)| ∃b ∈ {0, 1}, ∃S prefix ofSb :
(

σ ∈ Sch(Gp|up, S(Ib)) ∧

p decides inS · σ(Ib)
)}

50 up ← vp
51 return new-quorump
52 else /∗ return old quorum∗/
53 return Σ-outputp

Figure 7: Functions used by algorithmTD→Ψ

• In Thread 3,p computes the output values ofΨ according to the decision of the QC executed in Thread 2.
If this decision is0 or Q, thenp stops outputting⊥ and outputsred from that time on (lines 32–33). If the
decision is some tuple(I0, I1, S0, S1) (line 35), thenp stops outputting⊥ and starts extractingΩ (line 38)
andΣ (line 39), combining these two outputs into the output ofΨ (line 40).Ω is extracted as in [9] (see
Section 8.2) andΣ is extracted using novel techniques (see Section 8.3).

Note that inTD→Ψ, processes use the algorithmA for QC in two different ways and for different purposes.
First, each process uses its DAG of failure detector samplesto simulatemany schedules ofA to determine
whether it is legitimate to outputred or it is possible to extract(Ω,Σ) in the current run. Then processes
actually participate in a real execution ofA to reach a common decision on whether to outputred or to extract
(Ω,Σ). Finally, if processes decide to extract(Ω,Σ), they resume simulating schedules ofA to effect this
extraction.

For the remainder of Section 8 we consider an arbitrary admissible run of algorithmTD→Ψ usingD in some
arbitrary environmentE . Let F ∈ E be the failure pattern of this run andH ∈ D(F) be its failure detector
history.

8.2 Extracting Ω

The specification ofΩ requires the following: at each process,Ω outputs the id of a process; furthermore, if a
correct process exists, then there is a time after whichΩ outputs the id of the same correct processp∗ at every
correct process. Note that this specification is trivially satisfied in runs where all processes are faulty. So in
the rest of Section 8.2, we assume that there is at least one correct process in the run under consideration, i.e,
correct(F) 6= ∅.

If in TD→Ψ processes decide to extractΩ, they do so by executing the algorithm that extractsΩ described
in [9], as we now explain. As in [9], processes build a DAG of samples of failure detectorD (Thread 1 in
Figure 6). More precisely, processes build a DAG of the failure detector values that they see inH ∈ D(F).
By Observation 12, the limit DAG of all correct processes is the same. LetG∞ denote that DAG. (G∞ is
well-defined since a correct process exists.)

23

Recall thatIj is the initial configuration ofA in which the initial state of each processq ∈ [1..j] corresponds
to proposal1 and the initial state of each processq ∈ [j + 1..n] corresponds to proposal0. Furthermore
Sch(G∞, Ii) is the set of schedules ofA that is compatible withG∞ and applicable toIi. For eachi ∈ [0..n],
we organize the set of schedules inSch(G∞, Ii) into a treeΥi, called thelimit tree (for initial configuration
Ii). The nodes of this tree are the schedules inSch(G∞, Ii), and there is an edge from nodeS to nodeS′ if
and only if there is a stepe such thatS′ = S · e. We also define thelimit forestΥ to be the set of limit trees
{Υ0,Υ1, . . . ,Υn}.

In [9], algorithmA solves the binary version of consensus where processes propose only0 or 1. So, by the
validity property of consensus, the only possible decisions are0 or 1. In [9], it is shown that the root of each
treeΥi of the limit forestΥ has a descendantS such that some correct process decides inS(Ii). The root ofΥi

is v-valent for v ∈ {0, 1} if it has no descendantS such that some correct process decidesu 6= v in S(Ii); the
root ofΥi is multivalentif it is not v-valent for anyv ∈ {0, 1}. It is clear that the root ofΥi is eitherv-valent
for exactly one valuev, or it is multivalent. The limit forestΥ has acritical index i ∈ [1..n] if and only if the
root ofΥi−1 is v-valent and the root ofΥi is u-valent foru 6= v (in which case indexi is univalent critical) or
the root ofΥi is multivalent (in which case indexi is multivalent critical).

At a high level, the extraction ofΩ in [9] works as follows:

(a) First, it is shown that the limit forestΥ has a critical indexi. This part of the proof uses the validity property
of consensus.

(b) Then it is shown that for each critical indexi of Υ, one can identify a corresponding processj that is nec-
essarily correct in the failure patternF of the current run.8 This part of the proof uses only the termination
and uniform agreement properties of consensus; in particular, it does not rely on the validity property.

(c) Finally, it is shown how all correct processes can eventually converge on the smallest critical indexi of Υ,
and on the correct processj that corresponds toi. This part of the proof also does not use the validity
property of consensus.

The above three steps outline the extraction ofΩ when the given algorithmA solves binary consensus. Here
we want to extractΩ whenA solves QC, and thereforeA also solves binary QC where proposals are only0
or 1. Note that binary consensus and binary QC share the same uniform agreement and termination properties,
andthey differ only in their validity property.

By the validity property of binary QC, there are now three possible decisions0, 1, or Q (instead of only0
or 1). The definitions ofv-valent or multivalent nodes remain the same, except that now v ∈ {0, 1,Q}. The
definitions of univalent and multivalent critical indexi also remain the same.

To extractΩ here, one may try to apply steps (a), (b) and (c) exactly as in [9]. Unfortunately, this does not
quite work: with binary QC it is not always the case that the limit forestΥ has a critical index. This is because,
in contrast to consensus, the validity property of QC allowsprocesses to decide Q if failures occur. To see why
Υ may not have a critical index, suppose some process crashes (in the failure patternF of the current run).
With QC, all the processes that decide “in the limit forestΥ” may decide Q. In this case, the roots of all the
trees inΥ are Q-valent,Υ has no critical index, and we cannot apply steps (b) and (c) above to extract the id of
a correct process.

This is why, in our transformation algorithm of Figure 6, processes do not always attempt to extractΩ. As
Lemma 24 below shows, however, if processes actually attempt to extractΩ (on line 38) then a critical index
does exist in the limit forestΥ. It is important to note that ifΥ has a critical index, then processes can converge
on the identity of a correct process by applying steps (b) and(c) above, exactly as in [9]: This is because, the
correctness of steps (b) and (c) doesnot rely on the validity property of consensus (which is the onlydifference
between consensus and QC).

