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1. Introduction

In 1926, Gilbert Keith Chesterton published a novel “The Return of Don Quixote” reflecting the advanc-
ing industrialization of the Western world, where mass production started replacing personally crafted
goods. One of the novel’s characters, soon to be converted in a modern version of Don Quixote, says:

”All your machinery has become so inhuman that it has become natural. In becoming a
second nature, it has become as remote and indifferent and cruel as nature. ... You have
made your dead system on so large a scale that you do not yourselves know how or where it
will hit. That’s the paradox! Things have grown incalculable by being calculated. You have
tied men to tools so gigantic that they do not know on whom the strokes descend.”

Since mid-1920s, we made a huge progress in ’dehumanizing’ machinery, and computing systems are
among the best examples. Indeed, modern large-scale distributed software systems are often claimed to
be the most complicated artifacts ever existed. This complexity triggers a perspective on them as natural
objects. This is, at the very least, worrying. Indeed, given that our daily life relies more and more upon
computing systems, we should be able to understand and control their behavior.

In 2003, almost 80 years after the Chesterton’s book was published, Leslie Lamport, in his invited
lecture “Future of Computing: Logic or Biology”, called for a reconsideration of the general perception
of computing:

”When people who can’t think logically design large systems, those systems become in-
comprehensible. And we start thinking of them as biological systems. And since biological
systems are too complex to understand, it seems perfectly natural that computer programs
should be too complex to understand.

We should not accept this. ”

In this book, we intend to support this point of view by presenting a consistent collection of basic
comprehensive results in computing, and more specifically, in an important branch of it called concurrent
computing. Concurrent computing systems are treated here as logical entities, namely algorithms, with
clears goals and strategies.

1.1. A broad picture: the concurrency revolution

The field of concurrent computing has gained a huge importance after major chip manufacturers have
switched their focus from increasing the speed of individual processors to increasing the number of
processors on a chip. The good old days where nothing needed to be done to boost the performance
of programs, besides changing the underlying processors, are over. A single-threaded application can
exploit at most 1/100 of the potential throughput of a 100-core chip. To exploit multicore architectures,
programs have to be executed in a concurrent manner. The algorithms have to be designed with a large
number of threads (also called processes) and we need to make sure that their concurrent accesses to
shared data do not create inconsistencies.

The computer industry is thus calling for a software revolution: the concurrency revolution. This
might look surprising at first glance for the very idea of concurrency is almost as old as computer science.
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In fact, the revolution is more than about concurrency alone: it is about concurrency for everyone.
Concurrency is going out of the small box of specialized programmers and is conquering the masses
now. Somehow, the very term ”concurrency” itself captures this democratization: we used to talk about
”parallelism”. Specific kinds of programs designed by specialized experts to clearly involve independent
tasks were deployed on parallel architectures. The term ”concurrency” better reflects a wider range of
programs where facts that the tasks executing in parallel compete for shared data is the norm rather than
the exception. But designing and implementing such programs in a correct and efficient manner is not
trivial.

A major challenge underlying the concurrency revolution is to come up with a library of abstractions
that programmers can use for general purpose concurrent programming. Ideally, such library should
both be usable by programmers with little expertise in concurrent programming as well as by advanced
programmers who master how to leverage multicore architectures. The ability of these abstractions to
be composed is of key importance, for an application is typically the result of assembling independently
devised pieces of code.

The aim of this book is to study how to define and build such abstractions. We will focus on those that
are considered (a) the most difficult to get right and (b) having the highest impact on the overall perfor-
mance of a program: synchronization abstractions, also called shared objects or sometimes concurrent
data structures.

1.2. The topic: shared objects

In concurrent computing, a problem is solved through several threads (processes) that execute a set of
tasks. In general, and except in so called ”embarrassingly parallel” programs, i.e., programs that solve
problems that can easily and regularly be decomposed into independent parts, the tasks usually need
to synchronize their activities by accessing shared constructs, i.e., these tasks depend on each other.
These typically serialize the threads and reduce parallelism. According to Amdahl’s law [4], the cost
of accessing these constructs significantly impacts the overall performance of concurrent computations.
Devising, implementing and making good usage of such synchronization elements usually lead to intri-
cate schemes that are very fragile and sometimes error prone.

Every multicore architecture provides synchronization constructs in hardware. Usually, these con-
structs are “low-level” and making good usage of them is not trivial. Also, the synchronization constructs
that are provided in hardware differ from architecture to architecture, making concurrent programs hard
to port. Even if these constructs look the same, their exact semantics on different machines may also
be different, and some subtle details can have important consequences on the performance or the cor-
rectness of the concurrent program. Clearly, coming up with a high-level library of synchronization
abstractions that could be used across multicore architectures is crucial to the success of the multicore
revolution. Such a library could only be implemented in software for it is simply not realistic to require
multicore manufacturers to agree on the same high-level library to offer to their programmers.

We assume a small set of low-level synchronization primitives provided in hardware, and we use these
to implement higher level synchronization abstractions. As pointed out, these abstractions are supposed
to be used by programmers of various skills to build application pieces that could themselves be used
within a higher-level application framework.

The quest for synchronization abstractions, i.e., the topic of this book, can be viewed as a continuation
of one of the most important quests in computing: programming abstractions. Indeed, the History of
computing is largely about devising abstractions that encapsulate the specifities of underlying hardware
and help programmers focus on higher level aspects of software applications. A file, a stack, a record,
a list, a queue and a set, are well-known examples of abstractions that have proved to be valuable in
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traditional sequential and centralized computing. Their definitions and effective implementations have
enabled programming to become a high-level activity and made it possible to reason about algorithms
without specific mention of hardware primitives.

In modern computing, an abstraction is usually captured by an object representing a server program
that offers a set of operations to its users. These operations and their specification define the behavior of
the object, also called the type of the object.

The way an abstraction (object) is implemented is usually hidden to its users who can only rely on
its operations and their specification to design and produce upper layer software, i.e., software using
that object. The only visible part of an object is the set of values in can return when its operations are
invoked. Such a modular approach is key to implementing provably correct software that can be reused
by programmers in different applications.

The abstractions we study in this book are shared objects, i.e., objects that can be accessed by con-
current processes, typically running on independent processors. That is, the operations exported by
the shared object can be accessed by concurrent processes. Each individual process accesses however
the shared object in a sequential manner. Roughly speaking, sequentiality means here that, after it has
invoked an operation on an object, a process waits to receive a reply indicating that the operation has
terminated, and only then is allowed to invoke another operation on the same or a different object. The
fact that a process p is executing an operation on a shared object X does not however preclude other
processes q from invoking an operation on the same object X .

The objects considered have a precise sequential specification. called also its sequential type, which
specifies how the object behaves when accessed sequentially by the processes. That is, if executed in a
sequential context (without concurrency), their behavior is known. This behavior might be deterministic
in the sense that the final state and response is uniquely defined given every operation, input parameters
and initial state. But this behavior could also be non-deterministic, in the sense that given an initial state
of the object, and operation and an input parameter, there can be several possibilities for a new state and
response.

To summarize, this book studies how to implement, in the algorithmic sense, objects that are shared
by concurrent processes. Strictly speaking, the objective is to implement object types but when there
is no ambiguity, we simply say objects. In a sense, a process represents a sequential Turing machine,
and the system we consider represents a set of sequential Turing machines. These Turing machines
communicate and synchronize their activities through low-level shared objects. The activities they seek
to achieve consist themselves in implementing higher-level shared objects. Such implementations need
to be correct in the sense that they typically need to satisfy two properties: linearizability and wait-
freedom. We now overview these two properties before detailing them later.

1.3. Correctness (Part I): Linearizability

In short, linearizability says that, despite concurrency among (processes invoking) operations of an
object, these should appear as if they were executed sequentially. Two concepts are important here. The
first is the notion of appearance, which, as we already pointed out, is related to the values returned by
an operation: these values are the only way through which the behavior of an object is visible to the
users of that object, i.e., the applications using that object. The second is the notion of sequentiality
which we also discussed earlier. Namely, The operations issued by the processes on the shared objects
should appear, according to the values they return, as if they were executing one after the other. Each
operation invocation op on an object X should appear to take effect at some indivisible instant, called
the linearization point of that invocation, between the invocation and the reply times of op.

In short, linearizabiliy delimits the scope of an object operation, namely what it could respond in a
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concurrent context, given the sequential specification of that object.
This property, also sometimes called atomicity, transforms the difficult problem of reasoning about

a concurrent system into the simpler problem of reasoning about a sequential one where the processes
access each object one after the other.

Linearizability constraints the implementation of the object but simplifies its usage on the other hand.
To program with linearizable objects, also called atomic objects, the developer simply needs the sequen-
tial specification of each object, i.e., its sequential type.

Most interesting synchronization problems are best described as linearizable shared objects. Exam-
ples of popular synchronization problems are the reader-writer and the producer-consumer ones. In the
reader-writer problem, the processes need to read or write a shared data structure such that the value read
by a process at a given point in time t is the last value written before t. Solving this problem boils down
to implementing a linearizable object exporting read() and write() operations. Such an object type is
usually called a linearizable, an atomic read-write variable, or a register. It abstracts the very notions of
shared file and disk storage.

In the producer-consumer problem, the processes are usually split into two camps: the producers
which create items and the consumers which use the items. It is typical to require that the first item
produced is the first to be consumed. Solving the producer-consumer problem boils down to imple-
menting a linearizable object type, called a FIFO queue (or simply a queue) that exports two operations:
enqueue() (invoked by a producer) and dequeue() (invoked by a consumer).

Other exemples include for instance counting, where the problem consists in implementing a shared
counter, called FAI Fetch-and-Increment. Processes invoque this object to increment the value of the
counter and get the current value.

1.4. Correctness (Part II): Wait-freedom

Wait-freedom basically says that processes should not prevent each other from performing operations
and obtaining corresponding responses. More specifically, no process p should ever prevent any other
process q from making progress, i.e., obtaining responses to q’s operations, provided q remains alive and
kicking. A process q should be able to terminate each of its operations on a shared objectX despite speed
variations or the failure of any other process p. Process p could be very fast and might be permanently
accessing shared object X , or could have been swapped out by the operating system while accessing X .
None of these situations should prevent q from completing its operation.

Wait-freedom conveys the robustness of an implementation. It is a liveness, also called a progress,
property.

Wait-freedom transforms the difficult problem of reasoning about a failure-prone system where pro-
cesses can be arbitrarily delayed or speeded up, into the simpler problem of reasoning about a system
where every process progresses at its own pace and runs to completion.

In other words, wait-freedom says that the process invoking the operation on the object should obtain
a response for the operation, in a finite number of its own steps, independently of concurrent steps from
other processes. The notion of step, as we will discuss later, means here a local instruction of the process,
say updating a local variable, or an operation invocation on a base object (low-level object) used in the
implementation.

Ensuring linearizability alone or wait-freedom alone is simple. A trivial wait-free implementation
could return arbitrary responses to each operation, say some value corresponding to some initial state of
the object. This would satisfy wait-freedom as no process would prevent other processes from progress-
ing. However, the responses would no satisfy linearizability.

Also, one could ensure linearizability using a basic mutual exclusion mechanism so that every opera-
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tion on the implemented object is performed in an indivisible critical section. Some traditional synchro-
nization schemes rely indeed on mutual exclusion (usually based on some locking primitives): critical
shared objects (or critical sections of code within shared objects) are accessed by processes one at a time.
No process can enter a critical section if any other process is in that critical section. We also say that a
process has acquired a lock on that object (resp., critical section). Linearizability is then automatically
ensured if all related variables are protected by the same critical section. This however significantly
limits the parallelism and thus the performance of the program, unless the program is devised with min-
imal interference among processes. Mutual exclusion hampers progress since a process delayed in a
critical section prevents all other processes from entering that critical section. In other words, it violates
wait-freedom. Delays could be significant and especially when caused by crashes, preemptions and
memory paging. For instance, a process paged-out might be delayed for millions of instructions, and
this would mean delaying many other processes if these want to enter the critical section held by the
delayed process. With modern architectures, we might be talking about one process delaying hundreds
of processors, making them completely idle and useless.

Sometimes, as we shall see, wait-freedom is considered very expensive. We will study other, weaker
lock-free implementations, which also provide an alternative to mutual exclusion-based implementa-
tions.

1.5. Reducibility of Algorithms

As explained, this book studies how to wait-free implement high-level atomic objects out of more prim-
itive base objects. The notions of high and primitive being of course relative as we will see. It is also
important to notice that the term implement is to be considered in an abstract manner; we will describe
the concurrent algorithms in pseudo-code. There will not be any C or Java code in this book. A concrete
execution of these algorithms would need to go through a translation into some programming language.

An object to be implemented is typically called high-level, in comparison with the objects used in the
implementation, considered at a lower-level. It is common to talk about emulations of the high-level
object using the low-level ones. Unless explicitly stated otherwise, we will by default mean wait-free
implementation when we write implementation, and atomic (linearizable) object when we write object.

It is often assumed that the underlying system provides some form of registers as base objects. These
provide the abstraction of read-write storage elements. Message-passing systems can also, under certain
conditions, emulate such registers. Sometimes the base registers that are supported are atomic but
sometimes not. As we will see in this book, there are algorithms that implement atomic registers out of
non-atomic base registers that might be provided in hardware.

Some multiprocessor machines also provide objects that are more powerful than registers like test&set
objects or compare&swap objects. These are more powerful in the sense that the writer process does
not systematically overwrite the state of the object, but specifies the conditions under which this can be
done. Roughly speaking, such conditional update enables more powerful synchronization schemes than
with a simple register object. We will capture the notion of “more powerful” more precisely later in the
book.

In its abstract form, the question we address in this book, namely of implementing high-level objects
using lower level objects, can be stated as a general reducibility question. Given two object types X1
and X2, can we implement X2 using any number of instances of X1 (we simply say “using X1”)?
In other words, is there an algorithm that implements X2 using X1? In the case of concurrent com-
puting, “implementing” typically assumes providing linearizability and wait-freedom. These notions
encapsulate the smooth handling of concurrency and failures.

When the answer to the reducibility question is negative, and it will be for some values ofX1 andX2,
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it is also interesting to ask what is needed (under some minimality metric) to add to the low-level objects
(X1) in order to implement the desired high-level object (X2). For instance, if the base objects provided
by a given multiprocessor machine are not enough to implement a particular object in software, knowing
that extending the base objects with another specific object (or many of such objects) is sufficient, might
give some useful information to the designers of the new version of the multiprocessor machine in
question. We will see examples of these situations.

1.6. Organization

The book is organized in an incremental way, starting from very basic objects, then going step by step
to implementing more and more sophisticated and powerful objects.

