
N -Consensus is the Second Strongest Object
for N + 1 Processes

Eli Gafni1 and Petr Kuznetsov2

1 Computer Science Department, University of California, Los Angeles
eli@ucla.edu

2 Max Planck Institute for Software Systems
pkouznet@mpi-sws.mpg.de

Abstract. Objects like queue, swap, and test-and-set allow two processes to
reach consensus, and are consequently “universal” for a system of two processes.
But are there deterministic objects that do not solve 2-process consensus, and
nevertheless allow two processes to solve a task that is not otherwise wait-free
solvable in read-write shared memory?
The answer “no” is a simple corollary of the main result of this paper: Let A be
a deterministic object such that no protocol solves consensus among n + 1 pro-
cesses using copies of A and read-write registers. If a task T is wait-free solvable
by n + 1 processes using read-write shared-memory and copies of A, then T is
also wait-free solvable when copies of A are replaced with n-consensus objects.
Thus, from the task-solvability perspective, n-consensus is the second strongest
object (after (n+1)-consensus) in deterministic shared memory systems of n+1
processes, i.e., there is a distinct gap between n- and (n + 1)-consensus.
We derive this result by showing that any (n + 1)-process protocol P that uses
objects A can be emulated using only n-consensus objects. The resulting emu-
lation is non-blocking and relies on an a priori knowledge of P . The emulation
technique is another important contribution of this paper.

1 Introduction

Consensus [6] (n-consensus object) is a fundamental abstraction that allows n processes
to agree on one of their input values. Consensus is n-universal: every object shared by n
processes can be wait-free implemented using n-consensus objects (and read-write reg-
isters), i.e., the object can be “replaced” with n-consensus objects, so that the external
observer cannot detect the replacement [7].

But which aspects of the universality of n-process consensus remain valid in a sys-
tem of n + 1 processes? Ideally, one would wish to show that, in a system of n + 1
processes, every object that does not allow for (n + 1)-process consensus (to be called
an object of consensus power less than n + 1) can be wait-free implemented from n-
consensus objects. This would imply that every problem that can be solved by n + 1
processes using objects of consensus power less than n + 1 can also be solved using
n-consensus objects.

In this paper, we address an easier question: whether every deterministic object of
consensus power less than n + 1 can be replaced with n-consensus objects, so that the

N -Consensus is the Second Strongest Object for N + 1 Processes 269

replacement is not detectable in a given (n + 1)-process protocol P . Thus, we consider
the classical emulation problem: given a protocol P designed for a system with objects
from a set C, how to emulate P in a system with objects from a set C′.

We show that every protocol for n + 1 processes using read-write registers and
objects A of consensus power less than n + 1 can be emulated using only read-write
registers and n-consensus objects. Our emulation is non-blocking [7]: at least one active
process is guaranteed to take infinitely many (emulated) steps of P . Even though the
emulation does not ensure progress for every active process, it helps in answering the
following question: is there a decision task T [8] for n + 1 processes that can be solved
by objects of consensus power less than n + 1 but cannot be solved using n-consensus
objects? The answer is “no”: our non-blocking emulation implies that every terminat-
ing protocol for n + 1 processes using objects A of consensus power less than n + 1
can be wait-free emulated using n-consensus objects. Thus, from the task-solvability
perspective, n-consensus is the strongest object for systems of n+1 processes in which
(n + 1)-process consensus is unachievable, i.e., in a strict sense, there are no objects
between n- and n + 1-consensus.

The emulation technique presented in this paper is novel and interesting in its own
right. It is based on the fundamental inseparability property which we show to be inher-
ent for all (n + 1)-process protocols that use registers and objects of consensus power
less than n + 1. Inseparability generalizes the concept of connectivity used in classi-
cal characterizations of distributed computing models (e.g., [6, 7, 4]) and it captures the
very essence of the inability of a collection of shared objects to solve consensus.

Note that the aforementioned emulation does not answer the question of robust-
ness of (deterministic) consensus hierarchy posed by Jayanti [9]. Our protocol does
not imply that a protocol using a composition of deterministic objects A and B, each
of consensus power n, can be emulated using only registers and n-consensus objects.
Proving or refuting this statement is left for future work.

The paper is organized as follows. In Section 2, we describe the system model. In
Section 3, we introduce the key notions of our result: inseparability and non-separating
paths. Section 4 presents our emulation protocol and Section 5 concludes the paper.

2 Preliminaries

In this section, we describe the system model, and introduce some key notions. Missing
details of the model can be found in [7, 9, 2].
Processes. We consider a set Π of n + 1 (n ≥ 1) asynchronous processes p1, p2, . . . ,
pn+1 that communicate using atomic shared objects. Every object is characterized by
a set of ports that it exports, a set of states the object can take, a set of operations that
can be performed on the object, a set of responses that these operations can return, and
a relation known as the sequential specification of the type that defines, for every state,
port, and applied operation, the set of possible resulting states and returned responses.
We assume that objects are deterministic: the sequential specification of a deterministic
object is a function that carries each state, port, and operation to a new state and a
corresponding response. In particular, we assume that processes have access to read-
write shared memory.