8If i is univalent critical, processi is necessarily correct; ifi is bivalent critical, the limit treeΥi contains a subgraph that reveals
the identity of a processj that is necessarily correct.

24

Lemma 24 If any process reaches line 34 of algorithmTD→Ψ, then the limit forestΥ has a critical index.

PROOF. If a process reaches line 34, then it decided some valuev 6∈ {0,Q} in the instance of QC that it
executed in Thread 2 (line 29). In this instance of QC, each processp can only propose0 (line 26) or a tuple
of the form(Ij, Ij+1, Sj

p, S
j+1
p) (line 29). Thus, by part (i) of the validity property of QC, itmust be that some

processq proposed(Ii, Ii+1, Si
q, S

i+1
q) for some indexi ∈ [0..n] (line 29).

Claim 24.1 There are finite schedulesS0 ∈ Sch(G∞, Ii) andS1 ∈ Sch(G∞, Ii+1) such that some correct
process decides0 in S0(I

i) and some correct process decides1 in S1(I
i+1).

PROOF OFCLAIM 24.1. We prove the existence ofS0; the proof forS1 is symmetric.
Sinceq proposed(Ii, Ii+1, Si

q, S
i+1
q) on line 29, it must be that whenq executed line 23, say at timet,

there is a scheduleSi
q ∈ Sch(Gt

q, I
i) such thatq decides0 in Si

q(I
i). Let p be any correct process. By

Lemma 22,Si
q ∈ Sch(G∞

p , Ii). By Lemma 21, there is a scheduleS∞ ∈ Sch(G∞
p , Ii) that extendsSi

q such
thatRA = (F,H, Ii, S∞,−) is anadmissiblerun ofA (which solves QC) usingD in E). By the termination
property of QC, there is a finite prefixS0 of S∞ such thatp decides inS0(I

i). SinceS∞ ∈ Sch(G∞
p , Ii), it

follows thatS0 ∈ Sch(G∞
p , Ii), and, sinceG∞

p = G∞, S0 ∈ Sch(G∞, Ii). Since bothS0 andSj
q are prefixes

of S∞, one of them is a prefix of the other. Sinceq decides0 in Si
q(I

i), by the uniform agreement property of
QC,p also decides0 in S0(I

i). 24.1

By Claim 24.1, the root ofΥi is either0-valent or multivalent, and the root ofΥi+1 is either1-valent or
multivalent. Thus, either the root ofΥi orΥi+1 is multivalent, or the root ofΥi is 0-valent and the root ofΥi+1

is 1-valent. So, in all cases, there is a critical index in the limit forestΥ.

8.3 Extracting Σ

To extractΣ, p must continuously output a set of processes (quorum) such that the quorums of all processes
always intersect, and eventually the quorums of correct processes contain only correct processes. This is done
by the functionextract-quorum() (lines 45-53) as follows.

Functionextract-quorum() is called only on line 39, at which pointp has agreed with other processes on a
tuple(I0, I1, S0, S1) (line 35). Processp maintains in variableup a “recent” failure detector sample of its own.
This is initialized top’s most recent sample whenp executes line 36, and is updated top’s most recent sample
each timep outputs a new quorum (lines 49–50).

To determine the quorum to output,p examines every prefixS of S0 andS1, looking for a scheduleσS that
(a) uses only failure detector samples that are “fresher” thanup, (b) can be appended toS so thatS · σS is a
simulated schedule ofA, and (c)p decides at the end of that schedule. More precisely, ifS is a prefix ofSb,
whereb ∈ {0, 1}, σS is required to be a schedule inSch(Gp|up, S(Ib)) (i.e., compatible with a path of samples
at least as recent asup and applicable toS(Ib)), andp must decide inS · σS(Ib) (see the condition on line 47).
If such a scheduleσS can be found foreveryprefixS of S0 andS1, p computes a new quorum consisting of all
processes that take steps in theseσS ’s (line 49). Otherwise,p’s quorum remains unchanged (lines 52–53).

Note how the sample inup acts as a “freshness barrier”:p’s new quorum contains only processes that have
taken samples at least as recent asup. As we will see in the proof of Lemma 26 below, this (together with the
fact thatup contains ever more recent samples) ensures the completeness property ofΣ: the quorum output by
a correct processp eventually contains only correct processes.

We will also see in the proof of Lemma 28 that this way of choosing quorums ensures the intersection
property ofΣ: every two quorums output by any two processes at any times intersect. Intuitively, this follows
from the uniform agreement property of QC: if two quorums do not intersect, we would be able to construct

25

an admissible run of the algorithmA in which two different values in{0, 1,Q} are decided, establishing a
contradiction.

To prove that the completeness property holds, we first provethat the “freshness barrier”up is updated
infinitely often (line 50), and consequently a new quorum is also computed infinitely often (line 49).

Lemma 25 Every correct processp that reaches line 34 of algorithmTD→Ψ assigns a quorum tonew-quorump
(line 49) and a node toup (line 50) infinitely often.

PROOF. Suppose some correct processp reaches line 34. It is clear from the algorithm thatp either assigns
bothnew-quorump andup infinitely often, or assigns both of them only a finite number of times (see lines 50
and 51). Suppose, for contradiction, thatp assignsup only a finite number of times. Sincep reaches line 34, it
also reaches line 36, and so it assignsup at least once. Letu be the last node ofGp thatp assigns toup.

In the next two paragraphs we show that there is a time after which the condition of the if statement on
line 47 is true forever. That is, for each prefixS of Sb, whereb ∈ {0, 1}, there is a finite scheduleσS,
compatible with a path inGp|u, such thatS · σS ∈ Sch(Gp, Ib) andp decides inS · σS(Ib).

Sincep reaches line 34, it decided a value different from0 or Q in the instance of QC that it executed in
Thread 2 (line 26 or line 29). By part (i) of the validity property of QC, this decision value must be some tuple
(I0, I1, S0, S1) that some processq proposed in Thread 2 (line 29). Thus, at some timet, for eachb ∈ {0, 1},
Sb ∈ Sch(Gt

q, Ib) (see line 23). By Lemma 22, for eachb ∈ {0, 1}, Sb ∈ Sch(G∞
p , Ib).

