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ABSTRACT
We determine the weakest failure detectors to solve several funda-
mental problems in distributed message-passing systems, for all en-
vironments — i.e., regardless of the number and timing of crashes.
The problems that we consider are: implementing an atomic reg-
ister, solving consensus, solving quittable consensus (a variant of
consensus in which processes have the option to decide ‘quit’ if a
failure occurs), and solving non-blocking atomic commit.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—distributed applications, distributed databases, network op-
erating systems; D.4.5 [Operating Systems]: Reliability—fault
tolerance; F.1.1 [Computation by Abstract Devices]: Models of
Computation—automata, relations among models; H.2.4 [Database
Management]: Systems—concurrency, distributed databases, trans-
action processing
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Algorithms, Reliability, Theory
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1. INTRODUCTION
Consensus is a classical problem in fault tolerant distributed com-

puting. Informally, each process in the system initially proposes a
value, and eventually processes must reach a common decision on
one of the proposed values. Non-blocking atomic commit (NBAC)
is a closely related problem that arises in distributed transaction
processing [10]. Informally, the set of processes that participate in
a transaction must agree on whether to commit or abort that trans-
action. Initially each process votes Yes (“I am willing to commit”)
or No (“we must abort”), and eventually processes must reach a
common decision, Commit or Abort. The decision to Commit can
be reached only if all processes voted Yes. Furthermore, if all pro-
cesses voted Yes and no failure occurs, then the decision must be
Commit.

It is well-known that consensus and NBAC are unsolvable in
asynchronous systems with process crashes (even if communica-
tion is reliable) [8]. One way to circumvent such impossibility
results is through the use of unreliable failure detectors [4]: In
this model, each process has access to a failure detector module
that provides some (possibly incomplete and inaccurate) informa-
tion about failures, e.g., a list of processes currently suspected to
have crashed. Chandra et al. [3] determined the weakest failure
detector to solve consensus in sytems with a majority of correct
processes.1 It was not known, however, whether there is a weak-
est failure detector to solve consensus regardless of the number of
faulty processes — and, if so, what that failure detector is.

One of the results of this paper is to determine the weakest failure
detector to solve consensus in any environment whatsoever. (We
will formally define the term “environment” in Section 2. Infor-
mally, however, an environment encapsulates an arbitrary assump-
tion about which processes crash and when they do. Examples of
environments are: a majority of the processes are correct; process p

never fails before process q; no process crashes after it has taken at
least one step.) To obtain this result, we exploit a close relationship

1We say that D is the weakest failure detector to solve problem P
if (sufficient part) there is an algorithm that uses D to solve P , and
(necessary part) any failure detector D′ that can be used to solve P
can be transformed to D.



between consensus and atomic registers. We determine the weak-
est failure detector to implement such registers in any environment
— a previously unexplored question of independent interest. We
then leverage this result to determine the weakest failure detector
to solve consensus in any environment.

As with consensus, failure detectors can be used to solve NBAC
[9, 11]. It was an open problem, however, whether there is a weak-
est failure detector to solve NBAC and, if so, what that failure
detector is. The answer to this question was not known even for
environments with a majority of correct processes. In this paper
we resolve this problem, again for any environment. To do so,
we first introduce a natural variation of consensus, called quittable
consensus (QC) — a problem that is interesting in its own right.
We then determine the weakest failure detector to solve QC in all
environments, and establish a close relationship between QC and
NBAC. Using this, we determine the weakest failure detector to
solve NBAC in any environment.

We now describe in more detail our results; these involve the
following three failure detectors.

• The quorum failure detector Σ outputs a set of processes at
each process. Any two sets (output at any times and by any
processes) intersect, and eventually every set output at cor-
rect processes consists only of correct processes [7].

• The leader failure detector Ω outputs the id of a process at
each process. There is a time after which it outputs the id of
the same correct process at all correct processes [3].

• The failure signal failure detector FS outputs green or red
at each process. As long as there are no failures, FS outputs
green at every process; after a failure occurs, and only if it
does, FS must eventually output red permanently at every
correct process [5, 11].

The weakest failure detector to implement an atomic register. It
is well-known that in asynchronous message-passing systems it is
possible to implement atomic registers if and only if a majority of
processes are correct [1]. The question naturally arises whether us-
ing some sort of failure detectors it is possible to implement atomic
registers even in environments where fewer than a majority of pro-
cesses can be relied upon to be correct. We prove that the quorum
failure detector Σ is the weakest one to do so in any environment.

One may wonder how this can be the case, since in environments
with a majority of correct processes atomic registers can be imple-
mented without any failure detector. The answer is that, in such en-
vironments, we can easily implement Σ ex nihilo as follows: Each
process periodically sends “join-quorum” messages, and takes as
its present quorum any majority of processes that respond to that
message. Thus, to implement registers in environments with a ma-
jority of correct processes we “need” something that we can get for
free!

Like any weakest failure detector result, this one has two aspects:
We must prove that in any environment,

(1) using Σ we can implement registers; and

(2) any failure detector that can be used to implement registers
can be transformed to Σ.

(1) will not surprise anyone familiar with the algorithm of Attiya
et al. for implementing registers in a message-passing system [1]:
Where that algorithm uses majorities to ensure that a read opera-
tion returns the most recently written value, we can use the quo-
rums provided by Σ to the same effect. (2) is far less obvious; it is
discussed in Section 3.

The weakest failure detector to solve consensus. It is known that
the leader failure detector Ω is the weakest failure detector to solve
consensus in environments with a majority of correct processes.
More specifically,

(3) using Ω we can solve consensus if a majority of processes
are correct [4]; and

(4) any failure detector that can be used to solve consensus can
be transformed to Ω [3].

