
Synchronizing without Locks is Inherently Expensive

Hagit Attiya
Department of Computer Science, Technion

hagit@cs.technion.ac.il

Rachid Guerraoui
School of Computer and Communication

Sciences, EPFL, and Computer Science and
Artificial Intelligence Laboratory, MIT

rachid.guerraoui@epfl.ch

Danny Hendler∗
Faculty of Industrial Engineering and

Management, Technion

hendler@techunix.technion.ac.il

Petr Kouznetsov
Max Planck Institute for Software Systems

pkouznet@mpi-sws.mpg.de

ABSTRACT
It has been considered bon ton to blame locks for their fragility, es-
pecially since researchers identified obstruction-freedom: a prog-
ress condition that precludes locking while being weak enough to
raise the hope for good performance. This paper attenuates this
hope by establishing lower bounds on the complexity of obstruction-
free implementations in contention-free executions: those where
obstruction-freedom was precisely claimed to be effective. Through
our lower bounds, we argue for an inherent cost of concurrent com-
puting without locks.

We first prove that obstruction-free implementations of a large
class of objects, using only overwriting or trivial primitives in con-
tention-free executions, have Ω(n) space complexity and Ω(log2 n)
(obstruction-free) step complexity. These bounds apply to imple-
mentations of many popular objects, including variants of
fetch&add, counter, compare&swap, and LL/SC. When arbitrary
primitives can be applied in contention-free executions, we show
that, in any implementation of binary consensus, or any perturbable
object, the number of distinct base objects accessed and memory
stalls incurred by some process in a contention free execution is
Ω(

√
n). All these results hold regardless of the behavior of pro-

cesses after they become aware of contention. We also prove that,
in any obstruction-free implementation of a perturbable object in
which processes are not allowed to fail their operations, the num-
ber of memory stalls incurred by some process that is unaware of
contention is Ω(n).

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-

∗Supported in part by Sun Microsystems and by the Technion’s Aly
Kaufman Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06, July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

tecture and Design—distributed networks; C.2.4 [Computer-Com-
munication Networks]: Distributed Systems; F.1.1 [Computation
by Abstract Devices]: Models of Computation—relations between
models

General Terms
Algorithms, Performance, Theory

Keywords
lock-free implementations, obstruction-freedom, perturbable ob-
jects, step contention, memory contention, lower bound

1. INTRODUCTION
At the heart of many distributed systems are shared objects—

data structures that may be concurrently accessed by many pro-
cesses. These objects are often implemented in software, out of
more elementary base objects. Lock-free implementations of shared
objects require processes to coordinate without relying on mutual
exclusion, thus avoiding the inherent problems of locking, e.g.,
deadlock, convoying, and priority-inversion.

Traditional lock-free algorithms are nonblocking, i.e., they guar-
antee progress (for at least one process) regardless of system con-
ditions. This imposes significant computability and complexity
charges: many objects do not have traditional lock-free implemen-
tations using only read/write base objects [4, 8, 15]. Even when
the implementations are possible, they are typically complex and
expensive [2, 3, 14].

Obstruction-freedom has been proposed as a progress property
that conciliates the benefits of lock-freedom with the feasibility and
performance requirements of modern concurrent computing [11,
12, 18]. Intuitively, obstruction-freedom guarantees progress only
in situations in which the steps taken by concurrent processes are
not interleaved, i.e., in the absence of step contention [1]. The idea
is formalized by the solo termination property [6]: a process that
takes sufficiently many steps on its own returns a value. In prac-
tice, step contention is considered rare [12], or at least can be made
so through operating system support. That is, only one process is
typically performing an operation on an implemented object while
the rest of the processes are busy with other objects, swapped-out,
failed, or simply idle.

While it was easily established that any object has an obstruction-
free implementation using read/write registers [1, 12], the perfor-
mance benefits of obstruction-freedom as compared to traditional
lock-free conditions (wait-freedom and nonblocking [10]) were
never precisely determined.

This paper studies the complexity of obstruction-free implemen-
tations. Since obstruction-freedom is considered the weakest prog-
ress property that enforces lock-free implementations, our bounds
capture the seemingly inherent cost of implementing concurrent
objects without using locks.

While obstruction-freedom specifies that operations must termi-
nate in the absence of step contention, it does not dictate how pro-
cesses should behave when they do identify step contention. Thus,
different obstruction-free implementations may cope with step con-
tention in different ways: a process may wait for a while and then
retry its operation, or it may retry the operation immediately; a pro-
cess may retry the operation by using the same set of synchroniza-
tion primitives, or it may do so by using a different set of (typically
stronger) primitives; alternatively, a process may elect to simply
fail the operation when it encounters step contention.

To cope with this diversity and capture the fundamental com-
plexity of obstruction-free implementations, we focus on the per-
formance in the uncontended cases, for which obstruction-freedom
was precisely claimed to be effective [12]. More specifically, we
consider step-contention-free executions, in which no process en-
counters step contention. Complexity lower bounds on such execu-
tions apply for all obstruction-free implementations, regardless of
their behavior when step contention is identified.

We first prove that n-process obstruction-free implementations
of a large class of objects using only overwriting or trivial primi-
tives (e.g., write, swap and read) in step-contention-free executions
have Ω(n) space complexity (Theorem 1) and Ω(log2 n) obstruction-
free step complexity (Theorem 2). These bounds apply to well
known perturbable objects [13], including, for example, modulo-
b counter (for b ≥ 2n), fetch&add, b-valued compare&swap (for
b ≥ n), and LL/SC bits.

