
The Failure Detector Abstraction

Felix C. Freiling, University of Mannheim

and

Rachid Guerraoui, EPFL

and

Petr Kuznetsov, TU Berlin/Deutsche Telekom Laboratories

A failure detector is a fundamental abstraction in distributed computing. This paper surveys this

abstraction through two dimensions. First we study failure detectors as building blocks to simplify
the design of reliable distributed algorithms. In particular, we illustrate how failure detectors can

factor out timing assumptions to detect failures in distributed agreement algorithms. Second,

we study failure detectors as computability benchmarks. That is, we survey the weakest failure
detector question and illustrate how failure detectors can be used to classify problems. We also

highlight some limitations of the failure detector abstraction along each of the dimensions.

Categories and Subject Descriptors: A.1 [General Literature]: Introductory and Survey; C.4
[Computer Systems Organization]: Performance of Systems—fault tolerance; modeling tech-

niques; reliability, availability, and serviceability

General Terms: Algorithms, Design, Reliability, Theory

Additional Key Words and Phrases: distributed system, agreement problem, consensus, atomic

commit, fault tolerance, liveness, message passing, safety, synchrony

The first author’s work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of
the Emmy Noether programme.

Contact author’s address: University of Mannheim, Department of Computer Science, D-68131
Mannheim, Germany, contact author email: fcg@acm.org

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Freiling, Guerraoui, Kuznetsov

Contents

1 Introduction 1

2 Failure Detectors as Programming Building Blocks 2
2.1 Failure Detection using Timeouts . 2

2.1.1 Example of a Distributed Problem: Non-Blocking Atomic
Commit (NBAC) . 2

2.1.2 Example of a Distributed Protocol: Three-Phase Commit
(3PC) . 3

2.1.3 Three-Phase Commit with Timeouts 3
2.1.4 Difficulties of Determining Good Timeout Values 4
2.1.5 Synchronous Systems . 5
2.1.6 Asynchronous Model and Timeouts 6
2.1.7 Eventually Synchronous Systems 7
2.1.8 Conclusions . 7

2.2 Failure Detectors as Useful Distributed Services 8
2.2.1 Failure Detectors as Oracles 8
2.2.2 Perfect Failure Detectors . 8
2.2.3 Asynchronous Models with Failure Detectors 9
2.2.4 Non-Blocking Atomic Commit with a Perfect Failure Detector 9
2.2.5 Solving Consensus using Failure Detectors 10
2.2.6 Unreliable Failure Detectors 11
2.2.7 Other Failure Detectors . 12
2.2.8 Justifying Unreliable Failure Detectors 12
2.2.9 Solving Problems Other than Consensus using Failure Detectors 13
2.2.10 Using and Combining Different Failure Detector Abstractions 13

2.3 Limitations of Failure Detectors . 14
2.3.1 What is not a Failure Detector? 14
2.3.2 Do Failure Detectors make sense outside of the crash model? 15
2.3.3 Can Randomization be used to implement Failure Detectors? 17
2.3.4 Can Failure Detectors be used to Reason about Real-Time? . 17

2.4 Summary . 18

3 Failure Detectors as a Computability Benchmark 18
3.1 The CHT Play . 19
3.2 The weakest Failure Detector for a Register 26

3.2.1 Read/write shared memory 26
3.2.2 The sufficiency part . 26
3.2.3 The reduction algorithm . 26
3.2.4 Solving Consensus in All Environments 28

3.3 Solving Non-Blocking Atomic Commit 28
3.3.1 Failure detector Ψ . 28
3.3.2 Using (Ψ,FS) to solve NBAC 29
3.3.3 The weakest failure detector to solve NBAC 29

3.4 The Set Agreement Quest and the Hierarchy of Distributed Tasks . 30
3.5 Summary . 32

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 3

4 Concluding Remarks 32

A Handling a Bivalent Critical Index 38
A.1 Simulation Tree . 38
A.2 Determining a Correct Process: Hooks and Forks 39

A.2.1 Forks . 39
A.2.2 Hooks . 40

A.3 Existence of Hooks and Forks . 40
A.3.1 Terminating the Infinite Simulation Tree 41
A.3.2 Identifying a Fork or a Hook 42

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 1

1. INTRODUCTION

Advances in computing are typically achieved through the identification of abstrac-
tions that factor out specifics of an actual processor, machine or network. In the
early times, abstractions like record, set or arrays helped the emancipation from
assemblies and machine languages. The art of traditional sequential and centralized
computing was then orchestrated around such data structures.

Progress in computer architectures called then however for new abstractions. In
the area of concurrent computing for instance, abstractions like threads, semaphores
and monitors were very helpful in understanding concurrent programs and reason-
ing about their correctness. In the area of distributed computation, the remote
procedure call abstraction helped factor out the details of the network and was a
key to the popularity of standard distributed middleware infrastructures. In short,
the remote procedure call abstraction hides many differences between languages
and operating systems on different machines, and encapsulate serialization and de-
serialization mechanisms to transfer data over the wire.

The remote procedure call does not however help capture another fundamental
characteristic of distributed systems: partial failures. Basically, if a process of
some machine remotely invokes an operation on a process performing on a different
machine, and the latter machine fails, an exception is raised. The way the failure
is detected is usually achieved using a timeout mechanism. Typically, a timeout
delay is associated with the operation and when it expires, the exception is raised.

Programming with timeouts is notoriously difficult and it hampers portability.
The adequate way of choosing the duration of a timeout might vary from a system
to another one, and might even dynamically depend on the load of the system.
Sometimes it also is more appropriate to ping processors whereas sometimes it is
better to require that they initiate heartbeat messages.

Basically, failure detectors are abstract devices that offer information about the
operational status of processes in a distributed system [Chandra and Toueg 1996].
We believe that the failure detector abstraction is a fundamental one and should
sit as a first class citizen of a distributed programming library. In fact, and as
we discuss in this paper, the failure abstraction can also help classify problems in
distributed computing [Chandra et al. 1996].

This paper is structured into two parts.

—The first part (Section 2) looks at failure detectors from an engineering point
of view and discusses the advantages of using failure detectors in the design,
programming and analysis of distributed algorithms. It also discusses inherent
limitations of the failure detector abstraction.

—The second part (Section 3) takes a more theoretical perspective and discusses
the role that failure detectors can play to compare and distinguish problem spec-
ifications in distributed systems. We describe how the hardness of a problem
can be measured by determining the weakest failure detector needed to solve the
problem, and we illustrate this approach by several examples of the “weakest
failure detector” proofs.

Several surveys about distributed programming with failure detectors have been
published [Raynal 2002; Guerraoui et al. 1999; Raynal 2005]. The surveys by Raynal

ACM Journal Name, Vol. V, No. N, Month 20YY.

2 · Freiling, Guerraoui, Kuznetsov

[2002] and Guerraoui et al. [1999] focus primarily on algorithms that use failure
detectors to solve consensus, while we also consider other problems than consensus
and address the question of the necessary failure detectors for solving them. The
first part of our survey is close in spirit to the survey of Raynal [2005] which contains
a lot of examples how different problems can be solved using failure detectors. Our
survey is however more complete in addressing the engineering aspects of failure
detectors, and it also covers the theoretical aspects, such as the weakest failure
detector question, that we believe is equally important but much less understood.

2. FAILURE DETECTORS AS PROGRAMMING BUILDING BLOCKS

Information about the operational status of remote processes is often necessary to
implement reliable distributed services. In this section we argue that the failure
detector abstraction is a sensible one from an engineering point of view.

In Section 2.1 we first review the problems of implementing failure detection based
on timeouts. In Section 2.2 we informally introduce the failure detector abstraction
and argue that it has several advantages over the explicit use of timeouts: (1)
It separates the concerns of reasoning about failures and reasoning about time
and therefore makes programs simpler to write and analyze; (2) It helps express
information about failures in a way that is closer to the control logic of many
applications, so it allows to write simpler and more elegant programs; (3) It allows
independent implementation and service sharing and therefore has the potential of
building more efficient applications. In Section 2.3 we discuss some of the limitations
of the failure detector approach.

2.1 Failure Detection using Timeouts

2.1.1 Example of a Distributed Problem: Non-Blocking Atomic Commit (NBAC).
We introduce our subject through this seminal database problem [Bernstein et al.
1987, Chapter 7] where data is distributed over multiple geographically separated
processes. At the end of a transaction on that data, these processes must decide
whether the actions should be committed (made permanent) or aborted (rolled
back). More precisely, at the end of the transaction each participating process
votes yes (“I am willing to commit”) or no (“we must abort”), and eventually
processes must reach a common decision, commit or abort . A non-blocking atomic
commit protocol ensures that the following properties hold:

(1) All processes that manage to reach a decision on the outcome of the transaction
agree on the decision.

(2) A process cannot reverse its decision.
(3) A commit decision can only be reached if all processes vote yes.
(4) If all processes vote yes and there are no failures, then the decision must be

commit.
(5) Assuming that there are only expected failures, every (surviving) process must

eventually reach a decision.

The terms “expected failures” and “surviving process” in the fifth clause refer to the
particular failure assumption made by the system designers. In practical settings,
this often translates to rarely occurring benign crash failures of processes with
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 3

subsequent repair and recovery. For simplicity, unless explicitly stated otherwise, we
will disregard recovery, i.e., we assume that a failed process simply stops to execute
steps of its algorithm and does not send or receive messages anymore (messages
sent to crashed processes are lost). We will call a process that does not crash a
correct process.

2.1.2 Example of a Distributed Protocol: Three-Phase Commit (3PC). This is
a well-known protocol to implement non-blocking atomic commit. 3PC refines
the popular two-phase commit (2PC) protocol, that is widely used in distributed
databases (although 2PC is a blocking protocol, i.e., it does not satisfy the final
termination property of non-blocking atomic commit in every execution). 3PC
makes use of a particular coordinator process.

From now on, assume that there are n processes called p1, p2, . . . , pn (n > 1) and
that process p1 plays the role of the coordinator. In general, 3PC works as follows
[Bernstein et al. 1987, p. 242]:

(1) The coordinator p1 sends a vote request to all other processes.
(2) When a process receives a vote request, it responds with either yes or no,

depending on its vote. If it sends no it decides abort , and stops.
(3) The coordinator collects his own vote and the vote messages from all other

processes. If any of these votes was no then the coordinator decides abort ,
sends an abort message to all processes that voted yes, and stops. Otherwise
the coordinator sends a pre-commit message to all processes.

(4) A process that votes yes waits for a pre-commit message or an abort message.
If it receives an abort message, it decides abort and stops. If it receives a
pre-commit message, it responds with an acknowledgement to the coordinator.

(5) The coordinator collects the acknowledgements from all processes. When they
have all been received, he decides commit , sends a commit message to all pro-
cesses, and stops.

(6) Other processes wait for the commit message from the coordinator. When they
receive this message, they decide commit , and stop.

In the absence of failures, it is rather easy to see that the protocol satisfies the
five requirements of the non-blocking atomic commit problem. However, there are
several points in the protocol in which crash failures can cause a process to wait
indefinitely for a message and hinder correct processes from reaching a decision. In
practice, this is prevented using timeouts.

2.1.3 Three-Phase Commit with Timeouts. It makes no sense to wait for a mes-
sage from a crashed process, because this might violate liveness properties of the
system. So how can we find out whether a remote process is still operational or
not? A pragmatic way is to monitor the time it takes for a process to send a reply.
The round-trip delay is a network parameter that denotes the time it takes to send
a message to a remote process and receive an answer from that process. Usually
it is safe to assume a time interval ρ as an upper bound on the round-trip delay,
meaning that if a reply has not arrived after ρ time has elapsed since sending, then
the remote process is not operational anymore. In this case we say that the process
times out after ρ time units and ρ is the timeout interval (or simply timeout).

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Freiling, Guerraoui, Kuznetsov

wait for 〈vote request〉 from p1
(a)

timeout := clock + ρ

while timeout > clock ∧ ¬〈vote request arrived from p1〉 do
skip

if ¬〈vote request arrived from p1〉 then

〈decide abort〉
(b)

Fig. 1. Replacing a potentially blocking program statement in three-phase commit (a) with explicit

timeout actions (b).

Every statement in the 3PC algorithm that could potentially block needs to be
enhanced with a timeout construct. For example, in step 2, processes wait for a
vote request from the coordinator. This specific part of the algorithm is depicted at
the top of Fig. 1. If a process fails to receive such a message, it unilaterally decides
abort since it could have forced this decision through its own vote anyway. In the
algorithm, the process needs to monitor the time and wait until the timeout period
ρ has elapsed. In case this happens, a timeout action is activated. This is shown
at the bottom of Fig. 1 where the variable clock refers to the value of the real-time
clock of that process.

2.1.4 Difficulties of Determining Good Timeout Values. The timeout intervals
are usually real-time instances obtained from analyzing the characteristics of the
underlying network. In fixing the timeout value ρ, there is a notorious tradeoff
between correctness and efficiency. In order to not time out too early (i.e., when
the remote process is not crashed), we would like to set ρ very conservatively, i.e.,
make it very large. However, a large value of ρ means that the protocol blocks for
a very long time before making progress again in case of failure. The guideline is
to make ρ as large as necessary but as small as possible.

Determining good timeout values still poses problems even to experienced engi-
neers. The main reason for this is that ρ can only be determined with certainty
in networks that offer certain real-time guarantees and most networks in use today
(like local area Ethernets or the global Internet) do not fall into this category. As
an extreme example, measurements of round-trip delays on the Internet for many
years [Long et al. 1991; Paxson and Adams 2002] consistently show that there is
a large temporal and spatial variation in round-trip delays and the distribution is
asymmetric with a long tail on the right hand side. On the one hand, this means
that fixing a large timeout value does not necessarily always guarantee correctness
of timeout-based reasoning, it merely decreases the probability of making mistakes.
On the other hand, continued premature expiration of a too small timeout may
prevent any transaction from committing successfully.

In practice, determining good timeouts even has a dynamic aspect. For example,
it makes sense to wait longer (i.e., have larger timeout values) during the beginning
of the 3PC algorithm in order to increase the probability of all processes voting
yes; for this to happen, they should not time out prematurely on the vote request
from the coordinator. Towards the end of the algorithm, e.g., when the coordinator
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 5

is about to broadcast the commit message, shorter timeouts are feasible since the
result of the transaction has been determined already. In this case, a wrong but
quick suspicion of a slow coordinator may even speed up the transaction if that
coordinator is replaced by a very fast one.

2.1.5 Synchronous Systems. It is possible to characterize those systems in which
timeout-based reasoning is always correct. These systems are characterized by
bounds on the two critical system parameters: the message delivery delay and the
relative processing speed difference. We will denote these bounds by δ (processing
speed bound) and ∆ (message delivery delay bound).

Instead of measuring these bounds in terms of real-time, we will take a more
abstract view and measure it in terms of the number of steps that a process has
executed. On the one hand, this abstraction allows to express time bounds better
in the common models of distributed algorithms where processes do not have an
external source of real-time [Dwork et al. 1988; Dolev et al. 1987]. On the other
hand, the abstraction does not limit the generality of the following statements
since it is possible to relate the number of steps of a process to real-time intervals
in practice.

The bounds δ and ∆ have the following meaning:

—Processing speeds: In the time it takes for any process to take δ steps, all other
processes must take at least one step.

—Message delivery delay: If a process sends a message m after step k in the ex-
ecution, then m must be delivered after at most k + ∆ execution steps of the
sending process.