It is important to note that (4) holds for all environments.
In this paper we show that the failure detector (Ω, Σ) is the weak-

est failure detector to solve consensus in all environments.2 This
result is obtained in the following way. It is known that using reg-
isters and Ω we can solve consensus in any environment [19]. By
(1), it follows that using (Ω, Σ) we can solve consensus in any
environment. Conversely, let D be a failure detector that can be
used to solve consensus in an arbitrary environment E . From Lam-
port’s work on the state-machine approach we know that by using
consensus we can implement any object, and in particular regis-
ters [17, 21]. Thus, using D we can implement registers in E . By
(2), D can be transformed to Σ in E . Since, by (4), D can also be
transformed to Ω in E , we conclude that D can be transformed to
(Ω, Σ) in E .

The fact that (Ω, Σ) is the weakest failure detector to solve con-
sensus in any environment, implies that Ω is the weakest failure de-
tector to solve consensus when a majority of processes are correct,
since as we noted earlier, in such environments Σ can be imple-
mented ex nihilo. Thus the result we show in this paper is a natu-
ral generalisation of the previously known result about the weakest
failure detector to solve consensus in environments with a majority
of correct processes [3, 4].

The weakest failure detectors to solve QC and NBAC. Inform-
ally, QC is like consensus except that, in case a failure occurs, pro-
cesses have the option (but not the obligation) to agree on a special
value Q (for “quit”). This weakening of consensus is appropri-
ate for applications where, when a failure occurs, processes are al-
lowed to agree on that fact (rather than on an input value) and resort
to a default action.

Despite their apparent similarity, QC and NBAC are different in
important ways. In NBAC the two possible input values Yes and No
are not symmetric: A single vote of No is enough to force the de-
cision to abort. In contrast, in QC (as in consensus) no input value
has a privileged role. Another way in which the two problems dif-
fer is that the semantics of the decision to abort (in NBAC) and
the decision to quit (in QC) are different. In NBAC the decision to
abort is sometimes inevitable (e.g., if a process crashes before vot-
ing); in contrast, in QC the decision to quit is never inevitable, it is
only an option. Moreover, in NBAC the decision to abort signifies
that either a failure has occurred or someone voted No; in contrast,
in QC the decision to quit is allowed only if a failure has occurred.

We first show that there is a weakest failure detector to solve QC.
This failure detector, which we denote Ψ, behaves as follows: For
an initial period of time the output of Ψ at each process is ⊥. Even-
tually, however, Ψ either behaves like the failure detector (Ω, Σ)
at all processes or, if a failure occurs, it may instead behave like
the failure detector FS at all processes. The switch from ⊥ to
(Ω, Σ) or FS need not occur simultaneously at all processes, but
the same choice is made by all processes. This result has an in-
tuitively appealing interpretation: To solve QC, a failure detector
2If D and D′ are failure detectors, (D,D′) is the failure detector
that outputs a vector with two components, the first being the output
of D and the second being the output of D′.



must eventually either truthfully inform all processes that a failure
has occurred, in which case the processes can decide Q, or it must
be powerful enough to allow processes to solve consensus on their
proposed values. This matches the behavior of Ψ.

We then prove that NBAC is equivalent to QC “modulo” the fail-
ure detector FS. More precisely we show that: (a) given FS, any
QC algorithm can be transformed into an algorithm for NBAC, and
(b) any algorithm for NBAC can be transformed into an algorithm
for QC, and can also be used to implement FS .

Finally, we use this equivalence to prove that (Ψ,FS) is the
weakest failure detector to solve NBAC. This result applies to any
system, regardless of the number of faulty processes.

Related work. The question of the weakest failure detector for
consensus was first addressed in [3], where it was shown that fail-
ure detector Ω is the weakest to solve consensus with a majority
of correct processes. The generalization of the result to other envi-
ronments was partially addressed in [6]. The same paper addressed
the question of the weakest failure detector to implement atomic
registers for specific environments and within a restricted class of
failure detectors.

NBAC has been studied extensively in the context of transac-
tion processing [10,22]. Its relation to consensus was first explored
in [14]. Charron-Bost and Toueg [5] and Guerraoui [11] showed
that despite some apparent similarities, in asynchronous systems
NBAC and consensus are in general incomparable — i.e., a solu-
tion for one problem cannot be used to solve the other.3 The prob-
lem of determining the weakest failure detector to solve NBAC was
explored and settled in special settings. Fromentin et al. [9] deter-
mine that to solve NBAC between every pair of processes in the
system, one needs a perfect failure detector [4]. Guerraoui and
Kouznetsov [13] determine the weakest failure detector for NBAC
within a restricted class of failure detectors; while from results
of [5] and [11] it follows that in the special case where at most
one process may crash, FS is the weakest failure detector to solve
NBAC. The general question, however, was open until the present
paper.

Several versions of the consensus problem have been studied be-
fore but, to the best of our knowledge, this is the first paper to
propose quittable consensus.

Roadmap. The rest of the paper is organised as follows: In Sec-
tion 2 we briefly review the model of computation, and define for-
mally the failure detectors Ω, Σ and FS . In Section 3 we prove
that Σ is the weakest failure detector to implement registers in any
environment.In Section 4 we prove that (Ω, Σ) is the weakest fail-
ure detector to solve consensus in any environment. In Section 5
we give the exact specification of QC, and in Section 6 we prove
that Ψ is the weakest failure detector to solve QC. In Section 7 we
give the specification of NBAC, we prove that NBAC is equivalent
to QC modulo FS, and we use this to show that (Ψ,FS) is the
weakest failure detector to solve NBAC. The missing proofs can be
found in [7, 12].