270 E. Gafni and P. Kuznetsov

Protocols. A protocol P is a collection of deterministic state machines P1, . . . Pn+1,
one for each process. For every i, Pi maps every local state of pi to the next operation
it has to perform on a shared object (if any). Since all protocols and shared objects we
consider are deterministic, we can model an execution of a protocol as an initial system
state and a sequence of process identifiers, specifying the order in which processes
take steps in the execution. To simplify the presentation, our emulation assumes that a
protocol has only one initial state. In Section 4.3, we show how our emulation can be
extended to protocols with multiple initial states.

We also distinguish between terminating and non-terminating protocols. In a termi-
nating protocol, every process that takes sufficiently many steps reaches an irrevocable
final view (we say that the process terminates). Without loss of generality, we con-
sider protocols in which a terminated process keeps taking null steps, i.e., we focus on
protocols in which every active process takes infinitely many steps.
States and views. Every finite execution is regarded as a state of P , unambiguously
defining states of all shared objects and local states of processes (to be called views)
that result after the execution completes.

There is a natural ancestor/descendant relation between states of P : we say that
state x′ is a descendant of state x (x is an ancestor of x′), and we write x → x′, if x is
a prefix of x′. We also say that a (finite or infinite) execution e extends a state x if x is
a prefix of e.

We say that a view v of a process pi appears in a state x (of P) if the local state of
pi in x is v. Let viewi(x) denote the view of process pi that appears in state x. We say
that a view v is compatible with a state x if v appears in x or an ancestor of x.

For an execution e and a process pi, e|i denotes the sequence of distinct views of
pi (resulting after pi takes its steps in e) that appear in prefixes of e (in the order of
appearance). For two distinct views v and v′ of the same process pi, we say that v′ is a
descendant of v (or v precedes v′), and we write v → v′, if there is an execution e such
that v precedes v′ in e|i.

For two views v and v′ of the same process pi such that v → v′, next(v, v′) denotes
the earliest view u such that (i) v → u, and (ii) u = v′ or u → v′. We say that v
immediately precedes v′ if v → v′ and v′ = next(v, v′).
Consensus. The consensus problem [6] is one in which a set of processes need to reach
an agreement on one of their proposed values. More precisely, every process starts
with an initial proposal in {0, 1} and it is required that: (Termination) Every process
that takes sufficiently many steps eventually decides on a value; (Agreement) No two
processes decide on different values; (Validity) If a process decides on a value v, then v
was proposed by some process.

It is sometimes convenient to relate the consensus problem among m processes
to the m-consensus object. The object exports m ports and can be accessed with the
propose() operation that takes a value as a parameter and returns one of the proposed
values, so that no two propose() operations return different values.

We say that an object A solves m-process consensus if there exists an m-process
protocol that solves consensus using read-write registers and copies of object A.3 The

3 The protocol designer is allowed to initialize the shared objects to any (reachable) states: this
ability does not affect the consensus power of deterministic objects [3].

N -Consensus is the Second Strongest Object for N + 1 Processes 271

consensus power of A, denoted cons(A), is the largest m such that A solves m-process
consensus [7]. If no such largest m exists, then cons(A) = ∞. Further, if cons(A) = n,
then cons({A,n-consensus}), the consensus power of the composition of A and n-
process consensus, is n, i.e., (n + 1)-process consensus cannot be solved using copies
of an object of consensus power n and n-consensus objects [4]

Team consensus is a form of consensus in which processes are divided a priori into
two non-empty teams and which satisfies Validity, Termination, and Team Agreement:
no two processes decide on different values, under the condition that processes on the
same team propose the same value. Consensus is, in a precise sense, equivalent to team
consensus: if A can solve m-process team consensus, then A can solve m-process con-
sensus [11, 12].
Approximate agreement. Though it is impossible to reach non-trivial agreement using
only read-write registers [6, 10], we can achieve approximate agreement [5] that guaran-
tees that all decided values are sufficiently close. Formally, the ε-agreement task (where
ε ∈ [0, 1] is a specified parameter) is defined for two processes, q0 and q1, as follows.
Every process qi (i = 0, 1) outputs a value xi ∈ [0, 1] such that (1) if qi is the only
participant, then qi outputs i, and (2) |x0 − x1| ≤ ε. It is known that, for all ε ∈ (0, 1],
the 2-process ε-agreement task is wait-free solvable using read-write registers [5].
Protocol emulation. We address the following problem: given a protocol P that uses
objects in a set C, design a protocol that emulates P using objects in a set C′. In the
emulation, processes start from their views in an initial state of P , and every active (not
yet terminated) process may periodically output a new view that results after the process
takes one more step of P .

On the safety side, the emulation must guarantee that all views output by the pro-
cesses are compatible with some execution of P . On the liveness side, a non-blocking
emulation ensures that either every participating process eventually reaches a final view,
or at least one participant obtains infinitely many distinct views. Clearly, if P is ter-
minating, then any non-blocking emulation of P is also wait-free: every participant
eventually reaches a final view.