We then prove that for any obstruction-free implementation of
binary consensus, the number of distinct base objects accessed and
memory stalls1 incurred by some process in an execution in which
no process is aware of step contention is Ω(

√
n) (Theorem 3); in

fact, the lower bound also holds for implementations of any per-
turbable object (Theorem 4).

Our aforementioned lower bounds are achieved in executions
where none of the processes is aware of step contention. Thus
they hold for any obstruction-free implementation of these objects,
regardless of how processes behave if they become aware of step
contention.

We also prove that, in any obstruction-free implementation of a
perturbable object in which processes are not allowed to fail their
operations, the number of memory stalls incurred by some process
that is unaware of contention is Ω(n) (Theorem 5).

Viewed collectively, our results show that even the weakest known
to date type of implementations that avoid using locks suffers from
high time-complexity in uncontended executions. The conclusion
is that the cost of avoiding deadlocking, convoying and priority-
inversion is inherently high, at least for implementing perturbable
objects.

1If an application of a nontrivial primitive by process p to base
object r is preceded by k applications of nontrivial primitives to r
performed by k distinct processes other than p, then p incurs a delay
of length proportional to k. In other words, it incurs k stalls [5].

2. THE SHARED MEMORY
SYSTEM MODEL

We consider a standard model of an asynchronous shared mem-
ory system, in which processes communicate by applying opera-
tions to shared objects.

An object is an instance of an abstract data type. It is charac-
terized by a set of possible values and by a set of operations that
provide the only means to manipulate it. No bound is assumed on
the size of an object (i.e. the number of distinct values the object
can take). An implementation of an object shared by a set P of
n processes provides a specific data-representation for the object
from a set B of shared base objects, each of which is assigned an
initial value, and algorithms for each process in P to apply each
operation to the object being implemented. To avoid confusion, we
call operations on the base objects primitive operations or simply
primitives. We reserve the term operations for the objects being
implemented. We also say that an operation of an implemented ob-
ject is performed and that a primitive is applied to a base object.
The set of primitives supported by the objects we consider includes
atomic read, write, and read-modify-write primitives [17]. We say
that a primitive is nontrivial if it may change the value of the base
object to which it is applied and trivial otherwise.

Let o be an object that supports two primitives f and f ′. Fol-
lowing [6], we say that f overwrites f ′ on o, if starting from any
value v of o, applying f ′ and then f results in the same value as
applying just f , if f is applied with the same input parameters (if
any) in both cases. A set of primitives is called historyless if all the
nontrivial primitives in the set overwrite each other. Note that we
require also that each such primitive overwrite itself. A set that in-
cludes the write and swap primitives is an example of a historyless
set of primitives.

A configuration specifies the value of each base object and the
state of each process. An initial configuration is a configuration in
which all base objects have their initial values and all processes are
in their initial states. When processes apply their operations to an
implemented object, they perform a sequence of steps. Each step
consists of some local computation and one shared memory event,
which is a primitive applied to a base object. An event is nontrivial
if it is an application of a nontrivial primitive.

An execution fragment is a (finite or infinite) sequence of events.
An execution is an execution fragment that starts from an initial
configuration, in which processes apply events and change states
(based on the responses they receive from these events) according
to their algorithm. For any finite execution fragment ω and any ex-
ecution fragment ω′, the execution fragment ωω′ denotes the con-
catenation of ω and ω′. If ωω′ is an execution, then the execution
fragment ω′ is called an extension of ω. We let ω|p denote the
subsequence of events of execution ω that are applied by process p.

An operation instance, Φ = (O, Op, p, args), is an applica-
tion by process p of operation Op with arguments args to object
O. In an execution, each process performs a sequence of operation
instances on the implemented object. To perform an operation in-
stance, a process applies a sequence of one or more events, each of
which accesses some base object.

If the last event of an operation instance Φ has been applied in
an execution ω, we say that Φ completes in ω and that Φ returns
a response in ω. The events applied by a process as it performs an
operation instance can be interleaved with events applied by other
processes as they apply their operation instances.

We say that a process p is active after ω if p is in the middle of
performing some operation instance Φ, i.e. p has applied at least
one event while performing Φ in ω, but Φ does not complete in ω.

If p is not active after ω, we say that p is idle after ω. We say that
an execution ω is Q-free, for a non-empty set of processes Q ⊂ P,
if none of the events of ω is applied by any of the processes in Q. If
Q = {q}, we say that ω is q-free instead of Q-free. Two executions
are indistinguishable to a process p, if p applies exactly the same
sequence of events and gets the same responses from these events
in both executions.

If a process is active in the configuration resulting from a finite
execution ω, the process has exactly one enabled event, i.e., the
event the process is about to apply in the configuration. If a process
is idle but has begun a new operation-instance, then the first event
of that operation-instance is enabled; otherwise, it has no enabled
event.

Let ω be an execution fragment. We say that ω is step-contention-
free for p if the events of ω|p are contiguous in ω. We say that ω is
step-contention-free if ω is step-contention-free for all processes.

An implementation is obstruction-free [1,11,12], if it guarantees
that each process completes an operation instance within a finite
number of its own steps if it runs in isolation long enough.

The obstruction-free step complexity of an implementation is the
maximum number of events applied by any process p as it performs
a single high-level operation, the maximum taken over all the im-
plementation’s executions that are step-contention-free for p.