2. MODEL
We consider the asynchronous message-passing model in which

processes have access to failure detectors [3, 4]. In this section we
summarise the relevant terminology and notation.

The system consists of a set Π of n processes. Processes can
fail only by crashing, i.e., prematurely halting. Each process ex-
ecutes steps asynchronously: the delays between steps are finite
3An exception is the case where at most one process may fail. In
this case, NBAC can be transformed into consensus, but the reverse
does not hold.

but unbounded and variable. Processes are connected via reliable
links that transmit messages with finite but unbounded and variable
delay.

A failure pattern is a function F :
�

→ 2Π, where F (t) denotes
the set of processes that have crashed through time t. (We assume a
discrete global clock used only for presentational convenience, and
not accessible by the processes.) Crashed processes do not recover
and so, for all t ∈

�
, F (t) ⊆ F (t + 1). faulty(F ) = � t∈ � F (t)

denotes the set of processes that crash in F , and correct (F ) =
Π − faulty(F ) denotes the set of processes that are correct in F .

A failure detector history with range R describes the behavior
of a failure detector during an execution; formally, it is a function
H : Π×

�
→ R, where H(p, t) is the value of the failure detector

module of process p at time t. A failure detector D with range R is
a function that maps each failure pattern F to a set of failure detec-
tor histories with range R. Intuitively, D(F ) is the set of behaviors
that D can exhibit when the failure pattern is F .

An algorithm A is an automaton that specifies, for each process
p, (a) the set of messages that p can send; (b) the set of states that p

can occupy (a subset of which are identified as p’s possible initial
states); and (c) a transition function which determines the messages
that p sends and the new state it occupies when it takes a step. In
one atomic step, p performs the following actions: it receives a
message addressed to it (possibly the empty message λ), it queries
the failure detector and receives its present value, it sends messages
to other processes and changes its state.4 The messages that p sends
and the new state it occupies are specified by its transition function
based on its present state, the message it receives and the value
it was given by the failure detector. Formally, a step is a triple
〈p, m, d〉, where p is the process taking the step, m is the message
p receives in that step, and d is the failure detector value it sees in
that step. A schedule S is a finite or infinite sequence of steps.

A configuration of algorithm A specifies the global state of the
system, i.e., the state of each process and of the “message buffer”
which contains the set of messages that have been sent but have not
yet been received. An initial configuration of A is a configuration
in which every process occupies an initial state and the message
buffer is empty. The step e = 〈p,m, d〉 is applicable to configu-
ration C if m is λ or m belongs to the message buffer of C and
its recipient is p; in this case e(C) denotes the configuration that
results if the present configuration is C, and process p executes the
step in which it receives message m and sees failure detector value
d. A schedule S = e1e2 . . . is applicable to configuration C if
and only if S is empty or e1 is applicable to C, e2 is applicable to
e1(C) and so on. If S is a finite schedule applicable to C, S(C)
denotes the configuration that results from applying S to C.

A run of algorithm A using a failure detector D describes an
execution of A where processes have access to D. Formally, a run
(respectively, partial run) of algorithm A using a failure detector
D is a tuple R = 〈F, H, I, S, T 〉 where F is a failure pattern,
H ∈ D(F ) is a failure detector history, I is an initial configuration
of A, S is an infinite (respectively, finite) schedule of A that is
applicable to I , and T is an infinite (respectively, finite) increasing
list of times indicating when each step in S occurred. A number of
straightforward conditions are imposed on the components of runs
and partial runs to ensure that the failure detector values that appear
in the steps of the schedule are consistent with the failure detection
history H , that processes don’t take steps after crashing, and that
(in runs) correct processes take infinitely many steps and messages
are not lost. For details see [3].

Some algorithms meet their specification only under some as-

4Our result also applies to models where steps have finer granular-
ity. For simplicity we focus on this one.



sumptions about the “environment” — e.g., that a majority of the
processes are correct, or that two particular processes do not both
crash. Formally, an environment E is a set of possible failure pat-
terns. Intuitively, these are the failure patterns in which an algo-
rithm of interest works correctly.

In Section 1 we informally introduced the failure detectors Ω, Σ,
FS . We now define these formally.

• The range of Ω is Π. For every failure pattern F ,

H ∈ Ω(F ) ⇔ ∃p ∈ correct (F ) ∀q ∈ correct (F )
∃t ∈

�
∀t′ ≥ t H(q, t′) = p.

• The range of Σ is 2Π. For every failure pattern F ,

H ∈ Σ(F ) ⇔�
∀p, p′ ∈ Π ∀t, t′ ∈

�
H(p, t) ∩ H(p′, t′) 6= ∅ �

∧
�
∀p ∈ correct (F )∃t ∈

�
∀t′ ≥ t

H(p, t′) ⊆ correct (F ) � .

• The range of FS is {green, red}. For every failure pattern
F ,

H ∈ FS(F ) ⇔
∀p ∈ Π∀t ∈

� �
H(p, t) = red ⇒ F (t) 6= ∅ �

∧
�
faulty(F ) 6= ∅ ⇒ ∀p ∈ correct (F )
∃t ∈

�
∀t′ ≥ t H(p, t′) = red � .

3. THE WEAKEST FAILURE DETECTOR
TO IMPLEMENT AN ATOMIC REGIS-
TER

A register is a shared object accessed through two operations:
read and write. The write operation takes as an input parameter
a specific value to be stored in the register and returns a simple
indication ok that the operation has been executed. The read oper-
ation returns the last value written in the register. The registers we
consider are fault-tolerant and atomic [18] (linearizable [15]): they
ensure that, despite concurrent invocations and possible crashes of
the processes, every correct process that invokes an operation even-
tually gets a reply (a value for the read and an ok indication for the
write), and any operation appears to be executed instantaneously
between its invocation and reply time events. (A precise definition
is given in [2, 15].)