A bound ρ on the round-trip delay between two processes p and q can be computed
from δ, ∆ and an additional parameter s as follows:

ρ = ∆ + s · δ + δ ·∆

First, it takes at most ∆ steps of the sending process p for the message to travel
from p to q. The parameter s denotes the maximum number of steps needed by
process q to receive a message and send a reply. Therefore, after at most s · δ steps
of process p the receiving process q must have executed at least s steps (which
includes receiving the message and sending a reply). Finally, after at most δ steps
of process q the message must arrive back at p. Since q may operate much slower
than p and δ is measured in steps of q, we need to multiply δ with ∆, yielding an
upper bound on the time it takes for q to execute δ steps.

Because of the bound ∆ on relative processing speeds it is possible for any process
to give bounds on the number of steps any other process in the system has executed.
This means that there exists a notion of global time in the system. Because of this,
these systems are called synchronous. In synchronous systems it is possible to
determine “perfect” global timeout values. If specific values of δ and ∆ are known
for individual pairs of processes, it is even possible to compute perfect local timeout
values.

In practice, the aforementioned synchrony conditions are usually expressed in
terms of real time. For this it is assumed that events in the system can be related
to some external source of real time. Then the bound δ is the real-time interval in

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Freiling, Guerraoui, Kuznetsov

which processes have to take at least one step, and ∆ refers to that real-time interval
within which every message must be delivered. Concerning processing speeds, it is
sometimes assumed that processes have access to local hardware clocks and that
δ is a bound on the drift rate of these clocks. However this does not mean that
the system is synchronous in the sense above [Cristian and Fetzer 1999]. That
local clocks advance at a steady rate does not mean that processes advance equally
within their local algorithms.

2.1.6 Asynchronous Model and Timeouts. As mentioned above, having a syn-
chronous system is not realistic in many practical situations. In fact, from an
engineering perspective it makes sense to make very little assumptions about the
underlying network characteristics because this achieves the highest assumption
coverage [Powell 1992]. Assumption coverage refers to the probability that the as-
sumptions about the underlying network hold in a particular mission environment.
More and stronger assumptions (e.g., about synchrony) achieve less assumption
coverage, and only a high assumption coverage ensures that the algorithms (e.g.,
reasoning with timeouts) work as expected in practice.

The highest assumption coverage (with respect to synchrony) is achieved by
system models that have no timing assumptions whatsoever. These systems are
usually referred to as time-free [Cristian and Fetzer 1999] or asynchronous [Fischer
et al. 1985] (see Schneider [1993] for a discussion of these models). They can be
characterized by the following basic statements:

—A system is modeled as a set of processes connected by reliable communication
channels.

—Communication is by point-to-point message passing using send and receive prim-
itives.

—Usually it is assumed that the network is fully connected, i.e., every process can
directly send messages to every other process.

—There is no order on delivery of messages through the channels.
—Receive and send are distinct atomic operations.
—There is no bound on relative processing speeds of processes and on the message

delivery delays.

Note that reliable communication does not contradict high assumption coverage.
Using standard transport layer network protocols [Tanenbaum 1996], message de-
livery can be guaranteed albeit without any upper time bound. This and the other
points above result in two things: Firstly, messages can take an arbitrary (but fi-
nite) time to travel from one process to the other. This means that a message sent
in step k during the execution of an algorithm will be received at its destination af-
ter arbitrarily (but finitely) many execution steps following k. Secondly, processes
can be arbitrarily slow, meaning that in the time it takes a process p to take a
single step, another process q can take any finite number of steps. The Internet is
often taken as an example for an asynchronous system.

Unfortunately, because of the absence of any synchrony assumptions, it is impos-
sible to do timeout-based reasoning in asynchronous systems. To see this, consider
a process p that monitors the operational state of a process q using timeouts. Since
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 7

there are no bounds δ and ∆ we cannot use the formula above to calculate a timeout
bound ρ. So even if p sets its timeout to a very large (finite) value the round-trip
time to q can exceed any finite value. It is merely guaranteed that (if q does not
crash), the reply will eventually arrive at p so at least p will eventually learn that it
might have performed incorrect timeout-based reasoning [Garg and Mitchell 1998a].

2.1.7 Eventually Synchronous Systems. It is a common experience that net-
works perform synchronously “most of the time”. This means that the system
alternates between short periods of instability (i.e., where no timing guarantees
can be made) and long periods of stability (i.e., where the system behaves as if it
were synchronous). Measurements by Cristian and Fetzer [1999] have shown that
the average length of a stable period is several magnitudes longer than that of an
unstable period in standard local area networks. The bottom line of this obser-
vation is that timeout-based reasoning can be performed perfectly “most of the
time”.

From measurements and experience, the average length of a stable period is in
the order of minutes or hours, a time that is usually sufficient for an algorithm
to terminate, e.g., a transaction to commit. Therefore, an arguable assumption is
that the system is synchronous “forever” after an initial finite time of asynchrony.
This is captured in the model of eventual synchrony that became known as the
assumption of partial synchrony [Dwork et al. 1988].

There are two possible variants of partially synchronous communication, that we
will exemplify using the communication bound ∆:

(1) Either ∆ is known but holds only eventually, or
(2) ∆ exists but is not known.

Analogous definitions of partially synchronous processes can easily be derived using
bound δ instead of ∆.

Both variants of partial synchrony reflect the difficulty of choosing a system’s
timing parameters in practice. The first form, namely that timing bounds hold
eventually, directly reflects the findings from the study of Cristian and Fetzer [1999]
because it is highly improbable that an algorithm starts in a stable period and ends
in an unstable period. The second variant reflects the fact that it is often safe
to assume that some upper bound on message delivery time exists; the difficult
question is how large this bound actually is.

The model of partial synchrony has found many refinements, starting with Chan-
dra and Toueg [1996] where both communication and processes are partially syn-
chronous (regardless of the form of partial synchrony, 1 or 2 above [Dwork et al.
1988]), followed by Hermant and Widder [2005] where merely the ratio between
best-case and worst-case round trip delay is bounded, or Fetzer et al. [2005] where
the average response time must be bounded. All of these models eventually allow
perfect timeout-based reasoning.

2.1.8 Conclusions. In many practical situations (like in distributed databases
with atomic transactions) it is necessary to know the operational state of a remote
process. The most common way to get this information is to use timeout-based
reasoning. Choosing correct timeout values, however, is a difficult task and timeout-
based reasoning is only valid in systems with strict timing guarantees. This is

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Freiling, Guerraoui, Kuznetsov

unfortunate since this weakens the usefulness of timeout-based reasoning exactly
in those (asynchronous) systems that are considered most common in practice.
One path out of this dilemma is to use the abstraction of a failure detector, that
separates timeout-based reasoning from the necessity to choose concrete timeouts.
We discuss this abstraction in the following sections.

2.2 Failure Detectors as Useful Distributed Services

In the previous sections we have already talked about using synchrony bounds for
detecting crash failures of processes. However, this approach mixes two separate
concerns:

(1) the abstract functionality of detecting process crashes, and
(2) a way to implement this abstract functionality using synchrony bounds.

As we show later, we can write a correct 3PC algorithm in systems without any
explicit synchrony assumptions as long as we have a means to still detect process
crashes.

2.2.1 Failure Detectors as Oracles. Separating the concerns of timeout-based
reasoning and the detection of failures is at the heart of the failure detector abstrac-
tion, that has been introduced by Chandra and Toueg [1996]. Failure detectors are
oracles that produce (possibly incomplete and unreliable) information about the
operational state of processes.

In the understanding of Chandra and Toueg [1996], a failure detector is composed
of several failure detector modules, one at each process. Failure detectors have an
interface (defining their syntax) and guarantee certain properties (defining their
semantics). In its original form, a failure detector indicates the operational state
(up/down) of some other process. If the failure detector responds with down, we
say that the failure detector at suspects that process.

2.2.2 Perfect Failure Detectors. To define the semantics of failure detectors,
consider a process p that is equipped with a failure detector module that indicates
the operational state of a process q. Similar to other types of detectors in distributed
systems (such as termination detectors [Dijkstra et al. 1983] or general predicate
detectors [Chandy and Misra 1988; Arora and Kulkarni 1998]) the failure detector
module at p should guarantee two things:

—It never suspects q unless q has actually crashed, and
—if q has crashed, then the failure detector module at p will eventually permanently

suspect q to have crashed.

Of course, these guarantees can only be given as long as p is alive. We can then
extend the failure detector to the two process case by simply adding a failure
detector module to q and requiring that each module detect the crash of the other
process.

Similarly, the definition of such a failure detector can be extended to the n process
case. Here it is important to note that every failure detector module at every process
is responsible for checking the operational states of all other processes in the system.
This means that the output of such a failure detector module is a general predicate
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 9

involving all other processes. The failure detectors introduced by Chandra and
Toueg [1996] output a list of suspected processes, but other forms have also been
proposed (as will be seen later).

For an n process system, the first requirement of the failure detector is a compo-
sition of all safety requirements of the individual failure detector modules. It can
be read like this:

—for all processes p: for all processes q:
p has not crashed ⇒ the failure detector module at p does not suspect q unless
q has crashed.

The liveness requirement can be reformulated as:

—for all processes p: for all processes q:
p has not crashed ⇒ if q crashes, then the failure detector module at p will
eventually permanently suspect q.

When referring to failure detectors, Chandra and Toueg [1996] call the above safety
property strong accuracy and the liveness property strong completeness. A failure
detector satisfying strong accuracy and strong completeness is called a perfect failure
detector. The class of all perfect failure detectors is usually denoted by P. If there
is no confusion, we sometimes also denote by P some failure detector from this
class. A perfect failure detector makes no wrong suspicions and eventually detects
every crash.

2.2.3 Asynchronous Models with Failure Detectors. It is important to stress that
a failure detector is merely defined through the service it offers, not by the way it
is implemented. Of course, failure detection will most probably be implemented
using timeouts in practice, but the failure detector cleanly hides the details of the
underlying system model and its synchrony bounds behind its service interface. The
interface of the failure detector “looks time-free” and so it makes sense to combine
the asynchronous model with failure detectors and design algorithms in this new
model. Of course, this model is not purely asynchronous anymore (many authors
therefore write that the asynchronous model is augmented with failure detectors),
but it allows to describe and analyze algorithms as if they were running in an
asynchronous model. A failure detector can therefore be regarded as a device that
encapsulates synchrony assumptions in an asynchronous interface.

2.2.4 Non-Blocking Atomic Commit with a Perfect Failure Detector. As an ex-
ample on how to write algorithms using failure detectors, Figure 2 shows the part of
the 3PC algorithm from Fig. 1 using a perfect failure detector. The failure detector
abstraction simplifies the text of the protocol by removing concrete timeout values.
In fact, this is similar to the descriptions commonly found in books on concurrency
control (like the one by Bernstein et al. [1987]). There, every receive (or wait for)
statement is accompanied by an on timeout clause specifying what to do when the
timer for this statement elapses. In a sense, these algorithm descriptions already
use a failure detector abstraction to simplify the writing of the protocols without
naming it.

Note that now the correctness of the protocol can be analyzed without referring
to timeouts or synchrony bounds. For example, if there are no crashes, the strong

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Freiling, Guerraoui, Kuznetsov

accuracy property of the failure detector ensures that no process will be suspected
and so the protocol behaves like the 3PC protocol for the fault-free case. Similarly,
if the coordinator crashes before sending out vote requests, the strong completeness
of the failure detector guarantees that every process will eventually stop waiting
for a message from the coordinator and advance in the protocol. Overall, reasoning
about the correctness of the algorithm becomes much simpler.

wait for 〈vote request arrived from p1 or p1 ∈ P〉
if p1 ∈ P then

〈decide abort〉

Fig. 2. Algorithm code from Fig. 1 using a perfect failure detector P.

2.2.5 Solving Consensus using Failure Detectors. To illustrate another advan-
tages of failure detectors, consider the problem of consensus (see Barborak et al.
[1993] and Turek and Shasha [1992] for surveys on consensus). Like non-blocking
atomic commit, consensus belongs to the class of agreement problems where pro-
cesses must take a consistent decision starting from inconsistent values. The con-
sensus problem is defined using two primitives called propose and decide. Both take
an argument from a fixed set of decision values (usually {0, 1}). If a process invokes
propose(u) we say that it proposes u. Analogously, if it invokes decide(v) we say
that it decides v. A process may decide at most once. In general, an algorithm
that solves the consensus problem must guarantee three properties:

—(Agreement) No two processes decide different values.
—(Termination) Every correct process eventually decides.
—(Validity) The decided value must have been proposed by some process.

The Validity property is a non-triviality property, meaning that it has been added
to exclude trivial solutions where processes do not communicate (e.g., algorithms
where every process always decides 1). More specifically, the above consensus spec-
ification is called uniform consensus [Hadzilacos and Toueg 1994] because it man-
dates that all processes (i.e., even the faulty ones) do not disagree on the decision
value.

Similar to non-blocking atomic commit, consensus can be solved rather easily
using a perfect failure detector. However, consensus can be solved even if the
failure detector is “imperfect”, i.e., if it can make mistakes. An example of such
a failure detector is the eventually perfect failure detector (denoted 3P), a failure
detector that is only perfect after some finite time (before this time it can behave
arbitrarily). The idea of a consensus algorithm using 3P is to be conservative, i.e.,
maintain the safety aspect of consensus (Agreement and Validity) always, and only
terminate if the failure detector stops making mistakes. Such algorithms are called
indulgent [Guerraoui 2000] because they are indulgent towards (the mistakes of)
their failure detector.

The indulgent consensus algorithms from the literature [Chandra and Toueg 1996;
Dwork et al. 1988; Schiper 1997a; 1997b; Hurfin and Raynal 1999; Brasileiro et al.
2000; Freiling and Völzer 2006] operate in a sequence of rounds. Every round is like
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 11

the first round of the 3PC algorithm sketched above: a coordinator tries to impose
a decision value on all other processes, only that the role of the coordinator changes
every round in round-robin fashion. This protects against relying on some crashed
process to be the coordinator. However, due to the unreliability of the failure
detector, a correct process may not get its chance to succeed in imposing a value on
the rest of the system (the others might have suspected him and advanced to the
next round with a different coordinator). In this situation it must be ensured that
no two processes can impose different decision values onto the system (and cause
disagreement). To prevent this, the algorithms require a coordinator to “lock” a
value before decision. Locking a value ensures that no other value can become the
decision value.

In locking a value v, all values other than v are “extinguished” from the system.
Assuming that a majority of processes is correct, this can be achieved by using the
following protocol (inspired by majority voting or the use of quorums for replica
control in databases [Bernstein et al. 1987]): The first coordinator sends its value
v to all processes. Whenever a process receives v, it adopts v and acknowledges
it back to the coordinator. The process also remembers the time (i.e., the round
number) in which it adopted v. Later coordinators must impose the latest adopted
value from all processes. This ensures that if a majority of processes has adopted
value v in the same round, then no other value other than v can be imposed by any
future coordinator.

It is rather easy to show that there is no indulgent consensus algorithm if more
than half of the processes can be faulty [Chandra and Toueg 1996; Guerraoui 2000].
A set of n processes can become “virtually partitioned” by information resulting
from wrong suspicions by the failure detector. This means that there can be two
small subsets of processes that suspect all other processes (including those of the
other set) to have crashed. In such a case, each partition can decide different values,
thus violating safety. This situation cannot arise if we have the algorithm guarantee
that every deciding partition must include the majority of processes. In this way
no two partitions can decide differently because they must have a common process
in both. In a sense, requiring a correct majority is the price you have to pay for
making mistakes in detecting crashes.