3. TIME AND SPACE BOUNDS FOR
SOLO-FAST IMPLEMENTATIONS

In this section we prove time and space lower bounds for obstruc-
tion-free implementations in which processes only apply nontriv-
ial primitives from a historyless set (such as, e.g., a set that in-
cludes read, write and swap) when there is no step contention, but
may fall back on more powerful primitives when step contention
is identified. Such implementations are referred to in the literature
as solo-fast [1, 16]. Our lower bounds hold for implementations
of perturbable objects, defined next. (Our definition is equivalent
to [13, Definition 3.1], when restricted to consider only determin-
istic implementations.)

DEFINITION 1. An object O is perturbable if there is an opera-
tion instance opn by process pn, such that for any pn-free execution
αλ where no process applies more than a single event in λ, and for
some process pl 6= pn that applies no events in λ (if any), there
is an extension of α, γ, consisting of events by pl, such that pn

returns different responses when performing opn by itself after αλ
and after αγλ. We say that opn witnesses the perturbation of O.

The following technical definition is required for our proofs.

DEFINITION 2. A base object o is covered after an execution ω
if the set of all the primitives applied to o in ω is historyless, and
there is a process pn that has, after ω, an enabled event e about to
apply a nontrivial primitive from this set to o. We also say that e
covers o after E. An execution ω is k-covering if

• ω is step-contention-free,

• there exists a set of processes {pj1 , . . . , pjk
} that does not

contain process pn, such that all the events of ω are applied
by processes in this set and each of the processes in the set
has an enabled nontrivial event that covers a distinct base
object after ω.

We call the set {pj1 , . . . , pjk
} a covering set of ω.

The second condition in Definition 2 implies that if an implementa-
tion has a k-covering execution, then its space complexity is at least

k. We now prove a linear lower bound on the space complexity of
any obstruction-free solo-fast implementation.

THEOREM 1. Let A be an n-process obstruction-free imple-
mentation of a perturbable object O for which there exists a his-
toryless set of primitives S such that any process p can apply only
primitives from S in executions that are step-contention-free for p.
Then the space complexity of A is at least n − 1.

PROOF. Let opn be the operation instance that witnesses the
perturbation of O. We prove the theorem by showing that A has
an (n − 1)-covering execution.

The proof goes by induction. The empty execution is vacuously
a 0-covering execution. Assume that αi, for i < n − 1, is an i-
covering execution with covering set {pj1 , . . . , pji

}. Let λi be the
execution fragment that consists of the nontrivial events by pro-
cesses pj1 . . . pji

that are enabled after αi, arranged in some arbi-
trary order.

From Definition 1, there is an execution fragment γ by some
process pji+1

/∈ {pn, pj1 , . . . , pji
} such that opn returns different

responses after executions αiλi and αiγλi. We claim that γ con-
tains a nontrivial event that accesses a base object not covered after
αi. Assume otherwise to obtain a contradiction. Since all events in
executions αiλi and αiγλi apply primitives from a historyless set,
every nontrivial primitive applied to a base object in γ is overwrit-
ten by some event in λi. Thus, the values of all base objects are
the same after αiλi and after αiγλi. This implies that opn must
return the same response after both αiλi and αiγλi, which is a
contradiction.

We extend αi by letting pji+1
execute the shortest prefix of γ at

the end of which it has an enabled nontrivial event about to access
an object o not covered after αi. We denote this prefix of γ by
γ′. We define αi+1 to be αiγ

′. Thus, at the end of αi+1, pji+1

has an enabled nontrivial event that accesses o. As none of the
processes pj1 , . . . pji

apply events in γ′, we have that αi+1 is a
step-contention-free execution, after which processes pj1 , . . . pji+1

have enabled events that cover distinct objects. Hence αi+1 is an
(i+1)-covering execution. It follows that A has an (n−1)-covering
execution.

Next we prove a logarithmic lower bound on the obstruction-free
complexity of solo-fast implementations of perturbable objects. As
the proof is quite involved, we first provide an informal description
of its technique and structure.

Our goal is to construct a scenario in which some process pn

has to access a large number of base objects as it runs solo while
performing an operation. To that end, our proof constructs longer
and longer r-covering executions. The construction proceeds in
phases. After each phase r of the construction, we consider the
path that pn will take if it runs solo after we ‘unfreeze’ the pending
covering events (but we don’t actually unfreeze these events). We
denote this path by πr . Note that some of the objects along this
path may already be covered after phase r.

To construct phase r + 1, we deploy a ‘free’ process, pjr+1
, and

let it run solo. As processes can only apply primitives from a histo-
ryless set, and as the implemented object is perturbable, we know
that pjr+1

will eventually be about to write to an uncovered object,
O, along πr . This, however, may have the undesirable effect (from
the perspective of an adversary) of making πr+1 shorter than πr:
pn may read the information written by pjr+1

to O (if we unfreeze
its pending covering event) and not access some other objects far-
ther along πr!

Note, however, that objects that are part of πr will be absent from
πr+1 only if O precedes them in πr. Thus the set of objects along

πr+1 that are covered (after phase r + 1) is ‘closer’, in a sense, to
the beginning of the path. It follows that if there are many phases r
such that |πr| decreases, then one of the paths πr must be ‘long’.

To capture this intuition, we define Ψ, a monotonically-increasing
potential function of the phase numbers. Ψr is a (log n)-digit bi-
nary number defined as follows. Bit 0 (the most significant bit) of
Ψr is 1 if and only if the first object in πr is covered; bit 1 of Ψr

is 1 if and only if the second object in πr exists and is covered, and
so on. Note that we do not need to consider paths that are longer
than log2 n. If such a path exists, the lower bound clearly holds.