3 Inseparability

The following observation generalizes the arguments of most valence-based asynchronous
impossibility proofs (e.g., [6, 7, 4]). Let P be any protocol using objects of collective
consensus power n, and let x be any state of P . Then the immediate descendants of
x are, in a strict sense, connected. More precisely, for every non-empty partitions Π0

and Π1 of Π , there exists an execution e of P going through x in which some process
pi takes infinitely many steps, without being able to decide whether the first step of e
extending x was taken by a member of Π0 or a member of Π1.

Formally, let P be any protocol, and e0 and e1 be executions of P . We say that e0

and e1 are i-confusing if (1) pi takes infinitely many steps in both e0 and e1, and (2)
e0|i = e1|i. In other words, pi cannot distinguish e0 and e1, even by taking infinitely
many steps of P .

Let x0 and x1 be any two states of P . We say that x0 and x1 are inseparable (by
P), and we write x0 ∼ x1, if there exist pi ∈ Π and e0 and e1, extending x0 and x1,

272 E. Gafni and P. Kuznetsov

respectively, such that e0 and e1 are i-confusing and either viewi(x0) = viewi(x1), or
viewi(x0) immediately precedes viewi(x1), or vice versa.

Lemma 1. Let x0 and x1 be any two states of a protocol P , such that x0 = x1 or
x0 → x1 and some process pi ∈ Π takes at most one step in x1 after x0. Then x0 ∼ x1.

Proof. Indeed, since pi takes at most one step in x1 after x0, either viewi(x0) =
viewi(x1) or viewi(x0) immediately precedes viewi(x1). Let e be any execution extend-
ing x1 in which pi takes infinitely many steps. Then e0 = e and e1 = e are i-confusing,
and, thus, x0 ∼ x1. ut

3.1 Inseparably connected sets of states

Let ≈ denote the transitive closure of the ∼ relation. We say that a set of states is
inseparably connected if, for every two states x0 and x1 in the set, x0 ≈ x1.

Let x be any state of P . An immediate descendant of x is a one-step extension of
x, i.e., a state that results after some process applies exactly one step to x. Note that if
x0 = x1 or x0 is an immediate descendant of x1, then, by Lemma 1, x0 ∼ x1, and if
x0 is a descendant of x1, then x0 ≈ x1. Let G(x) denote the set of all n + 1 immediate
descendants of x. We say that a protocol P is inseparably connected if for every state
x of P , G(x) is inseparably connected.

Theorem 1. Let A be any deterministic object of consensus power less than n + 1 and
P be any protocol among n + 1 processes using copies of A and read-write registers.
Then P is inseparably connected.

Proof. Suppose, by contradiction, that there exists a state x of P , such that G(x), the
set of all n + 1 immediate descendants of x, is not inseparably connected. We establish
a contradiction by presenting a protocol that solves (team) consensus among n + 1
processes using objects A and read-write registers.

Since G(x) is not inseparably connected, it can be partitioned into two non-empty
sets, G0 and G1, such that for all x0 ∈ G0 and x1 ∈ G1, x0 � x1. Let processes
whose steps applied to x result in G0 constitute team Π0 and the rest constitute team
Π1. Clearly, Π0 ∪Π1 = Π .

Assume that all objects used by P are initialized to their states in x. Let R0 and R1

be two shared registers, initially⊥. Every process pi first writes its proposal in a shared
register Rj such that pi ∈ Πj . Then pi takes steps of P starting from its view in x.
Note that the views obtained by the processes are compatible with some execution of
P extending x. The process stops when, for some k ∈ {0, 1}, its view cannot appear in
any descendant of any state in G1−k. At this point, the process returns the value read in
Rk.

Suppose, by contradiction, that the Termination property of consensus is violated:
assume, without loss of generality, that P has an execution e0 passing through a state
x0 ∈ G0, in which pi takes infinitely many steps, and every view obtained by pi in e0

could have been obtained in an execution e1 passing through a state x1 ∈ G1. Thus,
e0 and e1 are i-confusing. Moreover, since x0 and x1 are immediate descendants of the

N -Consensus is the Second Strongest Object for N + 1 Processes 273

same state x, viewi(x0) = viewi(x1), or viewi(x0) immediately precedes viewi(x1), or
vice versa. Thus, x0 ∼ x1 — a contradiction.

Now suppose that a process gets a view that is only compatible with descendants of
states in Gk (k ∈ {0, 1}). Thus, the current execution e extends a state in Gk, and the
process that took the first step in e after x has previously written its proposal in Rk. By
the algorithm, the process returns the value read in Rk and, thus, Validity is satisfied.
Since e extends a state in Gk, no process can ever obtain a view (in e) that is only
compatible with executions extending a state in G1−k. Thus, no process ever returns a
value read in R1−k. Now assume that processes on the same team (Π0 or Π1) propose
the same value. Thus, no two different non-⊥ can be read in Rk — Team Agreement is
ensured.

Hence, object A solves (n + 1)-team consensus and, therefore, (n + 1)-consensus
— a contradiction. ut

3.2 Non-separating paths

In every phase of our emulation protocol, processes try to reconcile their (possibly
different) estimates of the emulated system state and the views to be output. Since we
can use only registers and n-consensus objects, n+1 participants can only be guaranteed
to reach approximate agreement. The approximate agreement is solved along a path
connecting the concurrent estimates.

