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Abstract

We definequittable consensus natural variation of the consensus problem, where psesdsave the
option to agree on “quit” if failures occur, and we relatestproblem to the well-known problem of non-
blocking atomic commit. We then determine the weakest ifailletectors for these two problems in all
environments, regardless of the number of faulty processes

1 Introduction

Non-blocking atomic commit (NBAC) is a well-known problefmat arises in distributed transaction process-
ing [23]. Informally, the set of processes that participata transaction must agree on whether to commit or
abort that transaction. Initially each process votes Yesufi willing to commit”) or No (“we must abort”),
and eventually processes must reach a common decision, €@mibort. The decision to Commit can be
reached only if all processes voted Yes. Furthermore, ffraltesses voted Yes and no failure occurs, then the
decisionmustbe Commit. NBAC is similar to the classical problem of corsen where each process initially
proposes a value, and eventually processes must reach accodatision on one of the proposed values.

It is well-known that NBAC and consensus are unsolvable ymelsronous systems with process crashes
(even if communication is reliable) [20]. One way to circieny such impossibility results is through the use
of unreliable failure detector$l0]. Intuitively, a failure detector provides each pracegth some (possibly
incomplete and inaccurate) information about failureg,,ea list of processes currently suspected to have
crashed.

Failure detectors can be compared by “reduction”: Intaljiv failure detectorD is weaker thanfailure
detectorD’ if there is an algorithm that transfornd® into D. Note that ifD is weaker tharD’, any problem
that can be solved witl can also be solved with’. For any problen, a natural question is to determine the
weakesfailure detector to solvé, i.e., to determine the failure detectd such that (a) there is an algorithm
that use®D* to solve P, and (b)D* is weaker than any failure detectbrthat can be used to solve. Finding
the weakest failure detector to solve a problramounts to determining the minimum amount of information
about failures that is necessary to soRe It also provides important intuition about systems in vishie is
solvable: P is solvable inany system where the weakest failure detector focan be implemented. Such a
system may be defined in terms of partial synchrony assunmtior in terms of other assumptions, e.g., the
number and timing of failures.

Chandreet al.[9] determined the weakest failure detector to solve casiseim systems with a majority of
correct processes, while Delpogeal. [15] generalized this result to all systems, regardlesi@ntumber of
correct processes.

As with consensus, failure detectors can be used to solveONBA, 22]. It was an open problem, however,
whether there is a weakest failure detector to solve NBAGC #isd, what that failure detector is. In this paper
we resolve this problem. To do so,



(a) we define a natural variation of consensus, cajlgittable consensu®C);
(b) we establish a close relationship between QC and NBAC;

(c) we determine the weakest failure detector to solve Q@; an

(d) we use (b) and (c) to derive the weakest failure deteoteplve NBAC.

Informally, QC is like consensus except that, in case araibhccurs, processes have the option (but not
the obligation) to agree on a special value Q (for “quit”). isTtweakening of consensus is appropriate for
applications where, when a failure occurs, processes kangedl to agree on that fact (rather than on an input
value) and resort to a default action.

Despite their apparent similarity, QC and NBAC are difféi@nmportant ways. In NBAC the two possible
input values Yes and No are not symmetric: A single vote of eriough to force the decision to abort. In
contrast, in QC (as in consensus) no input value has a gedleole. Another way in which the two problems
differ is that the semantics of the decision to abort (in NBAGd the decision to quit (in QC) are different. In
NBAC the decision to abort is sometimes inevitable (e.q,pfocess crashes before voting); in contrast, in QC
the decision to quit is never inevitable, it is only an optidoreover, in NBAC the decision to abort signifies
that either a failure occurrear someone voted No; in contrast, in QC the decision to quitiesveld only if a
failure occurred.

We now describe in more detail our results, which involveftiilewing three failure detectors.

e Theleader failure detectof? outputs the id of a process at each process. If there is actqecess,
then there is a time after whidh outputs the id of the same correct process at all correcegsss [9].

e Thequorum failure detectodl outputs a set of processes at each process. Any two setsi{@titany
times and by any processes) intersect, and eventually eeeiutput at any correct process consists of
only correct processes [15].

e Thefailure signalfailure detectorFS outputsgreen or red at each process. As long as there are no
failures, S must outputgreen at every process; once a failure occurs, and only if it dgeS, must
eventually outputed permanently at every correct process [12, 24].

We show that there is a weakest failure detector to solve Q. failure detector, which we denofe, is
closely related to the weakest failure detector to solvesensus, namelf2, >2) [15],* and toFS. Intuitively,
¥ behaves as follows: For an initial period of time the outpuf’cat each process is. Eventually, however,
U behaves either like the failure detectét, ) at all correct processes or like the failure deteckd at all
correct processes. The switch framto (2, ) or S need not occur simultaneously at all processes, but the
same choice is made by all processes. Furthermbrean switch fromL to FS only if a failure occurred.
This result has an intuitively appealing interpretatiorm sblve QC, a failure detector must eventually either
truthfully inform all the correct processes that a failucewared, in which case they can decide Q, or it must be
powerful enough to allow processes to solve consensus ompitoposed values. This matches the behaviour
of 0.

We also prove that NBAC is in some sense equivalent to QC roaithel failure detecto#S. Intuitively,
(a) givenFS, any QC algorithm can be converted to an algorithm for NBA@| é) any algorithm for NBAC
can be converted to an algorithm for QC, and can also be usethtementFS.

Using this equivalence we prove thak, FS) is the weakest failure detector to solve NBAC. This result
applies to any system, regardless of the number of faultyga®es.

Nf D andD’ are failure detectorg;D, D’) is the failure detector that outputs a vector with two conguts, the first being the
output of D and the second being the outputZf.




Related work. The model of asynchronous systems augmented with failuextbes was introduced in [10]
as one way to circumvent the impossibility result of [20].a@draet. al proved thaf? is the weakest failure
detector to solve consensus in systems with a majority secoprocesses [9]. Delporé&t. algeneralized this
result to prove thaf(2, X)) is the weakest failure detector to solve consensus in arigraysegardless of the
number of correct processes [15]. Failure detectors hase bged to capture the minimum information about
failures that is necessary to solve other basic problemsinlwited computing, such as set agreement [18, 37],
mutual exclusion [17], boosting obstruction-freedom tatvil@edom [25], implementing an atomic register in
message-passing systems [15], and implementing unifdrable broadcast [5, 29] in systems with lossy com-
munication links. It is worth noting that the result tats the weakest failure detector for solving consensus
led to the discovery of several consensus algorithms farathportant models, in particular, for several weak
models ofpartial synchrony(e.g., see [2, 1, 33, 30, 6]). This was done by implemenfing such systems,
and then combining this implementation with any algorithrattsolves consensus usifigthus exploiting the
modularity of the failure detector approach.

The NBAC problem has been studied extensively in the corgéxtansaction processing [23, 36]. Its
relation to consensus was first explored in [28]. CharrostBmd Toueg [12] and Guerraoui [24] showed that
despite some apparent similarities, in asynchronousragsBAC and consensus are in general incomparable
— i.e., a solution for one problem cannot be used to solve tierd The problem of determining the weakest
failure detector to solve NBAC was explored and settled iec&d settings. Fromentiat al. [22] determine
that to solve NBAC betweeaverypair of processes in the system, one neegsréect failure detectofl10].
Guerraoui and Kouznetsov [26] determine the weakest &adetector for NBAC for a restricted class of failure
detectors. From results of [12] and [24] it follows that il $pecial case where at most one process may crash,
FS is the weakest failure detector to solve NBAC. The generalstion, however, remained open until our
results appeared, in preliminary form, in [16].

Quittable consensus is closely related todkeeectable broadcagtroblem introduced and studied by Figti
al. in a different setting, namely, synchronous systems withtrairy process failures [21]. Roughly speaking,
in the detectable broadcast problem, correct procesdes @igree on the broadcast value or, if failures occur,
they may agree to “reject” the broadcast; furthermore, ¥f eorrect process rejects the broadcast, then the
“adversary gets no information about the sender’s input” privacy requirement that is relevant in the case of
arbitrary failures.

Quittable consensus is also related todbertable consensysroblem that Chen defined in the context of
message-passing systems with probabilistic messagesdatealylosses [13]. Roughly speaking, in abortable
consensus some processes are allowed to abort when thddvetfathe system degenerates (e.g., there are
many process failures or message delays or losses). Inasbmér quittable consensus, however, abortable
consensus does not require agreement: some processesaitigytie same value while others abort.

Other weakenings of the consensus problem were studiec inditext of obstruction-free object imple-
mentations in shared-memory systems. For example, Adtigh defined objects that may reply with a special
value “pause” or “fail” to some processes if there is stepteotion [7]. Similarly, Aguileraet al. defined
abortable objects that may return “abort” in the event cfiivell contention [3]. In both works, when the object
is consensus, agreement in not required: some processepauze” or “abort” while others agree on the same
value. Furthermore, pausing, failing, or aborting is akbohwhen there is contention, not failures. In contrast,
in quittable consensus the decision to quit must be agreall lpyocesses and is allowed only in the case of
failures.

Roadmap. The rest of the paper is organized as follows: In Section 2evew the model of computation.
Sections 3 and 4 contain the precise specifications of thedailetectors used in this paper, and of QC and

2An exception is the case where at most one process may fatisase, any algorithm that solves NBAC can be converted in
one that solves consensus, but the reverse does not hold.
3That paper contained additional results by Delporte, Fanien and Guerraoui, which have since appeared in full forfi5].



NBAC, the two problems we consider. In Section 5 we show thata@d NBAC are closely related. In that
section we also identify the weakest failure deteckoto solve QC and prove that, FS) is the weakest
failure detector to solve NBAC. In Section 6 we show tivas sufficient to solve QC. Sections 7 and 8 contain
the proof that¥ is necessary to solve QC. We conclude with some final remarggction 9.

2 The model

Our model of asynchronous computation is the one descring8], which augments the model of Fischer,
Lynch, and Paterson [20] with failure detectors. Hencéfone assume a discrete global clock to which the
processes do not have access. The range of this clock'sgitks

2.1 Systems

We consider distributed message-passing systems withod set 2 processe$l = {1,2,...,n}. Processes
execute steps of computation asynchronously, i.e., tisene bound on the delay between steps. (Section 2.4
describes what a process does in each step.) Each pair @sgascare connected by a reliable link. The links
transmit messages with finite but unbounded delay. They adelad as a sel/, called themessage buffer
that contains triples of the foritp, data, ¢) indicating thatp has sent the messadeta to ¢, andg has not yet
received it. We assume that each message sent by a pgoteeasprocesg is unique; this can be guaranteed
by having the sender include a counter with each message.

2.2 Failures, failure patterns and environments

We consider crash failures only: processes fail only byif@lprematurely. Afailure patternis a function

F : N — 2T whereF(t) is the set of processes that have crashed throughttin®ince processes never
recover from crashed;(t) C F'(t + 1). Let faulty(F) = [,y F'(t) be the set of faulty processes in a failure
patternF’; and correct(F') = I1 — faulty(F") be the set of correct processegfinWhen the failure patterf’ is
clear from the context, we say that proceds correctif p € correct(F), andp is faulty if p € faulty(F).

An environmentdenotedt, is a set of failure patterns. Intuitively, an environmérdescribes the number
and timing of failures that can occur in the system. Thussaltéhat applies to all environments is one that
holds regardless of the number and timing of failures. Wetkehy&* the set ofall failure patterns. Intuitively,
in a system with environmerd* each process may crash, and it may do so any time.

2.3 Failure detectors

A failure detector historyH with rangeR describes the behavior of a failure detector during an di@tu
Formally, itis a functionH : II x N — R, whereH (p, t) is the value output by the failure detector module of
procesy at timet.

A failure detectorD with rangeR is a function that maps every failure pattefhto a nonempty set of
failure detector histories with range. D(F) is the set of all possible failure detector histories thay e
output byD in a failure patternt’. Typically we specify a failure detector by stating the pajes that its
histories satisfy.

Given two failure detector® andD’, we denote by D, D’) the failure detector whose output is an ordered
pair in which the first element corresponds to an outpd®pénd the second element corresponds to an output
of D’. More precisely, ifR andR’ are the ranges @ andD’, respectively, then the range(@, D’) isR x R'.

For all failure patterng”,

(D,D')(F) = {H"| 3H € D(F), 3H' € D'(F), Vp € I, Vt € N: H"(p,t) = (H(p,t), H'(p, 1))}



2.4 Algorithms

An algorithm A is modeled as a collection of deterministic automata. There is an automattip) for each
procesgp. Computation proceeds in steps of these automata. In egghasprocess atomically

e receives a single messagefrom the message buffédl, or the empty message
e gueries its local failure detector module and receives aevdl

e changes its state; and

e sends a message to every process.

The state transition and the messagesils@nds are all uniquely determined by the automat¢p), the state
of p at the beginning of the step, the received messagand the failure detector valuk Formally, a step is a
tuplee = (p,m,d, A), wherep is the process taking stepm is the message received pyduringe, d is the
failure detector value seen Iyin e, and.A is the algorithm being executed.