1. We start by defining precisely the very notions of linearizability and wait-freedom. In order to
do so, we define the concepts of histories, modeling executions, as well as what it means for a
history to be linearizable. Then we distinguish the notions of low-level and high-level histories
and introduce progress properties. In particular, we define the concept of wait-freedom.

2. We then study how to implement linearizable read-write registers out of non-linearizable base
registers, i.e., registers that provide weaker guarantees than linearizability. Furthermore, we show
how to implement registers that can contain values from an arbitrary large range, and be read
and written by any process in the system, starting from single-bit (containing only 0 or 1) base
registers, where each base register can be accessed by only one writer process and only one reader
process. Many of these algorithms are simple but contain fundamental ideas that we encouter
when implementing more sophisticated objects.

3. We then discuss how to use registers to implement seemingly more sophisticated objects like
snapshot objects. In short, a snapshot captures the entire state of a system of processes. When such
an object is atomic, it conveys an instantaneous picture of the state of the system. Implementing it
in a wait-free manner is not trivial and we will present algorithmic techniques, that are interesting
by themselves, to achieve that. We will also discuss various forms of emphsnapshots and what
algorithmic schemes are needed to implement them.

4. We will then turn to explain the inherent limitation of registers in implementing more powerful
objects like queues or stacks. This limitation is highlighted through the seminal consensus im-
possibility result. In short, not subset of at least two processes can, using only registers, wait-free
implement the consensus object, and as a corollary, can implement objects like queues or stacks.
This result is a central one in concurrent and distributed computing and we will present it in a
detailed manner.

5. We then discuss the importance of consensus as an object type, by proving its universality. In
particular, we describe a simple algorithm that uses registers and consensus objects to implement
any other object. We then turn to the question of how to implement a consensus object from other
objects. We describe an algorithm to implement a consensus object in a system of two processes,
using registers and either a test&set or a queue objects, as well as an algorithm that implements a
consensus object using a compare&swap object in a system with an arbitrary number of processes.
The difference between these implementations is highlighted to introduce the notion of consensus
number.

6. We then study a complementary way of achieving universality: using registers and specific oracles
that reveal certain information about the operational status of the processes. Such oracles can be
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viewed as failure detectors providing information about which process are operational and which
processes are not. We discuss how even an oracle that is unreliable most of time can help devise
a consensus algorithm and hence achieve universality. We also discuss the implementation of
such an oracle assuming that the computing environment satisfies additional assumptions about
the scheduling of the processes. This may be viewed as a slight weakening of the wait-freedom
requirement which requires progress no matter how processes interleave their steps.

1.7. Bibliographical notes

The fundamental notion of abstract object type has been developed in various textbooks on the theory or
practice of programming. Early works on the genesis of abstract data types were described in [19, 53,
60, 59]. In the context of concurrent computing, one of the earliest work was reported in [15, 58]. More
information on the history concurrent programming can be found in [13].

The concept of register (as considered in this book) and its formalization are due to Lamport [49]. A
more hardware-oriented presentation was given in [57]. The notion of atomicity has been generalized
to any object type by Herlihy and Wing [40] under the name linearizability. The concept of snapshot
object has been introduced in [1]. A theory of wait-free atomic objects was developed in [43].

The classical (non-robust) way to ensure linearizability, namely through mutual exclusion, has been
introduced by Dijkstra [22]. The problem constituted a basic chapter in nearly all textbooks devoted to
operating systems. There was also an entire monograph solely devoted to the mutual exclusion problem
[63]. Various synchronization algorithms are also detailed in [66].

The property of wait-free computation originated in the work of Lamport [45], and was then explored
further by Peterson [62]. It has then been generalized and formalized by Herlihy [34].

The consensus problem was introduced in [61]. Its impossibility in asynchronous message-passing
systems prone to process crash failures has been proved by Fischer, Lynch and Paterson in [27]. Its
impossibility in shared memory systems was proved in [55]. The universality of the consensus problem
and the notion of consensus number were investigated in [34].

The concept of failure detector oracle has been introduced by Chandra and Toueg [16]. A survey to
failure detectors can be found in [28].
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Part I.

Correctness
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2. Linearizability

2.1. Introduction

Linearizabiliy is a metric of the correctness of a shared object implementation. It addresses the question
of what values can be returned by an object that is shared by concurrent processes. If an object returns
a response, linearizability says whether this response is correct or not.

The notion of correctness, as captured by linearizability, is defined with respect to how the object is
expected to react when accessed sequentially: this is called the sequential specification of the object.
In this sense, the notion of correctness of an object, as captured by linearizability, is relative to how the
object is supposed to behave in a sequential world.

It is important to notice that linearizability does not say when an object is expected to return a re-
sponse. As we will see later, the complementary to linearizability is the wait-freedom property, another
correctness metric that captures the fact that an object operation should eventually return a response (if
certain conditions are met).

To illustrate the notion of linearizability, and the actual relation to a sequential specification, consider
a FIFO (first-in-first-out) queue. This is an object of the type queue that contains an ordered set of
elements and exhibits the following two operations to manipulate this set.

• Enq(a): Insert element a at the end of the queue;

• Deq(): Return the first element inserted in the queue that was not already removed; Then remove
this element from the queue; if the queue is empty, return the default element ⊥.

b

Time

Enq(a) Enq (b) Deq() Enq (c)a Deq()

Figure 2.1.: Sequential execution of a queue

Figure 2.1 conveys a sequential execution of a system made up of a single process accessing the
queue (here the time line goes from left to right). There is only a single object and a single process so
we omit their identifiers here. The process first enqueues element a, then element b, and finally element
c. According to the expected semantics of a queue (first-in-first-out), and as depicted by the figure, the
first dequeue invocation returns element a whereas the second returns element b.

Figure 2.2 depicts a concurrent execution of a system made up of two processes sharing the same
queue: p1 and p2. Process p2, acting as a producer, enqueues elements a, b, c, d, and then e. On the other
hand, process p1, acting as a consumer, seeks to de dequeue two elements. On Figure 2.2, the execution
of Enq(a), Enq(b) and Enq(c) by p2 overlaps with the first Deq() of p1 whereas the execution of
Enq(c), Enq(d) and Enq(e) by p2 overlaps with the second Deq() of p1. The questions raised in the
figure are what elements can be dequeued by p1. The role of linearizability is precisely to address such
questions.
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Enq(a) Enq (b) Enq (c) Enq(d)

Figure 2.2.: Concurrent execution of a queue

Linearizability does so by relying on how the queue is supposed to behave if accessed sequentially.
In other words, what should happen in Figure 2.2 depends on what happens in Figure 2.1. Intuitively,
linearizability says that, when accessed concurrently, an object should return the same values that it
could have returned in some sequential execution. Before defining linearizability however, and the very
concept of ”value that could have been returned in some sequential execution”, we first define more
precisely some important underlying elements, namely processes and objects, and then the very notion
of a sequential specification.

2.2. Players

Two categories of players are important in this context, processes and objects, and these are related by
the very notion of a history.

2.2.1. Processes

We consider a system consisting of a finite set of n processes, denoted p1, . . . , pn. Besides accessing
local variables, processes may execute operations on shared objects (we will sometimes simply say
objects. Through these objects, the processes synchronize their computations. In the context of this
chapter, which aims at defining linearizability of the objects, we will omit the local variables accessed
by the processes.

An execution by a process of an operation on a object X is denoted X.op(arg)(res) where arg and
res denote, respectively, the input and output parameters of the invocation. The output corresponds to
the response to the invocation. It is common to write X.op when the input and output parameters are not
important.

The execution of an operation op() on an object X by a process pi is modeled by two events, namely,
the events denoted inv[X.op(arg) by pi] that occurs when pi invokes the operation (invocation event),
and the event denoted resp[X.op(res) by pi] that occurs when the operation terminates (response event).
We say that these events are generated by process pi and associated with object X . Given an operation
X.op(arg)(res), the event resp[X.op(res) by pi] is called the response event matching the invocation
event inv[X.op(arg by pi]. Sometimes, when there is no ambiguity, we talk about operations where we
should be talking about operation executions. We also say sometimes that the object returns a response
to the process. This is by language abuse because it is actually the process executing the operation on
the object that actually computes the response.

Every interaction between a process and an object corresponds to a computation step and is repre-
sented by an event: the visible part of a step, i.e., the invocation or the reply of an operation. A sequence
of such events is called a history and this is precisely how we model executions of processes on shared
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objects. Basically, a history depicts the sequence of observable events of the execution of a concurrent
system. We will detail the very notion of history later in this chapter.

While we assume that the system of processes is concurrent, we assume that each process is indi-
vidually sequential: a process executes (at most) one operation on an object at a time. That is, the
algorithm of a sequential process stipulates that, after an operation is invoked on an object, and until a
matching response is returned, the process does not invoke any other operation. As pointed out, the fact
that processes are (individually) sequential does not preclude them from concurrently invoking opera-
tions on the same shared object. Sometimes however, we will focus on sequential executions (modeled
by sequential histories) which precisely preclude such concurrency; that is, only one process at a time
invokes an operation on an object.

2.2.2. Objects

An object has a unique identity. The object does also have a type. Multiple objects can be of the same
type: we talk about instances of the type. Strictly speaking, an object can have several types, in the
case of multiple inheritance and subytping. However, for simplicity of presentation but without loss of
generality, we restrict our study in this manuscript to a single type per object.

We define a type by (1) the set of possible values for (the states of) objects of that type, including the
initial state; (2) a finite set of operations through which the (state of the ) objects of that type can be
manipulated; and (3) a sequential specification describing, for each operation of the type, the effect this
operation produces when it executes alone on the object, i.e., in the absence of concurrency. The effect
is measured in terms of the response that the object returns and the new state that the object gets to after
the operation executes. The operations of the type are somehow said to be exported by the type.

We assume here that every operation of an object type can be applied on each of its states in the
absence of concurrency. (We talk about complete operations or complete objects). This sometimes
requires specific care when defining the objects. For instance, if a dequeue operation is invoked on a
queue which is in an empty state, a specific response nil is returned.

We say that an object operation is deterministic if, given any state of the object and input parameters,
the response and the resulting state of the object are uniquely defined (again in the absence of concur-
rency). An object type is deterministic if it has only deterministic operations. We assume here finite
non-determinism, i.e., for each state and operation, the set of possible outcomes (response and resulting
state) is finite. Otherwise the object is said to be non-deterministic: several outputs and resulting states
are possible. The pair composed of (a) the output returned and (b) the resulting state, is chosen randomly
from the set of such possible pairs (or from an infinite set).

A sequential specification of an object is generally modeled as a set of sequences of invocations (to
that object) immediately followed by matching responses that, starting from an initial state of the object,
are allowed by the object (type) when it is accessed sequentially. Indeed the resulting state obtained after
each operation execution is not directly conveyed, but it is indirectly reflected through the responses
returned in the subsequence operations of the sequence.

To illustrate the notion of a sequential specification, we consider two classical examples below:

Example 1: a FIFO queue Our first example is still the unbounded (FIFO) queue described earlier.
The producer enqueues items in a queue that the consumers dequeues. The sequential specification is
the set of euqneue and dequeue operations such that every dequeue returns the first element enqueued
and not dequeued yet. If there is not such element (i.e., the queue is empty), a specific default value nil
is returned. As pointed out earlier this specification never prevents an enqueue or a dequeue operation to
be executed. One could consider a variant of the specification where the dequeue could not be executed
if the queue is empty - it would have to wait for an enqueue - we preclude such specifications.
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Designing algorithms that implement this object correctly in a concurrent context captures the classi-
cal producer/consumer synchronization problem.

Example 2: a read/write object (register) Our second example (called register) is a simple
read/write abstraction that models objects such as a shared memory word, a shared file or a shared disk.
Designing algorithms that implement this object correctly in a concurrent context captures the classical
reader/writer synchronization problem.

This type exports two operations:

• The operation read() has no input parameter. It returns the value stored in the object.

• The operation write(v) has an input parameter, v, representing the new value of the object. This
operation returns value ok indicating to the calling process that the operation has terminated.

The sequential specification of the object is defined by all the sequences of read and write operations
in which each read operation returns the input parameter of the last preceding write operation (i.e., the
last value written). We will study implementations of this object in the next chapters.

2.2.3. Histories

Processes interact with shared objects via invocation and response events. Such events are totally or-
dered. (Simultaneous events are arbitrarly ordered).

The interaction between processes and objects is thus modeled as a totally ordered set of events H ,
and is called a history (sometimes also called a trace). The total order relation on H , denoted <H ,
abstracts out the real-time order in which the events actually occur.

Recall that an event includes (a) the name of an object, (b) the name of a process, (c) the name of an
operation as well as the corresponding input or output parameters.

A local history of pi, denoted H|pi, is a projection of H on process pi: the subsequence H consisting
of the events generated by pi.

Two histories H and H ′ are said to be equivalent if they have the same local histories, i.e., for each
process pi, H|pi = H ′|pi.

As we consider sequential processes, we focus on historiesH such that, for each process pi,H|pi (the
local history generated by pi) is sequential: the history starts with an invocation, followed by a response,
(the matching response associated with the same object) followed by another invocation, etc. We say in
this case that the global history H is well-formed.

An operation is said to be complete in a history if the history includes both the event corresponding to
the invocation of the operation and its response. If the history contains only the invocation, we say that
the operation is pending in that history. A history without pending operations is said to be complete. A
history with pending operations is said to be incomplete. Incomplete histories are important to study as
they typically model the situation where a process invokes an operation and stops, e.g., crashes, before
obtaining a response. Note that, being sequential, a process can have at most one pending operation in a
given history.

A history H induces an irreflexive partial order on its operations. Let op = X.op1() by pi and
op′ = Y.op2() by pj be two any operations. Informally, operation op precedes operation op′, if op
terminates before op′ starts, where “terminates” and “starts” refer to the time-line abstracted by the <H

total order relation. More precisely:(
op→H op′

) def
=
(
resp[op] <H inv[op′]

)
.
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Two operations op and op′ are said to overlap (we also say they are concurrent) in a history H if
neither resp[op] <H inv[op′], nor resp[op′] <H inv[op] (neither precedes the other one). Notice that
two overlapping operations are such that ¬(op →H op′) and ¬(op′ →H op). As sequential histories
have no overlapping operations,→H is a total order if H is a sequential history.