Formally, let P be a protocol, and (v0, x0) and (v1, x1) be tuples such that for
i = 0, 1, xi is a non-initial state of P , and vi is a view that is compatible with xi. Let
preci(x0, x1) (i = 0, 1) be defined as follows. If x0 ∼ x1, then preci(x0, x1) = xi.
Otherwise, preci(x0, x1) is the immediate predecessor of xi.

We say that a sequence (u0, y0), . . . , (u`, y`), where each uj is a view of P and
each yi is a state of P , is a non-separating path connecting (v0, x0) and (v1, x1) if:

(1) (u0, y0) = (v0, x0) and (u`, y`) = (v1, x1).
(2) ∀j = 0, . . . , `− 1, uj and uj+1 are both compatible with both yj and yj+1.
(3) ∀j = 0, . . . , `− 1, yj ∼ yj+1.
(4) ∀j = 1, . . . , ` − 1, ∃i ∈ {0, 1}, such that (i) preci(x0, x1) → yj and (ii) either

uj = vi or uj is not compatible with preci(x0, x1).

Property (2) stipulates that the views of every two neighbors in a non-separating path
must be compatible with both corresponding states. Intuitively, we need this property
to ensure that all views produced by our emulation appear in some execution of the
emulated protocol, i.e., the emulation is safe.

Property (3) requires that the states of every two neighbors in a non-separating path
must be inseparable. Thus, it makes sure that competing state estimates produced by
our emulation protocol are, in a strict sense, connected, so we could inductively extend
the emulation. Property (4) implies that, for every view uj on the path, there exists
i ∈ {0, 1} such that, unless uj = vi, uj appears in a descendant of preci(x0, x1) and
does not appear in preci(x0, x1). In other words, view uj is “fresh” with respect to
preci(x0, x1). Intuitively, we need properties (3) and (4) to ensure that our emulation
indeed makes progress, i.e., in each phase of the emulation, at least one participating
process manages to perform one more step of P and obtain a new view.

274 E. Gafni and P. Kuznetsov

If x′0 and x′1 are inseparable, then any two tuples (v0, x0) and (v1, x1) where each
xi (i = 0, 1) is x′i or one of x′i’s immediate descendants and vi is compatible with xi can
be connected via a non-separating path. Moreover the length of this path (the number
of hops) is bounded by 10(2n + 1).

Lemma 2. Let P be any inseparably-connected protocol. Let x′0 and x′1 be non-initial
states of P such that x′0 ∼ x′1. Then for all (v0, x0) and (v1, x1) such that ∀i = 0, 1,
xi ∈ {x′i} ∪ G(x′i) and vi is compatible with xi, there exists a non-separating path
connecting (v0, x0) and (v1, x1) the length of which does not exceed L = 10(2n + 1).

Proof. There are three possible cases:
(a) Assume that x0 ∼ x1 and, thus, precj(x0, x1) = xj , j = 0, 1.

Let i be the smallest process identifier such that there exists i-confusing executions
e0 and e1 that extend x0 and x1, respectively, and either viewi(x0) = viewi(x1), or
viewi(x0) immediately precedes viewi(x1), or viewi(x1) immediately precedes viewi(x0).

Let zj (j = 0, 1) be the shortest prefix of ej in which pi obtains a view that is
compatible neither with x0 nor with x1. Note that, since e0 and e1 are i-confusing,
viewi(z0) = viewi(z1) = v, and, since viewi(x0) and viewi(x1) are either identical or
one of them immediately precedes the other, for each j = 0, 1, pi takes at most two
steps from xj to reach view v.

Let yj (j = 0, 1) be the shortest prefix of ej in which pi takes at least one step after
xj (note that yj can be equal to zj). Let uj = viewi(yj) (note that uj can be equal to v).

(v0, x0) (v1, x1)

(a)

(v0, y0) (v1, y1)

(u0, y0) (u1, y1)

∼(v, z0)

(u0, z0)

(v, z1)

(u1, z1)

∼

x′1

(b)

x′0

∼

∼
(w1

0, y
1
0)(v0, x0)

∼∼ ∼∼∼

(w1
1, y

1
1) (v1, x1)(wm0

0 , ym0
0) (wm1

1 , ym1
1)

Fig. 1. Non-separating path connecting (v0, x0) and (v1, x1): (a) x0 ∼ x1, (b) x0 ∈ G(x′
0) and

x1 ∈ G(x′
1)

Now we construct the non separating path connecting (v0, x0) and (v1, x1) as fol-
lows (Figure 1 (a)): (v0, x0), (v0, y0), (u0, y0), (u0, z0), (v, z0), (v, z1), (u1, z1), (u1, y1),
(v1, y1), (v1, x1). Trivially, property (1) of non-separating paths are satisfied. Note that,
by construction, e0 and e1 extend z0 and z1, respectively, and viewi(z0) = viewi(z1) =
v. Since e0 and e1 are i-confusing, z0 ∼ z1. By Lemma 1, xj ∼ yj and yj ∼ zj