The message received in a step is nondeterministicallgteeléromA/ U {\}. This reflects the asynchrony
of the communication channels: a procgsaay receive the empty message despite the existence okivedc
messages addressedvto

We assume that each procgshas a read-onlynput variable denoted/N,, and a write-onceoutput
variable, denotedOUT,,. Technically, these variables are components of the stéti&e automatomd(p). In
each initial state ofA(p), the input variable/V,, has some value if0, 1}*, and the output variabl®UT), is
initialized to the special valu¢. ¢ {0,1}* (to denote that it was not yet written by.

2.5 Configurations

A configurationof an algorithmA is a pair(s, M), wheres is a function that maps each proces® a state of
A(p), andM is the message buffer. Recall thetis a set of triplegp, data, q), wherep sentdata to ¢, which
has not yet received it. Amitial configuration of algorithmA is a pair(s, M), whereM = () ands(p) is an
initial state of the automatad (p).

A step(p,m,d,.A) is applicableto a configurationC' = (s, M) if and only if m € M U {\}. If eis a
step applicable to configuratiafl, e(C') denotes the configuration that results when we applyC'. This is
uniquely determined by the automataip) of the proces that takes step.

2.6 Schedules

A scheduleS of an algorithm.A is a finite or infinite sequence of steps.df We denote byparticipant$s)
the set of processes that take at least one step in schedulée ith step in schedul& is denoted byS[i].
A scheduleS is applicableto a configurationC' if S is the empty schedule, ¢f[1] is applicable toC', S[2]
is applicable taS[1](C), etc. If S is finite and is applicable t¢’, S(C') denotes the configuration that results
when we apply schedulg to configurationC'.

Let .S be a schedule applicable to an initial configuratiosf an algorithmA, and leti, j be positive integers
such that, j < |S|. We say that stepcausally precedestep; in S with respect td if and only if one of the
following holds [32]:

e S[i] andS[j] are steps of the same process ard;

e S[i] is a step in which a messageis sent andS[j] is a step in whichn is received, i.e., stef[i] applied
to configurationS[1] - - - S[i — 1](I) results in the sending ofi andS[j] = (—,m, —,.A);* or

4The symbol “-” in a field of a tuple indicates an arbitrary permissible afor that field of the tuple. We use this convention
throughout the paper.



e there is a positive integér < |S| such that step causally precedes stép and step: causally precedes
stepy in .S with respect td.

Note that if S[;] and S[j] are steps involving the sending and receipt of the same messatheni < j
(because ifj < i, thenS[j] would be receivingn beforem is sent inS[i], contradicting the fact tha$ is
applicable tal). This implies:

Observation 1 If stepi causally precedes stggn S with respect td theni < j.

2.7 Runs

A run of algorithm.A using failure detectoD in environmen€ is a tupleR = (F, H,1,S,T) whereF'is a
failure pattern in€, H is a failure detector history ifP(F'), I is an initial configuration of4, S is a schedule
of A, andT is a list of times inN (informally, T'[i] is the time when stes:] is taken) such that the following
hold:

(1) Sis applicable td.

(2) S andT are both finite sequences of the same length, or are bothten§equences.

(3) For all positive integers < |S|, if S[i] = (p, —,d,.A), thenp ¢ F(T[i]) andd = H (p, T'[i]).
(4) For all positive integers < j < |S|, T'[i] < T'[;].

(5) For all positive integers, j < |S

, if stepi causally precedes stgpn S with respect td thenT'[;] < T'[j].

Property (3) states that a process does not take steps ediding, and that the failure detector value seen
in a step is the one dictated by the failure detector hisidryProperty (4) states that the sequence of times
when processes take steps in a schedule is nondecreasingoperty (5) states that these times respect causal
precedence.

A run whose schedule is finite (respectively, infinite) idexdla finite (respectively, infinite) run. Asdmis-
sible runof algorithm A using failure detectoP in environment is an infinite runkR = (F, H,1,5,T) of A
usingD in £ with two additional properties:

(6) Every correct process takes an infinite number of stegs in

(7) Each message sent to a correct process is eventuallyedceMore precisely, for every finite prefix
S" of S, and everyq € correct(F'), if the message buffer in configuratia#f(7) contains a message
m = (—,—,q), then for some € N, S[i| = (¢, m, —, A).

The input and output of a ruR = (F, H,I,S,T) of an algorithm.A are defined as follows. Theput
of R, denotedZ(R), is the vector(Zy, ..., Z,) whereZ, is the value of the input variabl&V,, in the initial
configuration/ of R. Theoutput of R, denotedO(R), is the vector(O;, ..., 0,) whereO,, is the pair(v, t)
such thap writesw in its output variableOUT, at timet in run R (O, = L if p never writesOUT', in run R).

2.8 Problems

We consideinput/output problemd.e., problems where each process has an input value addga® an output
value. We can specify such a problgPnas a set of triples of the forrt¥, Z, O): intuitively, (F,Z,0) € P if
and only if, when the failure pattern s and the processes’ inputis the processes’ outp® is acceptable,
i.e., it “satisfies” problemP. More precisely, a problen® is a set of triple F,Z, O) where F' is a failure
pattern.Z is a vector(Zy, .. .,Z,) of input values (each one 0, 1}*), andQ is a vector(Oy, ..., O,,) where
eachQ,, is either_L or a pair(v, t) such that is an output value if0,1}* andt is a time inN. We say thafl
is an input vector of if (F,Z,0) € P for someF andO.
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2.9 Solving a problem

Let P be a problem,A an algorithm D a failure detector, anél an environment. We say that:

e ArunR = (F,H,I,S,T) of AusingD in £ satisfiesP if and only if (F,Z(R), O(R)) € P, or there is
no O such that F,Z(R),0) € P.5

e A solvesP usingD in £ if and only if

(a) every admissible rur of A using®D in £ satisfiesP, and

(b) for every input vectof = (7, ...,Z,) of P, there is an initial configuratiof of .A with this input
(i.e., in configuration/ we havelN, = Z, for every processp).

e D can be used to solvB in £ (or simply P can be solved witl® in &) if and only if there is an algorithm
that solvesP usingD in £.

2.10 Comparing failure detectors

Intuitively, a failure detectoD’ is weaker than a failure detectdr if processes can use to emulateD’; so if
they can solve a problem with’, they can also solve it witl. We say that processes can d3¢o emulate
D’ in an environment if there is an algorithm that transforni® to D’ in £ as follows. The transformation
algorithm, denotedp_,p/, usesD to maintain a variabl®’-output,, at every procesg; D’-output,, functions
as the output of the emulated failure detect¥rat p. For each admissible ruR of 7p_p, let Or be the
history of all theD’-output variables inR; i.e., Or(p, t) is the value ofD’-output, at timet in R. Algorithm
Tp_p transformsD to D’ in environment if and only if for every admissible ruk = (F, H,1,5,T) of
Tp_p usingD in &, Or € D'(F).

We say thaD’ is weaker tharD in £ if there is an algorithn¥p_,p that transformd to D’ in . Itis easy
to see that ifD’ is weaker tharD in &, then every problem that can be solved within £ can also be solved
with D in £. We say that two failure detectors aggquivalent in€ if each is weaker than the otherdn

2.11 Weakest failure detector

A failure detectorD* is theweakest failure detector to solve probléfin environment if and only if:

Sufficiency. D* can be used to solvB in £.

Necessity. For any failure detectaD, if D can be used to solvE in £ thenD* is weaker tharD in £.

Note that there may be several distinct failure detectasdte the weakest to solve a problémlt is easy
to see, however, that they are all equivalentPlandD’ are two failures detectors that are weakest to solve the
same problenP, D’ can be used to solv® (by sufficiency ofD’) and soD is weaker tharD’ (by necessity
of D). Symmetrically,D’ is weaker tharD, and soD andD’ are equivalent. For this reason, we speakhef
weakest, rather thamweakest failure detector to solve

3 The failure detectors used in this paper

We now define the failure detectars X, 7S, andV¥ that we informally described in Section 1.

®Intuitively, this means that when the failure patterdignd the input i€ (R) the problemP does not care what the output is.



e At each process, tHeader failure detectof? outputs the id of a process; furthermore, if a correct preces
exists, then there is a time after whi@Qroutputs the id of the same correct process at every correcegs.
Formally:

The range of? is II. For every failure patter’,

Q(F) = {H | correct(F) # 0 =
(3¢ € correct(F), Vp € correct(F), 3t € N, Vt' > t: H(p,t') =q)}

e The quorum failure detecto®> outputs a set of processes at each process. Any two setd atitpay
times and by any processes intersect, and eventually egegugput at any correct process consists of
only correct processes. Formally:

The range ot is 2. For every failure pattert,

X(F) = {H\ (Vp,p’ eIl Vt,t' eN: H(p,t)NH(p, ') # Q)) A
(Vp € correct(F), 3t € N, V' > t: H(p,t") C correct(F))}

e Thefailure signalfailure detectorFS outputsgreen or red at each process. As long as there are no
failures, 7S outputsgreen at every process; once a failure occurs, and only if it d@&S,eventually
outputsred permanently at every correct process. Formally:

The range ofF S is {green red}. For every failure patterd’,
FS(F)={H|vpell,vt e N: (H(p,t) =red = F(t) # 0) A
(faulty(F) # () = Vp € correct(F), t e N, Vt' > t: H(p,t') = red)}

e The failure detectow initially outputs_L and may eventually switch to behaving permanently (ReX2)
or like FS. This switch has the following properties: (a) it must ocatiall correct processes; (b) it must
be consistent (it is not possible férto behave likg(2, X) at a procesg at timet and like 7S at process
p’ at timet’); and (c)¥ may start behaving lik&S at a process only if a failure occurred. Formally:

The range oft is { L} U {greenred} U {(p, P) | p € II A P € 2"}. For every failure patteri’,
U(F) = {H ( SH' € (Q,)(F) UFS(F), Vp €11 : (p € faulty(F) AVt € N: H(p,t) = 1)V

JteN: (Vi <t: Hp,t') =L AV >t: H(p,t') = H'(p,t') N H € FS(F) = F(t) ;é@)}

4 Specification of Consensus, QC and NBAC

In this section we define the three problems considered snpg@per, namely, consensus, quittable consensus,
and non-blocking atomic commit. Each one of these problenasiinput/output problem that can be formally
specified as explained Section 2.8; our definitions are nmboemal here.

4.1 Consensus and QC

In the consensus problem, each proge$ss some input value € V' = {0,1}* (we say thap proposesv)
and must write some output valuez V' (we say thap decidesv) such that the following properties hold:

Termination: Every correct process eventually decides some value.
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Uniform Agreement: No two processes (whether correct or faulty) decide diffevalues.

Validity: If a process decidesthen some process proposes

Quittable consensus is similar to consensus, except tbhaegses are allowed to decide a special value
Q ¢ V (which means “quit”) if a failure occurred. More precise}C has the same requirements as consensus,
except that the above validity property is replaced by ttlewéng one:

Validity: Each process may only decide some valu¥io {Q}, where Q¢ V. Moreover,

(i) If a process decides £ Q then some process proposes
(ii) If a process decides Q then a failure occurfed.

A straightforward proof by indistinguishable scenaricsde to:

Observation 2 Let A be an algorithm that solves consensus, or quittable consensing a failure detect@r
in an environmené€. In every runR of A usingD in &, if a process decides some vaiue V at some time,
then there is a process that proposesid takes at least one stepHrby timet.

4.2 Non-blocking atomic commit

In the NBAC problem, each procegshas some input value € {Yes No} (we say thap votesv) and must
write some output value € {Commit Abort} (we say thap decidev) such that the following properties hold:

Termination: Every correct process eventually decides some value.
Uniform Agreement: No two processes (whether correct or faulty) decide diffevalues.
Validity: Each process may only decide Commit or Abort. Moreover,

(i) If a process decides Commit then all processes vote Yes.
(i) If a process decides Abort then either some processNoter a failure occurred.

As with Observation 2, an obvious proof by indistinguisteastenarios leads to:

Observation 3 Let A be an algorithm that solves NBAC using a failure dete@oin an environmen€. In
every runR of A usingD in &, if a process decides Commit at some titn¢hen all processes vote Yes and
take at least one step it by timet.

4.3 Using a consensus, QC, or NBAC algorithm inside anotherdgorithm

An algorithm A can use an algorithnd,. that solves consensus by emulatidgas follows. In the pseudocode
of A, a procesg can execute a statement of the formh = PROPOSEv)” to start an emulated execution of
A, with input (i.e., proposal) value. This statement first sets up the initial state{p) to correspond to the
input valuev, and then starts to execute the stepsipfp) with this initial state. If and whep decides in this
emulated execution ol.(p), the decision value is assigned to the variahlandp resumes executing the steps
of A. Concurrentlyp continues to execute the steps4f(p) until A.(p) halts. Similar comments apply for an
algorithm 4 that uses a QC or NBAC algorithm.