Consider any prefixS of Sb, whereb ∈ {0, 1}. SinceSb ∈ Sch(G∞
p , Ib), it follows thatS ∈ Sch(G∞

p , Ib).
By Lemma 21 there is a scheduleS∞ ∈ Sch(G∞

p , Ib) that extendsS such thatRA = (F,H, Ib, S
∞,−) is an

admissible run ofA (which solves QC) usingD in E . Furthermore,S∞ can be chosen so thatS∞ = S · σ∞
S ,

for a scheduleσ∞
S that is compatible with a path inG∞

p |u. By the termination property of QC, there is a
finite prefix σS of σ∞

S , such thatp decides inS · σS(Ib). SinceS · σS is a finite prefix ofS∞ = S · σ∞
S ,

andS∞ ∈ Sch(G∞
p , Ib), by Lemma 23 it follows that there is some timetS such that, for allt ≥ tS , S ·

σS ∈ Sch(Gt
p, Ib). Also, sinceσ∞

S is compatible with a path inG∞
p |u, andσS is a finite prefix ofσ∞

S , by
Lemma 16, there is a timêtS such that, for allt ≥ t̂S , σS is compatible with a path inGt

p|u. Let t1 =

max{tS , t̂S : S is a prefix ofS0 or S1}. Let t2 be the time of the last assignment toup, andt∗ = max(t1, t2).
Thus, for allt ≥ t∗, it is true thatutp = u and, for every prefixS of Sb, whereb ∈ {0, 1}, there is a finite
scheduleσS, compatible with a path inGt

p|u
t
p, such thatS · σS ∈ Sch(Gt

p, Ib) andp decides inS · σS(Ib). In
other words, aftert∗, the condition of the if statement on line 47 is always satisfied.

Sincep is correct and reaches line 37, it executes line 47 infinitelyoften. The first time aftert∗ that p
executes that line, it finds that the condition of the if statement is satisfied, and assigns a node toup on line 50.
This occurs after timet2, contradicting the definition oft2.

Lemma 26 For every correct processp that reaches line 34 of algorithmTD→Ψ, there is a time after which
Σ-outputp contains only correct processes.

PROOF. Suppose some correct processp reaches line 34. By Lemma 17, there is a samplev∗ of p in G∞
p such

thatG∞
p |v

∗ contains only samples of correct processes. By Lemma 17(a),there is a time after which any node
v contained in variablevp is a descendant ofv∗ in G∞

p . By Lemma 25, there are infinitely many assignments
to up; in all of theseup is assigned the node invp (see lines 36 and 50). Thus, there is a timet∗ such that for
all t ≥ t∗, utp is a descendant ofv∗ in G∞

p . By Lemma 17(b), for allt ≥ t∗, Gt
p|u

t
p contains only samples of

correct processes.
By Lemma 25,p computes a new quorum on line 49 infinitely often after timet∗. Every quorum assigned

to Σ-outputp (other than the initialization) is computed on line 49. Thus, it suffices to prove that any quorum
assigned tonew-quorump on line 49 after timet∗ contains only correct processes.

26

Consider any such assignment, say at timet ≥ t∗ (see lines 47–49). The quorum assigned tonew-quorump
at timet is the union of certain sets of the formparticipants(σ), whereσ is a schedule compatible withGt

p|u
t
p.

Sincet ≥ t∗, Gt
p|u

t
p contains only samples of correct processes. This implies that all processes in each such

setparticipants(σ) are correct. Therefore, the quorum assigned tonew-quorump at timet contains only correct
processes.

We now prove that the quorums output byTD→Ψ satisfy the intersection property ofΣ. Intuitively, we
do so by showing that if two quorums donot intersect then there are two runs of algorithmA such that:
(a) processes decide differently in these two runs and (b) these two runs can be merged into a single run ofA
— a contradiction to the uniform agreement property of QC. Tocarry out this proof, we need the lemma that
allows us to merge certain runs (Lemma 9 of Section 7.1). Moreprecisely, we use the following corollary of
this lemma:

Corollary 27 LetR0 = (F,H, I, Ŝ ·S0,−) andR1 = (F,H, I, Ŝ ·S1,−) be two finite runs ofA usingD in E
such that participants(S0) ∩ participants(S1) = ∅. If some process decidesv0 in R0 and some process decides
v1 in R1, thenv0 = v1.

PROOF. Immediate from Lemma 9, the fact thatA usesD to solve QC inE , and the uniform agreement
property of QC.

Lemma 28 For all processesp and q, any two quorums assigned toΣ-outputp andΣ-outputq in algorithm
TD→Ψ intersect.

PROOF. Suppose, for contradiction, that for some processesp andq, there is a time whenΣ-outputp = P and
a time whenΣ-outputq = Q, butP ∩Q = ∅.

First, observe that any set thatp assigns tonew-quorump on line 49 cannot be empty. This is because this
set must include the participants of a scheduleσ that is applicable to some initial configurationI0 such thatp
decides inσ(I0). It is easy to see that no process decides in any initial configuration, and soparticipants(σ) 6= ∅.
Thus, any set thatp assigns tonew-quorump on line 49 is nonempty. Similarly, any set thatq assigns to
new-quorumq on line 49 is also non-empty.

Note that at any time,Σ-outputp = Π (at initialization) orΣ-outputp = new-quorump. Similarly,Σ-outputq =
Π orΣ-outputq = new-quorumq. Sincenew-quorump andnew-quorumq are not empty, it must be that the non-
intersecting quorumsP andQ are assigned tonew-quorump andnew-quorumq, respectively, on line 49.

Sincep and q reach line 49, they also reach line 34, and so they decide a value different from0 or Q
in the instance of QC they execute in Thread 2 (line 26 or line 29). By the validity and uniform agreement
properties of QC, it must be thatdecisionp = decisionq = (I0, I1, S0, S1) such that some process proposed
(I0, I1, S0, S1) in Thread 2 (line 29). Note thatI0 andI1 are initial configurations of algorithmA that differ
only in the initial state of a single process, andS0 andS1 are schedules ofA such that some process decides0
in S0(I0) and1 in S1(I1) (see lines 28–29).

For the notation defined in this and the next paragraph see Figure 8. LetS0 = e1 . . . eℓ andS1 = f1 . . . fm,
where theei’s andfj ’s are steps. LetC0 = I0 andCi = ei(Ci−1) for i ∈ [1..ℓ]; similarly, D0 = I1 and
Dj = fj(Dj−1) for j ∈ [1..m].

Let t be the time whenp first assignsP to new-quorump on line 49. By the condition on line 47, for
eachi ∈ [0..ℓ], there is a scheduleσp

i such thate1 . . . ei · σ
p
i ∈ Sch(Gt

p, I0) andp decides some valuexpi in
e1 . . . ei · σ

p
i (I0).