As mentioned before, to construct phase r + 1, we deploy a free
process, pjr+1

, and let it run solo until it is about to write to an
uncovered object, O, along πr. In terms of Ψ, this implies that the
covering event of pjr+1

might flip some of the digits of Ψr from 1
to 0. But O corresponds to a more significant digit, and this digit is
flipped from 0 to 1, hence Ψr+1 > Ψr must hold. As we have n−1
processes to deploy, Ψr must increase n − 1 times and eventually
it equals n − 1. When it does, the length of πr is exactly log2 n.
The formal proof follows.

THEOREM 2. Let A be an n-process obstruction-free imple-
mentation of a perturbable object O for which there exists a his-
toryless set of primitives S such that any process p can apply only
primitives from S in executions that are step-contention-free for
p. Then A has a step-contention-free execution in which a pro-
cess accesses at least log2 n distinct base objects in the course of
performing a single operation instance.

PROOF. If there is an execution in which a process accesses
more than log2 n distinct base objects in the course of performing a
single operation instance in a step-contention-free manner then we
are done. Assume otherwise. We construct a step-contention-free
execution in which a process accesses exactly log2 n distinct base
objects in the course of performing a single operation instance.

The construction proceeds in at most n phases. In phase r ≥ 0,
we construct an execution αrδrφr with the following structure:

• αr is an r-covering execution with a covering set pj1 , . . . , pjr
,

• in δr , each of the processes pj1 , . . . , pjr
applies a nontrivial

event to an object that is covered after αr , and

• in φr, process pn runs solo after αrδr until it completes the
operation instance opn.

Let C(αr) denote the set of base objects that are covered after αr .
Let πr = O1

r . . . Oir
r denote the sequence of all distinct base ob-

jects accessed by pn in φr (after αrδr) indexed according to the
order in which they are first accessed by pn. Also let Sπr

denote
the set of these base objects.

In execution αrδrφr, pn accesses ir distinct base objects. Thus,
it suffices for the proof to construct such an execution with ir =
log2 n. For j ∈ {1, . . . , ir}, we let bj

r be the indicator variable
whose value is 1 if Oj

r ∈ C(αr) and 0 otherwise. We associate an
integral progress parameter, Ψr, with each phase r ≥ 0, defined as
follows:

Ψr =

ir
X

j=1

bj
r · 2log2 n−j . (1)

As we assume that ir ≤ log2 n for all r, Ψr can be viewed as a
log2 n-digit number in base 2 whose j’th most significant bit is 1
if the j’th object in πr exists and is in C(αr), or 0 otherwise. This
implies that the number of base objects in πr that are covered after
αr equals the number of 1-bits in Ψr.

We now describe our construction. Let α0 and δ0 denote the
empty execution; let φ0 denote the solo execution that results when
pn performs the operation instance opn starting from an initial con-
figuration, and let i0 denote the number of distinct objects accessed
in φ0. Since C(α0) = ∅, we have Ψ0 = 0. Suppose that, for some
r, 0 ≤ r < n − 1, we have constructed αrδrφr and Ψr < n − 1.

As O is perturbable with operation instance opn witnessing that,
there is an execution fragment γr+1 by some process pjr+1

/∈
{pn, pj1 , . . . , pjr

} such that opn returns different responses to pn

after executions αrδr and αrγr+1δr. We claim that, in γr+1, pjr+1

applies a nontrivial event to an object in Sπr
\C(αr). Assume that

γr+1 contains no nontrivial events to objects in Sπr
\ C(αi) to

obtain a contradiction. As αrγr+1 is step-contention-free, all the
events of γr+1 either access base objects not in Sπr

or are over-
written by the events of δr . It follows that αrγr+1δrφr is also an
execution of A and that αrδrφr and αrγr+1δrφr are indistinguish-
able to pn. This implies that opn must return the same responses
after both executions, which is a contradiction.

Let γ′

r+1 be the shortest prefix of γr+1 after which pjr+1
has an

enabled event, e, about to apply a nontrivial event to a base object
Ok

r ∈ Sπr
\ C(αr). Define αr+1 = αrγ

′

r+1, δr+1 = δre and let
φr+1 denote the execution fragment in which pn applies events by
itself after αr+1δr+1 as it performs the operation instance opn to
completion. It is easily verified that αr+1 is an (r + 1)-covering
execution and that C(αr+1) = C(αr) ∪ Ok

r .
We claim that Ψr+1 > Ψr holds. As Ok

r /∈ C(αr), we have
bk
r = 0. As the values of objects O1

r · · ·Ok−1
r are the same after

αrδr and αr+1δr+1, it follows that bj
r = bj

r+1 for j ∈ {1, . . . , k−
1}. This implies, in turn, that Ok

r = Ok
r+1. As Ok

r+1 ∈ C(αr+1),
we have bk

r+1 = 1. We get:

Ψr+1 =
Pir+1

j=1 bj
r+1 · 2log2 n−j

=
Pk−1

j=1
bj
r+1 · 2log2 n−j + 2log2 n−k+

Pir+1

j=k+1 bj
r+1 · 2log2 n−j

=
Pk−1

j=1
bj
r · 2log2 n−j + 2log2 n−k+

Pir+1

j=k+1 bj
r+1 · 2log2 n−j

≥ Pk−1

j=1
bj
r · 2log2 n−j + 2log2 n−k

>
Pk−1

j=1
bj
r · 2log2 n−j +

Pir

j=k+1
bj
r · 2log2 n−j

= Ψr.

By definition, we have 0 ≤ Ψr ≤ n − 1 for all r. Furthermore,
just a single process joins the execution in each phase. As we’ve
shown that Ψ is monotonically increasing with with r, this implies
that we eventually reach a phase r∗ with Ψr∗ = n−1. This implies
in turn that ir∗ = log2 n.