Figure 2.3 highlights the events involved in the history depicting the execution of Figure 2.2 above.
The history contains events e1 . . . e14. As all events in H involve the same object, the identity of this
object is omitted. The history has no pending operations, and is consequently complete.

e7

p1

p2

Enq(a) Enq (b) Enq (c) Enq(d) Enq(e)

e1 e11 e12 e14

e13e2

e3

e8

e10

Deq() ? Deq() ?

e4 e5 e6 e9

Figure 2.3.: Example of a queue history

If we restrict the history to the sequence of events e1 . . . e12, we will obtain an incomplete one: the
last dequeue operation of p1 as well as the last enqueue of p2 are now pending operations in the resulting
history.

2.2.4. Sequential histories

Definition 1 A sequential history is one of which the first event is an invocation, and then (1) each
invocation event, except possibly the last, is immediately followed by the matching response event, (2)
each response event, except possibly the last, is immediately followed by an invocation event.

The precision “except possibly the last” is crucial a history can be incomplete as we discussed earlier.
A history that is not sequential is said to be concurrent.

Given that a sequential history S has no overlapping operations, the associated partial order →S

defined on its operations is actually a total order. Strictly speaking, the sequential specification of an
object is a set of sequential histories involving solely that object. Basically, the sequential specification
represents all possible sequential accesses to the object.

b
p1

p2
e1

Enq(a) Enq(b) Enq(c)

e2

e3 e4

e5 e6

e7 e8

e9 e10

Deq() Deq()a

Figure 2.4.: Example of a sequential history

Figure 2.4 depicts a complete sequential history. This history has no overlapping operations. The
operations are totally ordered.
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2.2.5. Legal histories

As we pointed out, the definition of a linearizable history refers to the sequential specifications of the
objects involved in the history. The notion of a legal history captures this relation.

Given a sequential history H and an object X , H|X denotes the subsequence of H made up of all
the events involving only object X . We say that H is legal if, for each object X involved in H , H|X
belongs to the sequential specification of X . Figure 2.4 for instance depicts a legal history. It belongs to
the sequential specification of the queue. The first dequeue by p1 returns a a whereas the second returns
a b.

2.3. Linearizability

Essentially, linearizability says that a history is correct if the response returned to all operation invoca-
tions could have been obtained by a sequential execution, i.e., according to the sequential specifications
of the objects. More specifically, we say that a history is linearizable if each operation appears as if it has
been executed instantaneously at some indivisible point between its invocation event and its response
event. This point is called the linearization point of the operation. We define below more precisely
linearizability as well as some of its main characteristics.

2.3.1. Complete histories

For pedagogical reasons, it is easier to first define linearizability for complete histories H , i.e., histories
without pending operations, and then extend this definition to incomplete histories.

Definition 2 A complete history H is linearizable if there is a history L such that:

1. H and L are equivalent,

2. L is sequential,

3. L is legal, and

4. →H⊆→L.

Hence, a history H is linearizable if there exist a permutation of H , L, which satisfies the follow-
ing requirements. First, L has to be indistinguishable from H to any process: this is the meaning of
equivalence. Second, L should not have any overlapping operations: it has to be sequential. Third, the
restriction of L to every object involved in it should belong to the sequential specification of that object:
it has to be legal. Finally, L has to respect the real-time occurrence order of the operations in H .

In short, L represents a history that could have been obtained by executing all the operations of H ,
one after the other, while respecting the occurrence order of non-overlapping operations in H . Such a
sequential history L is called a linearization of H or a sequential witness of H .

An algorithm implementing some shared object is said to be linearizable if all histories generated by
the processes accessing the object are linearizable. Proving linearizability boils down to exhibiting, for
every such history, a linearization of the history that respects the “real-time” occurrence order of the
operations in the history, and that belongs to the sequential specification of the object. This consists
in determining for every operation of the history, its linearization point in the corresponding sequential
witness history. To respect the real time occurrence order, the linearization point associated with an
operation has always to appear within the interval defined by the invocation event and the response
event associated with that operation. It is also important to notice that a history H , may have multiple
possible linearizations.
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Example with a queue. Consider history H depicted on Figure 2.3. Whether H is linearizable or
not depends on the values returned by the dequeue invocations of p1, i.e., in events e7 and e13. For
example, assuming that the queue is initially empty, two possible values are possible for e7: a and nil.

1. In the first case, depicted on Figure 2.5, the linearization of the first dequeue of p1 would be before
the first enqueue of p2. We depict a possible linearization on Figure 2.6.

Deq()
p1

p2

Enq(a) Enq (b) Enq (c) Enq(d) Enq(e)

e1 e11 e12 e14

e13e2

e3

e8

e10e4 e5 e6 e9

e7

anil Deq()

Figure 2.5.: The first example of a linearizable history with a queue

b
p1

p2

Enq(a) Enq(b) Enq(d) Enq(e)Enq(c)

Deq() Deq()a

Figure 2.6.: The first example of a linearization

2. In the second case, depicted on Figure 2.7, the linearization of the first dequeue of p1 would be
after the first enqueue of p2. We depict a possible linearization on Figure 2.8.

Deq()
p1

p2

Enq(a) Enq (b) Enq (c) Enq(d) Enq(e)

e1 e11 e12 e14

e13e2

e3

e8

e10e4 e5 e6 e9

e7

baDeq()

Figure 2.7.: The second example of a linearizable history with a queue

It is important to notice that, in order to ensure linearizability, the only possible values for e7 are a
and nil. If any other value was returned, the history of Figure 2.7. would not have been linearizable.
For instance, if the value was b, i.e., if the first dequeue of p1 returned b, then we could not have found
any possible linearization of the history. Indeed, the dequeue should be linearizable after the enqueue of
b, which is after the enqueue of a. To be legal, the linearization should have a dequeue of a before the
dequeue of b—a contradiction.

Example with a register. Figure 2.9 highlights a history of two processes accessing a shared reg-
ister. The history contains events e1 . . . e12. The history has no pending operations, and is consequently
complete.
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Figure 2.8.: The second example of linearization
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Figure 2.9.: Example of a register history

Assuming that the register initially stores value 0, two possible returned values are possible for e5 in
order for the history to be linearizable: 0 and 1. In the first case, the linearization of the first read of p1

would be right after the first write of p2. In the second case, the linearization of the first read of p1 would
be right after the second write of p2.

For the second read of p1, the history is linearizable, regardless of whether the second read of p1

returns values 1, 2 or 3 in event e7. If this second read had returned a 0, the history would not be
linearizable.

2.3.2. Incomplete histories

So far we considered only complete histories. These are histories with at least one process whose last
operation is pending: the invocation event of this operation appears in the history while the correspond-
ing response event does not. Extending linearizability to incomplete histories is important as it allows
to state what responses are correct when processes crash. We cannot decide when processes crash and
then cannot expect from a process to first terminate a pending operation before crashing.

Definition 3 A history H (whether it is complete or not) is linearizable if H can be completed in such a
way that every invocation of a pending operation is either removed or completed with a response event,
so that the resulting (complete) history H ′ is linearizable.

Basically, this definition transforms the problem of determining whether an incomplete history H is
linearizable to the problem of determining whether a complete history H ′, obtained by completing H ,
is linearizable. H ′ is obtained by adding response events to certain pending operations of H , as if these
operations have indeed been completed, or by removing invocation events from some of the pending
operations of H . (All complete operations of H are preserved in H ′.) It is important to notice that the
term ”complete” is here a language abuse as we might ”complete” a history by removing some of its
pending invocations. It is also important to notice that, given an incomplete history H , we can complete
it in several ways and derive several histories H ′ that satisfy the required conditions.

Example with a queue. Figure 2.10 depicts an incomplete history H . We can complete H by
adding to it the response b to the second dequeue of p1 and a response to the last enqueue of p2: we
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would obtain history H ′ of Figure 2.5 which is linearizable. We could also have ”completed” H by
removing any of the pending operations, or both of them. In all cases, we would have obtained a
complete history that is linearizable.

a
p1

p2
e1 e11 e12

e2

e3

e8

e10e4 e5 e6 e9

e7

Deq()

Enq(d) Enq(e)Enq(c)Enq(b)Enq(a)

Deq()

Figure 2.10.: A linearizable incomplete history

b
p1

p2
e1 e11 e12

e2

e3

e8

e10e4 e5 e6 e9

e7

Deq()

Enq(d) Enq(e)Enq(c)Enq(b)Enq(a)

Deq()

Figure 2.11.: A non-linearizable incomplete history

Figure 2.11 also depicts an incomplete history. However, no matter how we try to complete it, ei-
ther by adding responses or removing invocations, there is no way to determine a linearization of the
completed history.

Example with a register. Figure 2.12 depicts an incomplete history of a register. The only way to
complete the history in order to make it linearizable is to complete the second write of p2. This would
enable the read of p1 to be linearized right after it.

e3

p1

p2

Read() 1

Write(0)

e1 e4

e5

Write(1)

e2

Figure 2.12.: A linearizable incomplete history of a register

2.3.3. Completing a linearizable history

An interesting characteristic of linearizability is its nonblocking flavour: every pending operation in a
history H can be completed without having to wait for any other operation to complete nor sacrificing
the linearizability of the resulting history. The following theorem captures this characteristic.

Theorem 1 Let H be any finite linearizable history and inv[op] any pending operation invocation in H .
There is a response r = resp[op] such that H · r is linearizable.
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Proof As H is incomplete and linearizable, there is a completion of H , H ′ that is linearizable, i.e., that
has a linearizationL. ofH . IfL contains inv[op] and its matching response r, thenL is also linearization
of H · r. If L contains neither inv[op] not r (i.e., H ′ does not contain inv[op]), then L′ = L · inv[op] · r
is a linearization of H ′ · inv[op] · r, which means that H · r is linearizable. 2Theorem 2

2.4. Composition

We discuss here a fundamental characteristic of linearizability as a property, i.e., as a set of histories. A
property P is said to be compositional if whenever it holds for each of the objects of a set, it holds for the
entire set. For each history H , we have ∀X H|X ∈ P if and only if H ∈ P . A compositional property
is also said to be local. Intuitively, compositionality enables to derive the correctness of a composed
system from the correctness of the components. This property is crucial for modularity of programming:
a correct (linearizable) compositions can be obtained from correct (linearizable) components.

Theorem 2 A history H is linearizable if and only if, for each object X involved in H , H|X is lineariz-
able.

Proof The “only if” direction is a consequence of the definition of linearizability: given that H is
linearizable for each object X involved in H , H|X is linearizable. Indeed, for every linearization S of
H , S|X is a linearization of H|X .

To prove the other direction, consider a history H , where for each object X , H|X has a linearization,
denoted SX , let→X denote the total order in SX of the operation on X in H . We show below that the
relation→=

⋃
X{→X} ∪ {→H} does not induce any cycle. This means that its transitive closure is a

partial order, and its linear extension S is a linearization of H .
Assume by contradiction that → contains a cycle. Recall that →X and →H are transitive. We can

thus replace any fragment of the form op1 →X op2 →X op3 (respectively, op1 →H op2 →H op3) with
op1 →X op3 (respectively, op1 →H op3). Moreover, since every operation concerns exactly one object,
the cycle cannot contain fragments of the form op1 →X op2 →Y op3 for X 6= Y . Hence, the cycle
alternate edges of the form→X with edges→H .

Now consider the fragment op1 →H op2 →X op3 →H op4. Recall that→X is the order of operations
in SX , a linearization of H|X . Since SX respect real time, we have op3 9X op2, i.e., the invocation
of op2 precedes the response of op3 in H|X (and, thus, in H). Since op1 →H op2, the response of
op1 precedes the invocation of op2 and, thus, the response of op3. Since op3 →H op4, the response of
op3 and, thus, the response of op1 precedes the invocation of op4 in H . Hence, op1 →H op4, i.e., we
can shorten the fragment to one edge→H . By eliminating all edges of the form→X we obtain a cycle
of edges →H—a contradiction with the definition of →H based on the real-time precedence between
operations in H that cannot induce cycles.

Hence the transitive closure of→ is irreflexive and anti-symmetric and, thus, has a linear extension:
a total order on operations in H that respects→H and→X , for all X . Consider the sequential history
S induced by any such total order. Since, for all X , S|X = SX and SX is legal, S is legal. Since
→H⊆→S , S respects the real-time order of H . Finally, since each SX is equivalent to a completion
of H|X , S is equivalent to a completion of H , where each incomplete operation on an object X is
completed in the way it is completed in SX . Hence, S is a linearization of H . 2Theorem 2

The importance of (real) time

Linearizability stipulates correctness with respect to a sequential execution: an operation needs to appear
to take effect instantaneously, respecting the sequential specification of the object. In this respect, lin-
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earizability is similar to sequential consistency, a classical correctness criteria for shared objects. There
is however a fundamental difference between linearizability and sequential consistency, and this differ-
ence is crucial to making linearizability compositional, which is not the case for sequential consistenty,
as we explain below.

Sequential consistency is a relaxation of linearizability. It only requires that the real-time order is
preserved if the operations are invoked by the same process, i.e., S is only supposed to respect the
process-order relation.

More specifically, a history H is sequentially consistent if there is a “witness” history S such that:

1. H and S are equivalent,

2. S is sequential and legal.

Both linearizability and sequential consistency require a witness sequential history. However, and
as we pointed out, sequential consistency has no further requirement related to the occurrence order of
operations issued by different processes (and captured by the real-time order). It is based only on a
logical time (the one defined by the witness history). In some sense, with linearizablity, after p1 has
finished its operation en enqueued element a, p1 could ”call” p2 and inform it about the availability of
”a”: p2 will then be sure to find a. Everything happens as if indeed the enqueue of a was executed at a
single point in time.

Clearly, any linearizable history is also sequentially consistent. The contrary is not true. A major
drawback of sequential consistency is that it is not compositional. To illustrate this, consider the counter-
example described in Figure 2.13. The historyH depicted in the picture involves two processes p1 and p2

accessing two shared registers R1 and R2. It is easy to see that the restriction H to each of the registers
is sequentially consistent. Indeed, concerning register R1, we can re-order the read of p1 before the
write of p2 to obtain a sequential history that respects the semantics of a register (initialized to 0). This
is possible because the resuting sequential history does not need to respect the real-time ordering of the
operations in the original history. Note that the history restricted toR1 is not linearizable. As for register
R2, we simply need to order the read of p1 after the write of p2.