9 Similarly, for eachj ∈ [0..m], there is a scheduleτpj such thatf1 . . . fj · τ
p
j ∈ Sch(Gt

p, I1)
andp decides some valueypi in f1 . . . fj · τ

p
j (I1). The quorumP is the union of the participants in theσp

i ’s

9We adopt the convention that, fori = 0, e1 . . . ei is the empty schedule.

27

Some process Some process

Some process Some process

C0 C1 C2 Cℓ

e1 e2 eℓ

σ
p
0

σ
p
1

σ
p
2

x
p
0

x
p
1

x
p
2

x
p
ℓp decides

D0 D1 D2 Dm

f1 f2 fm

τ
p
0

τ
p
1

τ
p
2

τp
m

I1

y
p
0

y
p
1

yp
mp decides

σ
p
ℓ

decides0 decides1

y
p
2

I0

C0 C1 C2 Cℓ

e1 e2 eℓ

σ
q
0

σ
q
1

σ
q
2

σ
q
ℓ

I0

x
q
0

x
q
1

x
q
2

x
q

ℓq decides

decides0

D0 D1 D2 Dm

f1 f2 fm

τ
q
0

τ
q
1

τ
q
2

τq
m

I1

y
q
0

y
q
1

y
q
2

yq
mq decides

decides1

S1

S1S0

S0

Figure 8: Illustration of the proof of Lemma 28

andτpj ’s. Similarly, let t′ be the time whenq first assignsQ to new-quorumq. We defineσq
i , xqi , τ

q
j , andyqj , in

an analogous manner. The quorumQ is the union of the participants of theσq
i ’s andτ qj ’s.

Claim 28.1 For all i ∈ [0..ℓ], xpi = xqi ; and for allj ∈ [0..m], ypj = yqj .

PROOF OFCLAIM 28.1. Sincee1 . . . ei · σ
p
i ∈ Sch(Gt

p, I0), by Lemma 20, there is a runR0 = (F,H, I0,
e1 . . . ei · σ

p
i ,−) of A usingD in E . Processp decidesxpi in R0. Similarly, there is a runR1 = (F,H, I0,

e1 . . . ei · σ
q
i ,−) of A usingD in E , in which q decidesxqi . SinceP andQ are disjoint, so are their subsets

participants(σp
i) andparticipants(σq

i). Thus, by Corollary 27 (applied withI = I0, Ŝ = e1 . . . ei, S1 = σp
i ,

S2 = σq
i , v0 = xpi andv1 = xqi), we have thatxpi = xqi . The proof thatypj = yqj is analogous. 28.1

By Claim 28.1, we can now definexi = xpi = xqi andyj = ypj = yqj .

Claim 28.2 For all i ∈ [0..ℓ − 1], xi+1 = xi; and for allj ∈ [0..m − 1], yj+1 = yj.

PROOF OFCLAIM 28.2. Consider anyi ∈ [0..ℓ − 1], and letr be the process that takes stepei+1. Since
P andQ are disjoint,r /∈ P or r /∈ Q. Without loss of generality, suppose thatr /∈ P . In particular,
r /∈ participants(σp

i) ⊆ P . Also, again becauseP andQ are disjoint, so are their subsetsparticipants(σp
i) and

participants(σq
i+1). Therefore,participants(σp

i) andparticipants(ei+1 · σ
q
i+1) are disjoint.

Sincee1 . . . ei · σ
p
i ∈ Sch(Gt

p, I0), by Lemma 20, there is a runR0 = (F,H, I0, e1 . . . ei · σ
p
i ,−) of

A usingD in E . Processp decidesxi in R0. Also, sincee1 . . . ei+1 · σ
q
i+1 ∈ Sch(Gt′

q , I0) there is a run
R1 = (F,H, I0, e1 . . . eiei+1 · σ

q
i+1,−) of A usingD in E , in which q decidesxi+1. Thus, by Corollary 27

(applied withI = I0, Ŝ = e1e2 . . . ei, S1 = σp
i , S2 = ei+1 · σ

q
i+1, v0 = xi andv1 = xi+1), we have that

xi = xi+1. The proof thatyj = yj+1 is analogous. 28.2

28

Claim 28.3 x0 = 0 andy0 = 1.

PROOF OFCLAIM 28.3. Recall that some process decides0 in S0(I0), andp decidesxℓ in S0 ·σ
p
ℓ (I0). Since

S0 · σ
q
ℓ ∈ Sch(Gt

q, I0), by Lemma 20, there is a run(F,H, I0, S0 · σ
p
ℓ ,−) of A usingD in E . In this run, some

process decides0 andp decidesxℓ. SinceA solves QC usingD in E , by the uniform agreement property of
QC, we havexℓ = 0. By Claim 28.2 and a trivial induction,xi = 0 for all i ∈ [0..ℓ]. In particular,x0 = 0. The
proof thaty0 = 1 is analogous. 28.3

SinceP andQ are disjoint, so are their subsetsparticipants(σp
0) andparticipants(τ q0). Let r be the process

such thatI0 and I1 differ only in the initial state ofr. Processr does not take a step in at least one ofσp
0

andτ q0 . Without loss of generality, assume thatr does not take a step inσp
0 . Thus,σp

0 is also applicable to
I1, andp decides the same value,x0, in σp

0(I1) as inσp
0(I0). Sinceσp

0 ∈ Sch(Gt
p, I0), we also have that

σp
0 ∈ Sch(Gt

p, I1). By Lemma 20, there is a runR0 = (F,H, I1, σ
p
0 ,−) of A usingD in E . Processp decides

x0 in R0. Sinceτ q0 ∈ Sch(Gt′

q , I1), again by Lemma 20, there is a runR1 = (F,H, I1, τ
q
0 ,−) of A usingD in

E . Processq decidesy0 in R1.
By Corollary 27 (applied withI = I1, Ŝ being the empty schedule,S1 = σp

0 andS2 = τ q0 , v0 = x0 and
v1 = y0), we have thatx0 = y0. This contradicts Claim 28.3, and completes the proof of Lemma 28.

8.4 Correctness of the transformation

We are now ready to show that:

Theorem 29 Algorithm TD→Ψ transformsD toΨ.