4. TIME BOUNDS FOR
IMPLEMENTATIONS USING
ARBITRARY PRIMITIVES

In Section 3 we considered obstruc-tion-free implementations
that can only apply synchronization primitives from a restricted set
in step-contention-free executions; the metric that we used counted
the worst-case number of steps made by a process in such execu-
tions.

In this section, we investigate obstruction-free implementations
that can use arbitrary primitives even in step-contention-free ex-
ecutions. The metric that we use here counts both the number of
steps made by a process and the number of stalls it incurs as a result
of memory contention with other processes.

The following definition formalizes the notion of a stall. It cap-
tures the fact that when multiple processes apply non-trivial opera-

tions simultaneously to the same base object, these operations are
being serialized.

DEFINITION 3. Let e be an event applied by a process p as it
performs an operation instance Φ in execution ω. Let r be the base
object accessed by e. Also let ω = ω0e1 · · · ekeω1, where e1 · · · ek

is a maximal sequence of k ≥ 1 consecutive nontrivial events, by
distinct processes other than p, that access r. Then we say that
Φ incurs k memory stalls in ω on account of e. The number of
memory stalls incurred by Φ in ω is the sum of memory stalls Φ
incurs in ω over all the events of Φ in ω.

Let p be a process and consider the set of executions Ep that are
indistinguishable to p from an execution that is step-contention-free
to p. This is a superset of all the executions that are step-contention-
free to p. From obstruction freedom, p must make progress in any
execution of Ep. Let ω ∈ Ep be an execution and let e be an event
of p that is enabled after ω. We say that e is issued while p is
unaware of step contention. It might be that p becomes aware of
step contention when it receives the response of e. Nevertheless,
the delay incurred by p until it becomes aware of step contention
includes the delay it incurs on account of e.

In a similar manner, we let E denote the set of executions that
are indistinguishable to all processes from a step-contention-free
execution. Let ω ∈ E be an execution and let e be an event that is
enabled after ω. We say that e is issued while no process is aware
of step contention.

In the proofs that follow we consider the worst-case time com-
plexity incurred by processes on account of the events they issue
while being unaware of step contention.

4.1 A √
n Lower Bound

In this section we prove an Ω(
√

n) time lower bound on obstruc-
tion-free implementations of binary consensus and perturbable ob-
jects. This bound holds for all obstruction-free implementation of
these objects, regardless of how processes behave when they en-
counter step contention. It implies that, for these implementations,
a process can be made to incur a delay of length Ω(

√
n) before any

process becomes aware of step contention.
A binary consensus object supports a single operation called de-

cide with input value from the domain {0, 1}. Every process can
call the decide operation at most once. An implementation of con-
sensus is correct if the following two conditions hold for every ex-
ecution ω.

Consistency: The responses of all the instances of decide that com-
plete in ω are equal.

Validity: If an operation instance returns response v in ω, then
v is the input value of a decide operation instance by some
process in ω.

THEOREM 3. Let A be an n-process obstruction-free imple-
mentation of binary consensus. Then there is an execution ω of
A and a process p such that the sum of events issued by p in ω
while no process is aware of step contention and the stalls it incurs
on account of these events is at least

√
n.

PROOF. Consider executions of A in which processes p1, . . . ,
pn−1 perform instances of decide with input 0 and process pn per-
forms an instance of decide with input 1. Let φ be the execution in
which, starting from the initial configuration, pn performs its de-
cide instance to completion. Let B denote the set of base objects
that are accessed in φ. If |B| ≥ √

n then we are done. Assume
otherwise.

We construct a pn-free execution at the end of which there is a
subset of processes S ⊂ {p1, · · · , pn−1} of size exactly

√
n, all

the processes of which have enabled nontrivial events about to ac-
cess the same object in B. The execution is constructed inductively
in at most n − 1 phases. We denote the execution constructed in
phases 1, · · · , i by ωi. Our construction maintains the following
invariants for all i ≤ n − 1:

• ωi is step-contention-free,

• all the events of ωi are applied by processes in {p1, . . . , pi},

• ωi does not contain any nontrivial event applied to an object
in B, and

• each of the processes p1, · · · , pi has a nontrivial event to a
base object in B that is enabled at the end of ωi.

We let ω0 denote the empty execution. It is easily verified that
the above invariants are vacuously met by ω0. Assume we have
constructed ωi, for i < n − 1, and that the number of enabled
nontrivial events about to access any single object in B at the end
of ωi is less than

√
n. We now describe the construction of ωi+1.

We let process pi+1 perform its instance of decide by itself after
ωi until it either has an enabled nontrivial event about to access an
object in B, or its decide instance completes.

We show that the latter cannot occur. Assume otherwise to obtain
a contradiction. From the validity requirement, pn’s instance of
decide returns response 1 in φ. Let σi+1 be the execution in which
pi+1 performs its decide instance after ωi until it completes. As
ωiσi+1 is pn-free, we get from the validity requirement that pi+1’s
instance of decide returns response 0 in ωiσi+1.

From the induction hypothesis applied to ωi, and as we assume
that no nontrivial event was applied to an object in B in σi+1,
ωiσi+1φ is an execution that is indistinguishable from φ to pn.
It follows that the responses of the instances of decide by pi+1 and
pn in ωiσi+1φ are 0 and 1, respectively. This contradicts the con-
sistency requirement.