Interestingly, consensus can even be solved with a failure detector that (in a
precise sense which is defined later in this article) is even weaker than 3P [Chandra
and Toueg 1996]. Like 3P, this failure detector, called “eventually strong” (denoted
3S), belongs to the class of unreliable failure detectors introduced next.

2.2.6 Unreliable Failure Detectors. The existence of a perfect failure detector is
a very strong assumption that makes the model no more realistic than one where
explicit synchrony bounds are added. As shown above, a perfect failure detector
is also not always necessary. This motivates looking for weaker assumptions about
the failure detector modules.

We can derive several weaker failure detectors by relaxing the completeness and
accuracy properties of the perfect failure detector, e.g.:

—∃ a correct process q : ∀p : the failure detector module at p does not suspect q.
This means there is a correct process which all processes will not falsely suspect.
So every process except one may be infinitely often falsely suspected to have

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Freiling, Guerraoui, Kuznetsov

crashed. This property is called weak accuracy [Chandra and Toueg 1996] and is
even useful if it only holds eventually (this is termed eventual weak accuracy).

—∀q : ∃ a correct process p : if q crashes then the failure detector module at p will
eventually permanently suspect q.
In terms of liveness this means that for every crash, there is a process that will
detect this crash. This is termed weak completeness [Chandra and Toueg 1996].
Obviously, if at least one process eventually detects the crash of some process
q, then eventually all processes can be made to detect that crash by simply
disseminating the information throughout the network. Thus it is possible to
turn a weakly complete failure detector into a strongly complete failure detector
if there are means to reliably disseminate information in the network.

A failure detector satisfying weak completeness and eventual weak accuracy is called
an eventually weak failure detector. All other combinations of failure detectors and
their names are depicted in Table I. All failure detectors that are allowed to make
mistakes fall into the category of unreliable failure detectors. A general, yet precise
definition of the notion of unreliable failure detector was given by Guerraoui [2000].

accuracy
strong weak eventually strong eventually weak

strong completeness perfect P strong S eventually perfect 3P eventually strong 3S
weak completeness quasi perfect Q weak W eventually quasi perfect 3Q eventually weak 3W

Table I. The failure detector classes of Chandra and Toueg [1996].

2.2.7 Other Failure Detectors. Other failure detectors have been defined with
different motivations. We give here a brief selection: Chandra et al. [1996] in-
troduced the failure detector Ω which eventually outputs the identity of a correct
process that is trusted by everybody. This failure detector was shown to be equiv-
alent to 3S in the proof that it is the weakest to solve consensus [Chu 1998].
Aguilera et al. [2000b] presented a failure detector called heartbeat that is useful
in designing protocols that are quiescent, i.e., that eventually stop sending mes-
sages. Garg and Mitchell [1998b] define the infinitely often accurate failure detec-
tor (denoted 23P) in the context of predicate detection in faulty systems [Garg
and Mitchell 1998a]. The failure signal failure detector FS [Delporte-Gallet et al.
2004], originally called anonymously perfect failure detector [Guerraoui 2002] and
considered also in Charron-Bost and Toueg [2001a], can be used for solving non-
blocking atomic commit. FS is just like a perfect failure detector, only that it does
not output the identities of the failed processes; it merely outputs a boolean value
whether or not some process has crashed. We will return to this failure detector
later (in Sections 2.2.10 and 3.3.2).

2.2.8 Justifying Unreliable Failure Detectors. Assuming unreliable failure de-
tectors is much more realistic than assuming a perfect failure detector, because the
properties of unreliable failure detectors can be more easily guaranteed in prac-
tice than those of perfect failure detectors. This is because systems with eventual
synchrony (like partially synchronous systems) allow to implement such failure de-
tectors.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 13

For example, 3P can be implemented in partial synchrony in the following way:
The failure detection algorithm starts with an approximation ρ′ of the real (but
unknown) timeout value ρ; whenever the algorithm notices that it made a mistake
(it receives a message from a suspected process), ρ′ is increased. Once the system
has become synchronous and once ρ′ > ρ, the failure detector stops making mistakes
and becomes perfect [Chandra and Toueg 1996].

Similar ideas work when implementing 3P in other forms of partial synchrony
[Hermant and Widder 2005; Fetzer et al. 2005]. For the important class 3S there
even exist implementations that are optimized with respect to efficiently solving
consensus [Larrea et al. 2000; Larrea et al. 2000; Chen et al. 2000; Sergent et al.
1999]. For the special case of Ω other variants of partial synchrony have been
proposed [Aguilera et al. 2003; 2001] in which not all communication channels have
to be eventually synchronous.

2.2.9 Solving Problems Other than Consensus using Failure Detectors. Other
problems than consensus have been studied adapting the failure detection approach.
Sabel and Marzullo [1995] consider the election problem (see also Larrea et al.
[2000]) while Matsui et al. [2000] investigate eventual leader election of k processes
(which they call k-consensus). Issues of group communication have also been con-
sidered (e.g., atomic multicast [Guerraoui and Schiper 1997] and generic broadcast
[Pedone and Schiper 1999; Aguilera et al. 2000]). Predicate detection in faulty en-
vironments is investigated by Garg and Mitchell [1998a], Gärtner and Kloppenburg
[2000], and Gärtner and Pleisch [2001]. Termination detection was investigated by
Mittal et al. [2005]. Mostéfaoui et al. [2006] explored the ways failure detectors can
be used for solving set agreement [Chaudhuri 1990], a generalized form of consensus,
and renaming [Attiya et al. 1990].

2.2.10 Using and Combining Different Failure Detector Abstractions. The use
of failure detectors can relegate much of the intrinsic knowledge of the network into
lower layers and leave the application only with those issues that it needs to care
about: reasoning about failures. System engineers only need to agree on the inter-
face of the particular failure detector in question, and two groups can independently
go about designing solutions: one group can start building an application given a
particular failure detector semantics, the other group can choose a network archi-
tecture and a failure detection algorithm such that the failure detector semantics
is satisfied.

Implementing failure detection as a service has another advantage since one im-
plementation of, say, an eventually perfect failure detector can be used by multiple
applications simultaneously. Dissemination of failure detection messages and keep-
ing track of timeouts can be done centrally at a “middleware” layer that is usually
much more efficient than having every application do this on its own. Moreover, if
timeouts are tweaked or adapted, this may be done centrally in the service layer
instead of adapting all different algorithms independently.

Failure detectors can also be used as sources of activation in event-driven appli-
cations. For example, Aguilera et al. [1999] investigate quiescent algorithms, i.e.,
algorithms that eventually stop sending messages. They show that failure detection
has no quiescent solutions, but special failure detectors can be used as a service to

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Freiling, Guerraoui, Kuznetsov

non-blocking atomic commit(v): { v is yes or no }
1 send v to all
2 wait until [(for each process q in Π, received q’s vote) or FSp = red]
3 if the votes of all processes are received and are yes then
4 mydecision← consensusPropose(commit)
5 else { some vote was no or there was a failure }
6 mydecision← consensusPropose(abort)
7 return mydecision

Fig. 3. Implementing non-blocking atomic commit using FS and a consensus abstraction [Guer-

raoui 2002].

build quiescent algorithms (like quiescent reliable broadcast [Aguilera et al. 2000b])
and terminating ones (like consensus) at higher layers.

Finally, we argue here that failure detectors also remedy the problems of asym-
metric or differing timeouts within an application. While failure detectors do not
offer timing information per se, different instantiations can separate the concerns
of differing timeouts within an application. In the 3PC algorithm discussed earlier,
it was noted that during the first phase of the algorithm it made sense to have a
more conservative (i.e., longer) timeout to increase the chances that all processes
vote yes. During the remainder of the algorithm, a more aggressive timeout can be
used because false suspicions merely delay the outcome of the algorithm. These two
different concerns can be captured using two different types of failure detectors. In
the first phase, it is not important which process failed, so the failure signal failure
detector FS is sufficient (FS initially outputs green which eventually turns into
red if and only if some process has failed). In the second phase (including the
election within the termination protocol), it is important to be able to suspect par-
ticular processes (especially the coordinator process), so a failure detector 3P or
3S can be used given a majority of correct processes. In fact, the latter failure de-
tector can be encapsulated within a solution for consensus and non-blocking atomic
commit can be formulated in a surprisingly simple algorithm with only half a dozen
lines (see Fig. 3). Hence, failure detectors even offer fine-grained abstractions where
necessary.

2.3 Limitations of Failure Detectors

Apart from its many virtues in the design and analysis of algorithms, the failure de-
tector abstraction also has some inherent limitations. Some of these limitations have
been frequent sources of misunderstandings and misconceptions in fault-tolerant al-
gorithms. We have grouped the discussion about the limitations around four basic
questions that we discuss and put into context.

2.3.1 What is not a Failure Detector?. The original work on failure detectors
[Chandra and Toueg 1996] defines a failure detector to be a mapping from a failure
pattern F to some output range H. The failure pattern F specifies which processes
fail at what time. So anything that can be defined as a function of failures can be
formally called a failure detector. Not everything that looks like a failure detector
can however be defined as a function of failures.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 15

Considering the crash failure model, Charron-Bost et al. [2000] observed that
there exist (even time-free) problems that cannot be solved in asynchronous systems
assuming even a perfect failure detector. For example, determining how many
events a process executed before it crashed cannot be determined using a perfect
failure detector. This is counterintuitive since in a fully synchronous system this
can easily be detected if the failed process broadcasts a message with every event
and an observer waits until a correctly calculated timeout has passed. In this sense,
a failure detector does not really encapsulate all the synchrony of a system.

Gärtner and Pleisch [2002] explored an extension of the original failure detector
model and managed to specify a device similar to a failure detector that allows
to fully emulate a synchronous system. This device works like a perfect failure
detector, only that — upon suspecting a process — the device returns a dump of the
state in which that process crashed. The precise formulation of this device is not a
function only of failures anymore, but rather a function of the process state and the
failures in the system. Gärtner and Pleisch [2002] proved that such a device allows
to embed crash events perfectly into the causal history of a computation. So any
problem can be computed that depends on the causal structure of a computation.
They also showed that the same can be achieved with a perfect failure detector
if the communication channels are synchronous (i.e. having a bound δ but not
having a bound ∆, see Section 2.1.5). In this sense, a perfect failure detector can
be regarded as an abstraction of process synchrony, not of channel synchrony.

The ability of systems to detect failures can be formalized in a number of ways.
In this survey, we focus primarily on Chandra-Toueg failure detectors [Chandra
and Toueg 1996; Chandra et al. 1996], but we would like to mention Gafni’s round-
by round failure detectors [Gafni 1998], and the “heard-of” model [Charron-Bost
and Schiper 2006] as interesting examples of alternative definitions. Finally, failure
detectors were recently considered in systems without fixed process identifiers [Afek
and Nir 2008], that allowed for posing the question of the weakest failure detector
for renaming [Attiya et al. 1990].

2.3.2 Do Failure Detectors make sense outside of the crash model?. The “clas-
sic” failure detectors have been crash failure detectors, i.e., they were tailored to
the crash failure model. There are however many other failure models in the liter-
ature. Except few exceptions we discuss below, there has been very little work on
extending the failure detector abstraction to these models.

Among models that refer to the incorrect behavior of processes are fail-stop
[Schlichting and Schneider 1983], crash-recovery [Oliveira et al. 1997; Aguilera et al.
1998; Hurfin et al. 1998], send/receive omission [Hadzilacos 1984; Hadzilacos and
Toueg 1994] and Byzantine [Lamport et al. 1982]. The fail-stop failure model is just
like the crash failure model, except that the crash of a process is easily detectable
by other processes. In the crash-recovery model, processes can crash and later re-
sume their execution from a predefined point in their program. In the send/receive
omission failure model a process sends or receives only a subset of messages it was
supposed to send or receive. Finally, the Byzantine failure model allows arbitrary
behavior of a faulty process.

In general, the type of failure detector that is necessary to solve a problem de-
pends on the problem itself (e.g., consensus) and the failure model assumed in the

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Freiling, Guerraoui, Kuznetsov

network (e.g., crash). Usually, the failure model indicates what information the
failure detector offers and the problem dictates how the failure detector should
present this information (i.e., the failure detector properties). For example, the
crash-recovery failure model offers a new type of behavior so adequate failure de-
tectors should be able to convey information about this behavior. Consequently,
the failure detectors used in the context of solving consensus in the crash-recovery
model [Aguilera et al. 2000a] output a vector of unbounded counters hinting on
how often a process has been suspected.

Considering the consensus problem, failure detector specifications have been ex-
tended to environments where the network may partition [Guerraoui and Schiper
1996; Aguilera et al. 1999] and processes may experience send and receive omissions
[Dolev et al. 1997; Delporte-Gallet et al. 2005]. Lossy links are a usual assump-
tion in work on consensus in the crash-recovery failure model [Oliveira et al. 1997;
Aguilera et al. 1998; Hurfin et al. 1998]. In this model, questions of to what extent
stable storage is necessary are also important. Lo and Hadzilacos [Lo and Hadzi-
lacos 1994] study failure detection and consensus in a shared memory setting. The
model of finite transient failures that is characteristic to the area of self-stabilization
[Dijkstra 1974; Dolev 2000] has also been studied in the context of failure detectors
[Beauquier and Kekkonen-Moneta 1997; Hutle and Widder 2005].

Adapting the failure detector abstraction to the general case of Byzantine failures
is not straightforward. First of all it is not possible to derive a clean failure detector
interface that is orthogonal to the specification of the algorithm using it. This is
because the notion of a failure is not only related to timing/synchrony but also to
application level messages.

“Muteness” failure detectors [Malkhi and Reiter 1997; Doudou et al. 1999; Doudou
et al. 2002; 2005] extend crash failure detectors to the case when processes might
stop sending messages associated with a particular algorithm (they might still keep
sending other messages).

Kihlstrom et al. [2003] extended this approach to more general classes of failure
models. This work distinguishes between detectable and non-detectable Byzan-
tine failures. Non-detectable failures are either unobservable (e.g., a Byzantine
process spontaneously changes his input value) or undiagnosable (they cannot be
tagged to a specific process, e.g., a process claims that some other process sent
him something). Byzantine failure detectors can only report detectable faults, that
can be further classified into commission and omission faults, the former being in
the value domain and the latter in the time domain. The omission fault detectors
of Kihlstrom et al. [2003] correspond to the muteness failure detectors of Doudou
et al. [1999].

A generic framework for detecting observable Byzantine behavior was proposed
and validated in practice by Haeberlen et al. [2007]. An abstract Byzantine fail-
ure detector is parameterized with a system specification and ensures that every
occurrence of a detectable failure, i.e., one that directly or causally affects cor-
rect processes, is eventually exposed. In an authenticated system, where no faulty
process can impersonate or forge messages from a correct process, the detection
mechanism is able to produce irrefutable evidences of observable deviant behavior.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 17

2.3.3 Can Randomization be used to implement Failure Detectors?. In 1983,
Ben-Or [1983] presented an algorithm that solves consensus in the completely asyn-
chronous model (i.e., without failure detectors) by using randomization. In the
algorithm, processes repeatedly flip coins to reach a majority of proposed values,
upon which termination is reached. In doing this and because of the properties
of the random coin, it can be shown that the probability of non-terminating runs
diminishes to zero and, hence, termination can be achieved with probability one.
So since both randomization and failure detection can be separately used to solve
consensus it is legitimate to ask: Can failure detectors be implemented using ran-
domization?