Theorem 1 For all environments E , Σ is the weakest failure detec-
tor to implement an atomic register in E .

PROOF SKETCH. (A detailed proof is presented in [7].)
To prove the sufficiency of Σ, we adapt the algorithm of [1] to

show how an atomic register with one reader and one writer can be
implemented with Σ. Then, using the classical of results [16, 23],
we deduce that atomic registers with multiple readers and writers
can be implemented with Σ.

The proof that Σ is necessary to implement atomic registers is
more intricate. We must show that any algorithm A that imple-
ments a register in some environment E using a failure detector D
can be used to emulate the output of Σ. The transformation algo-
rithm that does this is presented in Figure 1.

In the transformation algorithm, every process pi maintains a
variable Σ-outputi. We now prove that for any two processes pk

and pl, Σ-outputk and Σ-outputl (taken at any times) intersect (in-
tersection, and, at every correct process pj , Σ-outputj eventually
consists only of correct processes (completeness).

The transformation algorithm uses n copies of the algorithm A

that, using failure detector D, implement n atomic registers, de-
noted by Reg1, . . . Regn. Every process pi is associated with reg-
ister Regi which can be written only by pi and read by all pro-
cesses.
There are three key ideas underlying our transformation algorithm:

(1) Every process pi periodically writes in Regi a counter k,
together with a specific value that we will discuss below in
item (3): the counter k is incremented for every new write
performed by pi. Process pi determines the processes that
participate in every write(k,*):

Let wb, respectively we, denote the beginning event, respec-
tively the termination event of this write operation, and let �
be the causality relation of [17], the set of participants in w,
is the set of processes:

{pj ∈ Π|∃e event of pj : wb � e � we}

This set of participants is denoted by Pi(k).

Roughly speaking, this set is determined by having every
process pj that receives some message m in the context of
the k-th write from pi, tag every message that causally fol-
lows m, with k, pj , as well as the list of processes from
which messages have been received with those tags. When
pi terminates write(k,*), pi gathers in Pi(k) the participants
in write(k,*).

An important property of Pi(k) is that it necessarily contains
at least one correct process. Indeed, assume that Pi(k) con-
tains no correct processes. Consider a read operation that
takes place after every process in Pi(k) has crashed. Fur-
thermore, assume that no message from processes in Pi(k),
sent after the first event of write(k,*), reaches any process in
Π − Pi(k) before the read operation completes. This sce-
nario is possible, since no process in Π − Pi(k) participated
in write(k,*). Then the read operation cannot return the value
written by write(k,*) — a contradiction.

(2) Every process pi maintains a set of process sets, Ei, where
each set within Ei consists of the processes that participated
in some previous write performed by pi. Basically, before
write(k,*) in Regi, Ei := {Pi(0), Pi(1), . . . , Pi(k − 1)}.
Initially, Ei contains exactly one set: the set of all processes
Π, i.e., we assume that Pi(0) = Π. Then, whenever pi ter-
minates a write, it updates Ei.

An important property of the set Ei is that, eventually, all
new sets (Pi(k)) that are added to Ei contain only correct
processes. This is because after all faulty processes have
crashed, the participants in new write operations are neces-
sarily correct.

(3) The value that process pi writes in Regi, together with k

(i.e., its k-th write), is the value of Ei after the (k − 1)-th
write. After pi writes Ei in Regi, pi reads Regj for every
j ∈ {1, . . . , n}. Process pi selects at least one process pt

from every set it reads (in some register Regj) by sending a
message to all processes in this set and waiting for at least
one reply. The value of the variable Σ-outputi is the value of
Pi(k − 1) augmented with every process pt that pi selected.

An important property of variable Σ-outputi is that it is per-
manently updated if process pi is correct. This is because pi

only waits for a message from one process in every set that
it reads in a register, and every such set contains at least one
correct process.



Code for each process pi:

on initialization:
1 Pi(0) := Π
2 Ei := {Pi(0)}
{ Ei is the set of subsets of processes that participate in write on Regi }
3 k := 0
{ k represents the number of times a write on Regi was invoked by pi }
4 Fi := ∅ { Fi is a temporary value of trusted processes }
5 Σ-outputi := Π { Initially, all processes are trusted }

task 1:
6 do forever
7 k := k + 1
8 Regi.write(k,Ei); let Pi(k) be the set of participants in the write
9 Ei := Ei ∪ {Pi(k)}
10 Fi := Pi(k − 1)
11 forall pj ∈ Π do
12 Lj := Regj .read()
13 forall X ∈ Lj do
14 send(k, ?) to all processes in X
15 wait until receive(k, ok) from at least one process pt ∈ X
16 Fi := Fi ∪ {pt}
17 Σ-outputi := Fi

task 2:
18 upon receive(l, ?) from pj send(l, ok) to pj

Figure 1: Extracting Σ from D and an atomic register imple-
mentation.

In short, the completeness property of Σ is ensured since, for
every correct process pi, Σ-outputi eventually contains only correct
processes. The key idea that ensures the intersection property of Σ
is that every process pi writes in its register before reading all other
registers and updating Σ-outputi.

4. THE WEAKEST FAILURE DETECTOR
TO SOLVE CONSENSUS

4.1 Specification of consensus
In the consensus problem, each process invokes the operation

PROPOSE(v), where v ∈ {0, 1}, which returns a value v′ ∈ {0, 1}.
It is required that:

Termination: If every correct process proposes, then every correct
process eventually returns a value.