5Throughout this paper, when we say “if evenvccurs then event occured’ we mean, more precisely, “if eventoccurs at time
then eventy occurred by time’ < ¢".
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CODE THAT PROCESS EXECUTES TO VOTEv, WHEREv IS YES ORNO, FORNBAC:

sendw to all /* send vote» to all processes/

wait until [(Vq € 1I, received’s vote) orFS,, = red]

if the votes of all processes are received and araéhées
myproposal= 1

else /* some vote was No or there was a failute
myproposat= 0

mydecision= PROPOSEMyproposal /*executed,. usingD to solve an instance of QC/

if mydecision= 1 then
decideCommit

else /* mydecision= 0 or Q */
decideAbort

Figure 1: AlgorithmA,,;,. uses(D, FS) to solve NBAC

5 Relating NBAC and QC and their weakest failure detectors

NBAC is in some sense equivalent to the combination of QC aitdré detectotFS. More precisely:

Theorem 4 In every environmeng :

(1) If a failure detectoD can be used to solve QC & then(D, FS) can be used to solve NBAC &
(2) If a failure detectoD’ can be used to solve NBAC &, then

e D’ can be used to solve QC éh and
e D’ can be transformed t8S in £.

PROOF Let& be an arbitrary environment.

(1) Suppose that failure detectbrcan be used to solve QC & i.e., there is an algorithnd . that usesD to

solve QC in€. Figure 1 shows an algorithid,,;,.. that usegD, FS) to solve NBAC in. A,p.. WOrks as
follows. Each processg sends its vote to every process, and waits until it receiveteafrom every process
or the S component of D, FS) indicates that a failure occurred. jfreceives a vote from every process
and all the votes are Yes, it setg/proposako 1; otherwise some vote was No or a failure occurred, and
setsmyproposalo 0. Then, in line 7p participates in an execution of the QC algoritbdy. (which uses
the D component of D, FS)) wherep’s initial value is set tanyproposalas explained in Section 4.3). If
p decidesl in this execution of4,., thenp decides Commit for NBAC; ip decided) or Q in this execution
of Ay, thenp decides Abort for NBAC.

We now prove that, in every admissible run, algorithiy,,. satisfies all the properties of NBAC.

Termination. This property holds trivially if all processes are faulty,assume that some process is correct.
Let p be any correct process. Since every correct process egettigtelgorithm in Figure 1, ip never
receives the vote of some procegstheng must have crashed. In that case, by the specification of the
failure detector7S, eventually 7S, = red forever. Thusp eventually completes the wait statement on
line 2. Therefore, eventually every correct process sthgsexecution of4,. in line 7 (as explained in
Section 4.3). By the termination property of QC, every corigrocess completes its execution of line 7,
and eventually decides.

Uniform agreementFollows from the uniform agreement property of QC.
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CODE THAT PROCESS EXECUTES TO PROPOSE FORQC:

sendw to all [* send QC proposalto all processes/
d .= voTe(Yes) [* executds, ;.. usingD’ to solve an instance of NBAC/
if d = Abortthen

decideQ

else

wait until [Vq € 11, received;’s proposal]
decidesmallest proposal received

(2)

Figure 2: AlgorithmB,,. usesD’ to solve QC

Validity. Letp be any process.

(a) Suppose decides Commit (line 9). Themdecidedl in its execution of4,. on line 7. By part (i) of
validity of QC, some procesgproposesl on line 7 (i.e.g starts its emulation o, with initial value 1
on that line). Before doing s@, must have received Yes votes from all processes (see lirBs 3e, if a
process decides Commit, all processes vote Yes.

(b) Supposep decides Abort (line 11). Thep decided0 or Q in its execution of4,. on line 7. Ifp
decided Q, then by part (ii) of validity of QC, a failure ocred. If p decidedO then, by Observation 2,
there is a procesgthat propose$ and took a step in the emulation &f,. on line 7. Before doing sag;
must have received a vote No from some process or found/iligt= red (see lines 3, 5, 6). The latter
can happen only if a failure occurred. We conclude that ifacess decides Abort, some process votes No
or a failure occurred.

Suppose that failure detectbf can be used to solve NBAC i), i.e., there is an algorithif8, ;.. that uses
D' to solve NBAC in&.

(a) D' can be used to solve QC é An algorithm B, that used’ to solve QC irf is shown in Figure 2.
Informally, it works as follows. Each procegdirst sends its QC proposal, some vatue V, to all
processes. Then, in line @,participates in an execution of the NBAC algorithsy;,. (which uses
D') with initial value Yes, i.e., an execution of NBAC whepevotes Yes. If this execution returns
Abort, p decides Q; if it returns Commip, waits to receive a proposal from every process and decides
the smallest of these proposals.

We now prove that, in every admissible run, algoritBp satisfies all the properties of QC.

Termination. This property holds trivially if all processes are faultg, &sume that some process is
correct. Every correct process executes the statetheatvoTe(Yes) on line 2 to participate in an
execution of NBAC (as explained in Section 4.3). By the te@tion property of NBAC, all correct
processes eventually decide, i.e., they complete the Bgaocof this statement. If line 2 setéto
Abort, thenp decides Q on line 4. Otherwise, it must geto Commit. By Observation 3, every
process; votes Yes and took a step in the emulation3gf,. on line 2. Before doing sgj sent its
QC proposal to all processes (on line 1). $a@ventually receives a proposal from every process,
completes the wait statement on line 6, and decides some f@@C on line 7.

Uniform agreementBy the uniform agreement property of NBAC, all the procesbed set their
variabled in line 2, set it to the same value. Thus, all the processeglt@ade some value (for QC)
do so on line 4, or they all decide on line 7. In the first casg #ikedecide Q, and in the second case
they all decide the smallest proposal of all processés. i80 no two processes decide differently.

Validity. Letp be any process. i decidesv # Q (on line 7), therv is the smallest proposal that
received, and thus some process propos&ow suppose decides Q (on line 4). Thug’s execution

11



CODE FOR EACH PROCES®:

FS-output, < green
repeat
d := voTE(Yes) [* executd3, ;.. UsingD’ to solve an instance of NBAE
until d = Abort
FS-output, + red

a A W N P

Figure 3: Transforming an®’ that can be used to solve NBAC infeS

of the statement := vOTE(Yes) on line 2 setsi to Abort. By part (ii) of validity of NBAC, either
some process votes No or a failure occurred. But no procdes . Thus, a failure occurred.

(b) D’ can be transformed t&'S in £ (this result can be found in [12, 24]). The transformatiayoathm
is shown in Figure 3. At each processthe variableFS-output, (which emulates the output of
FS atp) is initially green Processes emulate consecutive and independent execofid),,.
usingD’ to solve consecutive instances of NBAC while voting Yes iargvinstance. If and when a
proces decides Abort in an instance of NBAC, thprsetsFS-output, to red, and never changes
FS-output, thereafter.

From the agreement and termination properties of NBAC, @dsy to show by induction that the
following holds (the proof is omitted here):

Claim 4.1 Either all correct processes execute tepeat-until loop of lines 2—4 infinitely many
times, or they all exit this loop and execute line 5.

Suppose no failures occur. Since (a) all the processes amctaand (b) they all vote Yes in every
instance of NBAC executed in line 2, then by part (ii) of validof NBAC no process ever decides
Abort on line 2, and s¢FS-output remainsgreenat all processes, forever.

Suppose a failure occurs. Then there is a propeisat crashes andfasuch thap does not participate
(i.e., does not take any step) in theth instance of NBAC. We claim that every correct process
eventually setsFS-output to red on line 5. Suppose, for contradiction, that some correctgss
never setsFS-output tored on line 5. By Claim 4.1, it must be that all correct processexete the
repeat-until loop of lines 2—4 infinitely many times, and so they partitgpa the k-th instance of
NBAC. Sincep takes no steps in this instance, then, by Observation Jcqgrrocesses cannot decide
Commit in that instance. So, by Claim 4.1, they all decide Abothe k-th instance of NBAC, and
then they they exit theepeat-until loop — a contradiction. Thus, every correct process evélgtua
setsFS-output to red on line 5.

Finally, suppose some procgssetsFS-output to red on line 5 at some timeé. Thenp must have
decided Abort in an instance of NBAC on line 2 by timeBy part (ii) of validity of NBAC, some
process votes No in that instance of NBAC, or a failure oadlitsy timet. Since no process ever
votes No, a failure occurred by tinte

O

The close relationship between NBAC and QC established aoifiém 4 allows us to relate the weakest
failure detectors to solve these problems.

Theorem 5 For every environmenr, if D is the weakest failure detector to solve QCinthen(D, FS) is
the weakest failure detector to solve NBACEIn

12



PROOE Let & be an arbitrary environment, arfd be the weakest failure detector to solve QCEin This
means that: (i)D can be used to solve QC &hand (ii) if a failure detecto®’ can be used to solve QC
thenD’ can be transformed tB in £.

To prove that D, FS) is the weakest failure detector to solve NBACSnwe now show two facts:
(1) (D, FS) can be used to solve NBACéh This follows directly from (i) and Theorem 4(1).

(2) If a failure detectorD’ can be used to solve NBAC4h thenD’ can be transformed t@D, FS).
To see this, leD’ be a failure detector that can be used to solve NBAE.iBy Theorem 4(2):

e D’ can be used to solve QC ¢ So by (ii) aboveD’ can be transformed B in £.
e D’ can be transformed t8S in £.

Thus,D’ can be transformed t@, FS) in £.

O

The weakest failure detectors to solve QC and NBACIn Section 6 we show thal can be used to solve QC
in every environment (Theorem 8). In Section 8 we show thatyery environmeng, any failure detector that
can be used to solve QC écan be transformed t& in £ (Theorem 30). From these two facts, we have:

Corollary 6 For every environmerf, ¥ is the weakest failure detector to solve QC&in

Theorem 5 relates the weakest failure detector to solve QRketaveakest failure detector to solve NBAC.
So by Corollary 6 and Theorem 5, we have:

Corollary 7 For every environmer, (¥, FS) is the weakest failure detector to solve NBACEn

6 W is sufficient to solve QC

Recall that, intuitively, behaves as follows (see Section 3 for a precise definition).aR initial period of
time the output ofl at each process is. Eventually, however behaves either like the failure detectér, X2)
at all correct processes or like the failure detedtdt at all correct processes. The switch franto (€2, X) or
FS§ is consistent at all processes, and a switch frome 7S can happen only if a failure occurred.

In Figure 4 we show an algorithm that usésto solve QC in any environment. This algorithm uses an
algorithm A, that solvesonsensusising (2, ) in any environment. Delportet al. have shown that such an
algorithm exists [15].

Informally, the algorithm in Figure 4 works as follows. Toopose some value € V for QC, a procesg
waits until ¥, (p's module of failure detecto¥) outputs a value different fronh. At that time, eithet,, starts
behaving likeFS or it starts behaving likéS2,>). If ¥, behaves likeFS (which happens only if a failure
occurred), themp decides Q. If, on the other handl,, behaves likg(2, ), thenp participates in an execution
of the consensus algorithm,. where it proposes (it does so by executing thé:= PROPOSEwv) statement on
line 5, as explained in Section 4.3). Procgsslopts the decision value of this executiondf as its decision
for QC.

Theorem 8 For every environmer€, the algorithm in Figure 4 usés to solve QC ir€.
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CODE THAT PROCESS EXECUTES TO PROPOSE FORQC:

wait until [, # L]

if ¥, € {greenred}then /* U behaves likeFS and, thus, a failure occurret!
decideQ

else /* hencefortht behaves liké2, %) */
d := PROPOSEv) [* executed. using¥ to solve an instance of consensus
decided

o g~ W N P

Figure 4: Using¥ to solve QC.

ProOOF Consider any admissible run of the algorithm in Figure 4. Wile prove that this run satisfies the
properties of QC.

Termination. This property holds trivially if all processes are faultg, #&ssume that some process is correct.
Letp be any correct process. By the specificatiowothere is a time after whictlr,, has values in the range of
either 7S or (£, X); thus,p completes the wait statement on line 1. If eventudllyhas values in the range of
FS thenp decides Q (see lines 2-3). Otherwidenever outputs values in the range/6§ at any process, and
there is a time after whictr outputs only values in the range @2, X) at all correct processes. Thus, eventually
every correct process executes the statemient PROPOSEwv) for somew on line 5, i.e., every correct process
participates in an execution of.. By the termination property of consensus, this executominates, and so

p decidesd on line 6.

Uniform agreementBy the specification oW, it is not possible tha¥ outputs a value in the range &iS at one
process and a value in the rangéQf >°) at another. From this observation and the fact thasatisfies uniform
agreement (for consensus), it follows that the algorithRigure 4 satisfies uniform agreement (for QC).

Validity. Letp be any process.

(i) Supposep decides some value = Q for QC (on line 6). Thusp also decides in its execution of the
consensus algorithrd,. on line 5. From Observation 2, at least one proggestarts to execute the statement
d := PROPOSEv) on line 5. Therefore, procegsexecutes the algorithm in Figure 4 with QC proposabo,

if a process decides # Q (for QC), some process proposefor QC).