Aguilera and Toueg [1998] presented an algorithm that uses randomization and
unreliable failure detection to solve consensus. But their approach does not use
randomization to implement failure detectors, rather randomization is used to guar-
antee termination in case the failure detectors never become reliable.

Völzer [2004] investigated the relationship between fairness and randomization.
Fairness is a particular form of liveness assumption in distributed systems and is
sometimes known under the name of strong fairness in the context of transition
systems. Briefly spoken, fairness in the context of message passing systems means
that every message sent to some process x is eventually received even though some
other process sends infinitely many messages to x. Völzer showed that random-
ization and fairness are incomparable with respect to their expressive power by
exhibiting a problem that can be solved only by fairness and not with random-
ization. In contrast, consensus can be solved only by randomization and without
fairness [Ben-Or 1983]. Intuitively, failure detectors (as well as partial synchrony)
fall more into the category of fairness assumptions than randomization (see also the
work on hyperfairness [Völzer 2005]). So while this does not answer the question
of the relationship between failure detectors and randomization, the results are a
strong indication that the two concepts are in fact incomparable.

2.3.4 Can Failure Detectors be used to Reason about Real-Time?. Failure de-
tectors offer an asynchronous interface for timing information. It is nevertheless
sometimes helpful to figure out what kind of synchrony information can be provided
by failure detectors.

Strong failure detectors ensure strong completeness and weak accuracy. This
means that every crash is eventually detected but processes can make mistakes
about other processes except a single same one. Making mistakes means to “time
out too soon”. Thus, implementing a strong failure detector makes it necessary to
have communication and processing speed bounds regarding one “central” process.
Note that this feature is asymmetric: The bounds must hold for communication
coming from the central process, not for communication running towards it.

Eventually Strong failure detectors have strong completeness and eventually weak
accuracy. The situation here is that processes can now make mistakes about all
processes, but must eventually stop making mistakes regarding a single same pro-
cess. Systems that offer an eventually strong failure detector must ensure that
eventually communication and processing speed bounds hold regarding one “cen-
tral” process but only in direction from this process to the other processes. This
was formalized into the concept of an (eventual) source [Aguilera et al. 2001; 2003],

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Freiling, Guerraoui, Kuznetsov

a process whose outgoing channels are (eventually) timely.
As discussed above, perfect failure detectors allow building a system that is very

close (but not equivalent) to a fully synchronous one [Charron-Bost et al. 2000]. It
has still been argued that the use of failure detectors also offers the potential of
building real-time applications by using the approach of late binding [Hermant and
Le Lann 2002]. In this approach, a real-time problem is turned into a “time-free”
problem, e.g., by basing timeliness requirements on certain activation conditions
using time-free extensions to the asynchronous model like failure detectors. In this
context, an asynchronous solution can be devised. Then the solution is bound to
an as weakly synchronous system model as possible (e.g., one of partial synchrony)
and the real-time instants of the activation conditions are computed from the guar-
antees of the underlying model. Since the application satisfies its safety and liveness
properties even if the underlying network transiently violates its timeliness guaran-
tees, this approach allows to build real-time applications with higher assumption
coverage than if real-time were considered from the beginning of the design process.

Along this line of research, the issue of fast failure detectors has been investigated,
i.e., failure detectors that detect failures in a time that is orders of magnitude less
than a round trip delay [Aguilera et al. 2002].

2.4 Summary

In this section we have argued that failure detectors are useful abstractions from an
engineering point of view. Firstly, they can be used to hide timeout details behind
a clean operational interface that makes it easier to design, build and analyze fault-
tolerant distributed systems. Secondly, implementation of the failure detection
functionality can be done in a centralized, re-useable fashion that enables solutions
that are more efficient compared to situations in which every application performs
failure detection independently. Finally, failure detectors offer the possibility to
express timing assumptions in a fine-grained manner that is more suitable to be
used directly by application logic than explicit timing information.

3. FAILURE DETECTORS AS A COMPUTABILITY BENCHMARK

As we discussed in the previous section, certain failure detectors are weaker than
others. For instance, the guarantees provided by an eventually perfect failure de-
tector are weaker than those provided by a perfect failure detector. This notion can
be captured precisely, and this induces a hierarchization of distributed computing
problems, based on the weakest failure detectors needed to solve them. In a pre-
cise sense, the weakest failure detector for a given problem M captures the exact
amount of information about failures needed to solve M .

In this section, we discuss the question of determining the weakest failure detec-
tor on the example of the celebrated “CHT proof” determining the weakest failure
detector for consensus [Chandra et al. 1996]. The technique proposed in the CHT
proof is interesting in its own right and variants of it were used in multiple succeed-
ing weakest failure detector results. Therefore we provide here a high level overview
of the proof intended to capture the very essence of it.

Then we briefly overview the techniques of deriving the weakest failure detec-
tors for implementing read-write shared memory in a message-passing system, and
solving non-blocking atomic commitment (NBAC). We show that failure detectors
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 19

allows for capturing that consensus and NBAC are, in a strict sense, incomparable:
the weakest failure detectors for the two problems cannot be reduced to each other.

We then provide a survey of more recent results addressing the question of the
weakest failure detector for set agreement, a generalization of consensus. We con-
clude the section by discussing a conjectured hierarchy of distributed tasks that can
be build using the weakest failure detector abstraction.

3.1 The CHT Play

This section gives a high level and informal account of the necessary part of the
proof that Ω is the weakest failure detector to implement consensus in a message-
passing system with a majority of correct processes. The proof originally appeared
in a widely cited but rarely understood paper by Chandra et al. [1996]. We describe
it here as a play in five acts, preceded by a prologue and followed by an epilogue.

The Prologue. Consensus and leader election are two fundamental abstractions
in distributed computing. Consensus provides processes with the ability to agree
on a common value. We consider here a variant of leader election, the eventual
leader abstraction, denoted by Ω, through which the processes eventually agree
on a common correct leader. Proving that Ω is the weakest failure detector to
implement consensus with a majority of correct processes goes through exhibiting
two algorithms:

(1) an algorithm that implements consensus with a majority of correct processes
using Ω (the sufficiency part);

(2) an algorithm T (called a transformation or a reduction algorithm) that, us-
ing any algorithm A that implements consensus with some failure detector D,
implements Ω (the necessity part).

The sufficiency part, i.e., an eventual leader-based consensus algorithm, first ap-
peared in the original Paxos protocol [Lamport 1998], and then evolved to multiple
different algorithms (see, e.g., Oki and Liskov [1988], Dwork et al. [1988], and
Chandra and Toueg [1996]).

The necessity part, often called the “CHT proof” (or simply “CHT ”), for Chan-
dra, Hadzilacos and Toueg, pioneers a new reduction style in the theory of dis-
tributed computing [Chandra and Toueg 1996]. It is however quite long and rather
involved. That is maybe why it is rarely understood.

Below, we have tried to give a high level description of CHT. Clearly, we often
sacrificed rigour for intuition: sometimes on purpose and sometimes not. We give
a description of the main components of the proof and we consider a simple case
of the proof while abstracting away a trickier one in the appendix. Even our very
informal description requires however five acts. Moreover, the use of the first of
these acts is getting visible only at the very end of the proof. We thus encourage
the reader to continue reading even when it seems as though the reasoning does
not make progress anymore. Catching a glimpse of the elegance and cleverness of
the CHT proof will be your reward at the end.

Before delving into CHT, we first recall here some of its underlying elements.
As we recalled above, CHT is about constructing algorithm T using consensus
algorithm A (itself using failure detector D). We say few words here about what

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Freiling, Guerraoui, Kuznetsov

is, a priori, needed to be noticed about algorithms A and T .

—About algorithm A (which is given):
(1) A uses a failure detector D in a message passing system. A failure detector

is a distributed abstraction that provides processes with information about
the status (crashed or not) of other processes in the system. Every process
pi has a module of that failure detector and pi can query that module at
any time. The information obtained from this query is used as an input
by pi to its algorithm automaton, as we discuss below. Algorithm A is a
set of deterministic distributed automata, one per process. At every step
of any run of A, exactly one process pi triggers its algorithm automaton:
we say that pi executes a step. A correct process is one that executes an
infinite number of steps. (A process that crashes simply stops triggering its
automaton.) The input of the automaton is (1) pi’s state, (2) a message that
pi has received from some other process, as well as (3) the value obtained
by pi from its local failure detector module. The output of the automaton is
(4) a new state as well as (5) a message that pi broadcasts. Communication
is assumed to be reliable in the sense that if pi sends a message, then this
message is eventually received by every correct process.

(2) A implements consensus. The problem consists for the processes to propose
values and to decide on the same final value. More precisely, every cor-
rect process will decide on a value (termination property of consensus); no
two correct processes will ever decide differently (agreement); and any value
decided is a value proposed (validity).

—About algorithm T (which is to be constructed):
(1) T needs to implement Ω. In other words, T is a leader election algorithm

that should ensure that, eventually, all correct processes permanently elect
the same correct process. The existence of both (1) algorithm T and (2) an
algorithm that implements consensus using Ω is what derives the fact that
Ω is the weakest failure detector to implement consensus.

(2) T is not restricted to using A as a black-box. In other words, we are not
trying here to implement Ω out of a consensus abstraction. At first glance,
using consensus as a black-box, we could indeed easily implement a leader
election scheme that ensures that the processes do all elect the same leader:
the processes would each propose its identity and, using consensus, we would
get the same identity as a decision. This is a strictly weaker variant of Ω
because there is no guarantee that the leader is correct. On the other hand, if
the goal was simply for every correct process to elect a correct process, each
would simply output itself. The challenge that T needs to face is to have the
processes eventually and permanently agree on the very same correct leader.
Algorithm T achieves this by using A’s automata at every process, as we
overview in the following.

We give here an overview of algorithm T . The basic idea underlying T is to have
each process locally simulate the overall distributed system in which the process
executes several runs of A. The processes then use the outputs provided by these
runs to extract the leader process.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 21

Every process simulates, locally, runs of algorithm A by launching threads that
mimic the behavior of every other process in the system running algorithm A
(Fig. 4). But how can one process pi simulate the overall system executing several
runs of A? Basically, every process pi feeds algorithm A with a set of proposed val-
ues, one for each process of the system, i.e., pi pretends to be every other process
and proposes values to A’s runs. In fact, process pi proposes all possible combi-
nations of input values as we discuss in Act 2. Then all automata composing A
are triggered locally by pi, that locally emulates, for every simulated run of A, the
states of all processes as well as the emulated buffer of exchanged messages.

Crucial elements that are needed for the simulation are (1) the values from failure
detectors that would be output by D as well as (2) the order according to which the
processes are taking steps. For these elements, that we call the stimuli of algorithm
A, process pi exchanges information with the other processes, as we will discuss in
Act 1. It is important to notice that the output of D is not restricted in any way.
In fact, this output can be any value that encodes some information about failures.

process simulates virtual
system running A

real system running transformation
algorithm and collecting failure detector
samples

simulated process

real process

Fig. 4. Processes simulate runs of consensus in their own simulation environment taking stimuli

from “reality”.

Every process pi locally uses the series of (consensus) decisions obtained by A
in order to extract the leader process (Acts 3-5). The idea is to analyze which
combination of values proposed to consensus leads to which decision values. In
short, the process that is elected leader (i.e., extracted) is the one, the proposed
value (or a particular step) of which makes a crucial difference in the pattern of
decision values.

Act 1: The Exchange. The processes periodically query their failure detector
modules of D and send the output to all other processes. As a result, every process
knows more and more of the other processes’ failure detector outputs and temporal
relations between them.

All this information is pieced together in a single data structure, a directed
acyclic graph (DAG). This DAG has some special properties that follow from its
construction as we will discuss later. What is important to see for now is that the
DAG can be used to derive simulation stimuli to A: it contains activation schedules
and failure detector outputs for the processes to execute steps of A’s instances. In

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Freiling, Guerraoui, Kuznetsov

fact, every path through this DAG is one such possible stimulus that can be used
as an input to A in the simulation environment.

An example is depicted in Figure 5 in which the vertex [p1, d4] (meaning that the
failure detector at p1 responded with d4) is added to the DAG after having received
[p2, d2] and [p3, d3]. The DAG is transitively closed. Thus, every suffix of a path
through the DAG is again a path through the DAG.

Of course, these schedules will always be finite, so they can be used to simulate
only finite runs of A in the simulation environment (this means that A may not
terminate for some processes). But this is not too bad. As long as the processes
continue to exchange information, the DAG becomes larger and larger and provides
more and more simulated terminating runs of A.

When the processes communicate, they send their own version of the DAG to
each other. When receiving such a DAG, a process integrates it into its own DAG
(it forms the union). In this way, the intersection of all correct processes’ DAGs
grows without bound too: without knowing exactly how large it is, the processes
construct an ever-increasing “common sub-DAG”.

[p1, d1]

[p2, d2]

[p3, d3]

[p1, d4]

Fig. 5. Construction of the DAG.

Act 2: The Simulation. Let us forget the point about the common sub-DAG and
the special DAG properties for a moment and just recall that the DAG can be used
to extract stimuli for running A in a simulation environment. So assume that some
process pi has just constructed a new version G of its personal DAG. There are
many paths through G and each path corresponds to an activation schedule for
A. Process pi simply starts a simulation environment for every path through G.
Note that this might be a Herculean task in reality, but we are interested here in
proving the existence of an algorithm, not necessarily an efficient one. Since G is
finite, the number of paths through G is also finite and so we are not demanding
the impossible.

So consider one such path π through G. We will use π to stimulate A in the
simulation environment. But A is an algorithm that solves consensus, and so we
need to provide input values for A. Which ones should we choose? The answer is
simple: do not choose; rather run even more instances of A! So for the path π we
run not one simulation environment, but rather n+1 simulation environments at the
same time. (Remember that n is the number of processes in the system: p1, . . . , pn.)
The initial values given to each of these instances follow a certain pattern: in the
first instance, all processes propose 0; in the second instance, process p1 proposes
1 and all others propose 0; in the third instance, processes p1 and p2 propose 1,
and all others propose 0, etc. In the final (n+ 1)-th instance, all processes propose
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 23

1. The input vectors to the instances are denoted I0, I1, . . . , In, where Ii makes
processes p1 up to pi propose 1 and the rest (processes pi+1 up to pn) propose 0.

To recall: whenever its DAG changes, every process pi runs a simulation environ-
ment for every path through the DAG and for every input vector I0, . . . , In. Each
simulation is run “up to the end”, i.e., until it runs out of activation stimuli from
π found in the current DAG. When all simulations are finished, then pi reconsiders
incoming messages, constructs a new DAG and starts the simulations all over again
from scratch. As mentioned above, this is a lot of work, but it is not impossible.

Act 3: The Tagging. At the end of the simulations (i.e., before constructing a new
DAG and re-starting the simulations again), process pi looks at the results of the
runs of A. In some simulation environments, A might not have terminated since the
length of the input stimulus is not sufficiently large (the emulated processes have not
been activated often enough). But in others, Amight have terminated. In fact, since
correct processes keep on exchanging messages with each other, there is eventually
a path through the DAG in which such processes will appear regularly. So it is just
a matter of waiting long enough, and launching new simulations, until there is some
simulation stimulus that leads A to termination. Since A is a consensus algorithm,
it gives us the decision value for the particular run of the simulation (either 0 or 1).