Nevertheless, the system composed of the two registers R1 and R2 is not sequentially consistent. In
every legal equivalent to H , the write on R2 performed by p2 should precede the read of R2 performed
by p1: p1 reads the value written by p2. If we also want to respect the process-order relation of H on
p1 and p2, we obtain the following sequential history: p2.WriteR1(1); p2.WriteR2(1); p1.ReadR2() 1;
p1.ReadR1() 0. But the history is not legal: the value read by p1 in R1 is not the last written value.

sequential history respecting the process-order relation of H must have

R2.Write(1)

p1

p2
e1

e2

e3

e5

e4

0

e6 e8

e7

R1.Read()R2.Read() 1

R1.Write(1)

Figure 2.13.: Sequential consistency is not compositional

2.5. Safety

It is convenient to reason about the correctness of a shared object implementation by splitting its prop-
erties into safety and liveness. Intuitively, safety properties ensure that nothing “bad” is ever going to
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happen whilst liveness properties guarantee that something “good” eventually happens.
More specifically, a property is a set of (finite or infinite) histories. Now a property P is a safety

property if:

• P is prefix-closed: if H ∈ P , then for every prefix H ′ of H , H ′ ∈ P .

• P is limit-closed: for every infinite sequence H0, H1, . . . of histories, where each Hi is a prefix of
Hi+1 and each Hi ∈ P , the limit history H = limi→∞Hi is in P .

Knowing that a property is a safety one helps prove it in the following sense. To ensure that a safety
property P holds for a given implementation, it is enough to show that every finite history is in P : a
history is in P if and only if each of its finite prefixes is in P . Indeed, every infinite history of an
implementation is the limit of some sequence of ever-extending finite histories and thus should also be
in P .

Theorem 3 Linearizability is a safety property.

The proof of Theorem 3 uses a slight generalization of König’s infinity lemma formulated as follows:

Lemma 1 (König’s Lemma) Let G be an infinite directed graph such that (1) each node of G has finite
outdegree, (2) each vertex of G is reachable from some root vertex of G (a vertex with zero indegree),
and (3) G has only finitely many roots. Then G has an infinite path with no repeated nodes starting from
some root.

Now we prove Theorem 3, i.e., we show that the set of linearizable histories is prefix- and limit-closed.
Recall that we only consider objects with finite non-determinism: an operation applied to a given object
state may return only finitely many responses and cause only a finite number of state transitions.
Proof Consider a linearizable history H . Since linearizability is compositional, we can simply assume
that H is a history of operations on a single (composed) object X . We show first that any H ′, a prefix
of H , is also linearizable (with respect to X).

Let S be any linearization of H , i.e., a sequential legal history that is equivalent to (a completion of
H) and respects the real-time order of H . Now we construct a sequential history S′ as follows: we
take the shortest prefix of S that contains all complete operations of H ′. Since S contains all compete
operations of H ′, such a prefix of S exists.

We claim that S′ is a linearization of H ′. We complete H ′ by removing operations that do not
appear in S′ and adding responses to incomplete operations in H ′ that are present in S′. This way only
incomplete operations are removed from H ′ since, by construction, all operations that are complete in
H ′ appear in S′. Let H̄ ′ denote the resulting complete history.

First we observe that complete histories S′ and H̄ ′ consist the same set of operations. By construction,
every operation in H̄ ′ appears in S′. Now suppose, by contradiction, that S′ contains an operation op
that does not appear in H̄ ′. Since only operations that do not appear in S′ were removed from H ′ to
obtain H̄ ′, op does not appear in H ′ either. Since S′ is the shortest prefix of S that contains all complete
operations of H , op cannot be the last operation appearing in S′. Moreover, for the same reason, the
last operation in S′ must be complete in H ′, we denote this operation by op′. Since op does not appear
in H ′ and op′ is complete in H ′, we have op′ <H op. But op precedes op′ in S′ (and, thus, in S), i.e.,
op <S op

′. Hence, S violates the real-time order of H—a contradiction.
Since S′ is a prefix of a legal history it is also legal. Moreover, S′ and H̄ ′ contain the same set

of operations and S′ respects the real-time order in H̄ ′: if <H̄′⊆<S′ (otherwise, S would violate the
real-time order in H).
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Consider any local history H̄ ′|pi. Recall that we only assume well-formed histories and, thus, H̄ ′|pi
is sequential. Since S′ and H̄ ′ contain the same set of operations and S′ respects the real-time order of
H̄ ′, we have S′|pi = H̄ ′|pi. Hence, S′ and H̄ ′ are equivalent.

Thus, S′ is indeed a linearization of H ′ and, thus, linearizability is prefix-closed.
To show that linearizability is limit-closed, we consider an infinite sequence of ever-extending lin-

earizable histories H0, H1, H2, . . .. Our goal is to show that H = limi→∞Hi is linearizable. We
assume thatH0 is the empty history and eachHi+1 is a one-event extension ofHi (by prefix-closedness,
prefix of every Hi is linearizable, so we do not lose generality this way).

Now we construct a directed graph G = (V,E) as follows. Vertices of G are all tuples (Hi, S,Q),
where i = 0, 1, . . . , |H|, S is any linearization of Hi that ends with a complete operation present in Hi,
and Q is any sequence of object states that witnesses the legality of H . Now there is an directed edge
((Hi, S,Q), (Hj , S

′, Q′) in G if and only if j = i+ 1, S is a prefix of S′ and Q is a prefix of Q′.
Note that each Hi has at least one vertex (Hi, S,Q). Indeed, by taking any linearization of Hi and

removing operations at the end of it that are incomplete in Hi, we obtain a linearization of a completion
of Hi in which these operations are removed. Thus, there exists a linearization S of Hi that ends with a
complete operation in Hi. Since S is legal, it must have a witness sequence of states Q.

We use König’s lemma to show that the resulting graphG contains an infinite path (H0, S0), (H1, S1), . . .
and the limit limi→∞ Si is a linearization of the infinite limit history H .

First we observe that each non-empty vertex (Hi+1, S
′, Q′) is connected to some (Hi, S,Q). There

are two cases to consider:

• The last operation op of S′ is a complete operation in Hi. In this case, S′ is also a linearization of
Hi. Indeed, even if the last event of Hi+1 is the invocation of a new operation op′, this operation
cannot appear in S′: it can only appear before op in S′ violating the real-time order inHi+1. Thus,
(Hi, S

′, Q′) is a vertex in G.

• The last operation op of S′ is not a complete operation inHi. Recall that S′ ends with an operation
op that is complete in Hi+1 and Hi+1 extends Hi with one event only. Thus, the last event of
Hi+1 is the response of op. Thus, Hi and Hi+1 contain the same set of operations, except that
op is incomplete in Hi. Let S be the longest prefix of S′ that ends with a complete operation in
Hi. Since S′ is legal, S is also legal. By construction, every complete operation in Hi appears in
S and no operation appears in S if it does not appear in Hi. Thus, S is a linearization of Hi and
(Hi, S,Q), where Q is the prefix of Q′ that witnesses the legality of S, is a vertex in G.

Inductively, we derive that each vertex (Hi, S,Q) is reachable from vertex (H0, S0, Q0), where H0,
S0 and W0 are empty sequences. The only root vertex of G (a vertex that has no incoming edges) is thus
(H0, S0,W0).

Now we show that the outdegree of every vertex of G is finite. There are only finitely many op-
erations in Hi+1 and each linearization of Hi+1 is a permutation of these operations. Thus, since we
only consider objects with finite non-determinism, there can only be finitely many vertices of the form
(Hi+1, S

′, Q′). Since all outgoing edges of any vertex (Hi, S,Q) are directed to vertices of the form
(Hi+1, S

′, Q′), the outdegree of every such vertex is also finite.
By König’s lemma,G contains an infinite path starting from the root vertex: (H0, S0, Q0), (H1, S1, Q1), . . ..

We argue now that the limit S = limi→∞ Si is a linearization of the infinite limit history H . By con-
struction, S respects the real-time order of H , otherwise there would be a vertex (Hi, Si, Qi) such that
Si is not equivalent to Hi or violates the real-time order of Hi. Also, S contains all complete operations
of H and, thus, S is equivalent to a completion of H . S is also legal since each of its prefixes is legal.
Thus, S is indeed a linearization ofH , which concludes the proof that linearizability is a safety property.

2Theorem 3
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Thus, the set of linearizable histories is indeed prefix-closed and limit-closed, so in the rest of this
book, we only consider finite histories in the proofs of linearizability.

2.6. Summary

This chapter studies the meaning of the notion of a correct object implementation. Namely, to be correct,
all histories generated by the object implementation need to be linearizable. The responses returned by
the object in a concurrent history are those that could have been returned by the object if accessed
sequentially. Proving this typically boils down to determining a linearization point for each operation in
the given history.

Linearizability has some important characteristics. First, it reduces the difficult problem of reasoning
about a concurrent system into the problem of reasoning about a sequential one. We simpy need a
sequential specification of an object to reason about the correctness of a system made of processes
concurrently accessing that object. Linearizabiliy is also compositional. It is enough to prove that each
object in a set (of objects) is linearizable to conclude that the system composed of the set is linearizable.
Linearizability is also non-blocking, which basically means that ensuring it never forces processes to
wait for each other.

As pointed out however, linearizability is only a partial answer to the question of correctness. It does
say what response should be forbidden to be returned by an object but does not say when the object
should actually return some response. In fact, and as we will see in the next chapter, to be considered
correct, the object implementation should not only be linearizable but should also be wait-free. Whilst
linearizability covers safety, wait-freedom covers liveness.

2.7. Bibliographic notes

The notion of sequential consistency has been introduced by Lamport [47]. Linearizability was initially
studied, under the name atomicity, in the context of atomic read/write objects (registers) by Lamport [49]
and Misra [57]. The notion of sequential specification of a type was introduced by Weihl in [74]. The
generalization of linearizability to any object type has been developed by Herlihy and Wing [40].

The concepts of safety and liveness were introduced by Lamport [46] and refined by Alpern and
Schneider [3], originally defined for infinite histories only. Lynch reformulated the notions for finite
histories and proved that linearizability, when applied to deterministic objects is a safety property [56].
Guerraoui and Ruppert [31] showed that linearizability is not limit-closed if objects can expose infinite
non-determinism. In other words, linearizability is not a safety property for objects with unbounded
non-determinism.
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3. Progress

3.1. Introduction

The previous chapter focused on the property of linearizability, which basically precludes concurrent
operations that do not appear as if executed sequentially. Linearizability (when applied to objects with
finite non-determinism) is a safety property: it states what should not happen in an execution.

Such a property is in fact easy to satisfy. Think of an implementation (of some shared object) that
simply never returns any response. Since no operation would ever complete, the history would basically
be empty and would be trivial to linearize: no response, no need for a linearization point. But this
implementation would be useless. In fact, to prevent such implementations, we need some progress
property stipulating that certain responses should appear in a history, at least eventually and under certain
conditions. Ideally, we would like every invoked operation to eventually return a matching response. But
this is impossible to guarantee if the process invoking the operation crashes, e.g., the process is paged
out by the operating system which could decide not to schedule that process anymore.

Nevertheless, one might require that a response is returned to a process that is scheduled by the oper-
ating system to execute enough steps of the algorithm implementing that operation (i.e., implementing
the object exporting the operation). As we will see below, a step here is the access to a low-level object
(used in the implementation) during the operation’s execution.

To express such requirement more precisely, we need to carefully define the notion of object imple-
mentation and zoom into the way processes execute the algorithm implementing the object, in particular
how their steps are scheduled by the operating system.

In the following, we introduce the notion of implementation history: this is a lower level notion than
the history notion presented in the previous chapter and which describes the interaction between the
processes and the object being implemented (high-level history) The concept of low-level history will
be used to introduce progress properties of shared object implementations.

3.2. Implementation

In order to reason about the very notion of implementation, we need to distinguish the very notions of
high-level and low-level objects.

3.2.1. High-level and low-level objects

To distinguish the shared object to be implemented from the underlying objects used in the implemen-
tation, we typically talk about a high-level object and underlying low-level objects. (The latter are
sometimes also called base objects and the operations they export are called primitives ). That is, a
process invokes operations on a high-level object and the implementation of these operations requires
the process to invoke primitives of the underlying low-level (base) objects. When a process invokes such
a primitive, we say that the process performs a step.

The very notions of “high-level” and “low-level” are relative and depend on the actual implemen-
tation. An object might be considered high-level in a given implementation and low-level in another
one. The object to be implemented is the high-level one and the objects used in the implementation
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are the low-level ones. The low-level objects might capture basic synchronization constructs provided
in hardware and in this case the high-level ones are those we want to emulate in software (the notion
of emulation is what we call implement). Such emulations are motivated by the desire to facilitate the
programming of concurrent applications, i.e. to provide the programmer with powerful synchronization
abstractions encapsulated by high-level objects. Another motivation is to reuse programs initially de-
vised with the high-level object in mind in a system that does not provide such an object in hardware.
Indeed, multiprocessor machines do not all provide the same basic synchronization abstractions.

Of course, an object O that is low-level in a given implementation A does not necessarily correspond
to a hardware synchronization construct. Sometimes, this object O has itself been obtained from a
software implementation B from some other lower objects. So O is indeed low-level in A and high-
level in B. Also, sometimes the low-level objects are assumed to be linearizable, and sometimes not. In
fact, we will even study implementations of objects that are not linearizable, as an intermediate way to
build linearizable ones.

3.2.2. Zooming into histories

So far, we represent computations using histories, as sequences of events, each representing an invoca-
tion or a response on the object to be implemented, i.e, the high-level object.

Implementation history. In contrast, reasoning about progress properties requires to zoom into the
invocations and responses of the lower level objects of the implementations, on top of which the high-
level object is built. Without such zooming we may not be able to distinguish a process that crashes right
after invoking a high-level object operation and stops invoking low-level objects, from one that keeps
executing the algorithm implementing that operation and invoking primitives on low-level objects. As
we pointed out, we might want to require that the latter completes the operation by obtaining a matching
response, but we cannot expect any such thing for the former. In this chapter, we will consider as a
implementation history, the low-level history involving invocations and responses of low-level objects.
This is a refinement of the higher level history involving only the invocations and responses of the
high-level object to be implemented.

Consider the example of a fetch-and-increment (counter) high-level-object implementation, as we
describe it below in Section 3.4.1. As low-level objects, the implementation uses an infinite array
T [, . . . ,∞] of TAS (test-and-set) objects and a snapshot-memory object my-inc. The high-level history
here is a sequence of invocation and response events of fetch-and-increment operations, while the low-
level history (or implementation history) is a sequence of primitive events read(), update(), snapshot()
and test-and-set().

The two faces of a process. To better understand the very notion of a low-level history, it is
important to distinguish the two roles of a process. On the one hand, a process has the role of a client
that sequentially invokes operations on the high-level object and receives responses. On the other hand,
the process also acts as a server implementing the operations. While doing so, the process invokes
primitives on lower level objects in order to obtain a response to the high-level invocation.