Thus, at the end of ωi+1, process pi+1 has an enabled nontriv-
ial event about to access a base object in B. From the induction
hypothesis applied to ωi, we get that at the end of ωi+1, each of
p1, · · · , pi+1 has an enabled nontrivial event about to access an
object in B, and that ωi+1 is a step-contention-free execution that
contains no nontrivial event applied to an object in B.

As |B| <
√

n, there is a phase j, j ≤ n − 1, such that after
ωj there exist at least

√
n processes, all of which have enabled

nontrivial events about to access the same object o ∈ B. Let α be
some ordering of these events. Also let β be the longest prefix of
φ that does not access o, and let e be pn’s enabled event after β.
Then pn incurs at least

√
n memory stalls in ωjβαe. To conclude

the proof, we note that ωjβ is step-contention-free and that each
of the events in αe is by a different process. Thus all the events of
ωjβαe are issued while no process is aware of step contention.

The proof of the following theorem is build along the lines of
that of Theorem 3.

THEOREM 4. Let A be an n-process obstruction-free imple-
mentation of a perturbable object. Then there is an execution ω
of A and a process p such that the sum of events issued by p in ω
while no process is aware of step contention and the stalls it incurs
on account of these events is at least

√
n.

PROOF. Let opn be the operation instance that witnesses the
perturbation of O. Let φ be the execution of A in which, starting

from the initial configuration, pn performs opn until it completes
it. Let B denote the set of base objects that are accessed in φ. If
|B| ≥ √

n then we are done. Assume otherwise.
We construct a pn-free execution at the end of which there is a

subset of processes S ⊂ {p1, · · · , pn−1} of size exactly
√

n, all
the processes of which have enabled nontrivial events about to ac-
cess the same object in B. The execution is constructed inductively
in at most n − 1 phases. We denote the execution constructed in
phases 1, . . . , i by ωi. Our construction maintains the following
invariants for all i ≤ n − 1:

• ωi is step-contention-free,

• ωi does not contain any nontrivial event applied to an object
in B, and

• there exists a set of processes {pj1 , . . . , pji
} that does not

contain pn, such that

– each of these processes has an enabled nontrivial event
about to access a base object in B after ω, and

– none of the events of ωi are applied by processes not in
{pj1 , . . . , pji

}.

We let ω0 denote the empty execution. It is easily verified that
the above invariants are vacuously met by ω0. Assume we have
constructed ωi, for i < n − 1, and that the number of enabled
nontrivial events about to access any single object in B at the end
of ωi is less than

√
n. We now describe the construction of ωi+1.

From the induction hypothesis applied to ωi, no process has applied
a nontrivial event in ωi to an object in B.

Let δ denote the execution fragment that consists of the events by
{pj1 , . . . , pji

} that are enabled after ωi. As O is perturbable with
operation instance opn witnessing that, there is an execution frag-
ment γ by some process pji+1

/∈ {pn, pj1 , . . . , pji
} such that opn

returns different responses to pn after executions ωiδ and ωiγδ.
We claim that pji+1

applies in γ a nontrivial event to an object in
B. Assume otherwise to obtain a contradiction. Then from the in-
duction hypothesis and our assumption, ωiγδφ is an execution that
is indistinguishable to pn from ωiδφ. It follows that the responses
of opn are the same in ωiγδφ and ωiδφ. This is a contradiction.

Let γ′ be the shortest prefix of γ after which pji+1
has an enabled

nontrivial event about to access a base object in B. We let ωi+1

be ωiγ
′. Thus, from the induction hypothesis applied to ωi, we

get that at the end of ωi+1 each of pj1 , · · · , pji+1
has an enabled

nontrivial event about to access an object in B, and that ωi+1 is
a step-contention-free execution that contains no nontrivial event
applied to an object in B.

As |B| <
√

n, there is a phase k, k ≤ n − 1, such that after
ωk there exist at least

√
n processes, all of which have enabled

nontrivial events about to access the same object o ∈ B.
Let α be some ordering of these events. Also let β be the longest

prefix of φ that does not access o, and let e be pn’s enabled event
after β. Then pn incurs at least

√
n memory stalls in ωkβαe on ac-

count of e. To conclude the proof, we note that ωkβαe and ωkαβe
are indistinguishable to pn and that ωkαβe is step-contention-free
for pn.

4.2 A Linear Lower Bound For Non-Failing
Implementations

We say that an obstruction-free implementation is non-failing if
processes are not allowed to fail their operations when they become
aware of step contention. For such implementations we obtain a
stronger bound than that obtained in Section 4.1.

Fich, Hendler, and Shavit [7] prove a lower bound of n − 1 on
the worst-case number of stalls incurred by a process as it per-
forms a single operation instance. This bound holds for non-failing
obstruction-free implementations of objects in a class G, that in-
cludes counter and single-writer snapshot objects. It can be shown
that the same lower bound holds for any perturbable object. In the
following, we prove that this bound holds in an execution in which
all the events of the process whose operation instance incurs the lin-
ear complexity are issued while it is not aware of step contention.

The following definition of k-stall-execution is taken from [7]
with minor terminology adaptation.

DEFINITION 4. An execution ωσ1 · · ·σi is a k-stall execution
for process p if

• ω is p-free,

• there are distinct base objects O1, . . . , Oi and disjoint sets
of processes S1, . . . , Si whose union does not include p and
has size k such that, for j = 1, . . . , i,

– each process in Sj has an enabled nontrivial event about
to access Oj after ω, and

– in σj , process p applies events by itself until it is first
about to apply an event to Oj , then each of the pro-
cesses in Sj applies an event that accesses Oj , and,
finally, p applies an event that accesses Oj ,

• all processes not in S1 ∪ · · · ∪ Si are idle after ω,

• p starts at most one operation instance in σ1 · · ·σi, and

• in every ({p} ∪ S1 ∪ · · · ∪ Si)-free extension of ω, no pro-
cess applies a nontrivial event to any base object accessed in
σ1 · · · σi.