Uniform Agreement: No two processes (whether correct or faulty)
return different values.

Validity: If a process returns a value v, then v was proposed by
some process.

4.2 The weakest failure detector to solve con-
sensus

The following corollary states that consensus can be implemented
using failure detector (Ω, Σ) in every environment. Such imple-
mentation can be achieved by first implementing registers out of Σ,
and then consensus out of registers and Ω [19]:

Corollary 2 For all environments E , (Ω, Σ) can be used to solve
consensus in E .

The following corollary follows from [3], Theorem 1 and the fact
that consensus can be used to implement atomic registers in every
environment [17, 21]:

Corollary 3 For all environments E , if D can be used to solve con-
sensus in E , then D can be transformed in (Ω, Σ) in E .

From the above two corollaries, we deduce the following one:

Corollary 4 For all environments E , (Ω, Σ) is the weakest failure
detector to solve consensus in E .

5. QUITTABLE CONSENSUS (QC)
Informally, quittable consensus is a weaker version of consensus

where, if a failure has occurred, processes can also agree on the spe-
cial value Q. In the quittable consensus problem (QC), each pro-
cess invokes the operation PROPOSE(v), where v ∈ {0, 1}, which
returns a value of 0, 1 or Q (for “quit”). It is required that:

Termination: If every correct process proposes a value, then every
correct process eventually returns a value.

Uniform Agreement: No two processes (whether correct or faulty)
return different values.

Validity: A process may only return a value v ∈ {0, 1, Q}. More-
over,
(a) If v ∈ {0, 1} then some process previously proposed v.
(b) If v = Q then a failure previously occurred.

Here we defined the binary version of QC, where processes can
propose values in the set {0, 1}. It is straightforward to generalise
QC so that processes can propose values from an arbitrary set of at
least two values that does not include the special value Q.

6. THE WEAKEST FAILURE DETECTOR
TO SOLVE QC

We define a new failure detector denoted Ψ and show that it is the
weakest failure detector to solve QC in any environment. To prove
this, we first show that Ψ can be used to solve QC in any envi-
ronment. We then prove that, for every environment E , any failure
detector that can be used to solve QC in E can be transformed into
Ψ in E .

6.1 Specification of failure detector Ψ

Roughly speaking Ψ behaves as follows: For an initial period of
time the output of Ψ at each process is ⊥. Eventually, however, Ψ
behaves either like the failure detector (Ω, Σ) at all processes, or,
in case a failure previously occurred, it may instead behave like the
failure detector FS at all processes. The switch from ⊥ to (Ω, Σ)
or FS need not occur simultaneously at all processes, but the same
choice is made by all processes. Note that the switch from ⊥ to
FS is allowable only if a failure previously occurred. On the other
hand, if a failure does occur, processes are not required to switch
from ⊥ to FS; they may still switch to (Ω, Σ).

More precisely, Ψ is defined as follows. For each failure pattern
F ,

H ∈ Ψ(F ) ⇔ � ∃H ′ ∈ (Ω, Σ)(F )∀p ∈ Π∃t ∈
�

�
∀t′ < tH(p, t′) = ⊥ ∧ ∀t′ ≥ t H(p, t′) = H ′(p, t′) ��� ∨�
∃t∗ ∈

� � F (t∗) 6= ∅ ∧ ∃H ′ ∈ FS(F )∀p ∈ Π∃t ≥ t∗

�
∀t′ < tH(p, t′) = ⊥ ∧ ∀t′ ≥ t H(p, t′) = H ′(p, t′) �����



Code for each process p:

Procedure PROPOSE(v): { v is 1 or 0 }
1 while Ψp = ⊥ do nop
2 if Ψp ∈ {green, red}
3 then { henceforth Ψ behaves like FS }
4 return Q
5 else { henceforth Ψ behaves like (Ω, Σ) }
6 d := CONSPROPOSE(v)

{ use Ψ to run (Ω,Σ)-based consensus algorithm }
7 return d

Figure 2: Using Ψ to solve QC.

6.2 Using Ψ to solve QC
It is easy to use Ψ to solve QC in any environment E (see Fig-

ure 2). Each process p waits until the output of Ψ becomes different
from ⊥. At that time, either Ψ starts behaving like FS or it starts
behaving like (Ω, Σ). If Ψ starts behaving like FS (Ψ can do so
only if a failure previously occurred), p returns Q. The remaining
case is that Ψ starts behaving like (Ω, Σ). It is shown in [7] that
there is an algorithm that uses (Ω, Σ) to solve consensus in any en-
vironment. Therefore, in this case, processes propose their initial
values to that consensus algorithm and return the value decided by
that algorithm. In Figure 2, CONSPROPOSE() denotes p’s invoca-
tion of the algorithm that solves consensus using (Ω, Σ). Hence the
following result:

Theorem 5 For all environments E , Ψ can be used to solve QC in
E .

6.3 Extracting Ψ from any failure detector that
solves QC

Let D be an arbitrary failure detector that can be used to solve
QC in some environment E ; i.e., there is an algorithm A that uses
D to solve QC in environment E . We must prove that Ψ can be
“extracted” from D in environment E , i.e., processes can run in E a
transformation algorithm that uses D and A to generate the output
of Ψ — a failure detector that initially outputs ⊥ and later behaves
either like (Ω, Σ) or like FS. The transformation algorithm that
does this is shown in Figure 3 and is explained below.

Each process p starts by outputting ⊥ (line 1). While doing so,
p determines whether in the current run it is possible to extract
(Ω, Σ), or it is legitimate to start behaving like FS and output red
because a failure occurred, as follows.