It might be convenient to think of the two roles of a process as executed by different entities and
written by two different programmers. As a client, a process invokes object operations but does not
control the way the low-level primitives implementing these operations are executed. The programmer
writing this part does typically not know how an object operation is implemented. As a server, a process
executes the implementation algorithm made up of invocations of low-level object primitives. This algo-
rithm is typically written by a different programmer who does not need to know what client applications
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will be using this object. Similarly, the client application does not need to know how the objects used
are implemented, except that they ensure linearizability and some progress property as discuss below.

Scheduling and asynchrony. The execution of a low-level object operation is called a step. The
interleaving of steps in an implementation is specified by a scheduler (itself part of an operating system).
This is outside of the control of processes and, in our context, it is convenient to think of a scheduler as
an adversary. This is because, when devising an algorithm to implement some high-level object, one
has to cope with worst-case strategies the scheduler may choose to defeat the algorithm. This is then
viewed as an adversarial behavior.

A process is said to be correct in a low-level history if it executes an infinite number of steps, i.e.,
when the scheduler allocates infinitely many steps of that process. This “infinity” notion models the
fact that the process executes as many steps as needed by the implementation until all responses are
returned. Otherwise, if the process only takes finitely many steps, it is said to be faulty. In this book, we
only assume that faulty processes crash, i.e., permanently stop performing steps, otherwise they never
deviate from the algorithm assigned to them. In other words, they are not malicious (we also say they
are not Byzantine).

Unless explicitly stated otherwise, the system is assumed to be asynchronous , i.e., the relative speeds
of the processes are unbounded: for all Φ ∈ N and processes p and q, there is an execution in which
p takes Φ steps while process q takes only one step. Basically, an asynchronous system is controlled
by a very weak scheduler, i.e., a scheduler that may prevent a correct process from taking steps for an
arbitrary (but finite) periods of time.

3.3. Progress properties

As pointed out above, a trivial way to ensure linearizability would be to do nothing, i.e., return no
response to any operation invocation. This would preclude any history that violates linearizability by
simply precluding any history with a response.

Besides this (clearly, meaningless) approach, a popular way to ensure linearizability is to use critical
sections (say using locks), preventing concurrent accesses to the same high-level shared object. In the
simplest case, every operation on a shared object is executed as a critical section. When a process
invokes an operation on an object, it first requests the corresponding lock, and the algorithm of the
operation is executed by the process only when the lock is acquired. If the lock is not available, the
process waits until the lock is released. After a process obtains the response to an operation, it releases
the corresponding lock. This approach also trivially ensures linearizability because the linearization
points of the operations of a history correspond to the moment at which the lock is acquired for the
operation.

As we discussed in Chapter 1, such an implementation of a shared object has an inherent drawback:
the crash of a process holding the lock on an object prevents any other process from completing its
operation. In practice, the process holding the lock might be preempted for a long period of time, while
all processes contending on the same object remain blocked. When processes are asynchronous (i.e.,
the scheduler can arbitrarily preempt processes) which is the default assumption we consider, there is
no way for a process to know whether another process has crashed (or was preempted for a long while)
or is only very slow. In a system with a couple of processors, this might not be considered a big deal.
But in a modern architecture with a very large number of processors, having a single point of blocking
might be considered unacceptable.

This book focuses on robust shared object implementations with progress properties precluding sit-
uations where the crash of some strict subset of processes prevents every other process from making
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progress. This models the requirement that processes that are delayed by the operating system should
not block all other processes from progressing. Hence, we preclude the use of critical sections or locks.

• Informally, we say that an implementation is lock-based if it allows for a situation in which some
process running in isolation after some finite execution is never able to complete its operation.

• Taking a negation of this property, we state that an implementation does-not-employ-locks if start-
ing after any finite execution, every process can complete its operation in a finite number of its
own steps.

Intuitively, this property, called obstruction-freedom (or solo termination), must be satisfied by any
implementation where the crash of any process does not prevent other processes from making progress.
Below we discuss this property in more details together with some of its variants.

3.3.1. Variations

Several progress properties preclude the usage of locks:

• Obstruction-freedom (also called solo termination). An implementation (of a shared object) is
obstruction-free, if any of its operations returns a response if it is eventually executed without
concurrency by a correct process.

The operation is said to be eventually executed without concurrency if there is a time after which
the only process to take step involving the object is the process that invoked that operation.1

• Non-blockingness (partial termination). This property, strictly stronger than obstruction-freedom,
states that at least one of several correct processes executing operations on the same object, termi-
nates its operation. Intuitively, non-blockingness can be interpreted as deadlock-freedom (despite
asynchrony and crashes).

• Wait-freedom (also called global termination). This property is even stronger. It states that any
correct process that executes an operation eventually returns a response. Wait-freedom can be
viewed as starvation-freedom (despite asynchrony and crashes).

3.3.2. Bounded termination

Wait-freedom, the strongest of the properties above, does not stipulate any bound on the number of steps
that a process needs to execute before obtaining a matching response for the high-level object operation
it invoked. Typically, this number of steps can depend on the behavior of the other processes. It could
be small if no other process performs any step, and gets bigger when all processes perform steps (or the
opposite), while remaining always finite, regardless of the number and timing of crashes.

• An implementation is bounded wait-free if there exists a bound B ∈ N such that every process
p that invokes an operation receives a matching response within B of its own (not necessarily
consecutive in the execution) steps.

In other words, there is no prefix of a low-level history in which a process invokes an operation
and executes B steps without obtaining a matching response.

1 There is an alternative, weaker notion of contention, called interval contention. An operation encounters interval contention
if it overlaps with another operation (this does not need to take steps). Step contention implies interval contention, but
not vice versa. However, an alternative definition of obstruction-freedom requiring that an operation returns if it runs in
the absence of interval contention does not preclude the usage of locks. An operation grabs the lock on the shared object,
executes the operation on the object, and releases the lock before returning the response.
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Showing that an implementation is bounded wait-free consists in exhibiting an upper bound on the
number of steps needed to return from any operation. That upper bound is usually defined by a func-
tion of the number n of processes (e.g., O(n2)). One can similarly define notions like bounded solo
termination or bounded partial termination.

3.3.3. Liveness

Recall that safety properties (Section 2.5) are used to declare what it means for an implementation to
reach an undesired state. To show that an implementation satisfies a safety property P , it is sufficient to
check if each of its finite executions satisfies P .

In contrast, a liveness property ensures that the implementation eventually reaches some desired state.
More specifically, we say that P is a liveness property if any finite execution has an extension in P .
Hence, no matter what state our implementation is in, there is always a chance to reach a desired state
in some extension of the current execution. To show that an implementation satisfies a liveness property
P , we should thus show that all its infinite executions are in P .

Interestingly, every property can be represented as an intersection of a safety property and a liveness
property [56]. Linearizability is a safety property (Section 2.5). Wait-freedom, as we can easily see,
is a liveness property. Indeed, we can only violate wait-freedom in an infinite execution: every finite
execution in which an operation invoked by a given process has an extension in which the operation
returns. Similarly, non-blockingness and obstruction-freedom are also liveness properties. For example,
the only way to violate obstruction-freedom is to exhibit an execution in which a process takes infinitely
many steps without completing an invoked operation.

It is interesting to notice that bounded wait-freedom is, in fact, a safety property. Indeed, B-bounded
wait-freedom is violated in a finite execution where an operation does not return after B steps of the
process that invoked it. It is not difficult to see that B-bounded wait-freedom is prefix-closed and limit-
closed. Therefore, to prove that an implementation is, e.g., linearizable and B-bounded wait-free, it is
enough to consider its finite executions.

3.4. Linearizability and wait-freedom

3.4.1. A simple example

The algorithm described in Figure 3.1 is a simple wait-free linearizable implementation of a fetch-and-
increment (FAI object using an infinite array of test-and-set TAS objects T [1, . . . ,∞] and a snapshot
memory object My inc.

• The high-level object is the FAI. This object stores an integer value and exports one operation
fetch-and-increment(). The sequential specification of this operation basically increments the
value of the integer value and returns the previous value.

• The low-level objects used in the implementation include TAS objects. Each of these exports one
(primitive) operation test-and-set() that returns 0 or 1. The sequential specification of this opera-
tion guarantees that the first invocation of test-and-set() on the object returns 1 and all subsequent
invocations return 0. Intuitively, a TAS object allows a single process to distinguish itself from the
rest of the processes. Such objects are typically provided by many multi-core machines.

• The snapshot memory is also a low-level object used in the implementation. It can be seen as an
array of n registers, one for each process, such that each process pi can atomically write a value v
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to its dedicated register with an operation update(i, v) and atomically read the content of the array
using an operation snapshot(). 2

Shared
T [1, . . . ,∞]: n-process TAS objects
My inc[1, . . . ,∞]: snapshot memory, initialized to 0

Local
entry, c (initially 0), S

operation fetch-and-increment():
c← c+ 1;
My inc.update(i, c);
S ← My inc.snapshot();
entry← sum(S);
while T [entry].test-and-set() 6= 0 do

entry← entry− 1;
return(entry− 1)

Figure 3.1.: Fetch-and-increment implementation: code for process pi

The algorithm in Figure 3.1 depicts the code executed by every process pi of the system. It works as
follows. To increment the value of the FAI object (i.e., to execute a fetch-and-increment() operation),
pi first increments its dedicated register in the snapshot memory My inc. Then pi takes a snapshot of
the memory and evaluates entry as the sum of all its elements. Then, starting from the T [entry] down
to 1, pi invokes operations test-and-set() until some TAS object returns 1. The index of this TAS object
minus 1 is then returned by fetch-and-increment() operation.

Intuitively, when pi evaluates its local variable entry to `, at most ` processes have previously incre-
mented their positions and, thus, at least one TAS object in the array T [1, . . . , `] is “reserved” for pi
(pi is one of these ` processes). Every process that increments its position in My inc later will obtain a
strictly higher value of entry. Thus, eventually, every operation obtains 1 from one of the TAS objects
and returns. Moreover, since a TAS object returns 1 to exactly one process, every returned value is
unique.

Notice that the number of steps performed by a fetch-and-increment() operation is finite but in general
unbounded (the implementation is not bounded wait-free). This is because an unbounded number of
increments can be performed by other processes in the time lag between a process pi increments it
position in My inc and the moment pi takes a snapshot of My inc. It is however not difficult to modify
the algorithm so that every operation performs O(n2) steps.

3.4.2. A more sophisticated example

Proving that a given implementation satisfies linearizability and wait-freedom can be extremely tricky
sometimes. To illustrate this, consider now the algorithm of Figure 3.2 that intends to implement an
unbounded FIFO queue. The sequential specification of this object has been given in Section 2.1 of
Chapter 2.

The algorithm is quite simple. The system we consider here is made up of producers (clients) and
consumers (servers) that cooperate through an unbounded FIFO queue. A producer process repeats
forever the following two statements:

2In Chapter 8, we show how snapshot memory can be implemented in a wait-free and linearizable manner using only read-
write registers.
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1. Prepare a new item v;

2. Invoke the operation Enq(v) to deposits v in the queue.

Similarly, a consumer process repeats forever the following two statements:

1. Withdraw an item from the queue by invoking the operation Deq()

2. Consume that item.

If the queue is empty, then the default value nil is returned to the invoking process. (This default
value that cannot be deposited by a producer process.) We assume that no processing by the consumer
is associated with the nil value.

The algorithm depicted in Figure 3.2 relies on an unbounded array Q[0, . . . ,∞], where entry of the
array is initialized to nil and is used to store the items of the queue. Also, the implementation uses a
shared variable NEXT (initialized to 1) as a pointer to the next available slot of the array Q for a new
value to be deposited.

To enqueue an item to the queue, the producer first locates the index of the next empty slot in the array
Q, reserves it, and then stores the item in that slot. To dequeue a value, the consumer first determines the
last entry of the array Q that has been reserved by a producer. Then, it reads the elements of the array Q
in ascending order until it finds an item different from the default value nil. If it finds one, it returns it.
Otherwise, the default value is returned.

The variable NEXT is provided with two primitives denoted read() and fetch&add(). The invocation
NEXT.fetch&add(x) returns the value of NEXT before the invocation and adds x to NEXT. Similarly,
each entry Q[i] of the the array is provided with two primitives denoted write() and swap(). The invo-
cation Q[i].swap(v) writes v in Q[i] and returns the value of Q[i] before the invocation.

The execution of the read(), write(), fetch&add() and swap() primitives on the shared base objects
(NEXT and each variable Q[i]) are assumed to be linearizable. The primitives read() and write() are
implicit in the code of Figure 3.2 (they are in the assignment statements denoted “←”).

The algorithm does not use locks: no process can block other processes forever. Furthermore, each
value deposited in the array by a producer will be withdrawn by a swap() operation issued by a consumer
(assuming that at least one consumer is correct).

operation Enq(v):
in← NEXT.fetch&add (1);
Q[in]← v;
return ()

operation Deq():
last← NEXT− 1;
for i from 0 until last do

aux← Q[i].swap (nil);
if (aux 6= ⊥) then return (aux)

return (nil)

Figure 3.2.: Enqueue and dequeue implementations

It is easy to see that the implementation is wait-free: every process completes each of its operations in
a finite number of its own steps: the number of steps performed by Enq() is two, and the number of steps
performed by Deq() is proportional to the queue size as evaluated in the first line of its pseudocode.
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But is the implementation linearizable? Superficially, yes: if no dequeue operation returns nil, we can
order operations based on the times when the corresponding updates of Q[] (a write performed by Enq()
or a successful swap performed by Deq()) takes place.

However, if a dequeue operation returns nil it is not always possible to find the right place for it in a
legal linearization. Consider for instance the following scenario:

1. Process p1 performs Enq(x). As a result, the value of NEXT is 1, and Q[0] stores x.

2. Process p2 starts executing Deq() and reads 1 in NEXT.

3. Process p1 performs Enq(y). The value of NEXT is now 2, Q[0] stores x, and Q[1] stores y.

4. Process p3 performs Deq(), reads 2 in NEXT, finds x in Q[0] and returns x. The value of Q[0] is
nil now.

5. Finally, p2 reads ⊥ in Q[0] and completes Deq() by returning nil.

In this execution: we have the following partial order on operations: p1.Enq(x) → p1.Enq(y) →
p3.Deq(x), and p1.Enq(x)→ p2.Deq(nil). Thus, there are only three possible ways to linearize p2.Deq(nil)(:
right after p1.Enq(x), right after p1.Enq(y) or right after p3.Deq(). In all three possible linearizations,
the queue is not empty when p2 invokes Deq(), and thus nil cannot be returned.

How to fix this problem? One solution is to sacrifice linearizability and not consider operations
returning nil in a linearization.