In a k-stall execution for process p, p incurs k stalls, since it
incurs |Sj | stalls when it applies its first event to Oj , for j =
1, . . . i. The results of [7] are obtained by proving that non-failing
obstruction-free implementations of objects such as those mentioned
above have n−1 stall executions for any process. Our contribution
lies in the following technical lemma. It shows that a process p is
not aware of step-contention in a k-stall execution for p.

LEMMA 1. Let ω be a k-stall execution for process p. Then all
of p’s events in ω are issued while p is unaware of step contention.

PROOF. Let ωσ1 . . . σi be a k-stall execution for process p for
some k > 0. For j = 1, . . . , i, let Sj and Oj be as in Definition 4.
For an execution σ, let σ|p be the subsequence of events in σ that
are applied by processes other than p.

We prove that the sequence of events θ = ω(σ1|p) · · · (σi|p)
(σ1|p) · · · (σi|p) is an execution and that it is indistinguishable
from ωσ1 . . . σi to all processes. Since θ is step-contention-free for
p, this will establish that all of p’s events in ωσ1 . . . σi are issued
while p is unaware of step contention.

The proof goes by double induction. For l = 0, . . . , i, let ωl

denote the execution ωσ0 . . . σl. The outer induction is on the ex-
ecutions ωl. We prove that, for l = 0, . . . , i, θl = ω(σ1|p) · · ·
(σl|p) (σ1|p) · · · (σl|p) is an execution that is indistinguishable to
all processes from ωl. The claim holds vacuously for l = 0. For
l < i, assume that θl is an excution that is indistinguishable from
ωl to all processes.

Consider the sequence of events σl+1|p. From Definition 4,
these events are enabled at the end of ωl. Consequently, from outer
induction hypothesis, they are also enabled at the end of θl. As

all the events of (σ1|p) · · · (σl|p) are applied by p, the events of
σl+1|p are enabled at the end of ω(σ1|p) · · · (σl|p). Additionally,
as each of the events of σl+1|p is applied by a distinct process in
Sl+1, ω(σ1|p) · · · (σl+1|p) is an execution.

From outer induction hypothesis, all processes in S1∪· · ·∪Sl ap-
ply the same events and get the same responses in ω(σ1|p) · · · (σl|p)
and ωl. As all the events of σl+1|p access Ol+1 and none of the
events of σ1 · · ·σl accesses Ol+1, it follows that all processes in
S1 ∪ · · · ∪ Sl+1 apply the same events and get the same responses
in ωl+1 and in ω(σ1|p) · · · (σl+1|p), and hence also in θl+1.

We next show that θl+1 is an execution and that p gets the same
responses from the events it applies in it as in ωl+1. We show this
by inner induction on the number of events, m, applied by p in
(σ1|p) · · · (σl+1|p).

The claim is obvious for m = 0. Assume that σp
1 · · ·σp

l+1 con-
sists of m > 0 events and that the claim holds for the first m − 1
events. Let e be the m’th event. Two cases exist. If e accesses a
base object O /∈ {O1, . . . , Ol+1}, then, from Definition 4, O is
not accessed in ωσ1 · · ·σl+1 by any process other than p. Thus,
from the inner induction hypothesis, O has the same value when e
accesses it in both ωl and θl. Otherwise, suppose that O = Oj for
some j ∈ {1, . . . , l + 1}. The subsequence of events that precede
e in accessing Oj is (σj |p) in both ωl+1 and θl+1. Consequently,
from inner and outer induction hypotheses, O has the same value
when accessed by e in both ωl+1 and θl+1. It follows that, in both
cases, e returns the same response in ωl. Hence also p applies the
same events, and gets the same responses from these events, in both
ωl and θl.

As all processes apply the same events, and get the same re-
sponses from these events in both ωl and θl, and as ωl is an exe-
cution, it follows that θl is also an execution. This concludes the
proof of the lemma.

The proof of Theorem 6 in [7] can be used to establish that any
non-failing obstruction-free n-process implementation of a per-
turbable object has an (n − 1)-stall execution for any process that
shares the implementation. Combining that with Lemma 1 gives
the following.

THEOREM 5. Let A be an n-process non-failing obstruction-
free implementation of a perturbable object. Then for any process
p there is an execution ω of A such that p incurs in ω at least n− 1
stalls on account of events that it issues while it is unaware of step
contention, as it performs a single operation instance.

5. RELATED WORK
Solo-fast implementations that use only reads and writes when

there is no step contention, but may fall back on more powerful
primitives when step contention is encountered, are considered by
Luchangco et al. [16] and by Attiya et al. [1]. There is a univer-
sal solo-fast implementation [1], with linear obstruction-free step
complexity and space complexity. Our lower bounds provide a par-
tial positive answer to the open question (posed in [1]) of whether
the high complexity price of this universal implementation is inher-
ent. Our results show that, although reads and writes are consid-
ered comparatively cheap [16], solo-fast implementations are not
scalable, because a process that runs by itself may have to apply
Ω(log n) reads and writes in the course of performing a single op-
eration.