(j = 0, 1). Thus, property (3) is satisfied.
For each internal vertex (u, y) in the path, u is compatible with the states of both

its neighbors and, unless u ∈ {v0, v1}, u is not compatible with xj = precj(x0, x1)

N -Consensus is the Second Strongest Object for N + 1 Processes 275

(j = 0, 1). Finally, each internal state in the path (yj or zj) is a descendant of xj =
precj(x0, x1). Thus, properties (2) and (4) are satisfied. The length of the path is 9.
(b) Now assume that x0 � x1, x0 ∈ G(x′0) and x1 ∈ G(x′1), and, thus, preci(x0, x1)
is the immediate ancestor of xi, i = 0, 1. Recall that x′0 ∼ x′1. Let i be the smallest
process identifier such that there exists i-confusing executions e0 and e1 that extend x′0
and x′1, respectively, and viewi(x′0) and viewi(x′1) are either identical or one of them
precedes the other.

Let, for j = 0, 1, y′j be the state resulting after the first step of ej is applied to
x′j . Clearly, y′0 ∈ G(x′0) and y′1 ∈ G(x′1). Note that since executions e0 and e1 are
i-confusing executions for x′0 and x′1, they are also i-confusing executions for y′0 and
y′1. Let u′j denote the last view of the process taking the last step in y′j , j = 0, 1.

Similarly to case (a), let yj (j = 0, 1) denote the shortest prefix of ej in which
pi takes exactly one step after x′j , and zj denote the shortest prefix of ej in which
pi obtains a view that is compatible neither with x′0 nor with x′1. Let uj and be the
last view of pi in yj . Note that since x′0 ∼ x′1, viewi(z0) = viewi(z1) = v. Thus,
Z = (u′0, y

′
0), (u′0, y0), (u0, y0), (u0, z0), (v, z0), (v, z1), (u1, z1), (u1, y1), (u′1, y1),

(u′1, y
′
1) is a non-separating path connecting (u′0, y

′
0) and (u′1, y

′
1).

Recall that P is inseparably connected, so G(x′0) and G(x′1) are each inseparably
connected. Thus, for all j = 0, 1, there is a sequence of states y0

j , . . . , y
mj

j of G(x′j)
such that y0

j = xj , y
mj

j = y′j , and, for each k = 0, . . . ,mj − 1, yk
j ∼ yk+1

j . Let wk
j

denote the last view of the process taking the last step in yk
j .

Now let, for each j = 0, 1 and k = 0, . . . ,mj − 1, Zk
j denote the non-separating

path, constructed as described above in case (a), connecting (wk
j , yk

j) and (wk+1
j , yk+1

j).
Now consider the concatenation of paths Z0

0 , Z1
0 , . . ., Zm0−1

0 , Zm0
0 , Z, Zm1

1 , Zm1−1
1 ,

. . ., Z1
1 , Z0

1 (Figure 1 (b)). Inductively, this is a non-separating path connecting (v0, x0)
and (v1, x1). Since paths Zk

j and Z are bounded by 9 and mj ≤ n (j = 0, 1), the total
length of the non-separating path is bounded by 9(2n + 1) + 2n < 10(2n + 1).
(c) Finally, assume that x0 � x1, x0 = x′0 and x1 ∈ G(x′1). Let x′′0 be the state in G(x0)
such that there exists x′′1 ∈ G(x′1) and x′′0 ∼ x′′1 (since P is inseparably connected, such
x′′0 and x′′1 do exist). Let v′′j denote the last view of the process taking the last step in
x′′j , j = 0, 1.

By employing the reasoning of case (b), we construct a non-separating path Z
connecting (v′′0 , x′′0) and (v1, x1). Since x′′0 and x′′1 are inseparable, the path does not
“travel” through states in G(x0), and the length of Z is bounded by 9(n + 1) + n.

Then the non-separating path connecting (v0, x0) and (v1, x1) is obtained by adding
(v0, x0), (v0, x

′′
0) to the beginning of Z. The case x0 ∈ G(x′0) and x1 = x′1 is symmet-

ric. The length of the resulting path is bounded by 10(2n + 1). ut

3.3 P -reconciliation

To reconcile possibly conflicting estimates of the system state and the view to pro-
mote, our emulation of a protocol P uses a subroutine called P -reconciliation. In the
2-process P -reconciliation task, every process qi (i = 0, 1) has an input (vi, xi), where
vi is a view of P and xi is a state of P such that vi is compatible with xi. If both q0 and
q1 participate, and there exists a non-separating path connecting (v0, x0) and (v1, x1)

276 E. Gafni and P. Kuznetsov

of length at most L (let γ be the shortest such path), then each qi outputs a tuple (Ui, zi)
where Ui is a set of at most two views and yi is a state of P , such that:

(1) U0 ∩ U1 6= ∅, and
(2) there exist two neighbors (u0, y0) and (u1, y1) in γ such that {z0, z1} ⊆ {y0, y1}

and U0 ∪ U1 ⊆ {u0, u1}.

Otherwise, if qi is the only participant in the task or no such path γ exists, then qi

outputs ({vi}, xi).