Another solution is to sacrifice wait-freedom and instead of returning nil in the last line of the Deq(),
repeat the same procedure (evaluating NEXT and going through the first NEXT elements inQ[]) over and
over until a non-⊥ value is found in Q[]. As long as a producer keeps adding items to the queue, every
Deq() operation is guaranteed to eventually return.

3.5. Summary

To reason about correctness of an object implementation, it is common to consider linearizability, as
well as some companion progress property. In this chapter, we studied three progress properties: solo-
termination (obstruction-freedom), partial-termination (non-blockingness) and global termination (wait-
freedom). All of these are liveness properties, precluding the usage of locks. The first of these properties
says that a process that eventually accesses an object alone (with no contention) will get responses
when invoking the object’s operation. The second property requires a response to be returned to at
least one of the correct processes even if there is contention. The last property, wait-freedom, is the
strongest. Responses should be returned to every correct process that invokes an operation, i.e., that
keeps executing low-level steps. In Chapter ??, we express other conditions on the executions in which
progress must be ensured in the form of generic adversaries.

Bibliographic notes

The notion of wait-freedom originated in the work of Lamport [45]. An associated theory was developed
by Herlihy [34].

The notion of solo-termination was presented implicitly in [25]. It has been introduced as a progress
property in [37] under the name obstruction-free synchronization, and then formalized in [9]. More
developments on obstruction-freedom can be found in [26]. The minimal knowledge on process failures
needed to transform any solo-terminating implementation into a wait-free one was investigated in [30].
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Other progress conditions, including those that can be implemented with locks, are discussed in [38]. A
systematic perspective on progress conditions is presented in [39].

The algorithms in Figure 3.1 and Figure 3.2 were proposed by Afek et al. [2]. A blocking variant of
the algorithm of Figure 3.2 in which nil is never returned was given and proved correct by Herlihy and
Wing [40].

3.6. Exercises

1. Prove that bounded wait-freedom is a safety property.

2. Show that the algorithm sketched in the last paragraph of Section 3.4.2 indeed violates wait-
freedom.
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Part II.

Read-write objects
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4. Simple register algorithms

The simplest objects that are usually considered in concurrent computing are registers, namely shared
storage objects that export two basic operations: read and write. For presentation simplicity, and without
loss of generality, we focus only on registers that contain integers.

In the following, we shall describe how to wait-free implement registers that are atomic using registers
that are not. We will not directly try to obtain atomic registers but rather proceed incrementally through
several steps. At each step, which we believe is interesting in its own right, we will build registers that
ensure stronger semantics than the weaker ones we use. The picture to have in mind here is that the
weak registers are provided in hardware whereas the stronger ones, implemented on top of the weaker
ones, are emulated in software.

4.1. Definitions

Different kinds of registers are usually considered, depending on:

(a) Their value range, namely the range of values that can be stored in the register. We typically
consider, on the one hand, registers that can contain only binary values, i.e., only 0 or 1, also called
binary registers, or bits, and, on the other hand, registers that contain any value from an a larger
set, also called multi-valued registers. A multi-valued register can be bounded or unbounded. A
bounded register is one whose value range contains exactly b distinct values, e.g., the values from
0 until b− 1 where b is typically a constant integer by the processes. Otherwise the register is said
to be unbounded. A register that can contain b distinct values is said to be b-valued.

(b) Their access pattern, i.e., the number of processes that can read (resp., write in) the register. We
distinguish 1-writer 1-reader and multi-writer multi-reader. It is important to notice that we do
not consider dynamic access patterns that change over time, i.e., the patter is determined once
and for all at the creation of the register. A register is called single-writer, denoted 1W (resp.,
single-reader, denoted 1R) if only one specific process, known in advance, and called the writer
(resp., the reader) can invoke a write (resp., read) operation on the register. A register that can
be written (resp., read) by multiple processes is called a multi-writer (resp., multi-reader) register.
Such a register is denoted MW (resp., MR). For instance, a binary 1WMR register is a register
that (a) can contain only 0 or 1, (b) can be read by all the processes but (c) written by a single
process.

(c) Their concurrent behavior, i.e., the correctness guarantees ensured when the register is accessed
concurrently. Registers that ensure linearizability are sometimes called atomic or linearizable
registers. But, as pointed out earlier, and as we will discuss below, there are interesting forms of
registers that provide weaker correctness guarantees. We will consider two such forms, called safe
and regular registers, respectively.

The concurrent behavior of a register. When accessed sequentially, the behavior of a register
is simple to define: a read invocation returns the last value written. When accessed concurrently, three
main variants have mainly been considered. We overview them below.
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Safety A read that is not concurrent with a write returns the last written value. This is the only property
ensured by a safe register, which boils down to saying that the register does not provide any
guarantee if accessed concurrently. Such a register supports only a single writer. If this writer is
concurrent with a read, this read can return any value in the range domain of the register, including
a value that has never been written. A binary safe register is thus a bit flickering under concurrency.

Regularity A regular register ensures, together with the safety property above, that a read that is concurrent
with a write returns the value written by that write or the value written by the last preceding write.
A regular register also only supports a single writer.

It is important to notice that such a register can, if two consecutive (non-overlapping) reads are
concurrent with a write, returns the value being written (the new value) and then returns later the
previous value written (the old value). This situation is called the new/old inversion. It could occur
even if the two reads are issued by the same process, as depicted on Figure 4.1. More generally,
a read that overlaps several write operations can return the value written by any of these writes as
well as the value of the register before these writes.

Atomicity An atomic (linearizable) register is one that ensures linearizability. Such a register ensures, in
addition to the safety and regularity properties above, that a new/old inversion never happens. The
second read must return the same or a “newer” value. Basically, considering Figure 4.1, if the first
read of p1 returns 1, then the second read of p1 has to return 1.

The weakest kind of registers is one that can only store one bit of information (binary), can be read by
a single process and written by a single process, while not ensuring any guarantee on the value returned
by a read that is concurrent by a write. On the other hand, the strongest kind of register is the MWMW
multi-valued atomic register.

An algorithm that implements a register of a given kind from a register of a weaker kind is sometimes
called register transformation or reduction, the former (high-level) register being “reduced” to the latter
one, used as a base object in the implementation. We also say that the high-level register is emulated by,
or constructed from, the lower-level one.

Before presenting several register transformations, we will highlight first some fundamental tech-
niques that enable to argue about the correctness of a given transformation.

Write(1)

p1

p2

0Read()Read() 1

Write(1)

Figure 4.1.: New/old inversion

4.2. Proving register properties

Proving that a register is safe boils down to focusing on the sequential case and ensuring that a read
returns the last value written. Proving that a register is regular (or atomic) is more challenging. The very
notion of a reading function is in this context convenient.

Basically, a reading function is associated with a history. It maps, in that history, every read operation
r invoked on the register to some write invocation w of that register. In short, w is the operation that
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wrote the value returned by r. Without loss of generality, we assume that every history starts with an
operation w(x0) that writes the initial value x0. No other operation is concurrent with that initial write
operation.

We say that a reading function π associated with a history H is regular if it satisfies the following two
properties:

A1 : ∀ r: ¬(r →H π(r)). (No read returns a value not written yet.)

A2 : ∀ r, w in H: (w →H r)⇒
(
π(r) = w ∨ w →H π(r)

)
. (No read returns a value overwitten.)

We say that a reading function is atomic if, besides being regular (A1 and A2), it satisfies the following
property:

A3 : ∀ r1, r2: (r1→H r2)⇒
(
π(r1) = π(r2) ∨ π(r1)→H π(r2)

)
. (No new/old inversion.)

Theorem 4 H is a history of a 1WMR regular register if and only if H has a regular reading function
π.

Proof Consider H a history of a regular register. We define its reading function π as follows. For any
r, a read operation in H that returns x, we define π(r) as the last write operation w(x) in H such that
¬(r →H w(x). Since by the definition of a regular register, x is the argument of the latest preceding
write or a concurrent write, π satisfies properties A1 and A2 above.

Now suppose H has a regular reading function. Let r be a complete read operation in H that returns
x. Then there exists a write w(x) in H that either (a.1) precedes or (a.2) is concurrent with r in H (A1)
and (b) is not followed by any write that precedes r in H (A2). Thus, r returns either the last written
value or a concurrently written value. 2Theorem 4

Theorem 5 H is a history of an atomic 1WMR register if and only if H has an atomic reading function
π.

Proof Given a linearizable history H , we construct an atomic reading function as follows. Consider
any linearization of H , S, and define π(r) as the last write that precedes r in S. By construction, π(r)
satisfies properties A1, A2 and A3 above.

Now assume H has an atomic reading function π. We use π to construct S, a linearization of H , as
follows. We first construct S as the sequence of all writes that took place in H in the order they appear.
Since there is only one writer, the writes are totally ordered. If the last write is incomplete, we add to
S its complete version. Then we serialize every complete operation r immediately after π(r), in such a
way that:

if π(r1) = π(r2) and r1→H r2, then r1→S r2.

Clearly the reading function guarantees that π(r) writes the value read by r, and thus every read in S
returns the last written value (S is legal).

To show that→H⊆→S , we distinguish the following four possible cases, where w1 and w2 denote
write operations, whereas r1 and r2 denote read operations.

• w1 →H w2. Since S preserves the real-time occurrence order of writes in H , we have w1 →S

w2.
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• r1→H r2. By A3, we have π(r1) = π(r2) or π(r1)→H π(r2).

If π(r1) = π(r2), as r1 precedes r2 in H , the way S is constructed implies that r1 is ordered
before r2 in S and hence r1→S r2.

If π(r1)→H π(r2), then, since S preserves the real-time occurrence order of writes in H and r1
and r2 are placed just after π(r1) and π(r2), respectively, in S, we have r1→S r2.

• r1 →H w2. By A1, either π(r1) is concurrent with r1 or π(r1) →H r1. Since r1 →H w2 and
all writes are totally ordered, we have π(r1) →H w2. By construction of S, since π(r1) is the
last write preceding r1 in S, r1→S w2.

• w1→H r2. By A1 we have π(r2) = w1 or w1→H π(r2).

Assume π(r2) = w1. As r2 is serialized just after π(r2) in S, we have π(r2) = w1→S r2.

Assume w1 →H π(r2). Again, by the way S is constructed, we have w1 →H π(r2) ⇒ w1 →S

π(r2). Further, π(r2) →S r2 (r2 is ordered just after π(r2) in S), we obtain (by transitivity of
→S) w1→S r2.

Finally, since S contains all complete operations ofH and preserves→H , thenH is indistinguishable
from S for every process, modulo possibly a last incomplete read operation.

Thus, S is a legal sequential history equivalent to a completion of H and preserves→H . 2Theorem 5

We say that a history H of a regular register commits a new/old inversion if H has a non atomic
reading function. Notice that a history may have multiple reading functions, some atomic and some
only regular. Theorem 4 and Theorem 5 imply that an atomic register is a regular register that prevents
any new/old inversion.

Since linearizability is a local property, a set of 1WMR regular registers behave atomically if each
prevents any new/old inversion.

4.3. Register transformations

In the following, we present several register transformations. Each transformation is an algorithm that
builds a certain type of registers from a weaker type. The register constructed is called high-level whereas
the ones we use are called low-level (or base). For example, we will show how to obtain a (high-level)
regular register from (low-level) safe base registers, how to build a 1WMR register from 1W1R registers,
or how to transform binary registers into a multi-valued one.

The transformations we present vary in their complexity, i.e., the number and size of the underlying
base registers. For example, the number of base registers used by a transformation may be proportional
to the number of readers. Also, a transformation may or not assume base registers of bounded capacity.

All transformations we present below are wait-free: every read or write operation of the high-level
register terminates in a finite number of steps, some of these include reads and writes of the low-level
register. Sometimes proving wait-freedom is trivial, e.g., when there is no loop or conditional statement.
So we omit this proof.

In this and the next chapter, we proceed incrementally as follows.

1. We first present an algorithm that builds a 1WMR safe register out of 1W1R safe registers.

2. We then show how to build a binary 1WMR regular register out of a binary 1WMR safe register.
Combining this algorithm with the one above, we obtain a transformation to a binary 1WMR
regular register from binary 1W1R safe registers.
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3. We present then transformations from binary 1WMR registers into multi-valued 1WMR registers
that preserve the concurrency properties of the original one (be it safe, regular or atomic).

All algorithms above are bounded. By combining them, we can for instance implement, in a
bounded manner, a multi-valued 1WMR regular register using binary 1W1R safe registers.

Later, in Chapter 5, we transform a 1W1R regular register into a MWMR atomic register by
proceeding through three unbounded transformations as follows.

4. We show how to transform a 1W1R regular register into a 1W1R atomic register.

5. We present a transformation to a 1WMR atomic register from a 1W1R atomic register.

6. We show how to transform a 1WMR register into a MWMR register.

4.4. From one to multiple readers

We show here how to use single-reader (single-writer) safe registers to build a multi-reader (single-
writer) safe register.

We consider a system of n processes, all being potential readers of the target high-level register. In
the transformation, described in Figure 4.2, the constructed high-level register R is built from n 1W1R
base registers, denoted REG[1 : n], one associated with each reader process. Every reader pi reads the
base register REG[i] it is associated with, while the single writer writes to every base register, one by
one (in any order).

The transformation is bounded for it uses no information beyond the actual value stored: base registers
can be of the same capacity as the multiple-reader register we construct.

operation R.write(v):
for all j in {1, . . . , n} do REG[j]← v;
return ()

operation R.read() issued by pi :
return (REG[i])

Figure 4.2.: 1WMR safe from 1W1R safe

Theorem 6 The algorithm of Figure 4.2 implements a 1WMR safe register using one safe 1W1R base
register per reader.

Proof Any read of the high-level register R (i.e., R.read() ) that is not concurrent with any R.write()
operation returns the last value deposited in R, because of the safety of the underlying registers. The
obtained register R is consequently safe while being 1WMR. 2Theorem 6

The very same transformation also works for regular registers.

Theorem 7 The algorithm of Figure 4.2 implements a 1WMR regular register using one regular 1W1R
base register per reader.