(i) Supposep decides Q for QC at some time(on line 3) . Thus,¥,, € {greenred} by timet. By the
specification ofl, a failure occurred by time O

7 Some auxiliary results

In this section we present some technical lemmas used inroaf fhat in every environmenk is necessary to
solve QC, presented in Section 8. The lemmas in Section p&aaed in [9], sometimes in different form.

7.1 Mergeable runs

Several proofs in distributed computing employ a technkpu®wvn as the “partition argument”. At the heart of
this technique is the ability to combine two different ruRg and R; of an algorithm.A4 that involvedisjoint
sets of processeR, and Py, respectively, into a single run of in which the processes iR, behave as iR
and the processes i, behave as i?;. We now formalize this, and prove that in our model it is pbl&sto
combine such “mergeable” runs in this manner.
Let Ry = (F,H,I,S - Sy, Ty - Ty) and R, = (F,H,I,S -5,y - Ty) be two finite runs of an algo-

rithm A using failure detectoP in some environmen£, such that7y| = |11| = |S| and participant$Sy) N
participant$S,;) = (. Note that the schedules of these two runs start with the gaefe S, while their
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continuationsS;, and S; involve disjoint sets of processes. mergingof two such runs is a tupl& =
(F,H,I,S-S,T-T)where (a)'is whichever ofl}, or T} has the smaller last element (either one, if both have
the same last element); (b)) is the sequence consisting of the timedinandT; in nondecreasing order, and
(c) S is the sequence consisting of the stepsjrand.S; merged in the same order as the element,aind

T1 were merged intd’. For example, suppose th&y = a1,a2,a3, Typ = 3,5,7; and .Sy = by, by, b3, by,

T, = 2,4,5,6. ThenT = 2,3,4,5,5,6,7, and the two possibilities fof are by, ay,bs, b3, as, by, ag Or

b, a1, ba, ag, bs, by, az. More formally, the requirements fd® = (F,H,1,5-S,T - T) to be a merging of
Ry andR; are:

o [S| =150l +[Si] and|T| = |To| + [T1;

o T =T, for someb € {0,1} such that the last element & is less than or equal to the last elemenfgf

T is nondecreasing;

for eachb € {0,1} and each € {1,2,...,|Sp|} thereis g € {1,2,...,|S|} such thatS;[i] = S[j] and
Tyli] = T1j]; and

for eachj € {1,2,...,|S|} thereisa € {0,1} and ani € {1,2,...,|Sy|} such thatS[j] = S[i] and
T[] = Tl4].

Lemma9 Let Ry = (F,H,I1,5 - So, Ty - Ty) andR, = (F,H,1,S - $1,T - T1) be two finite runs of an
algorithm A using failure detectdP in some environmer&, such thatly| = |T1| = |S| and participantsSy) N
participant$S,) = 0. LetR = (F,H,1,5 -S,T -T) be a merging oR, andR;. Then

(a) R is also a run ofA usingD in £.

(b) For eacth € {0,1} and each procegse participantS - S,), the state of is the same irb - S(I) as in
S - Sy(I).

The proof of Lemma 9 is straightforward though somewhatouestiit is given in Appendix A.

7.2 DAGs and simulations

To complete the proof that, for any environméntV is the weakest failure detector to solve QCirit remains
to show that any failure detector that can be used to solven@@an be transformed t& in £. In this section
we review a technique for proving statements of this typee Tthnique was introduced by Chandra et al.,
who used it to prove that any failure detector that can be tsedlve consensus can be transformeg {@].
We will use it in this paper to prove that any failure detedtwt can be used to solve QC can be transformed
to ¥ (see Section 8).

Suppose we want to prove thRt" is the weakest failure detector to solve some probléin some envi-
ronment€. LetD be any failure detector that can be used to séhia &, i.e., there is an algorithmd that uses
D to solveP in £. We need to show thd? can be transformed tD*. The proof technique of [9] shows how
to useD and.A to emulateD* in £. This emulation consists of two interacting components: dbmmunica-
tion component and the computation component. In the conuation component, each process continuously
“samples” its local module oD and exchanges messages with other processes to constresgragrowing
directed acyclic graph (DAG) of failure detector sample®oin the computation componentuses this DAG
to simulate schedules of the algorithh (which usesD to solve P). Based on these simulated schedujes,
simulates the output of the failure detecfor that we want to emulate.

We now explain in more detail how each process builds its DAfaiture detector samples and how it uses
this DAG to simulate schedules gf.
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CODE FOR EACH PROCES®:
initialize

kp <0

G, « empty graph

loop
receive a message
d, < D,
if m # XthenG), < G,Um
kp <k, +1
vp = (P, dp, kyp)
add nodev, to G, and an edge from every other nodedp to v,
sendG, to every process

Figure 5: Algorithm.Apac builds DAGs of failure detector samplesDf

7.2.1 Building DAGs of failure detector samples

The DAG-building algorithm, denotedpag, is shown in Figure 5. In our algorithm descriptions, whicé w
give in pseudocode, we use the following conventions. é&mof procesg are subscripted with. If D is a
failure detector, thef®, denotes the function call by whighcan access its local module Df this call returns
the current value op’s local module ofD. The pseudocode of each process begins witigialize clause,
which defines the process’ state in the initial configuratiMariables whose values are not explicitly set in this
clause, can be assigned arbitrary values in the initial gardtion.)

In Apac, €ach process maintains a DAG of failure detector samples®in the variableG,. Each node
of this DAG is of the form(q, d, k); such a triple indicates that procegebtained valuel when it queried its
failure detector modul®, for the kth time. (The third component is included to ensure thatraissamplings
of the failure detector result in distinct nodes.) We catifstriplessamplesa samplgq, —, —) is said to beof
or taken byprocess;. We use the terms “node (of the DAG)” and “sample” intercleaigy.

Proces® periodically performs the following actions:

(a) itreceives a message, which is either a DAG previousiytes by another process, or the empty message
(line 5);

(b) it queries its local failure detector modul®, receiving a value that it stores in variablg (line 6);

(c) it updates its DAGG, by first adding to it the DAG that it received in (a), and themliad to it a new
node with the failure detector value it got in (b), as well dges from all other nodes to the new node
(lines 7-10); and

(d) it sends the updated, to all processes (line 11).

Note that this sequence of actions (receiving a messageyingehe local failure detector module, changing
local state, and sending messages to other processegpm ds exactly to the sequence of actions taken in a
single step in our model. Thus, each iteration of the loopigufe 5 is executed as a single step.

We now present some properties of the DAGs of samples comfytalgorithmApac. In the following,
we consider an arbitrary admissible riin= (F, H, I, S,T') of Apac using failure detectaP in some arbitrary
environmentg. We use the following notation throughout this section: He tontext of a given run of an
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algorithm, the value of variable, at timet is denotedx;; if p takes a step at timg thenx; is the value ofr,,
after that step.

We start with some simple observations, in each of whichan arbitrary process. Sinpenever removes
any nodes or edges froa,, the DAG contained in this variable is monotonically nongesing. That is,

Observation 10 For allt,t’ € N, if t < t' thenG!, is a subgraph of", .

We define theimit DAG of a procesg to beG)° = UteNGZ-
In the same step that a process updates its DAG (line 10)sdt sgénds the new DAG to all processes
(line 11); thus each correct process will eventually reeéiat DAG and will incorporate it into its own. Thus,

Observation 11 For every correct process every procesg, and every time € N, Gf] Is a subgraph of7°.

From this it follows immediately that

Observation 12 If p andq are correct processes théff® = G°.

Sincek, is incremented in each iteration p& loop, whenp takes samplép, —, k), it has already taken
sampleqp, —, k') for all ¥’ < k; and, at that time, it adds edges from all such nodég.te-, k). Thus,

Observation 13 If v = (p, —, k) andv’ = (p, —, k') are nodes of>° andk > k', thenw is a descendant of
inGy.

Letv = (q,d, k) be any node o&x>°. It is obvious from the code aflpac that procesg receivedd from
its failure detector module in iteth step. Letr(v) to be the time whep takes this step. More precisely,Sfi]

is thekth step ofg in S, thent(v) = T'[i]. (Recall thatS is the schedule and is the sequence of times of the
run R of Apac that we are considering.) From property (3) of runs, we have:

Observation 14 If v = (¢, d, k) is a node otz°, thenq ¢ F(7(v)) andd = H(q,T(v)).

From the algorithmApsg, it is clear that if(u, v) is an edge of the limit DAGZ,°, then the step in which
sampleu was taken causally precedes the step in which samplas taken in schedul& with respect to/
(the initial configuration of runRk). From property (5) of the runs oflpac (see Section 2.7), it follows that
7(u) < 7(v). By induction we can generalize this observation from srgfges to finite or infinite paths of
Gy

Observation 15 If g = vo, v1, . .. is afinite or infinite path irt=,°, then the sequence of time&v), 7(v1), . . .
is strictly increasing.

Let G be any DAG; ifv is a node of7, thenG|v is the subgraph off induced by the descendants:oin
G, otherwise G'|v is the empty graph. Informally, the next lemma states thefiaite path in procesg’s limit
DAG eventually appears permanentlyps DAG.

Lemma 16 Letp be a process andbe a node ol:°. For each finite path in G;°|v, there is a time such
that, for allt’ > t, g € G%|v.

PROOF. In G)°|v, let g be any finite pathg’ be a finite path fromv to the first node of;, andh be the path
consisting ofg’ followed by g. SinceGy® = UteNGﬁ,, it is clear that for each edgeof i there is a timé (e)

such thate is in Gf;(e). Lett = max{t(e) : eisanedge oh}. By Observation 10, every edgeof i (and
hencev and the entire path) is in Gg for all ¢ > t. Sinceg is in G;°|v, every node iry is a descendant of.

Thus,g is in G4 |v, for all ¢/ > ¢. O
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Since faulty processes eventually crash and cease to &g $tom a certain point on only correct pro-
cesses take samples. This is the basic intuition undertji@gext lemma.

Lemma 17 For every correct procegsthere is a sample® of p in G2° such thatz°|v* contains only samples
of correct processes. Furthermore,

(a) There is a time after which any noden variablev, (line 9) is a descendant of in G,°.

(b) For any descendantof v* in G,° and anyt € N, G§,|v contains only samples of correct processes.

PROOF  Sincep is correct, it takes infinitely many steps. L#&tbe the first time thap takes a step after all
faulty processes have crashed, andfebe the sample thattakes in that step. Consider any nadef G2°|v*.
Sincev is a descendant of* in G;°, by Observation 157(v) > 7(v*) = ¢*. Since all faulty processes have
crashed by time*, the process that takes sampl¢at time(v) > t*) must be correct. Sdy;°|v* contains
only samples of correct processes.

(a) Letv* = (p,—,k*). Sincek, increases in each iteration p& loop, eventuallyk, has values that are
more thank*. Therefore, eventually only nodes whose third entry is ntbes £* are assigned to,. By
Observation 13 all these nodes are descendantSiofG°.

(b) Consider any descendanmbf v* in G;° and any time € N. Clearly, Gg\v is a subgraph of+°|v, and
gg”w is a subgraph ofx;°|v*. SinceG°|v* contains only samples of correct processes, so does |t$aq]DJ'bg
P V.

Since correct processes keep taking samples and exchathgindAGs forever, every correct process’
limit DAG has an infinite path with infinitely many samples @fal correct process. This observation is for-
malized by Lemma 19. To prove it, it is convenient to proveftilowing lemma first.

Lemma 18 Suppose is a correct process and I6tbe a subgraph c(ﬂ; for some timet. For every correct
processy, there is a timé' such thaGg contains a sample of ¢ and an edge from every node@fto w.

PROOFE Let s be the first step that takes after time¢. By Observation 10¢ is still in p's DAG just before
this step. There are two cases:

p = ¢. In steps, p adds to its DAG a new sample = (p, —, —), and edges from every other node in its DAG
(in particular, from every node i) to w. Thus, when this step is completed, say at t'ﬂ‘nélg has the desired
properties.

p # q. In steps, p sends to all processes a DAG that contaidNow consider the step in whighreceives that
DAG. In that stepg first incorporates the DAG it receives, which contafisinto its own DAG. Then; adds
to its DAG a new sample = (¢, —, —), and edges from every other node in its DAG (in particulamfrevery
node inG) to w. Finally, ¢ sends the resulting DAG to all processes. Consider the ste@pich p receives that
DAG. When it does sq incorporates the DAG it receives into its own DAG. Thus, wittgs step is completed,
say at time//, Gg has the desired properties. O

Lemma 19 If p is a correct process ands a node of=;°, thenG,° has an infinite path that starts withand
contains infinitely many samples of each correct process.