Process pi now looks at all simulations that started from the same initial input
vector. For example, it considers all simulations that started from I0 and looks
at the decision values of those simulations that have terminated. Of course, the
decision value will be 0 for input vector I0 since all processes proposed 0 and the
decided value must be a proposed value (this is mandated by the validity property
of consensus). Similar for In, only 1 can be decided. But for other input vectors
like I1 and In−1 both 0 and 1 can be the result.

For every input vector I0, . . . , In, pi determines the set of all decided values and
“tags” the input vector with them. An input vector that is only tagged with 0 is
called 0-valent. An input vector tagged only with 1 is called 1-valent. Otherwise, the
input vector is called bivalent. (We disregard the case where none of the simulated
runs decides, i.e., where there are no tags at all attached to an input vector; this
happens only finitely many times.)

Now look at the list of input vectors I0, . . . , In: certainly, and as we pointed
out, I0 is 0-valent, but what about the others? Let us assume that I1 and I2 are
0-valent too, but not all input vectors can be 0-valent because In is 1-valent. This
means that there exists some index i in the sequence of input vectors where Ii−1

is 0-valent and Ii is either 1-valent or bivalent. Index i is called a critical index.
Interestingly, the critical index can be used to make an educated guess about some
correct process in the system.

Act 4: The Stabilization. An important fact to observe now is that there is a time
after which the critical index does not change anymore and this index is the same at
all processes. Since I0 will always remain 0-valent, the critical index cannot decrease
below 1; it will eventually stabilize to a value that is at least 1. Furthermore, all
correct processes doing the simulation will stabilize to the same critical index. This
is because the DAG is the only input to the simulations, and so the DAG alone
inevitably determines the critical index. But as noted earlier, correct processes

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Freiling, Guerraoui, Kuznetsov

exchange and update their views of the DAG periodically, which implies a common
ever-growing sub-DAG of all correct processes. Eventually, the common sub-DAG
will be sufficiently large to allow A to terminate on the stimuli extracted from it.
Hence, all correct processes will “stabilize” on the tags they attach to the input
vectors: for example, if some process tags I3 with 0, then eventually every other
correct process will do the same (this tag is sticky, i.e., it will not vanish). As a
result, once an input vector has become bivalent, it cannot switch back to 1-valent
or 0-valent anymore. So the critical index cannot shift to the right, it can only
shift to the left (toward I0). Moreover, the critical index cannot shift left forever,
it must stop at some point. And this point is eventually computed by every correct
process. So while there is no way for the processes to “know” that their critical
index has stabilized (unless it is 1 of course), stabilization will eventually happen.

Act 5: The Extraction. The final step is now to see what a critical index has to do
with the identity of a correct process. This is maybe the point that is most difficult
to understand, so we start by showing that a critical index has some relation to
a correct process. If you can see that in some cases the critical index gives useful
hints about a correct process, it might be easier for you to believe that it may do
the same in the other (more complicated) cases.

The simple case we consider is, besides the assumption that the stabilization to
a critical index i has taken place, that Ii−1 is 0-valent, and that Ii is 1-valent. The
claim now is that is that pi is a correct process.

Assume by contradiction that pi is faulty. In this case, pi stops participating in
the collective building of the DAG. So at some point, the DAG is being extended
without adding vertexes with respect to pi anymore. Now the special property
of transitive closure of the DAG is important: consider any path π through the
DAG in which pi has stopped to participate. Since at some point pi has stopped
contributing to the DAG, there is a suffix π′ of π in which there is no vertex
regarding pi. Because of transitive closure, π′ is also a path through the DAG.

Because π′ is also a path through the DAG, there must be a simulated run of
A performed with π′ as input stimulus for the input vector Ii. Since we assume
that the critical index has stabilized, Ii remains 1-valent, and so running A on any
extension of π′ results in deciding value 1. To summarize, A has a run c1 in which
processes start from Ii, pi takes no steps at all and the decision value is 1.

Now look at the same stimulus applied to A starting from Ii−1. Since Ii−1 is
0-valent, the outcome of A must be 0. To summarize, A has a run c2 in which
processes start from Ii−1, pi takes no step at all and the decision value is 0. But
from the point of view of all the processes apart from pi, the executions c1 and
c2 are indistinguishable: the only difference is pi’s initial value that changes in
both cases, but no process knows that value as pi takes no step. Algorithm A is
deterministic, so it should yield the same decision value in both cases, which it does
not. This is the contradiction. So pi must be a correct process.

The above line of reasoning shows that there is some non-trivial information
about correct processes in the critical index. We have argued only for the case
when Ii is 1-valent. The case when Ii is bivalent is a little trickier and involves
reasoning about devices called hooks and forks (this is probably the place in the
proof where readers might surrender). We will do some hand waving here and just
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 25

ask the reader to believe that this part of the proof works. For those who still want
to understand this final part of the proof, The appendix A provides a multi-page,
high-level overview over this part of the proof.

The Epilogue. So let us put all CHT pieces together: we are given a distributed
system, a failure detector D, and an algorithm A that uses D to solve consensus.
We design an algorithm T where the processes:

—periodically query D;

—exchange the results in the form of DAGs;

—use the DAGs to locally simulate a large number of runs of A with all possible
input vectors of proposal consensus values (every process runs these simulations,
not necessarily the same set, but eventually every simulation that is done by one
correct process is also performed by all other correct processes);

—use the consensus decisions obtained from these runs to tag the input vectors;

—and finally use these tags to identify a critical index and elect the corresponding
leader process.

To conclude, let us point out some extensions of CHT.

—CHT considers a distributed system model where the processes communicate by
exchanging messages through reliable channels (e.g., in Act 1). The result has
been extended by Lo and Hadzilacos [1994] and Guerraoui and Kouznetsov [2008]
to a distributed system model where the processes communicate through regis-
ters. The result was also revisited in models with more sophisticated shared ob-
jects than registers, first by Neiger [1995], and later by Guerraoui and Kouznetsov
[2008]. With these objects, the weakest failure detector to implement consensus
is strictly weaker than Ω.

—The variant of consensus considered in CHT is sometimes called strong consen-
sus: no process can decide 0 (resp. 1) if they all propose 1 (resp. 0) (this is
fundamental in Act 3). This contrasts a weaker variant of consensus where we
would require only that algorithm A has a run where 1 is decided and a run where
0 is decided. Considering such a weak variant impacts the result as pointed out
by Chandra et al. [1996] and Guerraoui and Kuznetsov [2008].

—Finally, it is important to recall that CHT is only the necessary part of the proof
that Ω is the weakest failure detector for consensus. The sufficient part goes
through exhibiting an algorithm that implements consensus using Ω. Starting
from the original Paxos algorithm by Lamport [1998], multiple variants of such
algorithms have been proposed in the literature [Oki and Liskov 1988; Dwork
et al. 1988; Chandra and Toueg 1996]. All these algorithms assume however a
majority of correct processes, which is indeed necessary if Ω is the only failure
detector available.
Determining the weakest failure detector for consensus without the correct major-
ity assumption has been studied by Delporte-Gallet et al. [2003], and we discuss
it in more detail in Section 3.2.4.

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Freiling, Guerraoui, Kuznetsov

3.2 The weakest Failure Detector for a Register

In this section, we sketch the proof that the quorum failure detector, denoted by Σ,
is the weakest to implement atomic registers, regardless of when and where failures
occur. Σ outputs a set of processes at each process, called quorum, and guarantees
that every quorums (output at any times and by any processes) intersect, and
eventually every output quorum consists of only correct processes.

The result was first obtained by Delporte-Gallet et al. [2003]. An alternative
“CHT-like” proof, based on exchanging failure detector samples and using the sam-
ples as stimuli for locally simulated runs, was later presented by Eisler et al. [2004].
We review here the proof of Eisler et al. [2004], because it employs the simulation
technique discussed in the previous section.

3.2.1 Read/write shared memory. A register is a shared object accessed through
two operations: read and write. The write operation takes as an input parameter
a specific value to be stored in the register and returns a simple indication ok that
the operation has been executed. The read operation takes no parameters and
returns a value according to one of the following consistency criteria. A (single-
writer, multi-reader) safe register ensures only that any read operation that does
not overlap with any other operation returns the argument of the last write oper-
ation. A (stronger) regular register ensures that any read operation returns either
a concurrently written value, or the value written by the last write operation. The
(strongest) atomic register ensures that any operation appears to be executed in-
stantaneously between its invocation and reply time events. (Precise definitions are
given by Herlihy and Wing [1990] and Attiya and Welch [2004].)

The registers we consider are fault-tolerant : they ensure that, despite concurrent
invocations and possible crashes of the processes, every correct process that invokes
an operation eventually gets a reply (a value for the read and an ok indication for
the write).

The classical results [Vitányi and Awerbuch 1986; Israeli and Li 1993] imply
that if a failure detector D is sufficient to implement a safe one-writer one-reader
register for any two processes, then D is sufficient to implement an atomic multi-
writer multi-reader register. Thus, we do not need to specify here whether the
register implemented using D is safe, regular or atomic, and how many readers and
writers it can maintain: all these registers are computationally equivalent.

3.2.2 The sufficiency part. By a simple variation of the algorithm of Attiya
et al. [1995] for implementing registers in a message-passing system with a majority
of correct processes, we obtain an algorithm that implements registers using Σ,
regardless on the number and location of failures. Where the original algorithm
uses waiting until a majority responds to ensure that a read operation returns the
most recently written value, we can use the quorums provided by Σ to the same
effect.

3.2.3 The reduction algorithm. Now we need to show that any failure detector
that can be used to implement registers can be transformed into Σ.

Let D be any failure detector that can be used to implement a set of atomic
registers {Xp}p∈Π, where for every p ∈ Π, Xp can be written by p and read by all
processes. We present an algorithm that, using D, implements Σ.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 27

Initially:
Σ-outputp ← Π { Σ-outputp is the output of p’s module of Σ }

while true do
wait until p adds a new failure detector sample u to its DAG Gp

repeat
let Gp(u) be the subgraph induced by the descendants of u in Gp

S ← set of simulated runs of A induced by Gp(u)
until there is a complete p-solo run R ∈ S
Σ-outputp ← set of all processes that take steps in the run R

Fig. 6. Extracting Σ: code for each process p

To extract Σ, we assign a particular protocol, i.e., a sequence of operations on the
implemented registers, to every process. In this protocol, denoted A, every process
p first writes 1 in Xp, and then reads the registers {Xq}q∈Π (we assume that each
Xq is initialized to 0). A run in which p is the only process that executes A, is
called a p-solo run of A. A p-solo run in which p completes A, is called a complete
p-solo run of A.

It is important to notice that in any run R of A in which two processes p and q
both complete executing A, either p reads 1 in Xq, or q reads 1 in Xp. Intuitively,
this implies that the sets of processes “involved” in the executions of A at p and q
intersect, which gives us a hint of how to extract Σ from A and D.

As in CHT, the reduction algorithm consists of two tasks: the communication
task and the computation task.

The communication task, in which each process p samples its local module of
D, exchanges the failure detector samples with the other processes, and assembles
these samples in an ever-increasing directed acyclic graph Gp, is organized exactly
as in Act 1 of Section 3.1. The computation task, in which p simulates runs of
A and uses these runs to extract its current quorum (the output of its emulated
module of Σ), is presented in Figure 6.

To compute its current quorum, process p first waits until enough “fresh” (not
previously appeared) failure detector samples are collected in Gp. Eventually, Gp

includes a sufficiently long fresh path g that can be used as a stimuli of a complete
p-solo run R (we say that g induces R). The set of processes that take steps in R
constitute the current quorum of p stored in variable Σ-outputp.

The correctness of the reduction algorithm follows immediately from the following
two observations:

(1) Eventually, at every correct process p, Σ-outputp contains only correct pro-
cesses.
Indeed, there is a time after which faulty processes do not produce fresh failure
detector samples and thus do not participate in fresh runs of A simulated by p.

(2) For all p and q, every two quorums computed by p and q in the algorithm of
Figure 6 intersect.
Indeed, assume, by contradiction, that there exist P,Q ⊂ Π such that P∩Q = ∅,
and, at some time t1, p computes Σ-outputp = P and, at some time t2, q

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Freiling, Guerraoui, Kuznetsov

computes Σ-outputq = Q.
By the algorithm of Figure 6, A has a complete p-solo run Rp and a complete
q-solo run Rq such that the sets of processes that participate in Rp and Rq

are disjoint. But since the sets of processes taking part in Rp and Rq are
independent of each other, the two runs can be composed in a single run R
that is indistinguishable from Rp to p, and indistinguishable from Rq to q.
Hence, in R, both p and q complete A in R, i.e., p writes 1 in Xp and then
reads all registers, and q writes 1 in Xq and then reads. Since Rp is a p-solo
run, and p cannot distinguish R and Rp, p reads 0 from register Xq in R.
Respectively, q reads 0 from register Xp in R. But this cannot happen in any
register implementation: at least one of the processes p and q must read 1 in
the register of the other process!
The contradiction implies that Σ-outputp and Σ-outputq always intersect.

Thus, Σ is indeed the weakest failure detector to implement atomic registers.

3.2.4 Solving Consensus in All Environments. Once we determined the weakest
failure detector to implement atomic registers, it is straightforward to determine
the weakest failure detector for solving (uniform) consensus, in all environments,
i.e., regardless of when and where failures occur. This failure detector is (Ω,Σ), the
composition of Ω and Σ.

Indeed, failure detector (Ω,Σ) can be used to solve consensus regardless of when
and where failures occur, by first implementing registers out of Σ, and then con-
sensus out of registers and Ω [Lo and Hadzilacos 1994].

On the other hand, consensus can be used to implement atomic registers [Lamport
1978; Schneider 1990], and thus to extract Σ. Combined with the fact that Ω is
necessary to solve consensus [Chandra et al. 1996] (see Section 3.1), this implies
that (Ω,Σ) is necessary to solve consensus.

Note that the nonuniform version of consensus that only requires correct pro-
cesses to agree cannot be used to implement a register and, thus, does not allow for
extracting Σ. Eisler et al. [2007] determined the weakest failure detector for solving
nonuniform consensus and showed that it is strictly weaker than (Ω,Σ).

3.3 Solving Non-Blocking Atomic Commit

In this section, we discuss the weakest failure detector for solving Non-Blocking
Atomic Commit (NBAC) [Delporte-Gallet et al. 2004]. This failure detector is
(Ψ,FS), the composition of Ψ, introduced by Delporte-Gallet et al. [2004], and
FS, the failure signal failure detector [Charron-Bost and Toueg 2001a; Guerraoui
2002] (see Section 2.2.10 for a definition).

3.3.1 Failure detector Ψ. Roughly speaking, Ψ behaves as follows: For an initial
period of time the output of Ψ at each process is ⊥. Eventually, however, Ψ behaves
either like the failure detector (Ω,Σ) at all processes, or, in case a failure previously
occurred, it may instead behave like the failure detector FS by outputting red at
all processes. The switch from ⊥ to (Ω,Σ) or FS need not occur simultaneously at
all processes, but the same choice is made by all processes. Note that the switch
from ⊥ to FS is allowable only if a failure previously occurred. Furthermore, if
a failure does occur processes are not required to switch from ⊥ to FS; they may
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 29

still switch to (Ω,Σ).