PROOF. Recall that algorithmA usesD to solve QC inE . As before, we consider an arbitrary admissible run
of TD→Ψ in E , whereF ∈ E is the failure pattern andH ∈ D(F) is the failure history of this run.

To show thatTD→Ψ transformsD to Ψ, we must prove that the values of the variablesΨ-outputp conform
to the specification ofΨ. By inspection ofTD→Ψ, it is clear thatΨ-outputp is either⊥, or red (in which case
we say that it is of typeFS), or a pair(q,Q) whereq ∈ Π andQ ⊆ Π (in which case we say that it is of type
(Ω,Σ)).

(1) For each processp, Ψ-outputp is initially ⊥ (line 4). If Ψ-outputp ever changes value, it becomes of type
FS forever (line 33) or of type(Ω,Σ) forever (line 40).

This follows by inspection ofTD→Ψ.

(2) For all distinct processesp andq, it is impossible forΨ-outputp to be of typeFS andΨ-outputq to be of
type(Ω,Σ).

This is because, by the uniform agreement property of QC,p and q cannot decide different values on
lines 26 and 29; thus, they cannot execute in different branches of the if-then-else statement of lines 32-34.

(3) For each correct processp, eventuallyΨ-outputp 6= ⊥.

To prove this we first show that every correct processp eventually completes the loop on lines 20–22. By
Lemma 21 (takingS to be the empty schedule), for eachj ∈ [0..n] there is a scheduleS∞ ∈ Sch(G∞

p , Ij)
such that(F,H, Ij , S∞,−) is an admissible run of algorithmA (which solves QC) usingD in E . By the
termination property of QC, there is a finite prefixSj of S∞ such thatp decides inSj(Ij). By Lemma 23,
there is a timetj such that for allt ≥ tj , Sj ∈ Sch(Gt

p, I
j). Thus, after timemax{tj : j ∈ [0..n]}, the exit

condition on line 22 is true forever, and so eventuallyp completes the loop.

29

We claim that, after completing the loop on lines 20–22, every correct processp executes line 26 or line 29.

To show this claim, first note that sincep completes this loop, then for everyj ∈ [0..n], there is a time
tj and a scheduleSj

p ∈ Sch(Gtj
p , Ij) such thatp decides some valuexjp in Sj

p(Ij). By Lemma 20, for all
j ∈ [0..n], there is a runRj

p = (F,H, Ij , Sj
p,−) of A usingD in E . Since (a)A solves QC usingD in E ,

(b) processes can only propose0 or 1 in Rj
p, and (c)p decidesxjp in Rj

p, then by the validity property of
QC,xjp ∈ {0, 1,Q}. Furthermore, since no process proposes1 in the runR0

p whose initial configuration is
I0, we havex0p ∈ {0,Q}. Similarly,xnp ∈ {1,Q}.

There are two possible cases:

• There is aj ∈ [0..n] such thatxjp = Q. In this case,p executes line 26.

• For all j ∈ [0..n], xjp 6= Q. In this case, for allj ∈ [0..n], xjp ∈ {0, 1}; moreover,x0p = 0 andxnp = 1.
So there must be somei ∈ [0..n − 1] such thatxip = 0 andxi+1

p = 1. Thus,p executes line 29.

Thus,p executes line 26 or line 29, which shows the claim.

From this claim, all correct processes propose some value (on line 26 or 29) in an instance of QC executed
in Thread 2. By the termination property of QC, all correct processes eventually decide in that instance,
and so they all complete line 31. Thus, eventually every correct processp setsΨ-outputp to a non-⊥ value
on line 33 or 40.

(4) For each processp and timet, if Ψ-outputtp = red then a failure occurred by timet.

To see this, letp be a process andt a time such thatΨ-outputtp = red (line 33). By lines 31-32,p decided
0 or Q on line 26 or 29 at some timet′ ≤ t. There are two possible cases:

(a) p decided Q at timet′ ≤ t. Then, by part (ii) of the validity property of QC, a failure occurred by time
t′ ≤ t.

(b) p decided0 at timet′ ≤ t. Then, by Observation 2, there must be at least one processq that proposes0
and executes a step of the QC algorithm on line 26 by timet′ ≤ t. This implies that there is a time
t′′ ≤ t′, an indexj ∈ [0..n], and a scheduleSj

q ∈ Sch(Gt′′

q , Ij), such thatq decides Q inSj
q(Ij) (see

lines 23–25). By Lemma 20, there is a list of timesT , all at mostt′′, such that(F,H, Ij , Sj
q , T) is a

run ofA usingD in E . By part (ii) of the validity property of QC, this implies that a failure occurred
by timet′′ ≤ t′ ≤ t.

(5) If the Ψ-outputvariable of some processp becomes of typeFS at timet, then:

• A failure occurred by timet.

If Ψ-outputtp is of typeFS, then, by inspection ofTD→Ψ, Ψ-outputtp = red. By (4), a failure occurred
by timet.

• For every correct processq, there is a time after whichΨ-outputq = red.

By (2) and (3), for every correct processq, there is a time after whichΨ-outputq is of typeFS. In
TD→Ψ, the variableΨ-outputq can become of typeFS only by being set tored.

(6) If the Ψ-outputvariable of some process becomes of type(Ω,Σ), then:

• (i) For every processp and every timet ∈ N, Ω-outputtp ∈ Π; furthermore, (ii) if a correct process
exists, then there is a correct processp∗ and a timet∗ such that, for every correct processp and every
time t ≥ t∗, Ω-outputtp = p∗.

30

Part (i) is immediate by inspection ofTD→Ψ. Part (ii) is trivial if all processes are faulty, so suppose
that some correct process exists. By assumption, theΨ-outputvariable of some process becomes of
type (Ω,Σ). Then, by (2) and (3) above, eventually theΨ-outputvariable of every correct process
also becomes of type(Ω,Σ). So every correct process sets itsΩ-outputvariable repeatedly on line 38
using the extraction procedure described in [9]. Since someprocess reaches line 34, by Lemma 24,
the limit forestΥ has a critical index. Thus, as we explained in Section 8.2, wecan now apply steps
(b) and (c) of the proof of [9] to show that there is some correct processp∗ and a timet∗ such that,
for every correct processp and timet ≥ t∗, Ω-outputtp = p∗. The only difference is that whenever the
proof in [9] refers to abivalent node, we now refer to amultivalent one; and whenever [9] refers to
u-valent versusv-valent nodes for some distinctu andv in {0, 1}, hereu andv are in{0, 1,Q}.