Jayanti, Tan, and Toueg [13] obtain linear time and space lower
bounds for solo-terminating implementations of perturbable ob-
jects from historyless base objects, i.e., objects that only support
nontrivial primitives that overwrite each other. Specifically, they

obtain a worst-case lower bound of n − 1 on the number of steps
taken by a process as it performs a single operation. As observed
by [1], a simple reduction to [13] implies the same lower bound for
obstruction-free implementations of perturbable objects. The exe-
cution constructed by [13] to obtain this bound is not necessarily
step-contention-free, however. Thus their result does not imply any
lower bound on solo-fast implementations, as processes may apply
strong synchronization primitives in the execution they construct.

Hendler and Shavit [9] consider nonblocking implementations
of a class of objects that includes all of the well-know perturbable
objects mentioned above. They prove an Ω(

√
n) lower bound on

the number of distinct base objects accessed and memory stalls in-
curred by a process as it performs a single operation. Their bound
holds for nonblocking implementations but is obtained in execu-
tions in which the process that incurs this complexity may be aware
of step contention.

A recent paper by Fich et al. [7] considers n-process obstruction-
free implementations of objects, such as a modulo-m counter (for
m ≥ n) and single-writer snapshot, that can use arbitrary primi-
tives. They show a bound of n− 1 on the number of stalls incurred
by a process as it performed a single operation. It can be shown
that this result holds for all perturbable objects. We actually prove
that their bound is obtained in an execution in which the process
that incurs the linear complexity is not aware of step contention.
Thus, even when processes can apply arbitrary primitives, a pro-
cess can incur linear complexity and still ‘believe’ it runs in iso-
lation (Theorem 5). This result, as well as the result of [7], holds
for obstruction-free implementations where processes do not fail
their operations when they encounter step contention. This follows
from the fact that, similarly to the proofs of Jayanti et al. [13], the
linear bound is obtained in executions that are not necessarily step-
contention-free.

The potential-function technique that we use to prove a logarith-
mic lower bound on the obstruction-free complexity of solo-fast
implementations of perturbable objects is an extension of a proof
technique originated in [7]. A major challenge by our proof is that
here, unlike in [7], once a process covers a base object along a cur-
rent path, that process cannot be used again in a later phase, because
it may then become aware of step contention. A key novelty of our
technique is in extending the potential-function argument so that it
can handle this type of, in a sense, one-shot covering scenarios.

6. SUMMARY
We prove lower bounds on the cost of obstruction-free imple-

mentation of shared objects. We do so by focusing on the com-
plexity of obstruction-free implementations in uncontended execu-
tions (which are argued to be the most frequent in practice), with-
out restricting the behavior of the processes in contended situations
where processes might be using locks, randomization or other ex-
pensive mechanisms.

By measuring the complexity of the weakest form of lock-free
implementations known to date, our results capture the seemingly
inherent cost of preventing deadlock, convoying, and priority-
inversion.

7. REFERENCES
[1] H. Attiya, R. Guerraoui, and P. Kouznetsov. Computing with

reads and writes in the absence of step contention. In
Proceedings of the 19th International Symposium on
Distributed Computing (DISC’05), 2005.

[2] B. N. Bershad. Practical considerations for non-blocking
concurrent objects. In Proceedings of the 14th IEEE

International Conference on Distributed Computing Systems
(ICDCS’93), pages 264–273, 1993.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM,
43(2):225–267, March 1996.

[4] D. Dolev, C. Dwork, and L. J. Stockmeyer. On the minimal
synchronism needed for distributed consensus. Journal of the
ACM, 34(1):77–97, January 1987.

[5] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared
memory algorithms. Journal of the ACM, 44(6):779–805,
1997.

[6] F. Fich, M. Herlihy, and N. Shavit. On the space complexity
of randomized synchronization. J. ACM, 45(5):843–862,
1998.

[7] F. E. Fich, D. Hendler, and N. Shavit. Linear lower bounds
on real-world implementations of concurrent objects. In
Proceedings of the 46th Annual Symposium on Foundations
of Computer Science (FOCS), 2005.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(3):374–382, April 1985.

[9] D. Hendler and N. Shavit. Operation-valency and the cost of
coordination. In Proceedings of the 22nd Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 84–91, 2003.

[10] M. Herlihy. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems, 13(1):124–149,
January 1991.

[11] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III.
Software transactional memory for dynamic-sized data
structures. In Proceedings of the 22nd Annual ACM
Symposium on Principles of Distributed Computing
(PODC), pages 92–101, 2003.

[12] M. Herlihy, V. Luchango, and M. Moir. Obstruction-free
synchronization: Double-ended queues as an example. In
Proceedings of the 23rd IEEE International Conference on
Distributed Computing Systems (ICDCS’03), pages
522–529, 2003.

[13] P. Jayanti, K. Tan, and S. Toueg. Time and space lower
bounds for nonblocking implementations. SIAM Journal on
Computing, 30(2):438–456, 2000.

[14] A. LaMarca. A performance evaluation of lock-free
synchronization protocols. In Proceedings of the 13th Annual
ACM Symposium on Principles of Distributed Computing
(PODC), pages 130–140, 1994.

[15] M. C. Loui and H. H. Abu-Amara. Memory requirements for
agreement among unreliable asynchronous processes.
Advances in Computing Research, pages 163–183, 1987.

[16] V. Luchangco, M. Moir, and N. Shavit. On the uncontended
complexity of consensus. In Proceedings of the 17th
International Symposium on Distributed Computing
(DISC’03), pages 45–59, 2003.

[17] E. Ruppert. Determining consensus numbers. SIAM Journal
of Computing, 30(4):1156–1168, 2000.

[18] M. L. Scott and W. N. Scherer III. Contention management
in dynamic software transactional memory. In PODC
Workshop on Concurrency and Synchronization in Java
Programs, July 2004.