3.3.2 Using (Ψ,FS) to solve NBAC. The algorithm in Figure 7 uses (Ψ,FS)
to solve NBAC, regardless of the location and timing of failures. The algorithm is
very similar to that of Fig. 3. Each process p sends its vote to all processes and
then waits until the votes of all processes are received or FS detects a failure by
outputting red. If the votes of all processes are received and are yes, then p sets the
myproposal variable to 1. Otherwise, if some vote was no or a failure was detected
by FS, then p sets the myproposal variable to 0.

Then each process p waits until the output of Ψ becomes different from ⊥. At
that time, either Ψ starts behaving like FS or it starts behaving like (Ω,Σ). If Ψ
starts behaving like FS (Ψ can do so only if a failure previously occurred), p returns
abort. The remaining case is that Ψ starts behaving like (Ω,Σ). It was shown by
Delporte-Gallet et al. [2003] that there is an algorithm that uses (Ω,Σ) to solve
consensus (see also Sect. 3.2). Therefore, in this case, p proposes myproposal to
that consensus algorithm and returns the value decided by that algorithm. If 1 is
decided in the consensus algorithm, then p returns commit. If 0 is decided, then p
returns abort.

The Agreement property of NBAC follows from the Agreement property of con-
sensus and the fact that the output of Ψ switches uniformly from ⊥ to (Ω,Σ) or
FS at all processes. If there are no failures, then eventually p receives all the votes.
If a failure occurs, then FS eventually outputs red. Hence, the wait statement in
line 2 is non-blocking. The Termination property of consensus ensures that every
correct process eventually decides.

Assume that p decides commit. By Validity of consensus some process q previ-
ously proposed 1. By the algorithm, q received the votes of all processes and all
the votes were yes.

Assume now that p decides abort. Thus, either Ψp output red, i.e., a failure
previously occurred, or the consensus algorithm (Ω,Σ) returned 0. By Validity of
consensus some process q previously proposed 0. If some process q proposed 0, then
either q received vote no from some process or a failure previously occurred and
was detected by FS. In both cases, Validity of NBAC is ensured.

3.3.3 The weakest failure detector to solve NBAC. Intuitively, (Ψ,FS) precisely
captures the semantics of NBAC. Indeed, if all processes propose 1 the only reason
for an NBAC algorithm not to decide commit is a failure of some process. So
repeatedly running the algorithm can be used for “anonymously” detecting failures,
i.e., emulating FS. Further, if processes agree on the fact that a failure previously
occurred, then it is safe for them to return abort (the FS part of failure detector
Ψ). Otherwise, processes must be able to reach agreement using there views of
proposed values (the (Ω,Σ) part of failure detector Ψ).

Let D be any failure detector that solves NBAC, and let A be any algorithm that
solves NBAC using D.

There is a straightforward reduction algorithm that transformsD into FS [Charron-
Bost and Toueg 2001a; Guerraoui 2002]. Initially, at every process, the reduction
algorithm outputs green. Processes run a series of instances of the NBAC algo-
rithm A using D proposing yes in every instance, as long as commit is decided in

ACM Journal Name, Vol. V, No. N, Month 20YY.

30 · Freiling, Guerraoui, Kuznetsov

non-blocking atomic commit(v): { v is yes or no }
1 send v to all
2 wait until [(for each process q in Π, received q’s vote) or FSp = red]
3 if the votes of all processes are received and are yes then
4 myproposal← 1
5 else { some vote was no or there was a failure }
6 myproposal← 0
7 wait until [Ψp 6= ⊥]
8 if Ψp = red
9 then { henceforth Ψ behaves like FS }
10 return abort
11 else { henceforth Ψ behaves like (Ω, Σ) }
12 mydecision← consensusPropose(v) { use Ψ to run (Ω, Σ)-based consensus algorithm }
13 if mydecision = 1 then
14 return commit
15 else
16 return abort

Fig. 7. Using (Ψ,FS) to solve NBAC: code for each process p

every instance. If abort is decided, then the reduction algorithm switches its output
to red. Clearly, red can only be output if a failure previously occurred, and if a
failure occurs, eventually red is permanently output at every correct process.

Showing that D can be transformed into Ψ is based on a rather involved use
of properties of NBAC and the technique of Chandra et al. [1996], and we refer
to Delporte-Gallet et al. [2004] for the description of the corresponding reduction
algorithm.

An immediate corollary to the result of Delporte-Gallet et al. [2004] is that con-
sensus and NBAC are, from the failure detector perspective, incomparable (this
observation was initially made by Charron-Bost and Toueg [2001b] and Guerraoui
[2002]). We can easily show that, in general, (Ω,Σ) and (Ψ,FS) cannot be reduced
to each other. Indeed, in case there is failure (Ψ,FS) can behave like FS and
eventually output red at every correct process. Assuming a system of 3 or more
processes, we can immediately see that Ω cannot be extracted from this informa-
tion about failures, and, thus, consensus cannot be solved. On the other hand, the
output of (Ω,Σ) does not allow for extracting FS: at no point of time (Ω,Σ) can
be used reliably detect that there is at least one failure.

3.4 The Set Agreement Quest and the Hierarchy of Distributed Tasks

The (n, k)-set agreement problem is a generalization of consensus in which n pro-
cesses have to decide on at most k distinct proposed values (for k = 1, the prob-
lem is consensus). This problem is impossible if processes can only communicate
using registers, k processes can crash, and no information about failures is avail-
able [Borowsky and Gafni 1993; Herlihy and Shavit 1999; Saks and Zaharoglou
2000]; the impossibility trivially then also applies also to message-passing systems.
It was conjectured by Raynal and Travers [2006] that Ωk, a generalization of Ω is
the weakest failure detector for solving (n, k)-set agreement using registers, regard-
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 31

less of the failure pattern. Ωk outputs a set of k processes and, eventually, the same
set containing at least one correct process is permanently output at every correct
process. It was shown by Raynal and Travers [2006] that Ωk is sufficient to solve
(n, k)-set agreement. In the proposed algorithm, Ωk serves as an eventual leader
set that eventually imposes at most k decision estimates to the rest of processes.

For the case k = n − 1, the conjecture was later disproved by Guerraoui et al.
[2007] with a failure detector Υ. Υ outputs a non-empty set of processes, and
eventually all correct processes stabilize on the same output set that is not the
set of correct processes. Υ is strictly weaker than Ωn−1 but still strong enough
to solve (n, n − 1)-set agreement. In fact, Υ was shown to be the weakest stable
failure detector to solve (n, n − 1)-set agreement. (A failure detector is stable if
its output eventually stabilizes at every correct process.) Later it was shown that
there are unstable failure detectors that allow to solve (n, n− 1)-set agreement and
are weaker than Υ.

Finally, the weakest failure detector to solve (n, n−1)-set agreement in read-write
shared memory systems was presented by Zielinski [2008]. This failure detector,
denoted by anti-Ω, outputs a process identifier and guarantees that, eventually,
some correct process is never output. A generalization of anti-Ω, anti-Ωk, outputs
a set of n− k processes, and eventually some correct process is never in the output
sets. For the case k = 1, anti-Ωk is equivalent to Ω, the weakest failure detector
for consensus (or (n, 1)-agreement) in read-write shared memory systems [Lo and
Hadzilacos 1994; Guerraoui and Kouznetsov 2008], which brings the conjecture
that anti-Ωk is also the weakest failure detector for solving (n, k)-agreement for
1 < k < n− 1.

Interestingly, the reduction algorithms of Guerraoui et al. [2007] and Zielinski
[2008] do not use the exact specification of set agreement. Indeed, the output
of the desired failure detector is extracted from the very fact that a given fail-
ure detector circumvents some asynchronous impossibility. This provides evidence
for a “folklore” hierarchy of n-process distributed symmetric sub-consensus tasks,
based on the weakest failure detectors needed for solving them. In this context, a
task [Herlihy and Shavit 1999] is a one-shot distributed computing problem which is
defined in terms of inputs with which processes start the computation and outputs
which they produce at the end of it. A task is symmetric if the input-output re-
lation withstands an arbitrary permutation of process identifiers. A sub-consensus
task is weaker than consensus, i.e., can be solved whenever consensus can be solved.
We now explain the main ideas of this hierarchy.

The bottom level (level 0) in this hierarchy is populated by trivial tasks, tasks
that can be solved asynchronously (e.g., (2n − 1)-renaming [Attiya et al. 1990]).
The top level (level n − 1) is populated by universal tasks (e.g., consensus): if
a failure detector solves a universal task, then it solves any task. The weakest
failure detector to solve a universal task is Ω [Chandra et al. 1996; Guerraoui and
Kuznetsov 2008]. Now level ` (` = 1, . . . , n− 2) is defined iteratively as follows. A
task T belongs to level ` if and only if it does not belong to level ` − 1 and any
failure detector that solves a task that does not belong to level ` − 1 also solves
T . Level 1 in the hierarchy is characterized by Zielinski [2008] where (n, n− 1)-set
agreement is shown to be the easiest (in the failure detector sense) non-trivial task

ACM Journal Name, Vol. V, No. N, Month 20YY.

32 · Freiling, Guerraoui, Kuznetsov

and anti-Ω — the corresponding weakest failure detector. Filling the gap between
levels 1 and n − 1 or disproving the conjectured hierarchy is an interesting open
question.

3.5 Summary

Failure detectors are not only a helpful engineering abstraction but induce a hi-
erarchization between problems in distributed computing. If the weakest failure
detector to solve a problem M is strictly weaker than the weakest failure detector
to solve a problem N , then M is (in terms of failure information) strictly easier to
solve than M . Indirectly, this also allows to compare the synchrony requirements
of problems in fault-tolerant computing. We discussed the underlying notion of a
weakest failure detector and presented several examples of weakest failure detector
proofs, starting from the seminal CHT proof of Chandra, Hadzilacos and Toueg.
More examples can be found in the literature [Aguilera. et al. 2000; Eisler et al.
2007; Delporte-Gallet et al. 2005; Zielinski 2007; Guerraoui et al. 2008; Guerraoui
and Kouznetsov 2008; Delporte-Gallet et al. 2008]. Jayanti and Toueg [2008] fixed
several glitches in the original formalism of Chandra et al. [1996]. Specifically, they
slightly revised the original notion of failure detector reduction of Chandra et al.
[1996] by making it reflexive and showed that, strictly speaking, every distributed
computing problem is matched with a corresponding weakest failure detector.

4. CONCLUDING REMARKS

Take the time-free (asynchronous) system model that is usually used when reason-
ing about fault-intolerant distributed algorithms, add the concept of failure detec-
tors, and you get a system model that can be used to reason about fault-tolerant
distributed algorithms. The failure detector abstraction has many virtues as an en-
gineering tool and as a computability benchmark. As we discussed in Sections 2.3
and 3.4, it also has some limitations in expressiveness and many research issues are
left open.

The notion of a failure detector can be extended beyond the crash failure model
(some examples of such extensions are described Section 2.3.2). However, unlike
crash failure detectors discussed in this survey, a generic failure detector should be
aware of the algorithm that each node in the system is supposed to be running.
Thus, generic failure detectors cannot be compared independently of the algorithms
that use them. As a result, it is tricky to give a meaningful definition of the weakest
generic failure detector for a given problem, and it might be difficult to use failure
detectors as a computability benchmark outside the crash failure model. On the
other hand, failure detectors that account for more general classes of failures can
still be an efficient engineering tool [Malkhi and Reiter 1997; Doudou et al. 1999;
Haeberlen et al. 2007].

Acknowledgments

We wish to thank Martin Hutle for comments on a previous version of this paper
and the anonymous reviewers for the constructive feedback.

REFERENCES

Afek, Y. and Nir, I. 2008. Failure detectors in loosely named systems. In PODC. 65–74.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 33

Aguilera, Delporte-Gallet, Fauconnier, and Toueg. 2001. Stable leader election. In Pro-

ceedings of the International Symposium on Distributed Computing (DISC). LNCS.

Aguilera, Delporte-Gallet, Fauconnier, and Toueg. 2003. On implementing omega with

weak reliability and synchrony assumptions. In Proceedings of the ACM Symposium on Prin-
ciples of Distributed Computing (PODC).

Aguilera, M. and Toueg, S. 1998. Failure detection and randomization: A hybrid approach to
solve consensus. SIAM Journal on Computing 28.

Aguilera, M. K., Chen, W., and Toueg, S. 1998. Failure detection and consensus in the crash-

recovery model. In Proceedings of the 12th International Symposium on Distributed Computing

(DISC). 231–245.

Aguilera, M. K., Chen, W., and Toueg, S. 1999. Using the heartbeat failure detector for qui-

escent reliable communication and consensus in partitionable networks. Theoretical Computer
Science 220, 1 (June), 3–30.

Aguilera, M. K., Chen, W., and Toueg, S. 2000a. Failure detection and consensus in the crash
recovery model. Distributed Computing 13, 2 (Apr.), 99–125.

Aguilera, M. K., Chen, W., and Toueg, S. 2000b. On quiescent reliable communication. SIAM
Journal on Computing 29, 6 (Dec.), 2040–2073.

Aguilera., M. K., Chen, W., and Toueg, S. 2000. On quiescent reliable communication. SIAM
J. Comput. 29, 6, 2040–2073.

Aguilera, M. K., Delporte-Gallet, C., Fauconnier, H., and Toueg, S. 2000. Thrifty generic

broadcast. In Proceedings of the 14th International Symposium on Distributed Computing

(DISC). Number 1914 in Lecture Notes in Computer Science. Springer-Verlag, Toledo, Spain,
268–282.

Aguilera, M. K., Le Lann, G., and Toueg, S. 2002. On the impact of fast failure detectors on
real-time fault-tolerant systems. In Proceedings of the International Symposium on Distributed

Computing (DISC). 354–370.

Arora, A. and Kulkarni, S. S. 1998. Detectors and correctors: A theory of fault-tolerance

components. In Proceedings of the IEEE International Conference on Distributed Computing

Systems.

Attiya, H., Bar-Noy, A., and Dolev, D. 1995. Sharing memory robustly in message-passing
systems. Journal of the ACM 42, 1, 124–142.

Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., and Reischuk, R. 1990. Renaming in an
asynchronous environment. J. ACM 37, 3, 524–548.

Attiya, H. and Welch, J. L. 2004. Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). Wiley.

Barborak, M., Dahbura, A., and Malek, M. 1993. The consensus problem in fault-tolerant
computing. ACM Computing Surveys 25, 2 (June), 171–220.

Beauquier, J. and Kekkonen-Moneta, S. 1997. Fault-tolerance and self-stabilization: impos-
sibility results and solutions using self-stabilizing failure detectors. International Journal of

System Science 28, 11, 1177–1187.

Ben-Or, M. 1983. Another advantage of free choice: Completely asynchronous agreement proto-

cols. In Proc. Second Ann. ACM Symp. on Principles of Distributed Computing. 27–30.

Bernstein, P., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Recovery

in Database Systems. Addison-Wesley, Reading, MA.

Borowsky, E. and Gafni, E. 1993. Generalized FLP impossibility result for t-resilient asyn-

chronous computations. In Proceedings of the 25th ACM Symposium on Theory of Computing
(STOC). 91–100.

Brasileiro, F., Greve, F., Mostéfaoui, A., and Raynal, M. 2000. Consensus in one commu-
nication step. Tech. Rep. PI-1321, IRISA, Rennes, France.