• (i) For every correct processp, there is a time after whichΣ-outputp contains only correct processes,
and (ii) for all processesp andq, any two quorums assigned toΣ-outputp andΣ-outputq intersect.

Part (i) was shown in Lemma 26 and part (ii) in Lemma 28.

From (1)–(6) above, it follows that the values of the variablesΨ-outputconform to the specification ofΨ,
as defined in Section 3: Initially,Ψ-output= ⊥ at each process; eventually, however,Ψ-outputbehaves
either like the failure detector(Ω,Σ) at all correct processes or like the failure detectorFS at all correct
processes. The switch from⊥ to (Ω,Σ) or FS is consistent at all processes, and a switch from⊥ to FS
can happen only if a failure occurred.

Since Theorem 29 holds for any environmentE and any failure detectorD that can be used to solve QC
in E , we conclude that:

Theorem 30 For every environmentE , if failure detectorD can be used to solve QC inE , thenD can be
transformed toΨ in E .

8.5 Binary versus multivalued QC

Our proof thatΨ is the weakest failure detector to solve QC uses the fact that, in QC, each process can propose
any value in the infinite set{0, 1}∗; i.e., the proof used the fact that QC ismultivalued.10 So one may ask
whetherΨ is also the weakest failure detector to solve thebinary version of QC where processes can only
propose0 or 1. The answer is affirmative.

To prove this, we use an algorithm by Mostéfaouiet al. that converts any algorithm that solvesbinary
consensus into an algorithm that solvesmultivaluedconsensus [34]. With a straightforward modification, this
conversion algorithm also works with quittable consensus:it converts any algorithm that solves binary QC
(using some failure detectorD) into one that solves multivalued QC (using thesamefailure detectorD). This
gives us the following:

Theorem 31 For every environmentE , if failure detectorD can be used to solve binary QC inE , thenD can
be used to solve QC inE .

Therefore:

Corollary 32 For every environmentE , Ψ is the weakest failure detector to solve binary QC inE .

10Specifically, in Thread 2 ofTD→Ψ, processes may propose tuples of the form(I, I ′, S, S′), for some initial configurations and
finite schedules of algorithmA.

31

PROOF. Let E be any environment.

(a) Ψ can be used to solve binary QC inE . This is obvious since, by Theorem 8,Ψ can be used to solve QC inE .

(b) SupposeD can be used to solve binary QC inE . By Theorem 31,D can be used to solve QC inE . So, by
Theorem 30,D can be transformed toΨ in E .

9 Final remarks

Failure detector emulations. Intuitively, a failure detectorD is weaker than a failure detectorD′ if processes
can useD′ to emulateD. Two technical definitions of failure detector emulation have been proposed in the
literature [9, 31]. In this paper we adopted the original definition of emulation given in [9] since we used parts
of the proof given in that paper. As we explain below, however, our results also hold with the definition of
emulation given in [31].

With the original definition of emulation [9], an implementation of D must maintain local variables that
mirror the output ofD at all times. The definition of emulation given in [31] is weaker: with this definition,
an implementation ofD is required to behave likeD only when it is actually queried.11 The failure detectors
Ψ and (Ψ,FS), which we proved here to be the weakest for QC and NBAC under the original definition
of failure detector emulation, are also weakest for these problems under the definition of emulation given
in [31]. In a nutshell, this is because (a) all the algorithmsthat we give here also work under the model
of [31], and (b) if processes can emulate a failure detectorD according to the strong definition of emulation
of [9] (i.e., p is able to maintain a variableD-outputp that alwaysmirrors the output ofD) then processes
can also emulateD according to the weaker definition of emulation of [31]: whenever it is queried,p can
just return the value ofD-outputp. For the same reasons, all the failure detectors that we are aware of to be
weakest for a problem under the definition of emulation of [9], are also weakest for these problems under the
definition of emulation of [31]; this includes the weakest failure detectors for consensus [9] and non-uniform
consensus [19], set agreement [18, 37], implementing an atomic register [15], and boosting obstruction-freedom
to wait-freedom [25].

The newer definition of emulation given in [31] has two advantages over the original one of [9]. First, the
original definition of emulation is more stringent than necessary: when using an emulated failure detectorD,
it is sufficient that the emulatedD behaves correctly only when it is queried — which is exactly what the
newer definition stipulates. Second, the definition of emulation given in [31] is reflexive, i.e., for every failure
detectorD, processes can useD to emulateD. In contrast, as remarked by [31] and later in [11], the original
definition of emulation is not reflexive: if the output of a failure detectorD is sensitive to time, the processes,
because they are asynchronous, may not be able to maintain variables that mirror the output ofD at all times
as the original definition of emulation requires. The non-reflexivity of the failure detector emulation under the
original definition of emulation of [9] has no bearing on the results of this paper or on the other weakest failure
detector results cited above: as we explained above, the same results also hold with the newer definition of
emulation given in [31] which does satisfy reflexivity.

Granularity of steps. As in the models of Fischeret al. [20] and Chandraet al. [9], in our model a process
can send a messagem to every process in an atomic step. Since a sender cannot failin “the middle” of a step
that sendsm to all, our model has the following property: if any process receivesm, then every correct process

11More precisely, if the implementation ofD is queried at timet1 and it replies with a valued at timet2, thend must be a valid
value ofD at some timet ∈ [t1, t2]; so, it is as if the query/reply occurredatomicallyat some timet within the interval of time that the
query/reply actually took. In other words, the behaviour ofthe implementation ofD is linearizablewith respect to the specification ofD.

32

eventually receivesm (*). One may ask whether our results also hold in another model, let’s call it modelB,
where a process can send a messagem to only one process in an atomic step. To answer this question, note that
in modelB (where processes may crash but links are reliable) one can implement Uniform Reliable Broadcast
(URB) [27], a communication primitive that provides the property (*) of our model. Since modelB can emulate
the atomic “send m to all” of our model, it is easy to see that our results also hold in modelB.