In task 1, p simulates runs of A that could have occurred in the
current failure detector history of D and the current failure pattern
F , exactly as in [3]. It does this by “sampling” its local module of
D and exchanging failure detector samples with the other processes
(line 4). Process p organizes these samples into an ever-increasing
DAG Gp whose edges are consistent with the order in which the
failure detector samples were actually taken. Using Gp, p simulates
ever-increasing partial runs of algorithm A that are compatible with
paths in Gp (line 6).5 Each process p organizes these runs into a
forest of n + 1 trees, denoted Υp. For any i, 0 ≤ i ≤ n, the i-th
tree of this forest, denoted Υi

p, corresponds to simulated runs of A,

5Each failure detector sample in Gp includes the name of the pro-
cess that took this sample. Roughly speaking, we say that a run
or schedule of A is compatible with a path in Gp if the sequence
of processes that take steps in this run or schedule and the failure
detector values that they see match the sequence of processes and
failure detector values in this path [3].

Code for each process p:

on initialization:
1 Ψ-outputp := ⊥ { Ψ-outputp is the output of p’s module of Ψ }

task 1:
2 do forever { This is done exactly as in [3] }
3 cobegin
4 p builds an ever-increasing DAG Gp of failure detectors

samples by repeatedly sampling its failure detector
and exchanging samples with other processes.

5 ||
6 p uses Gp and the n + 1 initial configurations to construct

a forest Υp of ever-increasing simulated runs of algorithm
A using D that could have occurred with the current
failure pattern F and the current failure detector
history H ∈ D(F ).

7 coend

task 2:
8 wait until p decides in some run of every tree of the forest Υp

9 if p decides Q in some run
10 then
11 p executes A by proposing 0
12 else { every tree of Υp has a run where p decides 0 or 1 }
13 let I and I′ be initial configurations that differ only

in the proposal of one process and S and S′ be schedules
in Υp so that p decides 0 in S(I) and 1 in S′(I′)

14 p executes A by proposing (I, I ′, S, S′)

15 wait until p decides in this execution of A
16 if p decides 0 or Q
17 then { extract FS }
18 Ψ-outputp := red
19 else { p’s decision is of the form (I0, I1, S0, S1) }
20 Ω-outputp := p ; Σ-outputp := Π { extract (Ω, Σ) }
21 cobegin

{ extract Ω }
22 do forever Ω-outputp := id of the process that p

extracts using Υp and the procedure described in [3]
23 ||

{ extract Σ }
24 let (I0, I1, S0, S1) be the decision value of p
25 let C be the set of configurations reached by applying

all prefixes of S0, S1 to I0, I1, respectively
26 do forever
27 wait until p adds a new failure detector sample

u to its DAG Gp

28 repeat
29 let Gp(u) be the subgraph induced by

the descendants of u in Gp

30 for each C ∈ C construct the set SC of all schedules
compatible with some path of Gp(u)
and applicable to C

31 until for each C ∈ C there is a schedule S ∈ SC

such that p decides in S(C)
32 Σ-outputp := � C∈C

set of processes that take steps
in the schedule S ∈ SC such that p decides in S(C)

33 ||
{ combine Ω and Σ to Ψ }

34 do forever Ψ-outputp := (Ω-outputp, Σ-outputp)
35 coend

Figure 3: Extracting Ψ from D and QC algorithm A



all starting with the same initial configuration, namely the one in
which processes p1, . . . , pi propose 1, and pi+1, . . . , pn propose
0. A path from the root of a tree to a node x in this tree corresponds
to (the schedule of) a partial run of A, where every edge along the
path corresponds to a step of some process.

In task 2, p waits until it decides in some run of every tree of
the forest Υp (line 8). If p decides Q in any of these runs, then a
failure must have occurred (in the current failure pattern), and so p

knows that it is legitimate to output red in this run. Otherwise (p’s
decisions in the simulated runs are 0s or 1s), p determines that it is
possible to extract (Ω, Σ) in the current run.

At this point, p executes the given QC algorithm A (using failure
detector D) to agree with all the other processes on whether to
output red or to extract (Ω, Σ). Specifically, if p has determined
that it is legitimate to output red (p decides Q in some run of Υp)
then it proposes 0 to A (line 11). Otherwise, in each tree of Υp, p

has a run in which it decides 0 or 1. In the tree where every process
proposes 0 (respectively, 1), p’s decision must be 0 (respectively,
1). Thus, there exist initial configuration I and I′, and schedules S

and S′ in Υp, such that I and I ′ are initial configurations that differ
only in the proposal of one process, and S and S′ are schedules in
Υp such that p decides 0 in S(I) and 1 in S′(I ′). Then p proposes
(I, I ′, S, S′) to A(line 14).6

If A returns 0 or Q, then p stops outputting ⊥ and outputs red
from that time on (line 18). If A returns a value of the form (I0, I1,

S0, S1), then p stops outputting ⊥ and starts extracting Ω (line 22)
and Σ (lines 24-32). Ω is extracted as in [3] (see Section 6.3.1). Σ
is extracted using novel techniques explained in Section 6.3.2.

Note that processes use the given QC algorithm A and failure
detector D in two different ways and for different purposes. First
each process simulates many runs of A to determine whether it is
legitimate to output red or it is possible to extract (Ω, Σ) in the cur-
rent run. Then processes actually execute A (this is a real execu-
tion, not a simulated one) to reach a common decision on whether
to output red or to extract (Ω, Σ). Finally, if processes decide to
extract (Ω, Σ), they resume the simulation of runs of A to do this
extraction.