Chandra, T. D., Hadzilacos, V., and Toueg, S. 1996. The weakest failure detector for solving
consensus. Journal of the ACM 43, 4 (July), 685–722.

Chandra, T. D. and Toueg, S. 1996. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM 43, 2 (Mar.), 225–267.

ACM Journal Name, Vol. V, No. N, Month 20YY.

34 · Freiling, Guerraoui, Kuznetsov

Chandy, K. M. and Misra, J. 1988. Parallel Program Design: A Foundation. Addison-Wesley,

Reading, MA, Reading, Mass.

Charron-Bost, B., Guerraoui, R., and Schiper, A. 2000. Synchronous system and perfect

failure detector: Solvability and efficiency issues. In International Conference on Dependable
Systems and Networks (IEEE Computer Society).

Charron-Bost, B. and Schiper, A. 2006. The ”heard-of” model: Unifying all benign faults.
Tech. rep., EPFL. June.

Charron-Bost, B. and Toueg, S. 2001a. Unpublished notes.

Charron-Bost, B. and Toueg, S. 2001b. Unpublished notes.

Chaudhuri, S. 1990. Agreement is harder than consensus: set consensus problems in totally

asynchronous systems. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC).

Chen, W., Toueg, S., and Aguilera, M. K. 2000. On the quality of service of failure detectors.
In Proceedings of the International Conference on Dependable Systems and Networks (DSN

2000). IEEE Computer Society Press, New York.

Chu, F. 1998. Reducing Ω to 3W . Information Processing Letters 67, 289–293.

Cristian, F. and Fetzer, C. 1999. The timed asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Systems 10, 6 (June).

Delporte-Gallet, C., Fauconnier, G., and Freiling, F. C. 2005. Revisiting failure detection

and consensus in omission failure environments. In Theoretical Aspects of Computing - ICTAC

2005, Second International Colloquium, Hanoi, Vietnam, D. V. Hung and M. Wirsing, Eds.
Number 3722 in Lecture Notes in Computer Science. Springer-Verlag, 394–408.

Delporte-Gallet, C., Fauconnier, H., and Guerraoui, R. 2003. Shared mem-
ory vs message passing. Tech. Rep. IC/2003/77, EPFL. December. Available at

http://icwww.epfl.ch/publications/.

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., Hadzilacos, V., Kouznetsov, P.,

and Toueg, S. 2004. The weakest failure detectors to solve certain fundamental problems in

distributed computing. In In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC). 338–346.

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., and Kouznetsov, P. 2005. Mutual

exclusion in asynchronous systems with failure detectors. Journal of Parallel and Dustributed

Computing (JPDC) 65, 4 (April), 492–505.

Delporte-Gallet, C., Fauconnier, H., Guerraoui, R., and Tielmann, A. 2008. The weakest

failure detector for message passing set-agreement. In DISC. 109–120.

Dijkstra, E. W. 1974. Self stabilizing systems in spite of distributed control. Communications

of the ACM 17, 11, 643–644.

Dijkstra, E. W., Feijen, W. H. J., and van Gasteren, A. J. M. 1983. Derivation of a termi-
nation detection algorithm for distributed computations. Information Processing Letters 16, 5
(June), 217–219.

Dolev, D., Dwork, C., and Stockmeyer, L. 1987. On the minimal synchronism needed for
distributed consensus. Journal of the ACM 34, 1 (Jan.), 77–97.

Dolev, D., Friedmann, R., Keidar, I., and Malkhi, D. 1997. Failure detectors in omission

failure environments. In Proceedings of the ACM Symposium on Principles of Distributed
Computing, (PODC)e detectors in omission failure environments.

Dolev, S. 2000. Self-Stabilization. MIT Press.

Doudou, A., Garbinato, B., and Guerraoui, R. 2002. Encapsulating failure detection: from
crash to Byzantine failures. In Proceedings of the Int. Conference on Reliable Software Tech-

nologies. Vienna.

Doudou, A., Garbinato, B., and Guerraoui, R. 2005. Tolerating arbitrary failures with state

machine replication. In Dependable Computing Systems: Paradigms, Performance Issues and
Applications, First ed., H. Diab and A. Zomaya, Eds. Addison-Wesley, Reading, MA, Chapter 2.

Doudou, A., Garbinato, B., Guerraoui, R., and Schiper, A. 1999. Muteness failure detectors:
specification and implementation. In In Proceedings of the 3rd European Dependable Computing

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 35

Conference (EDCC 99). Number 1667 in Lecture Notes in Computer Science. Springer-Verlag,

Prague, Czech Republic, 71–87.

Dwork, C., Lynch, N., and Stockmeyer, L. 1988. Consensus in the presence of partial syn-

chrony. Journal of the ACM 35, 2 (Apr.), 288–323.

Eisler, J., Hadzilacos, V., and Toueg, S. 2004. The quorum failure detector and its relation
to consensus and registers. Unpublished note.

Eisler, J., Hadzilacos, V., and Toueg, S. 2007. The weakest failure detector to solve nonuni-

form consensus. Distributed Computing 19, 4, 335–359.

Fetzer, C., Schmid, U., and Süßkraut, M. 2005. On the possibility of consensus in asyn-
chronous systems with finite average response times. In ICDCS. IEEE Computer Society,

271–280.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32, 2 (Apr.), 374–382.

Freiling, F. C. and Völzer, H. 2006. Illustrating the impossibility of crash-tolerant consensus

in asynchronous systems. Operating Systems Review 40, 2, 105–109.

Gafni, E. 1998. Round-by-round fault detectors: Unifying synchrony and asynchrony (extended
abstract). In PODC. 143–152.

Garg, V. K. and Mitchell, J. R. 1998a. Distributed predicate detection in a faulty environment.

In Proceedings of the 18th IEEE International Conference on Distributed Computing Systems
(ICDCS98).

Garg, V. K. and Mitchell, J. R. 1998b. Implementable failure detectors in asynchronous

systems. In Proceedings of the 18th Conference on Foundations of Software Technology and
Theoretical Computer Science. Number 1530 in Lecture Notes in Computer Science. Springer-

Verlag, Chennai, India.

Gärtner, F. C. and Kloppenburg, S. 2000. Consistent detection of global predicates under a
weak fault assumption. In Proceedings of the 19th IEEE Symposium on Reliable Distributed

Systems (SRDS2000). IEEE Computer Society Press, Nürnberg, Germany, 94–103.

Gärtner, F. C. and Pleisch, S. 2001. (Im)Possibilities of predicate detection in crash-affected

systems. In Proceedings of the 5th Workshop on Self-Stabilizing Systems (WSS2001). Number
2194 in Lecture Notes in Computer Science. Springer-Verlag, Lisbon, Portugal, 98–113.

Gärtner, F. C. and Pleisch, S. 2002. Failure detection sequencers: Necessary and sufficient

information about failures to solve predicate detection. In Proceedings of the 16th International
Symposium on DIStributed Computing (DISC 2002), D. Malkhi, Ed. Number 2508 in Lecture

Notes in Computer Science. Springer-Verlag, Toulouse, France, 280–294.

Guerraoui, R. 2000. Indulgent algorithms. In Proceedings of the 19th Annual ACM Symposium
on Principles of Distributed Computing (PODC-00). ACM Press, NY, 289–298.

Guerraoui, R. 2002. Non-blocking atomic commitment in asynchronous systems with failure

detectors. Distributed Computing 15, 1, 17–25.

Guerraoui, R., Herlihy, M., Kouznetsov, P., Lynch, N. A., and Newport, C. C. 2007. On
the weakest failure detector ever. In PODC. 235–243.

Guerraoui, R., Hurfin, M., Mostéfaoui, A., Oliveira, R., Raynal, M., and Schiper, A.
1999. Consensus in asynchronous distributed systems: A concise guided tour. In Advances
in Distributed Systems, S. Krakowiak and S. K. Shrivastava, Eds. Lecture Notes in Computer
Science, vol. 1752. Springer, 33–47.

Guerraoui, R., Kapalka, M., and Kouznetsov, P. 2008. The weakest failure detectors to boost
obstruction-freedom. Distributed Computing 20, 6, 415–433.

Guerraoui, R. and Kouznetsov, P. 2008. Failure detectors as type boosters. Distributed

Computing 20, 5, 343–358.

Guerraoui, R. and Kuznetsov, P. 2008. The gap in circumventing the impossibility of consen-
sus. J. Comput. Syst. Sci. 74, 5, 823–830.

Guerraoui, R. and Schiper, A. 1996. “Gamma-accurate” failure detectors. In Distributed

Algorithms, 10th International Workshop, WDAG ’96, Ö. Babaoglu and K. Marzullo, Eds.
Lecture Notes in Computer Science, vol. 1151. Springer-Verlag, Bologna, Italy, 269–286.

ACM Journal Name, Vol. V, No. N, Month 20YY.

36 · Freiling, Guerraoui, Kuznetsov

Guerraoui, R. and Schiper, A. 1997. Genuine atomic multicast. In Proceedings of the 11th

International Workshop on Distributed Algorithms (WDAG97). Number 1320 in Lecture Notes
in Computer Science. Springer-Verlag, 141–154.

Hadzilacos, V. 1984. Issues of fault tolerance in concurrent computations. Ph.D. thesis, Harvard

University. also published as Technical Report TR11-84.

Hadzilacos, V. and Toueg, S. 1994. A modular approach to fault-tolerant broadcasts and

related problems. Tech. Rep. TR94-1425, Cornell University, Computer Science Department.

May.

Haeberlen, A., Kouznetsov, P., and Druschel, P. 2007. Peerreview: practical accountability
for distributed systems. In Proceedings of the 21st ACM Symposium on Operating Systems

Principles (SOSP). 175–188.

Herlihy, M. and Shavit, N. 1999. The topological structure of asynchronous computability.
Journal of the ACM 46, 6 (November), 858–923.

Herlihy, M. and Wing, J. M. 1990. Linearizability: a correctness condition for concurrent

objects. ACM Transactions on Programming Languages and Systems 12, 3 (June), 463–492.

Hermant, J. and Le Lann, G. 2002. Fast asynchronous uniform consensus in real-time dis-

tributed systems. IEEE Transactions on Computers 51, 8 (Aug.), 931–944.

Hermant, J.-F. and Widder, J. 2005. Implementing reliable distributed real-time systems

with the theta-model. In In Proceedings of the 9th International Conference on Principles of
Distributed Systems (OPODIS 2005).

Hurfin, M., Mostéfaoui, A., and Raynal, M. 1998. Consensus in asynchronous systems where

processes can crash and recover. In Proceedings of the 17th IEEE Symposium on Reliable
Distributed Systems (SRDS’98). IEEE Computer Society Press, West Lafayette, Indiana, 280–

286.

Hurfin, M. and Raynal, M. 1999. A simple and fast asynchronous consensus protocol based on
a weak failure detector. Distributed Computing 12, 4, 209–223.

Hutle, M. and Widder, J. 2005. On the possibility and the impossibility of message-driven self-

stabilizing failure detection. In Self-Stabilizing Systems, 7th International Symposium, SSS
2005, Barcelona, Spain, T. Herman and S. Tixeuil, Eds. Lecture Notes in Computer Science,

vol. 3764. Springer-Verlag, 153–170.

Israeli, A. and Li, M. 1993. Bounded time-stamps. Distributed Computing 6, 4 (July), 205–209.

Jayanti, P. and Toueg, S. 2008. Every problem has a weakest failure detector. In PODC. 75–84.

Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. 2003. Byzantine fault detectors

for solving consensus. The Computer Journal 46, 1.

Lamport, L. 1978. Time, clocks and the ordering of events in a distributed system. Communi-
cations of the ACM 21, 7 (July), 558–565.

Lamport, L. 1998. The part-time parliament. ACM Transactions on Computer Systems 16, 2
(May), 133–169.

Lamport, L., Shostak, R., and Pease, M. 1982. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4, 3 (July), 382–401.

Larrea, M., Fernández, A., and Arévalo, S. 2000. Optimal implementation of the weakest

failure detector for solving consensus. In Proceedings of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS2000). IEEE Computer Society Press, Nürnberg, Germany.

Larrea, M., Fernández, A., and Arv́alo, S. 2000. Eventually consistent failure detectors.

Tech. rep., Universidad Pública de Navarra, Spain. Apr. Presented as a brief announcement at
DISC2000.

Lo, W.-K. and Hadzilacos, V. 1994. Using failure detectors to solve consensus in asynchronous

shared-memory systems (extended abstract). In Proceedings of the 8th International Workshop
on Distributed Algorithms (WDAG94), G. Tel and P. M. B. Vitányi, Eds. Lecture Notes in

Computer Science, vol. 857. Springer-Verlag, Terschelling, The Netherlands, 280–295.

Long, D. D. E., Carroll, J. L., and Park, C. J. 1991. A study of the reliability of Internet
sites. In Proceedings of the 10th IEEE Symposium on Reliable Distributed Systems (SRDS91).

177–186.

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 37

Malkhi, D. and Reiter, M. 1997. Unreliable intrusion detection in distributed computations.

In Proceedings of the 10th Computer Security Foundations Workshop (CSFW97). Rockport,
MA, 116–124.

Matsui, H., Inoue, M., Masuzawa, T., and Fujiwara, H. 2000. Fault-tolerant and self-

stabilizing protocols using an unreliable failure detector. IEICE Transactions E83-D, 10 (Oct.),
1831–1840.

Mittal, N., Freiling, F. C., Venkatesan, S., and Penso, L. D. 2005. Efficient reduction for
wait-free termination detection in a crash-prone distributed system. In DISC. 93–107.

Mostéfaoui, A., Raynal, M., and Travers, C. 2006. Exploring Gafni’s reduction land: From

mega to wait-free adaptive (2p-[p/k])-renaming via k-set agreement. In DISC. 1–15.

Neiger, G. 1995. Failure detectors and the wait-free hierarchy. In Proceedings of the 14th Annual

ACM Symposium on Principles of Distributed Computing (PODC’95). 100–109.

Oki, B. and Liskov, B. 1988. Viewstamped replication: A general primary copy method to

support highly available distributed systems. In Proceedings of the 7th Annual ACM Symposium

on Principles of Distributed Computing (PODC’88). 8–17.

Oliveira, R., Guerraoui, R., and Schiper, A. 1997. Consensus in the crash-recover model.

Tech. Rep. TR-97/239, EPFL – Départment d’Informatique, Lausanne, Switzerland. Aug.

Paxson, V. and Adams, A. 2002. Experiences with NIMI. In Proceedings of the 2002 Symposium
on Applications and the Internet.

Pedone, F. and Schiper, A. 1999. Generic broadcast. In Proceedings of the 13th International
Symposium on Distributed Computing (DISC’99).

Powell, D. 1992. Failure mode assumptions and assumption coverage. In Proceedings of the 22nd

Annual International Symposium on Fault-Tolerant Computing (FTCS ’92), D. K. Pradhan,
Ed. IEEE Computer Society Press, Boston, MA, 386–395.

Raynal, M. 2002. Consensus in synchronous systems: A concise guided tour. In PRDC ’02:

Proceedings of the 2002 Pacific Rim International Symposium on Dependable Computing. IEEE
Computer Society, Washington, DC, USA, 221.

Raynal, M. 2005. A short introduction to failure detectors for asynchronous distributed systems.
SIGACT News 36, 1, 53–70.