Systems that are not asynchronous.It is worth noting that since our model is that of an asynchronous system
augmented with failure detectors, the algorithms that emulate failure detectors are also asynchronous [11]. So
the weakest failure detectors that result from such emulations are also asynchronous in the sense that their
output values could be delayed for any finite time. Some previous works explored failure detectors in systems
that are not purely asynchronous. For example Aguileraet al. investigated the use of “fast ” failure detectors
to speed up agreement algorithms in some synchronous systems [4]. In another body of work, researchers
considered the definition and implementation of failure detectors for systems where message delays and losses
follow some probability distribution [14, 8, 35]. It may be interesting to investigate QC and NBAC in systems
that are not asynchronous, and to determine whether these problems have weakest failure detectors in these
systems. This, however, is beyond the scope of this paper.

Systems with a majority of correct processes.In environments where a majority of processes are correct it
is easy to implement the quorum failure detectorΣ: Each process periodically sends “join-quorum” messages,
and takes as its present quorum any majority of processes that respond to that message. Therefore, in such
environmentsΨ is equivalent to a simpler failure detector, one which outputs justΩ instead of(Ω,Σ).

Future failures. Our definitions of QC and NBAC do not allow a process to quit or abort because of a future
failure. We could have defined these problems in a way that allows such behaviour, as in fact is the case in
some specifications of NBAC in the literature. Our results also hold with these definitions, provided we make a
corresponding change to the definitions of the failure detectorsFS andΨ: they are now allowed to outputred
in executions with failures even before a failure occurs.

References

[1] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
Communication-efficient leader election and consensus with limited link synchrony. InPODC ’04:
Proceedings of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, pages
328–337, 2004.

[2] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. On imple-
menting Omega in systems with weak reliability and synchrony assumptions.Distributed Computing,
21(4):285–314, 2008.

[3] Marcos Kawazoe Aguilera, Sven Frolund, Vassos Hadzilacos, Stephanie Horn, and Sam Toueg. Abortable
and query-abortable objects and their efficient implementation. In PODC ’07: Proceedings of the Twenty-
sixth Annual ACM Symposium on Principles of Distributed Computing, pages 23–32, 2007.

[4] Marcos Kawazoe Aguilera, Gérard Le Lann, and Sam Toueg.On the impact of fast failure detectors on
real-time fault-tolerant systems. InDISC ’02: Proceedings of the Sixteenth International Symposium on
Distributed Computing, pages 354–370, 2002.

[5] Marcos Kawazoe Aguilera, Sam Toueg, and Boris Deianov. Revisiting the weakest failure detector for
uniform reliable broadcast. InDISC ’99: Proceedings of the Thirteenth International Symposium on
Distributed Computing, pages 13–33, 1999.

33

[6] Antonio Fernández Anta, Ernesto Jiménez, and Michel Raynal. Eventual leader election with weak as-
sumptions on initial knowledge, communication reliability, and synchrony. J. Comput. Sci. Technol.,
25(6):1267–1281, November 2010.

[7] Hagit Attiya, Rachid Guerraoui, Danny Hendler, and PetrKuznetsov. The complexity of obstruction-free
implementations.Journal of the ACM, 56(4):24:1–24:33, June 2009.

[8] Marin Bertier, Olivier Marin, and Pierre Sens. Implementation and performance evaluation of an adapt-
able failure detector. InDSN ’02: Proceedings of the Thirty-second annual IEEE/IFIPInternational
Conference on Dependable Systems and Networks, pages 354–363, 2002.

[9] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure detector for solving
consensus.Journal of the ACM, 43(4):685–722, July 1996.

[10] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, March 1996.

[11] Bernadette Charron-Bost, Martin Hutle, and Josef Widder. In search of lost time.Information Processing
Letters, 110:928–933, October 2010.

[12] Bernadette Charron-Bost and Sam Toueg. Unpublished notes, 2001.

[13] Wei Chen. Abortable consensus and its application to probabilistic atomic broadcast. Technical Report
MSR-TR-2006-135, Microsoft Research, 2006.

[14] Wei Chen, Sam Toueg, and Marcos Kawazoe Aguilera. On thequality of service of failure detectors.
IEEE Trans. Comput., 51(5):561–580, May 2002.

[15] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui. Tight failure detection bounds on
atomic object implementations.Journal of the ACM, 57(4):22:1–22:32, April 2010.

[16] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos, Petr Kouznetsov, and
Sam Toueg. The weakest failure detectors to solve certain fundamental problems in distributed computing.
In PODC ’04: Proceedings of the Twenty-third ACM Symposium on Principles of Distributed Computing,
pages 338–346, 2004.

[17] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Petr Kouznetsov. Mutual exclusion in
asynchronous systems with failure detectors.Journal of Parallel and Distributed Computing, 65(4):492–
505, April 2005.

[18] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Andreas Tielmann. The weakest
failure detector for message passing set-agreement. InDISC ’08: Proceedings of the Twenty-second
International Symposium on Distributed Computing, pages 109–120, 2008.

[19] Jonathan Eisler, Vassos Hadzilacos, and Sam Toueg. Theweakest failure detector to solve nonuniform
consensus.Distributed Computing, 19(4):335–359, 2007.

[20] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with
one faulty process.Journal of the ACM, 32(2):374–382, April 1985.

[21] Matthias Fitzi, Daniel Gottesman, Martin Hirt, ThomasHolenstein, and Adam Smith. Detectable byzan-
tine agreement secure against faulty majorities. InPODC ’02: Proceedings of the Twenty-first ACM
Symposium on Principles of Distributed Computing, pages 118–126, 2002.

34

[22] Eddy Fromentin, Michel Raynal, and Frederic Tronel. Onclasses of problems in asynchronous distributed
systems with process crashes. InICDCS ’99: Proceedings of the Nineteenth International Conference on
Distributed Computing Systems, pages 470–477, 1999.

[23] James Gray. Notes on database operating systems. In R. Bayer, R. M. Graham, and G. Seegmuller, editors,
Operating Systems: An Advanced Course, volume 60 ofLNCS, pages 393–481. Springer-Verlag, 1978.
Also appears as Technical Report RJ2188, IBM Research Laboratory.

[24] Rachid Guerraoui. Non-blocking atomic commit in asynchronous distributed systems with failure detec-
tors. Distributed Computing, 15(1):17–25, 2002.

[25] Rachid Guerraoui, Michal Kapalka, and Petr Kouznetsov. The weakest failure detectors to boost
obstruction-freedom.Distributed Computing, 20(6):415–433, 2008.

[26] Rachid Guerraoui and Petr Kouznetsov. On the weakest failure detector for non-blocking atomic commit.
In TCS ’02: Proceedings of the Second International Conference on Theoretical Computer Science, pages
461–473, 2002.