PROOF.  Sincev is anode of+°, there is a timé, such thaw is in G;O. By repeated application of Lemma 18,
there is an infinite sequence of timgst,, . . . and an infinite sequence of pais ¢*, . . . such that for al € N,
(a) ¢ is in G and starts withy, (b) ¢* is a prefix ofg’*!, and (c) each correct process has at léeastmples
ing'.
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Let g™ be the “limit” of sequence’, ¢',... That is, g™ is the infinite path which, up to lengtly’|, is
identical tog’. (This is well-defined because of (b).) It is now easy to se¢dft is a path inG,° that starts
with v and contains infinitely many samples of each correct process O

7.2.2 Simulating schedules of an algorithm4

In the previous section, we saw how each progesan execute algorithiilpas using a failure detectdP to
build an ever-increasing DAG of samplesdf{under the “current” failure patterA and failure detector history
H € D(F)). We now explain how each procesgan use its DAG of samples @} to simulate schedules of
runs ofany algorithm .4 usingD (with failure patternF’ and failure detector historyy € D(F')). These are
called simulated schedulesf .A. Another way of thinking about these simulated scheduldbas they are
schedules of runs that could have occurred if processesnwening algorithmA usingD, instead of running
Apag usingD.

Fix an initial configuration/ of algorithm A, and a pathy = (p1,d1, k1), (p2, ds, k2), ... of the DAG
contained inG7, at some time, or of the limit DAG G;°. Our goal is to define the set of simulated schedules
determined by patly and initial configuration/. Pathg tells us that the following could have happened in an
execution of algorithm4 under the current failure pattefi and failure detector histor§f € D(F'): process
p1 takes the first step and sees valtljefrom its failure detector module; then processtakes the second
step and sees valug from its failure detector module; and so on. This sequenger@iess ids and failure
detector values, along with the initial configuratibndefine asetof schedules of4, each schedule in this set
corresponding to different delays that the messages seht experience.

More precisely, we say that a sched$és compatiblewith the pathg = (p1,d1, k1), (p2,da, ka), ... if
and only if it has the same length asandS = (p1,mq,d1,.A), (p2, m2,ds, A), ... for some (possibly null)
messages;, ms, ... The set of simulated schedules determined;tand initial configuratior/ is the set of
all schedules that are compatible witland applicable td.

Let G be any DAG of samples anlthe any initial configuration ofl. Sch(G, I') denotes the set of schedules
of A that are compatible with some path@hand are applicable td. Note that ifG is finite thenSch(G, I)
contains a finite number of finite schedules.

We now present some properties of simulated schedulese lfolllowing, we consider an arbitrary admis-
sible runR of Apag using failure detectdD in some arbitrary environmest Let F' € £ be the failure pattern
of this run andH € D(F) its failure detector history.

The first lemma justifies the name “simulated schedulestates that these schedules really are schedules
of runs of algorithmA usingD, with failure pattern/’ and failure detector histor¥ .

Lemma 20 Letp be a process;, € N U {oo}, G be a subgraph af:;, andI be an initial configuration of
algorithm A. For each schedul§ € SchG,I), there is a list of time§, all at mostt, such thatR 4 =
(F,H,I,S,T)isarunofAusingDiné&.

PROOF LetS be any schedule i8ch(G, I). Thus,S is a schedule ofd that is applicable td and compatible
with some pathy = vy, ve,...In G. LetT = 7(v1),7(v2),... Recall that for each positive integer< |S|,
7(v;) is the time when samplg was taken. A sample can't appear in any DAG until the timetaken. Since
v; is a node in a subgraph dﬁ,, 7(v;) < t.

We claim thatR4 = (F,H,1,5,T) is arun ofAusingD in £. SinceF € £, H € D(F) and[ is an
initial configuration ofA, it suffices to verify thatR 4 satisfies properties (1)—(5) of runS.is applicable ta/
(property (1)) by definition oBch(G, I). S andT have the same length (property (2)) because each of them
has the same length gs The fact that inR no process takes a step after it has crashed, and that thesfail
detector value in each step is consistent with the histdrfproperty (3)) follows from Observation 14, since
S is compatible with patly = vy, ve,... andT = 7(v1),7(ve),... Observation 15 implies th&k is strictly
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increasing, and so property (4) is also satisfied. To showasty (5), we must prove that if stepcausally
precedes step in S with respect tal thenT'[i] < T'[j]. This follows from Observation 1 and the f&Etis
strictly increasing. O

By Lemma 20, every infinite schedute® € Sch(G;°, I) is a schedule of an infinite run of usingD in £.
However,5° is not necessarily a schedule ofaimissiblerun, i.e., a run where each correct process takes an
infinite number of steps (property (6)) and eventually reegievery message sent to it (property (7)). The next
lemma, however, states that every finite schedule ScI"(Ggo, I) can be extended tsomeinfinite schedule
S € Sch(Gye, I) of anadmissiblerun of A.

Lemma 21 Suppose is a correct process and lEthe an initial configuration ofA. For any finite schedule
S € SchG;e, 1) there is a schedul®> € SchG:°, ) that extendsS and a list of times'™ such that
Ra = (F,H,I,5%,7T%) is anadmissiblerun of A usingD in £. Furthermore, for any node in G3°, S*°
can be chosen so thdt® = S - *°, for a schedule that is compatible with a path i@° |u.

PROOF.  Let .S be any finite schedule i8ch(G°, I) andu be any node iri°. ThusS is applicable ta/ and
compatible with a finite path of G;°. By Lemma 18 (applied witlhy = p andG consisting of the patp and
the nodeu) and the monotonicity of the DAGs (Observation 1G)° contains a sample of p and an edge
from every node of; and fromu to v. By Lemma 19(7° has an infinite path that starts withy and contains
infinitely many samples of each correct process. Noteg¢hatis a path inG° (because there are edges from
every node iry to the first node ofy); and~ is a path in(;° |u (because there is an edge frarnto the first node
of 7).

We define an infinite sequence of schedut®ss!, . .. such that for each € N, (a) ¢ has length, (b) o’
is compatible with the path consisting of the fitstodes ofy, (c) o is applicable taS(I), and (d) ifi > 0,
o'~1is a prefix ofo’. The definition is by induction:
Basis. ¢V is the empty schedule. It is obvious that this has the redyireperties.

Induction step. Let i be an arbitrary positive integer, and assume tHat with the required properties has
been defined. Let thih node ofy be (p,d, —). Theno! = =1 - (p,m,d, A), wherem is the message defined
as follows: If the message buffer of configuratisno*~!(I) has no message 1o(i.e., no message of the form
(—,—,p)), thenm = X; otherwisen is theoldestmessage tp in the message buffer ¢ - o'~ (1) (i.e., there

is no messager’ to p in the message buffer of - o'=1(I) and prefixS’ of S - ¢*~! such that the message
buffer of S’(I) containsm’ but notm). It is straightforward to verify that’ has the required properties: length
i, compatible with the first nodes ofy, applicable taS(7), and an extension ef .

Now defines™ to be the “limit” of the sequence®, ¢!,... — i.e., the infinite schedule whose prefix of
lengthi is 0. (This is well-defined because, for ale N, ¢ has length and is a prefix obi1.) Clearlyo>
is compatible withy and applicable t&' (7). Let S = S - 0°°. We have:

e 5% € SchGye, I). This follows from the fact that° is compatible with patly - v in G2°, andS> is
applicable tal (becauses is applicable ta/, ando is applicable taS(1)).

e 0°° is compatible with pathy in G°[u.

By Lemma 20, there is a time i§t> such thatk 4 = (F, H,1,5°,7°) is arun ofA usingD in &. It
remains to prove thak 4 is admissible. We first note that each correct process taltestely many steps in
R 4; this is becaus&=° is compatible withy - v and~y contains infinitely many samples of each correct process.
Furthermore, from the way we choose the message receivedinstep ob>°, every message sent to a correct
process is eventually received Ry. So, R 4 has the required properties (6) and (7) of admissible runs[]

The following lemma is an immediate consequence of Observatl and the definition dbch(—, —):
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Lemma 22 For every correct procegs every process, every timet € N, and every initial configuratiof of
A, ScHG,T) C SchGy, T).

The following lemma is an immediate consequence of Lemman#iGlze definition ofSch(—, —):

Lemma 23 Letp be a process andbe an initial configuration af\. For each finite schedute € SchG°, I),
there is a time such that, for alt’ > t, S € Sci(Gg, I).

8 W is necessary to solve QC

In this section, we show thdlt is necessary to solve QC. LBtbe any failure detector that can be used to solve
QC in some environmerd, i.e., there is an algorithm that use® to solve QC irf. We must show that there

is an algorithm that transforni®® into ¥ in £. We do so by giving a transformation algorithm that ugeand

D to emulate the output oF — a failure detector that initially outputs and later behaves either liK€, )

or like 7S. This transformation algorithm, denot&g_,, is shown in Figures 6—7, and is explained below.

8.1 Overview of the transformation

To make the presentation clearer, the code of each precdesalgorithm 7p_.y is given by three concurrent
threads’ In Thread 1,p builds a DAG of samples of failure detect®r using the algorithm discussed in
Section 7.2.1. In Thread 2,uses its current DAG to determine whether (a) it is legitierfar ¥ to behave like
FS§ and outputred permanently (because a failure occurred in the currentou(d)) it is possible to “extract”
(€, %) in the current run. Thep participates in an instance of QC to reach agreement witbttier processes
on (a) or (b). In Thread 3y produces the output of failure detectdraccording to the agreement reached in
Thread 2. We now explaifip_, ¢ in more detalil.

First recall that in the algorithml that solves QC, the value that a procgggoposes (i.e., its input value)
is encoded in the initial state of(p). For eachj € [0..n], let I7 be the initial configuration oft in which every
process; € [1..5] proposed and every procesg< [j + 1..n] proposes). Thus in any run starting froni’, all
processes propo$k and starting fron” they all proposd.

In 7Tp_w, €ach procesg starts by outputtinglL (line 4), and then it executes three concurrent threads:

e In Thread 1p builds &), a DAG of failure detector values seen by processes in themurun.

e In Thread 2p repeatedly examines+ 1 sets of simulated schedules of algoritttmnamelySch(G,, I°),
..., Sch(G,, I'") (line 21), until it finds that for every € [0..n], Sch(G,, I7) contains a schedul§) such
thatp decides some valud; in S]Z(Ij) (line 22). If for somej € [0..n], xﬁ; = Q, then a failure occurred
(in the failure pattern of the current run), and;s&nows that it is legitimate to extractS and output
red in this run. Otherwise for every € [0..n], xﬁ, is either 0 or 1, and in this cagedetermines that it is
possible to extracf(2, >) in the current run.

At this pointp participates in an instance of QC (by using the algorithmand failure detectoP) to agree
with the other processes on whether to extt@Stand outputed, or to extract((2, 33). Specifically, ifp
has determined that it is legitimate to outped then it proposes in this execution of QC (lines 25-26).
Otherwisep proposes a tuplél’, I't*, 57 Sit1), wherei € [0..n — 1] is such thatr, = 0 andz}! = 1
(lines 27-29). Note that such an indemust exist: Since reaches line 27, by the condition on line 25
everyz; is either0 or 1; by the validity property of Qng = 0 andz}; = 1; thus, for some € [0..n —1],
z! = 0andzit! = 1.

p p

"It is straightforward to write the code gfas the code of a sequential process that can be directlyssqatén our model (e.gp,
can execute the three concurrent threads in round-rohiofas
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CODE FOR EACH PROCES®:
initialize
Q-output, < p
Y-output, < 11
V-output, < L
kp <0
G, < empty graph
decision, « L

~ (2] (4] s w N L

s cobegin

9 [*THREAD 1 — BuiLD DAG OF D-SAMPLES*/
10 loop

11 receive a message

12 dp < 'Dp

13 if m # XthenG), < G,Um

14 k‘p R k‘p +1

15 vp — (p, dp, kp)

16 add nodev, to G, and an edge from every other nodedp to v,
17 sendG, to every process

18 || /* THREAD 2 — CHOOSE BEHAVIOUR OFV */

19 Vj € [0..n], I’ < initial configuration of.A where the initial state of eaghe [1..5] corresponds to proposal
and the initial state of eache [j + 1..n] corresponds to proposal

20 repeat

2 Vj € [0..n], Sch(G,, I7) + set of schedules ofl compatible withG,, and applicable td”

2 until Vj € [0..n], 355 € Sch(G,, I7) : p decides inS}(17)

s Vje[0.n—1],letS) € SchG,, I7) andz), be such thap decidesz}, in S} (1)

24 [* executeA usingD to solve an instance @)C' */

25 if 35 € [0..n] such that:}, = Q then

2 decision, := PROPOSKO) /% propose) in this instance of)C «/

27 else

s leti € [0.n — 1] be such that!, = 0 andz}™ =1

20 decision, := PROPOSEI", I'T!, S} Sit1) [« propose(I’, I't!, Si St in this instance of)C' +/
% || [/ THREAD 3 — OUTPUT VALUE OF ¥ */

a1 wait until decision, # L

sz If decision, = 0 or decision, = Qthen /x a failure occurreds/

33 V-output, «+ red

4 else [xp'sdecision is a tuple with two initial configurations and twchedules/
35 (1o, I1, So, S1) := decision,

36 Up < Up

37 loop

38 Q-output, < extract-leaddr)  /+ see Figure7 «/
39 Y-output, < extract-quorurf) [ see Figurer x/
40 V-output, < (Q-output,, X-output,)

a1 coend

Figure 6: Algorithm7p_, ¢
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CODE FOR EACH PROCES®:

function extract-leaddp:
determine the current leadégy of p usingG,, as in [9]
return £,

function extract-quorurt):
Vb € {0,1}, VS prefix of Sy, Sch(G,|uy,, S(I)) < set of schedules oft compatible withG,, |,
and applicable t& (1)

if Vb € {0,1}, VS prefix of Sy, Jog € SchG,|u,, S(1p)) = p decides inS - o5(1,) then
[ return new quorunx/
new-quorum «— |J {participantéo)| 3b € {0,1}, 35 prefix of S : (0 € Sch(Gyluy, S(I)) A

p decides inS - o(1)) }

Uyp < Up
return new-quorury

else /xreturn old quorums/
return X-output,

Figure 7: Functions used by algorithi .y

e In Thread 3p computes the output values wfaccording to the decision of the QC executed in Thread 2.
If this decision i9) or Q, therp stops outputtingl. and outputsed from that time on (lines 32-33). If the
decision is some tupl@y, 11, So, S1) (line 35), therp stops outputtingl and starts extracting (line 38)
andX (line 39), combining these two outputs into the outputPofline 40). Q2 is extracted as in [9] (see
Section 8.2) and: is extracted using novel techniques (see Section 8.3).