Proof Since a regular register is safe, the previous theorem above implies that R is also safe. We thus
need only show that a read operation R.read() that is concurrent with one or more write operations
returns a concurrently written value or the last written value.
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Let pi be any process that reads some value from R. When pi reads the base regular register REG[i]
pi returns (a) the value of a concurrent write on REG[i] (if any) or (b) the last value written to REG[i]
before such concurrent write . In case (a), the value v obtained is from a R.write(v) that is concurrent
with the R.read() of pi. In case (b), v can either be (b.1) from a R.write(v) that is concurrent with
R.read() of pi , or (b.2) from the last value written by a R.write() before the R.read() of pi. Thus, the
constructed register R is regular. 2Theorem 7

Reg[2]← 1

pw

p2

Write(1)

p1

Read(Reg[2])

Read(Reg[1])

Read() 0

Read() 1

Reg[1]← 1

Figure 4.3.: New/old inversion

The algorithm of Figure 4.2, while indeed preserving safety and regularity, does not preserve atom-
icity. It does not implement a 1WMR atomic register even when every base register REG[i] is a 1W1R
atomic register. This is because of the possibility of new/old inversions (even if base registers prevent
them). To illustrate this, consider the history conveyed in Figure 4.3. This history involves one writer
pw and two readers p1 and p2. Assume the high-level register R contains initially value 1 (REG[1] and
REG[2] start with initial value 1). To write value 2 in R, the writer first performs REG[1]← 2 and then
REG[2] ← 2. Concurrently, p1 reads REG[1] and returns 2, and then p2 reads REG[2] and returns 1.
This constitutes a new/old inversion: the read by p1 returns the new value, and the subsequent read by
p2 returns the old value.

4.5. From a safe to a regular bit

We now construct a regular binary register using a single safe binary register. The algorithm heavily
relies on the very fact that we can only store one of two values (0 or 1).

Remember that the difference between a safe and a regular register is only visible in the face of
concurrency. That is, the value to be returned in the regular case has to be a value concurrently written
or the last value written, while a safe register is allowed to return any value in the range of the register
values (0 or 1 in the binary case). To understand the main idea behind the algorithm, consider a naive
scheme where the regular register would be directly implemented using a safe base register. More
precisely, assume every read (resp. write) on the high-level register is directly translated into a read
(resp. write) on the base (safe) register. Assume furthermore the initial value is 0 and there is a write
operation that writes the very same value 0. As the base register is only safe, a concurrent read operation
could return value 1, which might have never been written. The high-level register would also return 1
and would violate regularity.

The problem is circumvented by preventing the writer from actually writing in the low-level register
unless the writer intends to actually change the value of the high-level register. In this case of a change,
the concurrent read could obtain any value in {0, 1} (remember that only two values are possible), i.e.,
either the previously written or a concurrently written value, which ensures regularity.
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In the algorithm, presented in Figure 4.4, besides a safe register REG shared between the reader and
the writer, the writer maintains a local variable prev val that contains the most recent value written in
the base safe register REG. Before writing a value v in the high-level regular register, the writer checks
if this value v is different from the previous value in prev val and, only in that case, the writer writes v
in REG.

operation R.write(v):
if (prev val 6= v) then REG← v;

prev val← v;
return ()

operation R.read() issued by pi :
return (REG)

Figure 4.4.: A binary regular from a binary safe register

Theorem 8 The algorithm of Figure 4.4 implements a 1WMR binary regular register using an underly-
ing 1WMR binary safe register.

Proof Given that the underlying base register is safe, a read that is not concurrent with any write returns
the last value written. Given also that the underlying base register always returns either 0 and 1 to any
read, a read concurrent with one or more writes returns the value of the base register before these write
operations or one of the values written by such a write operation. The high-level register is thus regular.

2Theorem 8

If the safe base binary register is 1W1R, then the algorithm of Figure 4.4 also implements a 1W1R
regular binary register.

It is important to see that the transformation does not implement an atomic register for it does not
prevent new/old inversions. Assuming the writer writes value 1, a concurrent reader could return the
new value 1 and then the old value 0. The transformation does clearly not work either for regular
registers that store more than two values.

We present in the following three transformations from binary registers to emphb-valued registers,
i.e., registers that can store a set of values of cardinality b.

The three transformations we present are all bounded, i.e., there is a bound on the number of base reg-
isters used, as well as on the amount of memory needed within each register. Also, the transformations
preserve the concurrency semantics of the base registers: if the low-level register ensures concurrency
property X (safe, regular or atomic), then so does the high-level (b-valued) register.

4.6. From safe bits to safe b-valued registers

The algorithm we present here uses a binary encoding scheme and hence several safe bits to implement
a b-valued safe register R. The algorithm assumes that b, the capacity of R is a power of 2, i.e., b = 2B

for some integer B. Any combination of B bits iis a value in the range of R.
The algorithm uses an array REG[1 : B] of 1WMR safe bit registers to store the current value of R.

Given µi = REG[i], the binary representation of the current value of R is µ1 . . . µB . The algorithm is
given in Figure 4.5.

Theorem 9 Given B 1WMR safe bits, the algorithm of Figure 4.5 implements a 1WMR 2B-valued safe
register.
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operation R.write(v):
let µ1 . . . µB be the binary representation of v;
for all j in {1, . . . , B} do REG[j]← µj ;
return ()

operation R.read() issued by pi:
for all j in {1, . . . , B} do µj ← REG[j];
let v be the value whose binary representation is µ1 . . . µB ;
return (v)

Figure 4.5.: A b-valued safe register from binary ones (binary encoding)

Proof Any read of R that does not overlap any write of R returns the binary representation of the last
value written into R and is consequently safe to return. A read of R that overlaps a write of R can return
any of b possible values whose binary encoding uses B bits. As every such combination represents one
possible encoding of a value that R is supposed to contain, a read concurrent with a write indeed returns
a value in the range of R. Consequently, R is a b-valued safe register. 2Theorem 9

The space complexity of the algorithm is logarithmic with respect to the size b of the value range of
the constructed register R.

4.7. From regular bits to regular b-valued registers

It is important to notice that the previous algorithm of Figure 4.5 does not implement a regular register
even when the base registers are regular. Roughly speaking, this is because the write is not continuous.
A read of R concurrent with a write changing for example the value of R from 0 . . . 0 to 1 . . . 1 can
return any value, including one that was never written.

In order to ensure regularity, we use a different encoding scheme. Instead of a binary encoding as
above, we turn to unary encoding: in short, whereas the former does not ensure the continuity of the
writing, the latter does. Here, considering an array REG[1 : b] of 1WMR regular bits, the value v ∈ [1..b]
is represented by 0s in registers 1 to v − 1 and then 1 in register at position v. The space complexity of
the transformation algorithm is now b base bits, i.e., it is linear with respect to the size of the value range
of the constructed register R instead of being logarithmic in the case of a safe register. This is the price
we pay for regularity.

The algorithm that relies on unary encoding is given in Figure 4.6. To write v, the writer first sets
REG[v] to 1, and then cleans the array REG: this cleaning phase consists in setting to 0 all registers from
REG[v − 1] to REG[1].

The reader traverses the array REG[1 : b] starting from its first entry (REG[1]) and stops as soon as it
finds an index j such that REG[j] = 1. The reader then returns j as the result of the read. Notice that a
read searches for a value in the ascending order, while a write updates the array in the descending order,
from v − 1 until 1. In other words, the write and the read are performed in the opposite directions.

The algorithm assumes that the register R has a valid initial value v0: initially, REG[j] = 0 for
1 ≤ j < v0, REG[v0] = 1, and REG[j] = 0 or 1 for v0 < j ≤ b.

It is important to notice that, even when no write operation is in progress, several entries of the array
may be set to 1. However, only the smallest entry of REG set to 1 actually encodes the most recently
written value. The other entries are evidences of past values. Note also that the “last” base register
REG[b], once set to 1, does never change. A reader, once it witnessed 0 in all entries of REG up to b− 1,
might thus by default consider REG[b] to be 1.

We first argue for wait-freedom.
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operation R.write(v):
REG[v]← 1;
for j = v − 1 down to 1 do REG[j]← 0;
return ()

operation R.read() issued by pi:
j ← 1;
while (REG[j] = 0) do j ← j + 1;
return (j)

Figure 4.6.: A b-valued regular register from binary ones (unary-encoding)

Lemma 2 The algorithm of Figure 4.6 is wait-free.

Proof Every R.write(v) operation terminates in a finite number of its own steps for its for loop only
goes through v iterations.

Consider now a R.read(). Remember first that there initially is a valid value v0 and hence initially a
1 in the register. Now observe also that whenever the writer changes REG[x] from 1 to 0, the writer has
already set to 1 another entry REG[y] such hat x < y ≤ b. Hence, if a reader reads REG[x] and returns
the new value 0, then a higher entry of the array has been set to 1. As the index of the while loop of the
read starts at 1 and is incremented each time the loop body is performed, the loop eventually terminates
in a finite number of steps. 2Lemma 2

The previous lemma relies heavily on the fact that the high-level register R can contain up to b dis-
tinct values. If the range of R is unbounded, a R.read() operation might never terminate if the writer
continuously updates R with ever-increasing values. More precisely, suppose that the range of R is
unbounded and consider the following scenario. Let R.write(x) be the last write operation terminated
before a R.read() starts. Let the read operation proceed until it is about to read REG[x] and then sched-
ule a concurrent R.write(y), y > x) to set REG[x] from 1 to 0. Then we schedule the read of REG[x] by
the reader. As the register is unbounded, this scenario can repeat indefinitely, forcing the reader to take
infinitely many reads of REG.

Theorem 10 Given b 1WMR regular bits, the algorithm described in Figure 4.6 implements a 1WMR
b-valued regular register.

Proof Consider first a read operation that is not concurrent with any write, and let v be the last written
value. By the write algorithm, when the corresponding R.write(v) terminates, the first entry of the array
that equals 1 is REG[v] (i.e., REG[x] = 0 for 1 ≤ x ≤ v− 1). Because a read traverses the array starting
from REG[1], then REG[2], etc., it necessarily reads until REG[v] and returns the value v.

R.read()

R.write(v2)R.write(v1)R.write(v0) R.write(vm). . .

Figure 4.7.: A read with concurrent writes

Let us now consider a read operation R.read() that is concurrent with one or more write operations
R.write(v1), . . ., R.write(vm) (as depicted in Figure 4.7). Let v0 be the value written by the last write
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operation that terminated before the operation R.read() starts. For simplicity we assume that each
execution begins with a write operation that sets the value of R to an initial value. As a read operation
always terminates (Lemma 2), the number of writes concurrent with the R.read() operation is finite.

By the algorithm, the read operation finds 0 in REG[1] up to REG[v−1], 1 in REG[v], and then returns
v. We are going to show by induction that each of these base-object reads returns a value previously or
concurrently written by a write operation in R.write(v0), R.write(v1), . . ., R.write(vm).

Since R.write(v0) sets REG[v0] to 1 and REG[v0 − 1] down to REG[1] to 0, the first base-object read
performed by the R.read() operation returns the value written by R.write(v0) or a concurrent write.
Now suppose that the read on REG[j], for some j = 1, . . . , v − 1, returned 0 written by the latest
preceding or a concurrent write operation R.write(vk) (k = 1, . . . ,m). Notice that vk > j: otherwise,
R.write(vk) would not touch REG[j]. By the algorithm, R.write(vk) has previously set REG[vk] to 1
and REG[vk−1] down to REG[j+1] to 0. Thus, since the base registers are regular, the subsequent read
of REG[j+1] performed within theR.read() operation can only return the value written byR.write(vk)
or a subsequent write operation that is concurrent with R.read().

By induction, we derive that the read of REG[v] performed within R.read() returns a value written by
the latest preceding or a concurrent write. 2Theorem 10

4.8. From atomic bits to atomic b-valued registers

In Chapter 6, we give a direct construction of an atomic bit from three regular ones. However, if we use
this construction to replace regular bits with atomic ones in the algorithm in Figure 4.6 we do not get an
atomic b-valued register. Interestingly, a relatively simple modification of its read algorithm makes that
possible by preventing the new/old inversion phenomenon.

The idea is to equip the R.read() algorithm in Figure 4.6 with a “counter-inversion” mechanism.
Instead of returning position j where the first 1 was located in REG, the read operation traverses the
array again in the opposite direction (from j to 1) and returns the smallest entry containing value 1. The
resulting algorithm is presented in Figure 4.8.

operation R.write(v):
REG[v]← 1;
for j from v − 1 step −1 until 1 do REG[j]← 0 ;
return ()

operation R.read() issued by pi:
j up← 1;

(1) while (REG[j up] = 0) do j up← j up + 1;
(2) j ← j up;
(3) for j down from j up− 1 step −1 until 1 do
(4) if (REG[j down] = 1) then j ← j down

return (j)

Figure 4.8.: Atomic register: from bits to b-valued register

Theorem 11 The algorithm in Figure 4.8 implements a 1WMR atomic b-valued register using b 1WMR
atomic bits.

Proof For every history of the algorithm, we define the reading function π as follows. Let r be a read
operation that returned v. Then π(r) is the latest write operation that updated REG[v] before the last
read of REG[v] performed by r, or the initializing write operation w0 if no such operation exists. Since
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r returns the index of REG containing 1, π(r) writes 1 to REG[v]. Note that π is well-defined, as it can
be derived from the atomic reading function of the elements of REG.

We now show that π is indeed an atomic reading function, i.e., it satisfies properties A1, A2 and A3
in Section 4.2. By the definition, π(r) is a preceding or concurrent write operation, therefore A1 is
satisfied.

To see that A2 is also satisfied, suppose, by contradiction, that π(r) → w(v′) → r(v) for some
write w(v′). By the algorithm, w(v′) sets REG[v] to 1 and then writes 0 to all REG[v − 1] down to
REG[1]. Thus, v′ < v, otherwise w(v′) would also write to REG[v] and π(r) would not be the latest
write updating REG[v] before r reads REG[v]. Since r reached REG[v], there exists a write w(v′′) that
set REG[v′] to 0 after w(v′) set it to 1 but before r read it. By the algorithm, before setting REG[v′] to 0
this write has set a REG[v′′] to 1 and, by the assumption, v′′ < v. Assuming that w(v′′) is the latest such
write, before reacing REG[v], r must have found REG[v′′] = 1—a contradiction.

To show that π satisfies A3, let us consider two read operations r1 and r2, r1→ r2, and suppose, by
contradiction, that π(r2)→ π(r1).

Let r1 return v and r2 return v′. Since π(r1) 6= π(r1), the definition of π implies that v 6= v′. Thus,
we should only consider the following cases:

(1) v′ > v.

In this case, r2 must have found 0 in REG[v] before finding 1 in REG[v′] and returning v′ > v.
Thus, a write w(v′′) such that v < v′′ < v′ and π(r2) → w(v′′) → (r1), has set REG[v] to 0
after π(v) set REG[v] to 1 but before r2 read it. Assume, without loss of generality, that v′′ is the
smallest such value. Since w(v′′) has set REG[v′′] to 1 before writing 0 to REG[v], r2 must have
returned v′′ < v′—a contradiction.

(2) v′ < v.