Shared variables :
R0, R1, initially⊥

upon P -reconcile(vi, xi):

1: Ri := (vi, xi)
2: s := ε-agreement() {ε = 1/(2L) where L = 10(2n + 1)}
3: if R1−i = ⊥ then {If qi goes solo }
4: return ({vi}, xi)
5: (v1−i, x1−i) := R1−i {Fetch the competing proposal}
6: if (v0, x0) and (v1, x1) cannot be connected via a non-separating path of length≤ L then
7: return ({vi}, xi)
8: let (u0, y0), (u1, y1) . . . , (u`, y`) be the shortest non-separating path

connecting (v0, x0) and (v1, x1)
9: let j ∈ {0, . . . , `} be such that s ∈ ((j − 1/2)/`, (j + 1/2)/`]
10: z := yj

11: if s ∈ ((j − 1/4)/`, (j + 1/4)/`] then {If s belongs to 1/4`-vicinity of j/`}
12: U = {uj}
13: else if s < j/` {s belongs to the mid-half of [(j − 1)/`, j/`]}
14: U = {uj−1, uj}
15: else {s belongs to the mid-half of [j/`, (j + 1)/`]}
16: U = {uj , uj+1}
17: return (U, z)

Fig. 2. 2-process P -reconciliation task: code for every process qi, i = 0, 1

Lemma 3. P -reconciliation is wait-free solvable using read-write registers.

Proof. A P -reconciliation algorithm is presented in Figure 2. In the algorithm, every
process qi first registers its proposal (vi, xi) in the shared memory (line 1). Then it runs
ε-agreement with ε = 1/(2L) (L = 10(2n + 1)). Let s ∈ [0, 1] be the value returned
by ε-agreement. Then qi reads R1−i (line 3). If R1−i = ⊥ or there does not exist a
non-separating path γ of length ` ≤ L connecting the two proposals, then qi returns
({vi}, xi) (lines 4 and 7). Otherwise, qi computes a tuple (Ui, zi), based on the output
of ε-agreement (s), as follows (the procedure is summarized in Figure 3):

– Let j ∈ {0, . . . , `} be such that s belongs to a 1/(2`)-neighborhood of j/`, i.e.,
s ∈ ((j − 1/2)/`, (j + 1/2)/`]. Then pi sets zi = yj .

– If s belongs to the 1/(4`)-neighborhood of j/`, i.e., s ∈ ((j−1/4)/`, (j +1/4)/`]
then pi sets Ui = {uj}.

– Otherwise, if s < j/`, i.e., s belongs to the middle half-interval of [(j− 1)/`, j/`],
then pi sets Ui = {uj−1, uj}. Else, if s belongs to the middle half-interval of
[j/`, (j + 1)/`], then pi sets Ui = {uj , uj+1}.

N -Consensus is the Second Strongest Object for N + 1 Processes 277

{uj−1} {uj−1, uj} {uj} {uj+1}{uj , uj+1}

Assigned views

(uj , yj)(uj−1, yj−1) (uj+1, yj+1)

yj yj+1

Assigned states

yj−1

j/` (j + 1)/`(j − 1)/`

Fig. 3. Mapping the output of ε-agreement to views Ui and states yi

Since ε = 1/(2L) and ` ≤ L, the values s0 and s1 returned by ε-agreement at q0

and q1, respectively, are within 1/(2`) from each other.
By inspecting Figure 3 and taking into accound that |s0−s1| ≤ 1/(2`), we observe

that the following cases are only possible.
If q0 and q1 return the same state yj (s0 and s1 both belong to the 1/(2`)-neighborhood

of some j/`), then either U0 and U1 are equal to the same non-empty set of views
(U0 = U1 ∈ {{uj−1, uj}, {uj}, {uj , uj+1}}), or U0 and U1 are related by contain-
ment ({U0, U1} ⊆ {{uj−1, uj}, {uj}} or {U0, U1} ⊆ {{uj , uj+1}, {uj}}). In both
cases, the set of all returned views is either a subset of {uj−1, uj} or or a subset of
{uj , uj+1}, and the properties of P -reconciliation are satisfied.

If q0 and q1 return different states, then the two states can only be some yj and yj+1

(neighbors in γ). Furthermore, either q0 and q1 both return {uj , uj+1} as the sets of
views, or one of them returns {uj , uj+1}, and the other — {uj} or {uj+1}, and the
properties of P -reconciliation are satisfied. ut

4 Protocol emulation

Let P be any inseparably connected (n + 1)-process protocol. In Figure 4, we present
a non-blocking emulation of P that uses only n-consensus objects and read-write reg-
isters.

4.1 Overview

In the emulation, every process periodically outputs views, called converged views. The
emulation guarantees that at every moment of time, there exists an execution of P that
is compatible with the sequence of views output locally at every process, and either
every participating process eventually reaches a final view, or at least one participant
outputs infinitely many views.

The emulation proceeds in asynchronous phases. The participants of a phase first
split into two teams, q0 and q1. If n = 1, then pi is assigned to team qi, i = 0, 1. If

278 E. Gafni and P. Kuznetsov

n ≥ 2, then every process dynamically chooses its team using a sequence of n test-
and-set objects.4 Every process that wins one of the test-and-set objects joins the first
team, denoted q0, and the left-out process constitutes the second team, denoted q1. Note
that if n ≥ 2 and n or less processes participate in a phase, then there can be at most
active team in that phase — q0.

