
Highly Concurrent Data Structures// Joint project Telecom
ParisTech/EPFL

Goals: Design of highly-concurrent data structures.

Tools: Logic, algorithmic reasoning, programming.

Prerequisites: Some maturity in math and algorithms, (optionally) basic concurrent program-
ming skills.

Synchronization involves resolving data races, informally, resolving the conflicts about who goes
first in accessing a shared resource, which may not scale with the number of processes. As an
extreme example, imagine a computational task that has a “parallelizable part” (captured by a
fraction p) that can be split at an arbitrary number of parallel sub-tasks and a “sequential part”
(fraction 1 − p) that can only be solved by a single process. The resulting speedup capturing how
much faster n processes will solve the task compared to one process is then 1/(1− p+ p/n). Thus,
no matter how many processes we can use, the speedup will be upper-bounded by 1/(1 − p).

(a) (b) (c)

Figure 1: Amdahl’s law in action. How can three people paint three walls? No problem if the walls are of equal
size and the workers are of equal skills (1(a)), but quite problematic when the work is not equally distributed (1(b))
and synchronization among them is required (1(c)).

This observation, known as ’Amdhal’s law’ (after Gene Amdhal), suggests that to efficiently
exploit the parallel-processing abilities of modern computing systems, it is crucial to minimize the
synchronization costs, even in presence of failures and asynchrony (unavoidable in real systems).

Designing highly concurrent data structures, such as lists, sets, directories, etc., is therefore
believed to be a very important challenge that is, however, not easy to meet.

In this work we aim at designing data structures that provide optimal concurrency. What does
it mean? Informally, a data structure that accepts every concurrent schedule, i.e., every possible
interleaving of memory accesses of concurrent threads is called concurrency-optimal. Interestingly,
the criterion of concurrency-optimality [1] is not exactly orthogonal to the choice of synchronization
techniques. We observe, for example, that pessimistic (conservative) lock-based synchronization is
inherently sub-optimal, as it must sometimes conservatively grab locks on the elements of a data



structure in order to avoid inconsistencies in the future. Similarly, strongly consistent transac-
tional synchronization aims at serializabiliy of high-level concurrent operations (such as updates
or lookups on a dictionary) even when certain operations do not conflict and, thus, may execute
correctly in parallel.

As the first step, we consider linked-list-based implementations of a set object, a convenient
abstraction in concurrent programming. We observe that know to be the most efficient imple-
mentations to date [2–4] are not concurrency-optimal, as they reject certain potentially correct
schedules. Would we be able to devise a more concurrent implementation? And, if yes, would not
the intrinsic synchronization overhead be harmful for the performance gains?

The project is maintained in collaboration with the Distributed Programming Lab, EPFL (Prof.
R. Guerraoui, http://lpd.epfl.ch).

Contact

Prof. Petr Kuznetsov
http://www.infres.enst.fr/~kuznetso/

petr.kuznetsov@telecom-paristech.fr

INFRES, Télécom ParisTech
Office C213-2, 46 Rue Barrault

References

[1] V. Gramoli, P. Kuznetsov, and S. Ravi. Optimism for boosting concurrency. CoRR,
abs/1203.4751, 2012. http://arxiv.org/abs/1203.4751.

[2] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In DISC, pages 300–314,
2001.

[3] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit. A lazy concurrent
list-based set algorithm. In OPODIS, pages 3–16, 2006.

[4] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. In SPAA,
pages 73–82, 2002.

2