6.3.1 Extracting Ω

To extract Ω, p must continuously output the id of a process such
that, after some time, correct processes output the id of the same
correct process. This is done using the procedure of [3], with some
minor differences explained below.

As in [3], because of the way each process p constructs its ever-
increasing forest Υp of simulated runs, the forests of correct pro-
cesses tend to the same infinite limit forest, denoted Υ. The limit
tree of Υi

p is denoted Υi. Each node x of the limit forest Υ is
tagged by the set of decisions reached by correct processes in par-
tial runs that correspond to descendants of x.

In [3] the only possible decisions were 0 or 1, and so these were
the only possible tags. Consequently, each node was 0-valent, 1-
valent or bivalent (with two tags). Here there are three possible
decisions (0, 1 or Q) so each node is 0-valent, 1-valent, Q-valent
or multivalent (with two or three tags).

In [3] (and here) the extraction of the id of a common correct
process relies on the existence of a critical index i in the limit forest
Υ. Here we define i to be critical if the root of Υi is multivalent (in
which case it is called multivalent critical), or if the root of Υi−1 is
u-valent and the root of Υi is v-valent, where u, v ∈ {0, 1, Q} and
u 6= v (in which case it is called univalent critical).

6We assume here that A can solve multivalued QC. This causes no
loss of generality: by using the technique of [20] one can transform
any binary QC algorithm into a multivalued one.

In [3] it is shown that a critical index always exists. In this paper,
however, this is not necessarily the case. If some process crashes
(in the current failure pattern), it is possible that in all the simulated
runs of QC algorithm A in Υ all decisions are Q. In this case, the
roots of all trees in the limit forest Υ are tagged only with Q. So
there is no critical index, and we cannot apply the techniques of [3]
to extract the id of a correct process! This is why, in our trans-
formation algorithm, processes do not always attempt to extract Ω
from D. We will show, however, that if a process actually attempts
to extract Ω (in line 22) then a critical index does exist in the limit
forest Υ, and so Ω can indeed be extracted (Lemma 8 in [12]).

6.3.2 Extracting Σ

To extract Σ, p must continuously output a set of processes (quo-
rum) such that the quorums of all processes always intersect, and
eventually they contain only correct processes. This is done in
lines 24-32 as follows.

When process p reaches line 24, it has agreed with other pro-
cesses on two initial configurations I0 and I1 and two schedules S0

and S1 that are applicable to I0 and I1, respectively. Consider the
set C of configurations of A obtained by applying all the prefixes
of S0 and S1 to I0 and I1 (line 25).

To determine its next quorum, p uses “fresh” failure detector
samples to simulate runs of A that extend each configuration in
C (lines 29-30). It does so until, for each configuration in C, it has
simulated an extension in which it has decided (line 31). The quo-
rum of p is the set of all processes that take steps in these “deciding”
extensions (line 32).

Note that in line 27, p waits until it gets a new sample u from
its failure detector module (which happens in line 4 of task 1) and
then it uses only samples that are more recent than u to extend
the configurations in C (lines 29-30). This ensures the freshness of
the failure detector samples that p uses to determine its quorums.
Consequently, quorums eventually contain only correct processes
(one of the two requirements of Σ).

Theorem 6 For all environments E , if failure detector D can be
used to solve QC in E , then the algorithm in Figure 3 transforms D
into Ψ in environment E .

PROOF SKETCH. Let A be any algorithm that uses D to solve QC
in environment E . We show that the algorithm in Figure 3 uses A
to transform D into Ψ in environment E . In that algorithm, each
process p maintains a variable Ψ-outputp. We now prove that the
values that these variables take conform to the specification of Ψ.
By inspection of Figure 3, it is clear that Ψ-outputp is either ⊥, or
red (in which case we say it is of type FS), or a pair (q, Q) where
q ∈ Π and Q ⊆ Π (in which case we say it is of type (Ω, Σ)).

(1) For each process p, Ψ-outputp is initially⊥ (line 1). If Ψ-outputp
ever changes value, it becomes of type FS forever (line 18) or
of type (Ω, Σ) forever (lines 20-34).

(2) For all processes p and q, it is impossible for Ψ-outputp to
be of type FS and Ψ-outputq to be of type (Ω, Σ). This is
because, by the Uniform Agreement property of A, p and q

cannot decide different values in line 15.

(3) For each correct process p, eventually Ψ-outputp 6= ⊥. To see
this, let p be any correct process. Process p simulates a forest
Υp of ever-increasing partial runs of A as in [3] (see line 6).
In this simulation, every tree in Υp has runs in which all the
correct processes take steps infinitely often. So, by the Termi-
nation property of QC, every tree in Υp has a run in which p



decides. Therefore, eventually all correct processes complete
the wait statement in line 8, and execute A in line 11 or 14. By
the Termination property of QC, eventually p decides in that
execution of A, and stops waiting in line 15. Thus, p eventu-
ally sets Ψ-outputp to a value other than ⊥ in line 18 or 34.

(4) For each process p, if Ψ-outputp is red then a process previ-
ously crashed in the current run. To see this, let p be some
process that sets Ψ-outputp = red (line 18). Thus, p decides
0 or Q in the execution of A that it invoked in line 11 or 14.
If p decides Q then the fact that some process has previously
crashed in the current run follows immediately from part (b) of
the Validity property of QC. If p decides 0 then from part (a) of
the Validity property of QC, some process q proposed 0 in the
execution of A that q invoked in line 11. This implies that q

decided Q in one of the simulated runs of A that q has in its for-
est Υq . Recall that these are runs that could have occurred with
the current failure pattern. By part (b) of the Validity property
of QC, this means that some process has previously crashed in
the current run.