Raynal, M. and Travers, C. 2006. In search of the holy grail: Looking for the weakest failure

detector for wait-free set agreement. In OPODIS. 3–19.

Sabel, L. S. and Marzullo, K. 1995. Election vs. consensus in asynchronous systems. Tech.

Rep. TR95-1488, Cornell University, Computer Science Department. Feb.

Saks, M. E. and Zaharoglou, F. 2000. Wait-free k-set agreement is impossible: The topology

of public knowledge. SIAM J. Comput. 29, 5, 1449–1483.

Schiper, A. 1997a. Early consensus in an asynchronous system with a weak failure detector.
Distributed Computing 10, 3, 149–157.

Schiper, A. 1997b. Erratum: Early consensus in an asynchronous system with a weak failure

detector. Distributed Computing 10, 198.

Schlichting, R. D. and Schneider, F. B. 1983. Fail stop processors: An approach to designing

fault-tolerant computing systems. ACM Transactions on Computer Systems 1, 3 (Aug.), 222–
238.

Schneider, F. B. 1990. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Computing Surveys 22, 4 (Dec.), 299–319.

Schneider, F. B. 1993. What good are models and what models are good? In Distributed

Systems, Second ed., S. Mullender, Ed. Addison-Wesley, Reading, MA, Chapter 2, 17–26.

Sergent, N., Défago, X., and Schiper, A. 1999. Failure detectors: implementation issues and
impact on consensus performance. Tech. Rep. SSC/1999/019, École Polytechnique Fédérale de

Lausanne, Switzerland.

Tanenbaum, A. S. 1996. Computer Networks, Third ed. Prentice-Hall, Englewood Cliffs, NJ,

USA.

Turek, J. and Shasha, D. 1992. The many faces of consensus in distributed systems. IEEE

Computer 25, 6 (June), 8–17.

ACM Journal Name, Vol. V, No. N, Month 20YY.

38 · Freiling, Guerraoui, Kuznetsov

Vitányi, P. and Awerbuch, B. 1986. Atomic shared register access by asynchronous hardware.

In Proceedings of the 27th Symposium on Foundations of Computer Science. 233–246.

Völzer, H. 2004. Randomization versus synchronization in distributed systems. In Proceedings
31st Int. Colloquium on Automata, Languages, and Programming (ICALP 2004). Number 3142

in Lecture Notes in Computer Science. Springer Verlag, 1214–1226.

Völzer, H. 2005. On conspiracies and hyperfairness in distributed computing. In Proceedings
of the 19th International Symposium on Distributed Computing, DISC 2005. Number 3724 in

Lecture Notes in Computer Science. Springer-Verlag, 33–47.

Zielinski, P. 2007. Automatic classification of eventual failure detectors. In DISC. 465–479.

Zielinski, P. 2008. Anti-omega: the weakest failure detector for set agreement. In PODC. 55–64.

A. HANDLING A BIVALENT CRITICAL INDEX

In this appendix we fill a gap in the necessity part of CHT (Section 3.1). The
basic question we answer here is the following: how can the identity of a correct
process be determined if, for some stabilized critical index i, the input vector Ii−1 is
0-valent and the vector Ii is bivalent? In contrast to the case studied before (where
Ii was 1-valent), the correct process is not necessarily pi. The proof is slightly more
complicated than before. In fact, the proof for this part needs almost as many
pages (and even more figures) to explain than the entire proof that was presented
up to now. In some sense, we are advising the readers to read this appendix only
if absolutely necessary.

A.1 Simulation Tree

Remember that a process runs a simulation (using the given consensus algorithm
A) for all input vectors and for all paths through the current version of its DAG.
Eventually, (provided the process does not crash) the result of this is a huge set of
simulated runs of A. Let us only consider those runs that start with the (bivalent)
input vector Ii (where i is the critical index). We can combine all of them into a
simulation tree. The root of the tree is the starting configuration. Every edge in the
tree corresponds to a step taken by some process and every vertex corresponds to a
configuration resulting from the steps leading to it. Runs of consensus that “share
a prefix” (i.e., start in the same way) have the same prefix in the tree. Basically,
the tree represents all choices of next steps during the simulation, much like a game
tree in chess for example.

A step consists of three items and is represented as [p,m, d]. The value p denotes
which process executed the step, m identifies which message that process consumed
(if any) and d represents the output of the failure detector during this step. For
example, the simulation tree using the input of the DAG in Fig. 5 could look like
the one depicted in Fig. 8.

Note that there are many more choices that have not been represented in this tree:
for example, the DAG will consist of increasingly many possible samples to choose
from. Also there is a choice of the message m which a process should consume in
the simulation. (In fact, a simulated process can consume an “empty” message in
a step: this models arbitrary message delays.) So one “step” in the DAG offers
multiple choices (and hence path continuations) in the simulation tree.

The individual states of the tree also carry a valency: if in that state the consen-
sus algorithm has terminated with a decision of 0 or 1, then that state is 0-valent
or 1-valent, respectively. For states, in which the consensus algorithm has not yet
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 39

[p3,m3, d3]

[p1,m4, d4]

[p1,m1, d1]

[p1,m4, d4]

[p2,m2, d2]

[p1,m4, d4]

Fig. 8. Possible simulation tree constructed from the DAG in Fig. 5.

s0

(0-valent)
s1

(1-valent)

[pj ,m, d]

s (bivalent)

[pj ,m
′, d′]

Fig. 9. A fork.

terminated, we have the following rule: if a state s has a followup state (a descen-
dant in the tree) which is 1-valent, then s is also 1-valent. Similarly for 0-valent
descendant states. However, if s has both a 1-valent and a 0-valent descendant
state, then s is bivalent. Recall that the starting state of the simulation tree (the
root) must be bivalent.

A.2 Determining a Correct Process: Hooks and Forks

As mentioned before, the correct process is in general not pi anymore (where i is the
critical index) but some other process. The idea is to use here certain patterns in
the simulation tree to identify a correct process. These patterns are called forks and
hooks. In the following, we first look at how hooks and forks allow the processes
to determine a correct process. Then we argue that every simulation tree for Ii
contains at least one hook or one fork which does not vanish. Let us consider forks
first (this is the easier case).

A.2.1 Forks. The picture shown in Fig. 9 identifies a fork. A fork consists of a
bivalent state s from which two different steps by the same process pj are possible
which, on the one hand, lead into a 0-valent state s0 and, on the other hand, to a
1-valent state s1.

ACM Journal Name, Vol. V, No. N, Month 20YY.

40 · Freiling, Guerraoui, Kuznetsov

s1

(1-valent)

s0

(0-valent)

[pj ,m, d]

s (bivalent)

s′

[pj ,m, d]

[pk, . . .]

Fig. 10. A hook.

The point to note now is that if we can find a fork in the simulation tree, then pj

must be a correct process. To see this, assume that pj is faulty. Like in the main
part of this text, we can now exploit a property of the DAG (its transitive closure).
Starting from state s0, there is a continuation π0 in the simulation tree in which
pj never takes a step. Since s0 is 0-valent, the processes decide 0 in π0. Similarly,
starting from state s1 there is a continuation π1 in which pj also does not take any
step, and in which the other processes take exactly the same steps as in π0. Since
s1 is 1-valent, the processes decide 1.

There is a contradiction leaking here: the only difference between π0 and π1 is
the state of pj . But pj is crashed and so processes should come to the same decision
in π0 and π1, not different ones. So pj must be correct.

A.2.2 Hooks. Let us look at hooks now. A hook in the simulation tree has
the structure shown in Fig. 10. It consists of a bivalent state s, a state s′ that is
reached by executing a step of some process pk, and two states s0 and s1 reached
by executing the same step of process pj . Additionally, state s0 must be 0-valent
and s1 must be 1-valent (or vice versa; the order does not matter here).

If we can find a hook in the simulation tree, then we are done: in this case, pk is
a correct process. The reason for this can be derived by similar arguments as in the
case of a fork: if pk were faulty, then we could construct extensions of s0 and s1 in
which pk takes no step, but where all other processes take the same steps. Hence,
they should reach the same decision. But the valencies of s0 and s1 are different —
a contradiction! So pk must be correct.

A.3 Existence of Hooks and Forks

If we have found a hook or a fork in the simulation tree, then we are lucky: we
can extract the common correct leader. If there are many hooks and forks in the
simulation tree, then we need to prevent different processes from looking at different
hooks and outputting different values. This is done by defining the notion of a
“first” hook or fork. Basically this is possible since the vertexes of the simulation
are countable: the processes can then select the hook or fork with the “smallest”
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 41

s := 〈root of simulation tree〉
while true do

j := 〈choose the next correct process in a round robin fashion〉
m := 〈choose the oldest message for process pj〉
if 〈s has descendant s′ (possibly s = s′) such that, for some d,

s′ extended with [pj ,m, d] is a bivalent vertex of the tree 〉
then s := s′ extended with [pj ,m, d]

else exit
end

Fig. 11. Finding a hook or a fork.

s′

univalent state

s (bivalent)consume m here
pj does not

[pj ,m, ∗]

Fig. 12. Process pj takes a step at descendant s′.

root state s and extract from it the leader.
But what if all newly computed hooks or forks disappear from the simulation

tree and never re-appear? In fact, this cannot happen. Eventually, and as we argue
below, there will be a hook or fork in the simulation tree that does not go away.
Take an infinite bivalent simulation tree. We consider a hypothetical algorithm
that goes through the simulation tree (see Fig. 11). The algorithm terminates only
when a hook or a fork has been found.

Basically the algorithm locates a fair path through the simulation tree, i.e., a
path in which all correct processes get scheduled infinitely often and every message
sent to a correct process is eventually consumed. Additionally, this fair path goes
through bivalent states only.

There are two questions to ask now: (1) Does this algorithm always terminate?
(2) If it terminates, where is the hook or the fork?

A.3.1 Terminating the Infinite Simulation Tree. Suppose, by contradiction, that
the algorithm does not terminate. That is, we can locate an infinite path in the
simulation tree that goes through bivalent states only. Moreover, the path corre-
sponds to a fair run of the consensus algorithm A: every correct process takes an
infinite number of steps in the run and eventually receives every message sent to
it. Note that a state in which some process decides a value v ∈ {0, 1} cannot be
bivalent, otherwise the agreement property of consensus would be violated. In this
case, we end up with a fair run of algorithm A in which no process ever decides: a
contradiction with the termination property of consensus.

ACM Journal Name, Vol. V, No. N, Month 20YY.

42 · Freiling, Guerraoui, Kuznetsov

univalent state

s (bivalent)

[pj ,m, ∗]

Fig. 13. Simplified tree of Fig. 12.

s (bivalent)

s0

(0-valent)

[pj ,m, d
′]

Fig. 14. Subtree containing 0-valent state s0.

s (bivalent)

s0

(0-valent)
s′ (1-valent)

[pj ,m, d
′]

Fig. 15. Subtree containing 0-valent state s0 and 1-valent state s′.

A.3.2 Identifying a Fork or a Hook. So we have seen that at some point the
algorithm terminates. What condition holds at that point? To find out, we simply
have to negate the condition of the if statement. The negation reads as follows:
state s has no descendant in the tree in which pj takes a step consuming message m
and where the resulting state is bivalent. In other words, any step of pj consuming
message m brings any descendant of s (including s itself) to either a 1-valent or a
0-valent state. Let us look at some extension of s in which pj takes a step at some
descendant s′. The situation is depicted in Fig. 12. Since the descendant can be
state s itself, the structure shown in Fig. 13 is also a legal tree.

Without loss of generality, we assume that some step [pj ,m, d
′] brings s to a

0-valent state. That is, our simulation tree contains the subtree shown if Fig. 14.
ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 43

s (bivalent)

s0

(0-valent)
s′ (1-valent)

s1

(1-valent)

[pj ,m, d
′]

[pj ,m, d]

Fig. 16. Applying pj ’s step to s or s′.

s (bivalent)

s0

(0-valent)
s′′

s1

(1-valent)

s′ (1-valent)

[pj ,m, d
′]

[pj ,m, d]

Fig. 17. Approaching a hook or fork.

Since s is a bivalent state, it must have some descendant s′ that is 1-valent. This is
shown in Fig. 15. Let us assume that pj takes no step between s and s′ in which it
consumes message m. This means that m is still unconsumed in state s′ and some
step of the form [pj ,m, d] is applicable there. Since s′ is 1-valent, the step [pj ,m, d]
applied to s′ results in a 1-valent state. The resulting situation is shown in Fig. 16.

We can also come up with a situation like this even if pj takes a step between
ACM Journal Name, Vol. V, No. N, Month 20YY.

44 · Freiling, Guerraoui, Kuznetsov

s (bivalent)

(0-valent)

s1

(1-valent)

[pj ,m, d]

s′′′

[pj ,m, d
′]

s0

Fig. 18. Where is the hook or fork?

s and s′ in which it consumes m. So assume that pj takes a step consuming m
in some intermediate state, say, s′′, on the path from s to s′. The resulting state
cannot be 0-valent. Why? Because we know that s′ is 1-valent, and so the resulting
state must be at least bivalent! But it cannot be bivalent because the termination
condition of the algorithm which identified s disallowed bivalent followup states of
actions of pj . So overall the situation then looks like the one depicted in Fig. 17.
In both cases, our simulation tree contains the subtree shown in Fig. 18 where s′′′

is either s′ or s′′.
We claim that within the structure depicted in Fig. 18 there must be a fork or a

hook somewhere. The argument is quite simple: the path between s and s′′′ consists
of a finite sequence of steps e1, e2, . . . , em. Since pj does consume m between s and
s′′′, the very same step [pj ,m, d] can be applied in the first state following s on the
way to s′′′, i.e., after executing step e1. Similarly, it can be applied after executing
step e1 and e2. In fact, it can be executed in every state on the way from s to s′′′.
We denote the corresponding intermediate states by σ0 = s, σ1, . . . , σm−1, σm = s′′′

(see Fig. 19).
The important point here is to see that, for any k = 0, . . . ,m, the step [pj ,m, d]

applied to σk results in a 0-valent or a 1-valent state. This is because the algorithm
that identified s terminated and the termination condition stated that there is no
descendant of s that is bivalent after applying that ominous step of pj .

Let k ∈ {0, . . . ,m} be the lowest index such that [pj ,m, d] brings σk to a 1-valent
state. We know that such an index exists, since s1 is 1-valent and all such resulting
states are either 0-valent or 1-valent.

Now we have the following two cases to consider: (1) k = 0, and (2) k > 0.
Let us assume that k = 0, i.e., [pj ,m, d] applied to s brings it to a 1-valent state.

But we know that there is a step [pj ,m, d
′] that brings s to a 0-valent state. A fork

is located! As a result, we identified pj as a correct process.
If k > 0, we have the situation shown in Fig. 20. That’s a hook! If ek was

ACM Journal Name, Vol. V, No. N, Month 20YY.

The Failure Detector Abstraction · 45

s1

(1-valent)

[pj ,m, d]

[pj ,m, d]

σm = s′′′

σ0 = s (bivalent)

e1

em

σ1

σm−1

Fig. 19. Finding a fork.

[pj ,m, d]

[pj ,m, d]

σk−1

ek

σk

(0-valent)

(1-valent)

Fig. 20. A hook is found.

executed by process pk, then we have identified pk as a correct process following
the argument about hooks above.

Thus, a bivalent infinite simulation tree has at least one finite subtree that allows
us to compute a single correct process.

ACM Journal Name, Vol. V, No. N, Month 20YY.