Each team qj then agrees on the estimate of the emulated system state and a “fresh”
view of a member of qj that qj is willing to promote in the current phase (in case n ≥ 2,
team q0 uses an n-consensus object for this).

Shared variables :
n-consensus objects C[][] {An array of consensus objects for every phase}

Important local variables at pi:
xi, initially x̄ {Current system state estimate (x̄ is the initial system state)}
vi, initially viewi(x̄) {The last converged view of pi}

1: k := 0
2: repeat
3: k := k + 1
4: if vi = viewi(xi) then
5: zi := the state after pi applies its step to xi

6: else
7: zi := xi

8: wi := next(vi, viewi(zi)) {Choose the next view of pi to promote}
9: join a team qj (j = 0, 1) {If n ≥ 2, first n join q0 using test-and-set objects,}

{and the last joins q1; if n = 1, pi joins team qi i = 0, 1}
10: (w, z) := agree with qj on (wi, zi) {If n ≥ 2, then q0 uses n-consensus}
11: (U, y) := P -reconcilek(w, z) {On behalf of team qj , using n-consensus}
12: xi := y
13: if ∃u ∈ U , vi → u then {A view of pi has converged in phase k}
14: vi := next(vi, u) {Compute the next view of pi toward u}
15: output vi

16: until vi is final

Fig. 4. The emulation protocol: code for every process pi, i = 1, . . . , n + 1

The two teams then act as processes q0 and q1 in an instance of P -reconciliation
task which they use to reconcile on how to make progress. If n ≥ 2, then in every
instance of P -reconciliation, multiple processes in team q0 use a series of n-consensus
objects (distinct for every instance of P -reconciliation) to act as a single process. Team
q0 is associated with an (n+1)-array of registers T0, and q1 is associated with a register
T1. To write a value v in executing the ε-agreement protocol, every process in q0 incre-
ments its local sequence number and updates its slot in Tn with v, equipped with the
monotonically increasing sequence number, while q1 simply writes the value in T1. To
perform a read operation, processes in q0 read T1 and use n-process consensus to agree
on the read value, while q1 reads all slots in T0 and returns the value with the largest
sequence number.

Let the P -reconcilek(w, z) procedure return a tuple (U, y) at process pi (line 11).
Then pi adopts y as its state estimate, and if U contains a view u of pi, then pi outputs
the next view toward u (line 15) . We demonstrate below that, inductively, all views

4 Test-and-set objects can be wait-free implemented from 2-process consensus objects and thus
from objects of consensus power 2 [1].

N -Consensus is the Second Strongest Object for N + 1 Processes 279

output up to phase k are compatible with every state estimate computed at the end of
phase k. Furthermore, by the properties of P -reconciliation, all views in U are “fresh”,
i.e., they extend views output in previous phases. Since the sets of views returned by
P -reconciliation have a non-empty intersection, at least one process pi participating
in every phase is guaranteed to output a new view at the end of the phase. Thus, the
resulting simulation is both safe and live.

4.2 Correctness

Theorem 2. Every inseparably connected (n+1)-process protocol P can be emulated
in a nonblocking manner using n-consensus objects and read-write registers.

Proof. Consider the protocol in Figure 4. We show first that the protocol preserves the
following invariants:

(P1) In each phase k, there exist two inseparable states x̃0 and x̃1 of P such that each
system state estimate xi computed at the end of phase k is in {x̃0, x̃1}, and all views
output up to phase k are compatible with both x̃0 and x̃1.

(P2) At the end of each phase k, at least one process pi that participated in the phase
(i.e., reached line 9 in Figure 4 in phase k) succeeds in taking one more emulated
step of P and outputs a new view.

Initially, all processes agree on the initial state of P , denoted x̄, and the initial views
of all processes are compatible with x̄. Inductively, suppose that P1 holds at the end of
phase k − 1. In phase k, every process pi chooses the next state zi and the next view
wi (that pi obtains if it is chosen to make a new step of P), based on its current view vi

and its current system state estimate xi (lines 5 and 8). Note that each zi ∈ {x̃0, x̃1} ∪
G(x̃0)∪G(x̃1), and wi is compatible with zi. Since x̃0 ∼ x̃1, precj(z0, z1) ∈ {x̃0, x̃1}
(j = 0, 1).

Let (w̃j , z̃j) denote the tuple proposed by team qj (j = 0, 1) to the P -reconciliation
procedure in line 10, and let (Uj , yj) be the value returned by P -reconcilek(w̃j , z̃j). By
Lemma 2, there exists a non-separating path connecting (w̃0, z̃0) and (w̃1, z̃1) of length
≤ L. By the properties of P -reconciliation, (U0, y0) and (U1, y1) correspond to some
neighbors in such a path (let us denote it γ).

Thus, by the properties of non-separating paths, y0 and y1 are inseparable, and every
view U0 ∪U1 is compatible with both y0 and y1. Further, each yj extends x̃0 or x̃1, and
each u ∈ U0 ∪ U1 is not compatible with some x̃0 or x̃1, unless u ∈ {w̃0, w̃1}. Thus,
every view that is compatible with both x̃0 and x̃1 is also compatible with both y0 and
y1. Since each pi ∈ qj sets xi to yj (line 12) and outputs a new view only if it belongs
to Uj (line 14), P1 is inductively preserved.