(5) If the Ψ-output variable of any process is ever of type (Ω, Σ),
then there is a time after which, for every correct process p,
Ω-outputp is the id of the same correct process. To see this,
suppose some Ψ-output becomes of type (Ω, Σ). Then, by (2)
and (3) above, eventually the Ψ-output variable of every correct
process also become of type (Ω, Σ). So every correct process
sets its Ω-output variable repeatedly in line 22 using the extrac-
tion procedure described in [3]. Since processes reach line 22,
by Lemma 8 in [12], a critical index exists in the limit forest Υ.
By following the proof of [3], it can now be shown that eventu-
ally all the correct processes extract the id of the same correct
process. The only difference is that whenever [3] refers to a
bivalent node, we now refer to a multivalent one, and whenever
[3] refers to 0-valent versus 1-valent nodes, we refer here to u-
valent and v-valent nodes where u, v ∈ {0, 1, Q} and u 6= v.

(6) If the Ψ-output variable of any process is ever of type (Ω, Σ)
then: (a) for every correct process p, there is a time after which
Σ-outputp contains only correct processes, and (b) for every
processes p and q, Σ-outputp and Σ-outputq always intersect.
This is shown in Lemmas 11 and 12 in [12].

From the above, it is clear that the values of the variables Ψ-output
conform to Ψ: For an initial period of time they are equal to ⊥.
Eventually, however, they behave either like the failure detector
(Ω, Σ) at all processes or, if a failure occurs, they may instead be-
have like the failure detector FS at all processes. Moreover, this
switch from ⊥ to (Ω, Σ) or FS is consistent at all processes.

From Theorems 5 and 6, we have:

Corollary 7 For all environments E , Ψ is the weakest failure de-
tector to solve QC in E .

7. THE WEAKEST FAILURE DETECTOR
TO SOLVE NBAC

7.1 Specification of NBAC
In the non-blocking atomic commit problem (NBAC), each pro-

cess invokes the operation VOTE(v), where v ∈ {Yes, No}, which
returns either Commit or Abort. It is required that:

Code for each process p:

Procedure VOTE(v): { v is Yes or No }
1 send v to all
2 wait until [(for each process q in Π, received q’s vote) or FS = red]
3 if the votes of all processes are received and are Yes then
4 myproposal := 1
5 else { some vote was No or there was a failure }
6 myproposal := 0
7 mydecision := PROPOSE(myproposal)
8 if mydecision = 1 then
9 return Commit
10 else { mydecision = 0 or Q }
11 return Abort

Figure 4: Using FS to transform QC into NBAC

Termination: If every correct process votes, then every correct
process eventually returns a value.

Uniform Agreement: No two processes (whether correct or faulty)
return different values.

Validity: A process may only return Commit or Abort. Moreover,
(a) If v = Commit then all processes previously voted Yes.
(b) If v = Abort then either some process previously voted
No or a failure previously occurred.

7.2 Using FS to relate NBAC and QC
We first show that NBAC is equivalent to the combination of

QC and failure detector FS . We then use this result to establish a
relationship between the weakest failure detector to solve QC and
the one to solve NBAC.

Theorem 8 NBAC is equivalent to QC and FS . That is, in every
environment E :
(a) Given failure detector FS, any solution to QC can be trans-
formed into a solution to NBAC.
(b) Any solution to NBAC can be transformed into a solution to
QC, and can be used to implement FS .

PROOF SKETCH. Let E be an arbitrary environment.

(a) The algorithm in Figure 4 uses FS to transform QC into NBAC
in E .

(b) It is known that NBAC can be used to implement FS in any
environment [5, 11]. Roughly speaking, processes use the given
NBAC algorithm repeatedly (forever), voting Yes in each instance.
At each process, the output of FS is initially green, and becomes
permanently red if and when an instance of NBAC returns Abort.
It remains to prove that any solution to NBAC in E can be trans-
formed into a solution to QC in E . This transformation is shown in
Figure 5.

7.3 The weakest failure detector to solve NBAC

Theorem 9 For every environment E , if D is the weakest failure
detector to solve QC in E , then (D,FS) is the weakest failure de-
tector to solve NBAC in E .

PROOF SKETCH. Let E be an arbitrary environment, and D be the
weakest failure detector to solve QC in E . This means that: (i) D



Code for each process p:

Procedure PROPOSE(v): { v is 1 or 0 }
1 send v to all
2 d := VOTE(Yes) { use of the given NBAC algorithm }
3 if d = Abort then
4 return Q
5 else
6 wait until [(for each process q ∈ Π, received q’s proposal)]
7 return smallest proposal received

Figure 5: Transforming NBAC into QC

can be used to solve QC in E and (ii) any failure detector that solves
QC in E can be transformed into D in E .

Let D′ = (D,FS). We must show that: (a) D′ can be used to
solve NBAC in E , and (b) any failure detector that solves NBAC in
E can be transformed into D′ in E .

(a) Since the output of D′ includes the output of D, by (i), D′

can be used to solve QC in E . Since D′ also includes FS, by
Theorem 8(a), D′ can be used to solve NBAC in E .

(b) Let D′′ be a failure detector that solves NBAC in E . By Theo-
rem 8(b), (1) D′′ can be used to solve QC in E , and (2) D′′ can be
used to implement FS in E . From (1) and (ii), D′′ can be trans-
formed into D in E . By (2), D′′ can be transformed into (D,FS),
i.e., into D′, in E .

From Corollary 7 and Theorem 9, we immediately have:

Corollary 10 For all environments E , (Ψ,FS) is the weakest fail-
ure detector to solve NBAC in E .
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