Note that in7p_,y, processes use the algorithdnfor QC in two different ways and for different purposes.
First, each process uses its DAG of failure detector saniplegnulatemany schedules ofl to determine
whether it is legitimate to outputd or it is possible to extract(2,X) in the current run. Then processes
actually participate in a real execution dfto reach a common decision on whether to outpdtor to extract
(©,%). Finally, if processes decide to extrgét, X), they resume simulating schedules.éfto effect this
extraction.

For the remainder of Section 8 we consider an arbitrary aglbiésrun of algorithm/p_, ¢ usingD in some
arbitrary environment. Let F' € £ be the failure pattern of this run arfdl € D(F’) be its failure detector
history.

8.2 Extracting (2

The specification of) requires the following: at each processputputs the id of a process; furthermore, if a
correct process exists, then there is a time after whidutputs the id of the same correct procgsat every
correct process. Note that this specification is trivialiyisfied in runs where all processes are faulty. So in
the rest of Section 8.2, we assume that there is at least arectprocess in the run under consideration, i.e,
correct(F) # (.

If in 7p_,¢ processes decide to extrdet they do so by executing the algorithm that extrdetdescribed
in [9], as we now explain. As in [9], processes build a DAG agies of failure detectoD (Thread 1 in
Figure 6). More precisely, processes build a DAG of the faildetector values that they seefihe D(F).
By Observation 12, the limit DAG of all correct processeshie same. Letz*> denote that DAG. G is
well-defined since a correct process exists.)
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Recall thatl” is the initial configuration ofd in which the initial state of each procegs [1..j] corresponds
to proposall and the initial state of each procegsc [j + 1..n| corresponds to proposél Furthermore
Sch(G®, I') is the set of schedules of that is compatible witlG>° and applicable td*. For each € [0..n],
we organize the set of schedulesSoh(G>, I*) into a treeY?, called thelimit tree (for initial configuration
I*). The nodes of this tree are the scheduleSd¢h(G>, I*), and there is an edge from nodeto nodes’ if
and only if there is a step such thatS’ = S - e. We also define thémit forest Y to be the set of limit trees
{ro,rt, ..., 1"}

In [9], algorithm A solves the binary version of consensus where processessgrapnly0 or 1. So, by the
validity property of consensus, the only possible decssiare0 or 1. In [9], it is shown that the root of each
treeY? of the limit forestY has a descendastsuch that some correct process decideS(iff). The root of Y
is v-valentfor v € {0, 1} if it has no descendarff such that some correct process decides v in S(I*); the
root of Y; is multivalentif it is not v-valent for anyv € {0,1}. Itis clear that the root o’ is eitherv-valent
for exactly one value, or it is multivalent. The limit forestC has acritical index: € [1..n] if and only if the
root of Y~ is v-valent and the root o’ is u-valent foru # v (in which case index is univalent critica) or
the root of Y'* is multivalent (in which case indexis multivalent critica).

At a high level, the extraction d in [9] works as follows:

(a) First, itis shown that the limit foredt has a critical index. This part of the proof uses the validity property
of consensus.

(b) Then itis shown that for each critical indéwf T, one can identify a corresponding procgsbat is nec-
essarily correct in the failure pattefof the current ruif. This part of the proof uses only the termination
and uniform agreement properties of consensus; in paaticitiidoes not rely on the validity property.

(c) Finally, it is shown how all correct processes can ewvahticonverge on the smallest critical inderf T,
and on the correct procegsthat corresponds ta This part of the proof also does not use the validity
property of consensus.

The above three steps outline the extractiof @fhen the given algorithmi solves binary consensus. Here
we want to extracf) when.4 solves QC, and thereford also solves binary QC where proposals are @nly
or 1. Note that binary consensus and binary QC share the sanmmraigreement and termination properties,
andthey differ only in their validity property

By the validity property of binary QC, there are now threegplole decisiond), 1, or Q (instead of only)
or 1). The definitions ofv-valent or multivalent nodes remain the same, except thatine {0,1,Q}. The
definitions of univalent and multivalent critical indeéxlso remain the same.

To extract() here, one may try to apply steps (a), (b) and (c) exactly ag]innfortunately, this does not
quite work: with binary QC it is not always the case that tingtliforestY has a critical index. This is because,
in contrast to consensus, the validity property of QC allpnscesses to decide Q if failures occur. To see why
T may not have a critical index, suppose some process crashtee (failure patternt’ of the current run).
With QC, all the processes that decide “in the limit for&tmay decide Q. In this case, the roots of all the
trees inY are Q-valent,X' has no critical index, and we cannot apply steps (b) and @t extract the id of
a correct process.

This is why, in our transformation algorithm of Figure 6, pegses do not always attempt to extiactAs
Lemma 24 below shows, however, if processes actually attémmgxtract() (on line 38) then a critical index
does exist in the limit foresr. It is important to note that it has a critical index, then processes can converge
on the identity of a correct process by applying steps (b)(ahdbove, exactly as in [9]: This is because, the
correctness of steps (b) and (c) doesrely on the validity property of consensus (which is the aifference
between consensus and QC).

8If 4 is univalent critical, processis necessarily correct; ifis bivalent critical, the limit treér contains a subgraph that reveals
the identity of a procesgthat is necessarily correct.
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Lemma 24 If any process reaches line 34 of algorithia_, g, then the limit foresiC has a critical index.

PROOF If a process reaches line 34, then it decided some valge{0,Q} in the instance of QC that it
executed in Thread 2 (line 29). In this instance of QC, eacktgssp can only propose® (line 26) or a tuple
of the form (17, 17+, 52 53%1) (line 29). Thus, by part (i) of the validity property of QC itust be that some
process; proposed I*, I'*1, 5, Si+1) for some index € [0..n] (line 29).

Claim 24.1 There are finite schedule% € SchG>,I') andS; € SchG>, ') such that some correct
process decidesin Sy(I°) and some correct process decidés Sy (1°11).

PROOF OFCLAIM 24.1. We prove the existence 8§; the proof forS; is symmetric.

Sinceq proposed(I*, I, 5%, Sit1) on line 29, it must be that whepexecuted line 23, say at timte
there is a scheduls; € Sch(GY,I") such thatg decides0 in S:(I*). Letp be any correct process. By
Lemma 22,5, € Sch(G;°,I"). By Lemma 21, there is a schedu§e® € Sch(G,°, I*) that extendsS; such
that R4 = (F, H,I',5°°, —) is anadmissiblerun of A (which solves QC) usin@® in £). By the termination
property of QC, there is a finite prefi%, of S> such thatp decides inSy(I%). SinceS™> & Sch(G;O,I"), it
follows thatSy € Sch(G;°,I"), and, since&>® = G, Sy € Sch(G>, I"). Since bothS andS are prefixes
of S°°, one of them is a prefix of the other. Singélecides) in S;(I*), by the uniform agreement property of
QC,p also decide® in Sy(I*). Oos1

By Claim 24.1, the root off” is either0-valent or multivalent, and the root af**! is either1l-valent or
multivalent. Thus, either the root &f or Yi*+! is multivalent, or the root ot is 0-valent and the root of*!
is 1-valent. So, in all cases, there is a critical index in theatlfiorest Y. O

8.3 Extracting X

To extractyl, p must continuously output a set of processes (quorum) suaththk quorums of all processes
always intersect, and eventually the quorums of correatge®es contain only correct processes. This is done
by the functionextract-quorurf) (lines 45-53) as follows.

Functionextract-quorurf) is called only on line 39, at which poipthas agreed with other processes on a
tuple (1o, 11, So, S1) (line 35). Procesp maintains in variable, a “recent” failure detector sample of its own.
This is initialized top’s most recent sample whenexecutes line 36, and is updatedpte most recent sample
each timep outputs a new quorum (lines 49-50).

To determine the quorum to outpptexamines every prefig of Sy and.Sy, looking for a schedule g that
(a) uses only failure detector samples that are “freshefith, (b) can be appended ®so thatS - g is a
simulated schedule ofl, and (c)p decides at the end of that schedule. More precisel§,if a prefix of.S,
whereb € {0, 1}, og is required to be a schedule8th G, |u,, S(1;)) (i.e., compatible with a path of samples
at least as recent ag, and applicable t&'(1;,)), andp must decide irf - o5(1;) (see the condition on line 47).

If such a scheduleg can be found foeveryprefix S of Sy and.S;, p computes a new quorum consisting of all
processes that take steps in theg& (line 49). Otherwisep’s quorum remains unchanged (lines 52-53).

Note how the sample in,, acts as a “freshness barrieg’s new quorum contains only processes that have
taken samples at least as recentigasAs we will see in the proof of Lemma 26 below, this (togethéthwhe
fact thatu,, contains ever more recent samples) ensures the completerogerty of: the quorum output by
a correct procesg eventually contains only correct processes.

We will also see in the proof of Lemma 28 that this way of chogsijuorums ensures the intersection
property of3: every two quorums output by any two processes at any timessect. Intuitively, this follows
from the uniform agreement property of QC: if two quorums @b intersect, we would be able to construct
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an admissible run of the algorithtd in which two different values i{0, 1,Q} are decided, establishing a
contradiction.

To prove that the completeness property holds, we first ptoaethe “freshness barrieti, is updated
infinitely often (line 50), and consequently a new quorumise @omputed infinitely often (line 49).

Lemma 25 Every correct procegsthat reaches line 34 of algorithifp—, ¢ assigns a quorum teew-quorum)
(line 49) and a node ta, (line 50) infinitely often.

PROOE Suppose some correct processeaches line 34. It is clear from the algorithm thatither assigns
both new-quorum andw,, infinitely often, or assigns both of them only a finite numbgtimes (see lines 50
and 51). Suppose, for contradiction, thassigns:, only a finite number of times. Singereaches line 34, it
also reaches line 36, and so it assigpsat least once. Let be the last node af,, thatp assigns tay,.

In the next two paragraphs we show that there is a time aftechathe condition of the if statement on
line 47 is true forever. That is, for each preftxof S, whereb € {0,1}, there is a finite scheduleg,
compatible with a path iz, |u, such thatS - o5 € Sch(Gy, I;,) andp decides inS - og(1}).

Sincep reaches line 34, it decided a value different fréror Q in the instance of QC that it executed in
Thread 2 (line 26 or line 29). By part (i) of the validity prapeof QC, this decision value must be some tuple
(1o, I, Sy, S1) that some procesgproposed in Thread 2 (line 29). Thus, at some tifer eachb € {0, 1},

Sy € Sch(GY, I,) (see line 23). By Lemma 22, for eatte {0,1}, S, € Sch(G:°, I,).

Consider any prefi¥ of S, whereb € {0,1}. SinceS, € Sch(G;°, I), it follows thatS € Sch(G}°, I).
By Lemma 21 there is a schedule® € Sch(G}°, I,) that extendsS such thatR 4 = (F) H, I,,, 5, —) is an
admissible run of4d (which solves QC) usin® in £. Furthermore S can be chosen so that® = S - 0%,
for a schedulerg® that is compatible with a path i6;°|u. By the termination property of QC, there is a
finite prefix og of 03, such thatp decides inS - o5(I,). SincesS - og is a finite prefix ofS> = S - o,
and S ¢ ScI"(GgO,Ib), by Lemma 23 it follows that there is some time such that, for allt > tg, S -
os € Sch(G;,Ib). Also, sincesg’ is compatible with a path i6,°[u, andos is a finite prefix ofo®, by
Lemma 16, there is a tim&; such that, for alt > tg, o5 is compatible with a path irﬂg\u. Lett; =
max{tg,ts : S is a prefix ofSy or S1}. Lett, be the time of the last assignmentitg, andt* = max(ty,t2).
Thus, for allt > ¢*, it is true thatu! = u and, for every prefixS of S, whereb € {0,1}, there is a finite
scheduless, compatible with a path i67] |uj,, such thatS - o5 € Sch(G}, I) andp decides inS - a5(13). In
other words, aftet*, the condition of the if statement on line 47 is always saikfi

Sincep is correct and reaches line 37, it executes line 47 infinitétgn. The first time after* thatp
executes that line, it finds that the condition of the if staet is satisfied, and assigns a nodejmn line 50.
This occurs after time,, contradicting the definition af,. O

Lemma 26 For every correct procegsthat reaches line 34 of algorithffip_y, there is a time after which
¥-output, contains only correct processes.