[27] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems. Tech-
nical Report TR 94-1425, Department of Computer Science, Cornelpublisl University, Dept. of Computer
Science, Cornell University, Ithaca, NY 14853, May 1994.

[28] Vassos Hadzilacos. On the relationship between the atomic commitment and consensus problems. In
Barbara B. Simons and Alfred Z. Spector, editors,Fault-Tolerant Distributed Computing, volume 448 of
LNCS, pages 201–208. Springer-Verlag, 1986.

[29] Joseph Y. Halpern and Aleta Ricciardi. A knowledge-theoretic analysis of uniform distributed coordina-
tion and failure detectors.Distributed Computing, 17(3):223–236, 2005.

[30] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and LidongZhou. Chasing the weakest system model for
implementingΩ and consensus.IEEE Trans. Dependable Sec. Comput., 6(4):269–281, October 2009.

[31] Prasad Jayanti and Sam Toueg. Every problem has a weakest failure detector. InPODC ’08: Proceedings
of the Twenty-seventh ACM Symposium on Principles of Distributed Computing, pages 75–84, 2008.

[32] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.Communications of the
ACM, 21(7):558–565, July 1978.

[33] Dahlia Malkhi, Florian Oprea, and Lidong Zhou.Omegameets Paxos: leader election and stability with-
out eventual timely links. InDISC ’05: Nineteenth International Symposium on Distributed Computing,
pages 199–213, 2005.

[34] Achour Mostéfaoui, Michel Raynal, and Frederic Tronel. From binary consensus to multivalued consensus
in asynchronous message-passing systems.Information Processing Letters, 73(5–6):207–212, March
2000.

[35] Nicolas Schiper and Sam Toueg. A robust and lightweightstable leader election service for dynamic sys-
tems. InDSN ’08: Proceedings of the Thirty-eighth IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 207–216, 2008.

[36] Dale Skeen.Crash Recovery in a Distributed Database System. PhD thesis, University of California at
Berkeley, May 1982. Technical Memorandum UCB/ERL M82/45.

[37] Piotr Zielinski. Anti-Ω: the weakest failure detector for set agreement.Distributed Computing, 22(5-
6):335–348, August 2010.

35

A Proof of Lemma 9

Lemma 9 Let R0 = (F,H, I, Ŝ · S0, T̂0 · T0) andR1 = (F,H, I, Ŝ · S1, T̂1 · T1) be two finite runs of an
algorithmA using failure detectorD in some environmentE , such that|T̂0| = |T̂1| = |Ŝ| and participants(S0)∩
participants(S1) = ∅. LetR = (F,H, I, Ŝ · S, T̂ · T) be a merging ofR0 andR1. Then

(a) R is also a run ofA usingD in E .

(b) For eachb ∈ {0, 1} and each processp ∈ participants(Ŝ · Sb), the state ofp is the same in̂S · S(I) as in
Ŝ · Sb(I).

PROOF. To show thatR is run ofA usingD in E , we first note thatF ∈ E , H ∈ D(F), andI is indeed an
initial configuration ofA. It now suffices to show thatR satisfies properties (1)–(5) of runs. The fact thatŜ · S
andT̂ · T have the same length (property (2)) is obvious from the definition ofR. The fact that inR no process
takes a step after it has crashed, and that the failure detector value in each step is consistent with the historyH
(property (3)), follows from the wayR is constructed fromR0 andR1, and the fact thatR0 andR1 have this
property.T̂ ·T is nondecreasing (property (4)) because each ofT̂0 ·T0 andT̂1 ·T1 is nondecreasing,̂T is chosen
to be whichever of̂T0 andT̂1 has the smallest maximum element, andT is obtained by mergingT0 andT1 in
nondecreasing order. The times of the steps inR respect the causal precedence relation (property (5)) because
R0 andR1 have this property, and no process takes a step in bothS0 andS1. It remains to prove that̂S · S is
applicable toI (property (1)).

For the purposes of this proof, ifσ is a schedule andi ∈ {0, 1, . . . , |σ|}, we denote byσi the prefix ofσ
that has lengthi (σ0 is the empty schedule). Also, for the suffixS of the schedule of the merged runR (i.e., the
portion of the schedule ofR produced by mergingS0 andS1), andb ∈ {0, 1}, let fb(i) be the number of steps
of Si that come fromSb. Using a straightforward induction, we can show that for alli ∈ {0, 1, . . . , |S|}:

(i) For all b ∈ {0, 1}, the set of messages between processes inparticipants(Ŝ · Sb) (i.e., messages of the
form (p,−, q) wherep, q ∈ participants(Ŝ · Sb)) in the message buffer of configuration̂S · Si(I) is equal
to the set of messages between processes inparticipants(Ŝ · Sb) in the message buffer of configuration

Ŝ · S
fb(i)
b (I).

(ii) For all b ∈ {0, 1}, the state of any processp ∈ participants(Ŝ ·Sb) is the same in̂S ·Si(I) as inŜ ·Sfb(i)
b (I).

Below we use (i) to show that, for eachi ∈ {1, 2, . . . , |S|}, S[i] is applicable toŜ · Si−1(I). This proves that
Ŝ · S is applicable toI.

Let S[i] = (p,m, d,A). Let b ∈ {0, 1} be such thatp ∈ participants(Sb) (such ab exists because every
step ofS is in eitherS0 or S1). Thus,(p,m, d,A) is stepfb(i) of Sb. SinceRb is a run,Ŝ · Sb is applicable to

I. In particular, step(p,m, d,A) of Sb is applicable toŜ · Sfb(i)−1
b (I). Note thatfb(i − 1) = fb(i) − 1. So,

(p,m, d,A) is applicable toŜ · Sfb(i−1)
b (I). Thus,m is in the message buffer of̂S · Sfb(i−1)

b (I). Furthermore,
it is a message between processes inparticipants(Ŝ · Sb). This is because, (1) being in the message buffer of

Ŝ ·S
fb(i−1)
b (I) it was sent by a process inparticipants(Ŝ ·Sfb(i−1)

b); and (2)p, the recipient ofm, is the process
that takes thefb(i)-th step ofSb. By (i), m is in the message buffer of̂S ·Si−1(I). So,(p,m, d,A) is applicable
to Ŝ · Si−1(I), as wanted.

Part (b) of the lemma follows directly from (ii), takingi = |S|.

36