Now, since U0 ∩U1 6= ∅, there is at least one view that is seen by every process that
completes the phase. Thus, at least one process pi will find its view in Uj . Thus, at least
one process will output a new view in line 15. Note that if n or less process participate
in phase k (which can happen only if some process crashes in phase k − 1 or earlier),
then only one team (if n ≥ 2, then it can only be q0) takes part in P -reconciliation and,
thus, the participants of phase k agree on the state and the view proposed by one of
them. Otherwise, if all n + 1 processes participate in phase k, some process in Π gets

280 E. Gafni and P. Kuznetsov

a new view. In both cases, some process participating in phase k obtains a new view.
Thus, P2 is preserved.

Finally, P1 and P2 ensure that in every execution of our emulation, all output views
are compatible with some execution of P , and, at least one active process keeps making
progress by outputting new views. Thus, our protocol indeed emulates P in a non-
blocking manner. ut
Theorems 1 and 2 imply the following results:

Corollary 1. Let A be a deterministic object of consensus power less than n+1. Every
protocol using copies of A and registers can be emulated in a non-blocking manner
using n-consensus objects and registers.

Corollary 2. Let A be a deterministic object of consensus power less than n+1. There
is no task T that can be wait-free solved using copies of A and registers, but cannot be
wait-free solved using n-consensus objects and registers.

4.3 Multiple initial states

The emulation protocol presented in the previous section can be easily extended to
protocols with multiple initial states that differ only in inputs of processes. (This seems
to be the case for most protocols.) Indeed, in our emulation, a team qi needs to know
the initial states of other processes only if, in a given phase k, it faces a competition
with the other team q1−i, i.e., only if qi reaches line 5 of the P -reconcile algorithm in
Figure 2. If this never happens, then qi only needs to know the (estimated) states of
shared objects to be able to make progress. But such a competition between q0 and q1

can only happen if all n + 1 processes participate in phase k (otherwise, only one team
would be “populated”). Thus, we can easily extend our emulation to the case of multiple
initial states: every process registers its input in the shared memory before participating
in the first phase of the emulation protocol. When qi faces the competition with the
other team (qi reaches line 5 in Figure 2), qi can compute an estimate of the current
state of P using all n + 1 registered inputs. From this point on, the emulation will run
as described in Figure 4.

5 Conclusions

We formalized one outcome of the intuition that n processes using n-process consensus
are tantamount to a single process. Hence n + 1 processes with n-process consensus
are like two processes. It is easy to see why there is no task between read-write shared
memory and 2-process consensus: A task’s output complex [8] is either connected -
then the two process can solve the task using reads and writes - or it is disconnected - in
which case the task amounts to consensus. In generalizing this intuition we encountered
certain difficulties: we only managed to equate n processes with one when a protocol
was given ahead of time, and we could derive only a non-blocking emulation of the
protocol. We conjecture that these limitations are inherent. We also conjecture that our
results can be extended from n + 1 to any number of processes between n + 1 and 2n:
any deterministic object of consensus power less than n + 1, when used to solve a task
T for k processes, n + 1 ≤ k ≤ 2n, can be replaced with n-consensus objects.

N -Consensus is the Second Strongest Object for N + 1 Processes 281

Acknowledgments

Special thanks should go to Rachid Guerraoui for the observation that our emulation
establishes the distinction between n- and (n + 1)-consensus in determinstic shared
memory models.

References

1. Y. Afek, E. Weisberger, and H. Weisman. A completeness theorem for a class of synchro-
nization objects (extended abstract). In Proceedings of the 12th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages 159–170, 1993.

2. H. Attiya and J. L. Welch. Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics (2nd edition). Wiley, 2004.

3. E. Borowsky, E. Gafni, and Y. Afek. Consensus power makes (some) sense! In Proceedings
of the 13th Annual ACM Symposium on Principles of Distributed Computing (PODC), pages
363–372, August 1994.

4. T. D. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Generalized irreducibility of consen-
sus and the equivalence of t-resilient and wait-free implementations of consensus. SIAM J.
Comput., 34(2):333–357, 2004.

5. D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl. Reaching approximate
agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.

6. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM, 32(3):374–382, April 1985.

7. M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems, 13(1):124–149, January 1991.

8. M. Herlihy and N. Shavit. The topological structure of asynchronous computability. Journal
of the ACM, 46(6):858–923, November 1999.

9. P. Jayanti. On the robustness of Herlihy’s hierarchy. In Proceedings of the 12th Annual ACM
Symposium on Principles of Distributed Computing (PODC), pages 145–158, August 1993.

10. M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable
asynchronous processes. Advances in Computing Research, pages 163–183, 1987.

11. G. Neiger. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing (PODC), pages 100–109, August
1995.

12. E. Ruppert. The Consensus Power of Shared-Memory Distributed Systems. PhD thesis,
University of Toronto, 1999.