PROOF  Suppose some correct proceggaches line 34. By Lemma 17, there is a samplef p in G;° such
thatG;°|v* contains only samples of correct processes. By Lemma 1t is a time after which any node
v contained in variable;, is a descendant of* in GG°. By Lemma 25, there are infinitely many assignments
to u,; in all of theseu,, is assigned the node i, (see lines 36 and 50). Thus, there is a titheuch that for
all t > t*, u; is a descendant of* in G5°. By Lemma 17(b), for alt > ¢*, G;|u§, contains only samples of
correct processes.

By Lemma 25, computes a new quorum on line 49 infinitely often after titheEvery quorum assigned
to X-output, (other than the initialization) is computed on line 49. Thuisuffices to prove that any quorum
assigned tmew-quorum) on line 49 after time* contains only correct processes.
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Consider any such assignment, say at tinxet* (see lines 47-49). The quorum assignedew-quorum)
at timet is the union of certain sets of the forparticipant$o ), whereo is a schedule compatible with |u! .
Sincet > t*, G;|u§, contains only samples of correct processes. This impliasath processes in each such
setparticipantgo) are correct. Therefore, the quorum assignedet@-quorury at timet contains only correct
processes. ]

We now prove that the quorums output By _.¢ satisfy the intersection property &f. Intuitively, we
do so by showing that if two quorums dwt intersect then there are two runs of algoritbinsuch that:
(a) processes decide differently in these two runs and @setltwo runs can be merged into a single rupdof
— a contradiction to the uniform agreement property of QCcaury out this proof, we need the lemma that
allows us to merge certain runs (Lemma 9 of Section 7.1). Nbpoeeisely, we use the following corollary of
this lemma:

Corollary 27 LetRy = (F,H,I,5-Sy,—)andR, = (F,H,1,5-5,,—) be two finite runs ofA usingD in &
such that participantS,) N participant$S;) = (). If some process decides in Ry and some process decides
V1 in Ry, thenvo = V1.

PROOFE Immediate from Lemma 9, the fact that usesD to solve QC in€, and the uniform agreement
property of QC. O

Lemma 28 For all processep andq, any two quorums assigned ¥o-output, and¥-output, in algorithm
Tp_,y intersect.

PROOF  Suppose, for contradiction, that for some procegsasdg, there is a time whek-output, = P and
a time wher®-outpuf, = Q, butP N Q = 0.

First, observe that any set thaassigns tmew-quorum on line 49 cannot be empty. This is because this
set must include the participants of a schedulkbat is applicable to some initial configuratidm such thatp
decides ino(1). Itis easy to see that no process decides in any initial coratipn, and sparticipantso) # ().
Thus, any set thap assigns tonew-quorum on line 49 is nonempty. Similarly, any set thatassigns to
new-quorum on line 49 is also non-empty.

Note that at any time;-output, = II (at initialization) or¥-output, = new-quorurm). Similarly, X-outpuf, =
1T or X-outpuf, = new-quorun. Sincenew-quorum andnew-quorury are not empty, it must be that the non-
intersecting quorumg’ and(@ are assigned toew-quorury andnew-quorurm, respectively, on line 49.

Sincep and q reach line 49, they also reach line 34, and so they decidee \gifferent from0 or Q
in the instance of QC they execute in Thread 2 (line 26 or li@g By the validity and uniform agreement
properties of QC, it must be thdtcision, = decision, = (Iy, 11, So, S1) such that some process proposed
(Io, I1, Sp, S1) in Thread 2 (line 29). Note thdy andI; are initial configurations of algorithml that differ
only in the initial state of a single process, asidandS; are schedules ofl such that some process decides
in So(Ip) andlin Si(I;) (see lines 28-29).

For the notation defined in this and the next paragraph segd-8 LetSy =¢e;1...¢e, andSy = f1... fi,
where thee;’s and f;’s are steps. LeCy = I andC; = ¢;(C;_1) for i € [1..£]; similarly, Dy = I, and
Dj = fj(Dj—l) forj e [1777,]

Let ¢ be the time wherp first assignsP” to new-quorum on line 49. By the condition on line 47, for
eachi € [0..Z], there is a schedule! such thate; ...e; - of € Sch(Gl, 1) andp decides some valu€ in
e1...ei-of(Ip).° Similarly, for eachj € [0..m], there is a schedule! such thatf, ... f; - 77" € Sch(Gl, I)
andp decides some valug’ in f; ... f; - 77(I1). The quorump is the union of the participants in the’s

®We adopt the convention that, for= 0, e; . . . e; is the empty schedule.

27



Some process Some proces
decides);) decidesl 2
el e ey f1 fa f
O R O & B LI C e OO S
N\ Ly

| | | | | | | |

| | | | | | | |

oG o7 o3 a7 ™ ™ 5 h

( | ( | ( | |

v y v y v y y

O
O=

O O O

p decides ) ) zh pdecides  yJ it v yb,
So Sy
Some process Some proces:
decidesD ) decidesl 2
e1 ez eg f1 f2 f
| | | | | | | |
| a ! q! | | g | gl |
o6 91 72 o ™ 1 T2 T
| | | | | | | |
v y v v v y y v
q decides x zd zd x] q decides  yg yd va yd

Figure 8: lllustration of the proof of Lemma 28

and7}’s. Similarly, let¢’ be the time whenq first assignsy to new-quorury. We defines?, =, 7, andy?, in
an analogous manner. The quorghis the union of the participants of the's andT;?’s.

Claim 28.1 Foralli € [0..(], zj = «; and for allj € [0..m], y% = y.

PROOF OFCLAIM 28.1.  Sincee;...e; - of € Sch(G;,Io), by Lemma 20, there is a ruRy = (F, H, I,
er...e; - of,—) of AusingD in £. Procesy decidesz? in Ry. Similarly, there is a rurk, = (F, H, I,
er...e; - o, —) of AusingD in &, in which ¢ decidesz?. SinceP andQ are disjoint, so are their subsets
participantés”) and participantgo?). Thus, by Corollary 27 (applied with = Iy, S = ¢;...¢;, S1 = o,
Sy = o, vy = 2 andv; = z), we have that? = zJ. The proof thaiyf = yg is analogous. [hg 1

By Claim 28.1, we can now defing = z} = = andy; =y} = y;.
Claim 28.2 For alli € [0..0 — 1], ;41 = x;; and for allj € [0..m — 1], yj+1 = y;.

PROOF OFCLAIM 28.2.  Consider any € [0..£ — 1], and letr be the process that takes stgp;. Since
P and @ are disjoint,r ¢ P orr ¢ (. Without loss of generality, suppose that¢ P. In particular,
r ¢ participant¢s?) C P. Also, again becaus® and( are disjoint, so are their subsetarticipant$s?) and
participant$s?, | ). Therefore participant$o! ) andparticipantge; 1 - of ;) are disjoint.
Sincee; ...e; - of € SchGl, Iy), by Lemma 20, there is a ruRy = (F,H, Ip,e1...¢; - 0}, —) of

A usingD in £. Procesy decidesz; in Ry. Also, sincee; ...e;11 - a§+1 € Sch(Gfl',Io) there is a run
Ry = (F,H,Ip,eq1...€;€i41 - afH, —) of A usingD in &, in which ¢ decidesz;;1. Thus, by Corollary 27
(applled with] = Iy, S = e1ey...6;, 51 = O‘Zp, Sy = €41 ° O‘?+1, Vo = T; andv; = :L'Z'_H), we have that
x; = T;4+1. The proof thaty; = y;1 is analogous. [lpg
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Claim 28.3 xg = 0 andyy = 1.

PROOF OFCLAIM 28.3. Recall that some process decitiés Sy (o), andp decidest, in Sy - o7 (Ip). Since
So - o} € Sch(G, 1), by Lemma 20, there is a ri¥, H, Iy, So - o, —) of A usingD in €. In this run, some
process decide$ andp decidesr,. SinceA solves QC using in &, by the uniform agreement property of
QC, we haver;, = 0. By Claim 28.2 and a trivial induction;; = 0 for all i € [0..4]. In particular,xzg = 0. The
proof thatyy = 1 is analogous. [Clyg 3

SinceP and(Q are disjoint, so are their subsgdtarticipantsc!)) andparticipant$r). Letr be the process
such thatl, and I; differ only in the initial state ofr. Process: does not take a step in at least oneogjf
and 7. Without loss of generality, assume thatloes not take a step iy]. Thus,o}, is also applicable to
I, andp decides the same valugy, in o(11) as inof(Iy). Sinceo; € Sch(Gl, Iy), we also have that
o, € Sch(Gl, I1). By Lemma 20, there is a ruRy = (F, H, I, 03, —) of A usingD in £. Procesg decides
zo in Ry. Sincery € Sch(Gg',Il), again by Lemma 20, there isariy = (F, H, I, 7], —) of A usingD in
£. Procesg decidesy in R;y.

By Corollary 27 (applied with = 1, S being the empty schedul§; = o} and S, = 7, vy = 20 and
v1 = Yp), We have thaty = yq. This contradicts Claim 28.3, and completes the proof of inen28. O

8.4 Correctness of the transformation

We are now ready to show that:

Theorem 29 Algorithm Tp_,y transformsD to V.

PrROOFE Recall that algorithmA usesD to solve QC inf. As before, we consider an arbitrary admissible run
of Tp—w in &€, whereF € £ is the failure pattern anel € D(F) is the failure history of this run.

To show that7p_, ¢ transformsD to ¥, we must prove that the values of the variables;utputp conform
to the specification of. By inspection of7p_,y, it is clear thatV-output, is either L, or red (in which case
we say that it is of typeFS), or a pair(q, Q) whereq € 1T and@ C II (in which case we say that it is of type
(2. %)).

(1) For each procegs, V-output, is initially L (line 4). If U-output, ever changes value, it becomes of type
FS forever (line 33) or of typé, X2) forever (line 40).

This follows by inspection ofp_, .

(2) For all distinct processgsandg, it is impossible forV-output, to be of typeFS and¥-output, to be of
type (2, X).
This is because, by the uniform agreement property of @nd ¢ cannot decide different values on
lines 26 and 29; thus, they cannot execute in different brasof the if-then-else statement of lines 32-34.

(3) For each correct procepseventuallyV-output, # L.

To prove this we first show that every correct procegventually completes the loop on lines 20-22. By
Lemma 21 (takingS to be the empty schedule), for eagke [0..n] there is a schedulé> € Sch(G;°, )
such that F, H, I, S*°, —) is an admissible run of algorithtd (which solves QC) usin@® in £. By the
termination property of QC, there is a finite prefix of 5S> such thap decides inS7(17). By Lemma 23,
there is a time’ such that for alt >/, 57 € Sch(G%, I7). Thus, after timenax{t’ : j € [0..n]}, the exit
condition on line 22 is true forever, and so eventuallsompletes the loop.
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We claim that, after completing the loop on lines 20-22, yeerrect procesg executes line 26 or line 29.
To show this claim, first note that singecompletes this loop, then for evejyc [0..n], there is a time

t; and a scheduls?, ¢ Sch(G,, . I7) such thatp decides some value), in SJ(17). By Lemma 20, for all

j € [0..n], there is a ruery = (F,H, I S{,, —) of AusingD in £. Since (a)A solves QC usin@ in &,
(b) processes can only propoger 1 in Rj, and (c)p dECIdESTp in jo, then by the validity property of
QC, 3 € {0,1,Q}. Furthermore, since no process proposé@sthe runR0 whose initial configuration is
1Y, we haver!) € {0,Q}. Similarly, zI' € {1,Q}.

There are two possible cases:

e Thereis g € [0. n] such thatc{, = Q. In this casep executes line 26.

e Forallj € [0..n], 2, # Q. Inthis case, for alj € [0..n], 27, € {0,1}; moreoverz) = 0 andz!! = 1.
So there must be somies [0..n — 1] such thatr}, = 0 andzt! = 1. Thus,p executes line 29

Thus,p executes line 26 or line 29, which shows the claim.

From this claim, all correct processes propose some vatubn@ 26 or 29) in an instance of QC executed
in Thread 2. By the termination property of QC, all correadqasses eventually decide in that instance,

and so they all complete line 31. Thus, eventually everyembprocesg setsW-output, to a non-L value
on line 33 or 40.

(4) For each procegsand timet, if \If-outpug = red then a failure occurred by tinte

To see this, leb be a process anda time such thaﬁl—outpuﬁ, = red (line 33). By lines 31-32p decided
0 or Q on line 26 or 29 at some timé< ¢. There are two possible cases:

(a) pdecided Q attim& < t. Then, by part (ii) of the validity property of QC, a failureaurred by time
t <t

(b) p decided) attimet’ < t. Then, by Observation 2, there must be at least one prqdbas proposes
and executes a step of the QC algorithm on line 26 by time t. This implies that there is a time
t" < t', anindex;j € [0..n], and a schedul§ ¢ Sch(G I7), such thay decides Q inS}(17) (see

lines 23-25). By Lemma 20, there is a list of tiniEsall at mostt”, such that F, H, I/, Sg, T)isa
run of A usingD in £. By part (ii) of the validity property of QC, this implies tha failure occurred
by timet” <t <t.

(5) If the W-outputvariable of some procegsbecomes of typ& S at timet, then:

e A failure occurred by time.

If \I'—outpuﬁ, is of type FS, then, by inspection ofp_, v, \I'—outpug, = red. By (4), a failure occurred
by timet.

e For every correct process there is a time after whicfr-output, = red.

By (2) and (3), for every correct procegsthere is a time after whick-output, is of type 7S. In
Tp—w, the variableV-output, can become of typg'S only by being set toed.

(6) If the W-outputvariable of some process becomes of tyfaey.), then:
e (i) For every procesp and every timg € N, Q-outpug € I1; furthermore, (ii) if a correct process

exists, then there is a correct processnd a time* such that, for every correct procgsand every
timet > t*, Q-outpuﬁ, = p*.
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Part (i) is immediate by inspection Gi>_,y. Part (i) is trivial if all processes are faulty, so suppose
that some correct process exists. By assumption\toeitputvariable of some process becomes of
type (©2,%). Then, by (2) and (3) above, eventually tlireoutputvariable of every correct process
also becomes of typ@?, ). So every correct process sets(¥utputvariable repeatedly on line 38
using the extraction procedure described in [9]. Since sproeess reaches line 34, by Lemma 24,
the limit forestY has a critical index. Thus, as we explained in Section 8.2cavenow apply steps
(b) and (c) of the proof of [9] to show that there is some cdrpocesp* and a timet* such that,
for every correct procegsand timet > t*, Q—outpuf, = p*. The only difference is that whenever the
proof in [9] refers to aivalent node, we now refer toraultivalent one; and whenever [9] refers to
u-valent versug-valent nodes for some distinatandv in {0, 1}, hereu andv are in{0, 1, Q}.

e (i) For every correct procegs there is a time after which-output, contains only correct processes,
and (ii) for all processes andq, any two quorums assigned¥voutput, andX:-output, intersect.

Part (i) was shown in Lemma 26 and part (ii) in Lemma 28.

From (1)—(6) above, it follows that the values of the varsl-outputconform to the specification of,
as defined in Section 3: Initiallyy-output = L at each process; eventually, howewrputputbehaves
either like the failure detectqi2, ) at all correct processes or like the failure deteckdt at all correct
processes. The switch from to (€2, X) or FS is consistent at all processes, and a switch froto FS
can happen only if a failure occurred.

O

Since Theorem 29 holds for any environménand any failure detectd that can be used to solve QC
in £, we conclude that:

Theorem 30 For every environmeng, if failure detectorD can be used to solve QC &, thenD can be
transformed tal in £.

8.5 Binary versus multivalued QC

Our proof that¥ is the weakest failure detector to solve QC uses the factith@C, each process can propose
any value in the infinite sef0,1}*; i.e., the proof used the fact that QCrisultivalued'® So one may ask
whetherV¥ is also the weakest failure detector to solve lingary version of QC where processes can only
propose) or 1. The answer is affirmative.

To prove this, we use an algorithm by Mostéfaetial. that converts any algorithm that solvemary
consensus into an algorithm that solvesltivaluedconsensus [34]. With a straightforward modification, this
conversion algorithm also works with quittable consenstgonverts any algorithm that solves binary QC
(using some failure detect@) into one that solves multivalued QC (using tamefailure detectorD). This
gives us the following:

Theorem 31 For every environmert, if failure detectorD can be used to solve binary QCé&n thenD can
be used to solve QC if.

Therefore:

Corollary 32 For every environmer&, ¥ is the weakest failure detector to solve binary Q€ in

specifically, in Thread 2 of»_, ¢, processes may propose tuples of the f@iml’, S, S’), for some initial configurations and
finite schedules of algorithrmal.
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PROOE Let& be any environment.

(a) W can be used to solve binary QCén This is obvious since, by Theorem®,can be used to solve QCén

(b) SupposeD can be used to solve binary QCé&n By Theorem 31D can be used to solve QC & So, by
Theorem 30D can be transformed t& in £.

O

9 Final remarks

Failure detector emulations. Intuitively, a failure detectoD is weaker than a failure detect®Y if processes
can useD’ to emulateD. Two technical definitions of failure detector emulatiorvéndoeen proposed in the
literature [9, 31]. In this paper we adopted the originalmigéin of emulation given in [9] since we used parts
of the proof given in that paper. As we explain below, howgweerr results also hold with the definition of
emulation given in [31].

With the original definition of emulation [9], an implemetiten of D must maintain local variables that
mirror the output ofD at all times The definition of emulation given in [31] is weaker: with ghdefinition,
an implementation oD is required to behave lik® only when it is actually querietf The failure detectors
U and (¥, FS), which we proved here to be the weakest for QC and NBAC underotiginal definition
of failure detector emulation, are also weakest for thesblpms under the definition of emulation given
in [31]. In a nutshell, this is because (a) all the algorithtingt we give here also work under the model
of [31], and (b) if processes can emulate a failure deteBPx@ccording to the strong definition of emulation
of [9] (i.e., p is able to maintain a variabl®-output, thatalwaysmirrors the output ofD) then processes
can also emulat® according to the weaker definition of emulation of [31]: wheer it is queriedp can
just return the value ab-output,. For the same reasons, all the failure detectors that weveaieeaof to be
weakest for a problem under the definition of emulation of ¢ also weakest for these problems under the
definition of emulation of [31]; this includes the weakestuige detectors for consensus [9] and non-uniform
consensus [19], set agreement [18, 37], implementing aniat@gister [15], and boosting obstruction-freedom
to wait-freedom [25].

The newer definition of emulation given in [31] has two adegets over the original one of [9]. First, the
original definition of emulation is more stringent than resagy: when using an emulated failure dete@or
it is sufficient that the emulate® behaves correctly only when it is queried — which is exactlyatvthe
newer definition stipulates. Second, the definition of etimuagiven in [31] is reflexive, i.e., for every failure
detectorD, processes can ugeto emulateD. In contrast, as remarked by [31] and later in [11], the oagdi
definition of emulation is not reflexive: if the output of altaie detectorD is sensitive to time, the processes,
because they are asynchronous, may not be able to maintsiblea that mirror the output @ at all times
as the original definition of emulation requires. The noitesavity of the failure detector emulation under the
original definition of emulation of [9] has no bearing on tlesults of this paper or on the other weakest failure
detector results cited above: as we explained above, the sesults also hold with the newer definition of
emulation given in [31] which does satisfy reflexivity.

Granularity of steps. As in the models of Fischest al. [20] and Chandrat al. [9], in our model a process
can send a messageto every process in an atomic step. Since a sender cannat féile middle” of a step
that sendsn to all, our model has the following property: if any processaivesn, then every correct process

"More precisely, if the implementation @ is queried at time; and it replies with a valud at timets, thend must be a valid
value of D at some time € [t1, t2]; SO, itis as if the query/reply occurredomicallyat some time within the interval of time that the
query/reply actually took. In other words, the behaviouhefimplementation db is linearizablewith respect to the specification Bf.
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eventually receives (*). One may ask whether our results also hold in another ndéetés call it model 3B,
where a process can send a messade only one process in an atomic step. To answer this questaia that
in model B (where processes may crash but links are reliable) one galeriment Uniform Reliable Broadcast
(URB) [27], a communication primitive that provides the jpeoty (*) of our model. Since modé} can emulate
the atomic “send m to all” of our model, it is easy to see thatreaults also hold in modéb.

Systems that are not asynchronouslt is worth noting that since our model is that of an asyncbrasystem
augmented with failure detectors, the algorithms that ateuiilure detectors are also asynchronous [11]. So
the weakest failure detectors that result from such enmuatare also asynchronous in the sense that their
output values could be delayed for any finite time. Some presvsivorks explored failure detectors in systems
that are not purely asynchronous. For example Aguigtral. investigated the use of “fast ” failure detectors

to speed up agreement algorithms in some synchronous sy$#émin another body of work, researchers
considered the definition and implementation of failureedtgrs for systems where message delays and losses
follow some probability distribution [14, 8, 35]. It may betéresting to investigate QC and NBAC in systems
that are not asynchronous, and to determine whether thebéeprs have weakest failure detectors in these
systems. This, however, is beyond the scope of this paper.

Systems with a majority of correct processeslin environments where a majority of processes are correct it
is easy to implement the quorum failure deteéibrEach process periodically sends “join-quorum” messages,
and takes as its present quorum any majority of processese$ond to that message. Therefore, in such
environmentsl is equivalent to a simpler failure detector, one which otgpust(2 instead of((2, X2).

Future failures. Our definitions of QC and NBAC do not allow a process to quitlworabecause of a future
failure. We could have defined these problems in a way thaivallsuch behaviour, as in fact is the case in
some specifications of NBAC in the literature. Our resuls®didold with these definitions, provided we make a
corresponding change to the definitions of the failure deted=S andW: they are now allowed to outpuéd

in executions with failures even before a failure occurs.
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A Proof of Lemma 9

Lemma 9 LetRy = (F,H,1,S- S, T - Tp) andRy = (F,H,I,S - 1,7 - T1) be two finite runs of an
algorithm A using failure detectdP in some environmer&, such thatly| = |T1| = [S| and participantsSy) N
participant$S,) = 0. LetR = (F,H,1,5 -S,T -T) be a merging oR, andR;. Then

(a) R is also a run ofA usingD in £.

(b) For eacth € {0,1} and each procegse participant§S - S,), the state of is the same irb - S(I) as in
S - Sy(I).

PROOF To show thatR is run of A usingD in &, we first note that’ € £, H € D(F), and! is indeed an
initial configuration ofA. It now suffices to show thak satisfies properties (1)—(5) of runs. The fact thatS
and7 - T have the same length (property (2)) is obvious from the difinbf R. The fact that in? no process
takes a step after it has crashed, and that the failure detedtie in each step is consistent with the histary
(property (3)), follows from the wayr is constructed fronfz, and 1, and the fact thafz, and R, have this
property. 7 - T is nondecreasmg (property (4)) because eadhof}, andT} - T} is nondecreasing] is chosen
to be whichever off, and 7} has the smallest maximum element, &nés obtained by mergingy and7; in
nondecreasing order. The times of the stepg irespect the causal precedence relation (property (5)ubeca
Ry and R, have this property, and no process takes a step in fipnd.S;. It remains to prove tha$ - S is
applicable tal (property (1)).

For the purposes of this proof, df is a schedule and € {0, 1,...,|o|}, we denote by’ the prefix ofo
that has lengthi (o is the empty schedule). Also, for the suffixof the schedule of the merged ri\(i.e., the
portion of the schedule a® produced by merging, and.S;), andb € {0, 1}, let f;(i) be the number of steps
of S? that come fromS,. Using a straightforward induction, we can show that for @l {0, 1,...,|S|}:

(i) Forallb € {0,1}, the set of messages between processwmcipant$5“ - Sp) (i.e., messages of the
form (p, —, q) wherep, g € participant§s - Sy)) in the message buffer of configuratiéh S*(I) is equal
to the set of messages between processeggiticipant$sS - Sy) in the message buffer of configuration

S s,
(i) Forallb € {0,1}, the state of any procepse participant§S-S,) is the same it -5 (I) as in$- 5, (I).

Below we use (i) to show that, for eacke {1,2,...,[S[}, S[i] is applicable taS - S*~1(I). This proves that
S - S'is applicable tdl.

Let S[i] = (p,m,d, A). Letb € {0,1} be such thap € participant$S;) (such ab exists because every
step ofS is in eitherSy or S1). Thus,(p, m,d, A) is stepf,(i) of Sb SinceR; is a run,S - Sy is applicable to
I. In particular, stef{p, m,d, A) of S, is applicable taS - S{b(’) (I). Note thatf,(: — 1) = f(z) — 1. So,
(p,m, d, A) is applicable ta5 - S{1(I). Thus,m is in the message buffer &f- S;*""")(I). Furthermore,
it is a message between processepairticipant.sﬁ - Sp). This is because, (1) being in the message buffer of
S. Sfb(i_l)( I) it was sent by a process participant$§ Sfb(i_l)) and (2)p, the recipient ofn, is the process
that takes the,(¢)-th step ofS;. By (i), m is in the message buffer Of. §i— Y(I). So,(p,m,d, A) is applicable
to S - Si1(I), as wanted.

Part (b) of the lemma follows directly from (ii), taking= |S|. O
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