In this case, r1 reads 1 in REG[v], v > v′, and then reads 0 in all REG[v − 1] down to REG[1],
including REG[v′]. Since π(r2) has previously set REG[v′] to 1, another write operation must have
set REG[v′] to 0 after π(r2) set it to 1 but before r1 read it. Thus, when r2 subsequently reads 1
in REG[v′], π(r2) is not the last preceding write operation to write to REG[v′]—a contradiction
with the definition of π.

Hence, π is an atomic reading function and, by Theorem 5, the algorithm indeed implements a 1WMR
atomic register. 2Theorem 11

4.9. Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [49].
Theorem 5, and the algorithms described in Figure 4.2, Figure 4.4, Figure 4.5 and Figure 4.6 are due

to Lamport [49]. The algorithm described in Figure 4.8 is due to Vidyasankar [69].
The wait-free construction of stronger registers from weaker registers has always been an active re-

search area. The interested reader can consult the following (non-exhaustive!) list where numerous
algorithms are presented and analyzed [11, 14, 17, 18, 33, 42, 51, 65, 70, 71, 72].

4.10. Exercises

1. Multi-valued regular registers.
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Consider the implementation of anM -valued one-writerN -reader (1WNR) regular register (Fig-
ure 4.6).

a) In the code of write(v), is it possible to change the order of operations: first write 0 to
REG[v − 1], . . . ,REG[1] and then write 1 to REG[v]?

b) What if the writer writes 0 to REG[1], . . . ,REG[v − 1] in the ascending order? Justify your
answers (e.g., by presenting an execution that violates the properties of a regular register).

2. Multi-valued atomic registers.

a) In the algorithm in Figure 4.6, if we replace the regular binary registers with atomic ones,
would we get an implementation of an atomic multi-valued register?

b) If we replace the regular binary registers with atomic ones, would we get an implementation
of an atomic multi-valued register?
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5. Unbounded register transformations

In this chapter we consider a simplistic case when unbounded base objects, i.e., registers of unbounded
capacity, can be used. This assumption allows us to use the sequence numbers: each written value is
associated with a sequence number that intuitively captures the number of write operations performed
up to now. A typical base register consists therefore of two fields: a data field that stores the value of the
register and a control field that stores the sequence number associated with it.

Of course, assuming base objects of unbounded capacity is not very realistic. In the coming Chapters 6
and 7 we discuss algorithms that implement bounded (i.e., storing values from a bounded range) atomic
registers using bounded safe registers.

5.1. 1W1R registers: From unbounded regular to atomic

We show in the following how to implement an 1W1R atomic register using a 1W1R regular register.
The use of sequence numbers make such a construction easy and helps in particular prevent the new/old
inversion phenomenon. Preventing this, while preserving regularity, means, by Theorem 5, that the
constructed register is atomic.

The algorithm is described in Figure 5.1. Exactly one base regular register REG is used in the im-
plementation of the high-level register R. The local variable sn at the writer is used to hold sequence
numbers. It is incremented for every new write in R. The scope of the local variable aux used by the
reader spans a read operation; it is made up of two fields: a sequence number (aux.sn) and a value
(aux.val).

Each time it writes a value v in the high-level register, R, the writer writes the pair [sn, v] in the base
regular register REG. The reader manages two local variables: last sn stores the greatest sequence
number it has even read in REG, and last val stores the corresponding value. When it wants to read
R, the reader first reads REG, and then compares last sn with the sequence number it has just read in
REG. The value with the highest sequence number is the one returned by the reader and this prevents
new/old inversions.

operation R.write(v):
sn← sn+ 1;
REG← [sn, v];
return ()

operation R.read():
aux← REG;
if (aux.sn > last sn) then last sn← aux.sn;

last val← aux.val;
return (last val)

Figure 5.1.: From regular to atomic: unbounded construction

Theorem 12 Given an unbounded 1W1R regular register, the algorithm described in Figure 5.1 con-
structs a 1W1R atomic register.
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Proof The proof is similar to the proof of Theorem 5. We associate with each read operation r of the
high-level register R, the sequence number (denoted sn(r)) of the value returned by r: this is possible
as the base register is regular and consequently a read always returns a value that has been written with
its sequence number, that value being the last written value or a value concurrently written (if any).
Considering an arbitrary history H of register R, we show that H is atomic by building an equivalent
sequential history S that is legal and respects the partial order on the operations defined by→H .
S is built from the sequence numbers associated with the operations. First, we order all the write

operations according to their sequence numbers. Then, we order each read operation just after the write
operation that has the same sequence number. If two reads operations have the same sequence number,
we order first the one whose invocation event is first. (Remember that we consider a 1W1R register.)

The history S is trivially sequential as all the operations are placed one after the other. Moreover, S
is equivalent to H as it is made up of the same operations. S is trivially legal as each read follows the
corresponding write operation. We now show that S respects→H .

• For any two write operations w1 and w2 we have either w1 →H w2 or w2 →H w1. This is
because there is a single writer and it is sequential: as the variable sn is increased by 1 between
two consecutive write operations, no two write operations have the same sequence number, and
these numbers agree on the occurrence order of the write operations. As the total order on the
write operations in S is determined by their sequence numbers, it consequently follows their total
order in H .

• Let op1 be a write or a read operation, and op2 be a read operation such that op1 →H op2. It
follows from the algorithm that sn(op1) ≤ sn(op2) (where sn(op) is the sequence number of the
operation op). The ordering rule guarantees that op1 is ordered before op2 in S.

• Let op1 be a read operation, and op2 a write operation. Similarly to the previous item, we then
have sn(op1) < sn(op2), and consequently op1 is ordered before op2 in S (which concludes the
proof).

2Theorem 12

One might think of a naı̈ve extension of the previous algorithm to construct a 1WMR atomic register
from base 1W1R regular registers. Indeed, we could, at first glance, consider an algorithm associating
one 1W1R regular register per reader, and have the writer writes in all of them, each reader reading its
dedicated register. Unfortunately, a fast reader might see a new concurrently written value, whereas a
reader that comes later sees the old value. This is because the second reader does not know about the
sequence number and the value returned by the first reader. The latter stores them locally. In fact, this
can happen even if the base 1W1R registers are atomic. The construction of a 1WMR atomic register
from base 1W1R atomic registers is addressed in the next section.

5.2. Atomic registers: from unbounded 1W1R to 1WMR

In Section 4.4, we presented an algorithm that builds a 1WMR safe/regular register from similar 1W1R
base registers. We also pointed out that the corresponding construction does not build a 1WMR atomic
register even when the base registers are 1W1R atomic (see the counter-example presented in Figure 4.3).

This section describes such an algorithm: assuming 1W1R atomic registers, it shows how to go from
single reader registers to a multi-reader register. This algorithm uses sequence numbers, and requires
unbounded base registers.
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Overview. As there are now several possible readers, actually n, we make use of several (n) base
1W1R atomic registers: one per reader. The writer writes in all of them. It writes the value as well as a
sequence number. The algorithm is depicted in Figure 5.2.

We prevent new/old inversions (Figure 4.3) by having the readers “help” each other. The helping is
achieved using an array HELP[1 : n, 1 : n] of 1W1R atomic registers. Each register contains a pair
(sequence number, value) created and written by the writer in the base registers. More specifically,
HELP[i, j] is a 1W1R atomic register written only by pi and read only by pj . It is used as follows to
ensure the atomicity of the high-level 1WMR register R that is constructed by the algorithm.

• Help the others. Just before returning the value v it has determined (we discuss how this is
achieved in the second bullet below), reader pi helps every other process (reader) pj by indicating
to pj the last value pi has read (namely v) and its sequence number sn. This is achieved by having
pi update HELP[i, j] with the pair [sn, v]. This, in turn, prevents pj from returning in the future a
value older than v, i.e., a value whose sequence number would be smaller than sn.

• Helped by the others. To determine the value returned by a read operation, a reader pi first com-
putes the greatest sequence number that it has ever seen in a base register. This computation
involves all 1W1R atomic registers that pi can read, i.e., REG[i] and HELP[j, i] for any j. pi.
Reader pi then returns the value that has the greatest sequence number pi has computed.

The corresponding algorithm is described in Figure 5.2. Variable aux is a local array used by a reader;
its jth entry is used to contain the (sequence number, value) pair that pj has written in HELP[j, i] in order
to help pi; aux[j].sn and aux[j].val denote the corresponding sequence number and the associated
value, respectively. Similarly, reg is a local variable used by a reader pi to contain the last (sequence
number, value) pair that pi has read from REG[i] (reg.sn and reg.val denote the corresponding fields).

Register HELP[i, i] is used only by pi, which can consequently keep its value in a local variable.
This means that the 1W1R atomic register HELP[i, i] can be used to contain the 1W1R atomic register
REG[i]. It follows that the protocol requires exactly n2 base 1W1R atomic registers.

operation R.write(v):
sn← sn+ 1;
for all j in {1, . . . , n} do REG[i]← [sn, v];
return ()

operation R.read() issued by pi:
reg← REG[i];
for all j in {1, . . . , n} do aux[j]← HELP[j, i];
let sn max be max(reg.sn, aux[1].sn, . . . , aux[n].sn);
let val be reg.val or aux[k].val such that the associated seq number is sn max;
for all j in {1, . . . , n} do HELP[i, j]← [sn max, val];
return (val)

Figure 5.2.: Atomic register: from one reader to multiple readers (unbounded construction)

Theorem 13 Given n2 unbounded 1W1R atomic registers, the algorithm described in Figure 5.2 imple-
ments a 1WMR atomic register, where n is the number of readers.

Proof As for Theorem 5, the proof consists in showing that the sequence numbers determine a lineariza-
tion of any history H .

Considering an history H of the constructed register R, we first build an equivalent sequential history
S by ordering all the write operations according to their sequence numbers, and then inserting the read
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operations as in the proof of Theorem 5. This history is trivially legal as each read operation is ordered
just after the write operation that wrote the value that is read. A reasoning similar to the one used in
Theorem 5, but based on the sequence numbers provided by the arrays REG[1 : n] and HELP[1 : n, 1 :
n], shows that S respects→H . 2Theorem 18

5.3. Atomic registers: from unbounded 1WMR to MWMR

In this section, we show how to use sequence numbers to build a MWMR atomic register from n 1WMR
atomic registers (where n is the number of writers). The algorithm is simpler than the previous one. An
array REG[1 : n] of n 1WMR atomic registers is used in such a way that pi is the only process that can
write in REG[i], while any process can read it. Each register REG[i] stores a (sequence number, value)
pair. Variables X.sn and X.val are again used to denote the sequence number field and the value field
of the register X , respectively. Each REG[i] is initialized to the same pair, namely, [0, v0] where v0 is
the initial value of R.

The problem we solve here consists in allowing the writers to totally order their write operations. To
that end, a write operation first computes the highest sequence number that has been used, and defines
the next value as the sequence number of its write. Unfortunately, this does not prevent two distinct
concurrent write operations from associating the same sequence number with their respective values.
A simple way to cope with this problem consists in associating a timestamp with each value, where a
timestamp is a pair of a sequence number and the identity of the process that issues the corresponding
write operation.

The timestamping mechanism can be used to define a total order on all the timestamps as follows. Let
ts1 = [sn1, i] and ts2 = [sn2, j] be any two timestamps. We have:

ts1 < ts2
def
=
(
(sn1 < sn2) ∨ (sn1 = sn2 ∧ i < j)

)
.

The corresponding construction is described in Figure 5.3. The meaning of the additional local variables
that are used is, we believe, clear from the context.

operation R.write(v) issued by pi:
for all j in {1, . . . , n} do reg[j]← REG[j];
let sn max be max(reg[1].sn, . . . , reg[n].sn) + 1;
REG[i]← [sn max, v];
return ()

operation R.read() issued by pi:
for all j in {1, . . . , n} do reg[j]← REG[j];
let k be the process identity such that [sn, k] is the greatest timestamp

among the n timestamps [reg[1].sn, 1], . . . and [reg[n].sn, n];
return (reg[k].val)

Figure 5.3.: Atomic register: from one writer to multiple writers (unbounded construction)

Theorem 14 Given n unbounded 1WMR atomic registers, the algorithm described in Figure 5.3 imple-
ments a MWMR atomic register.

Proof Again, we show that the timestamps define a linearization of any history H .
Considering an history H of the constructed register R, we first build an equivalent sequential history

S by ordering all the write operations according to their timestamps, then inserting the read operations
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as in Theorem 5. This history is trivially legal as each read operation is ordered just after the write
operation that wrote the read value. Finally, a reasoning similar to the one used in Theorem 5 but based
on timestamps shows that S respects→H . 2Theorem 14

5.4. Concluding remark

The algorithms presented in this chapter assume that the sequence numbers may grow without bound,
hence the assumption of unbounded base registers. This appears like wasting resources in the case when
the values written to the implemented register are taken from a bounded range.

On approach to bound the capacity of base registers is based on timestamp systems. These techniques,
originally proposed by Dolev and Shavit [23] and Dwork and Waarts [24], emulate shared sequence
numbers taken from a fixes range, bounded by a function of the number of processes. A prominent
atomic register construction based on bounded timestamps was proposed by Li, Tromp, and Vitanyi [51].

In Chapters 6 and 7, we discuss an alternative, less generic but simpler, solution based on elementary
binary signalling between the writer and the reader in the one-reader case 6), and, additionally, between
the readers in the multiple-readers case (Chapter 7). Also, in Chapter 8, we discuss how to implement
the bounded atomic snapshot abstraction directly, using registers of bounded capacity.

5.5. Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [49].
Theorem 5, and the algorithms described in Figure 4.2, Figure 4.4, Figure 4.5 and Figure 4.6 are due

to Lamport [49]. The algorithm described in Figure 4.8 is due to Vidyasankar [69]. The algorithms
described in Figure 5.2 and 5.3 are due to Vityani and Awerbuch [73].

The wait-free construction of stronger registers from weaker registers has always been an active re-
search area. The interested reader can consult the following (non-exhaustive!) list where numerous
algorithms are presented and analyzed [11, 14, 17, 18, 33, 42, 51, 65, 70, 71, 72].

5.6. Exercises

1. Give an example of a history of a read-write atomic register that allows for a regular but not atomic
reading function.

2. Prove that the implementation of a one-writer one-reader (1W1R) atomic register is correct
(Transformation IV in the slides).

Hint: argue that to prove that the implementation is indeed linearizable, it is enough to show that
if read1 precedes read2, then read2 cannot return the value written before the value returned by
read1. Check the claim and the rest is trivial.

3. Consider the implementation of a one-writer N -reader (1WNR) atomic register (Transformation
V in the slides).

The code of read() involves writing the value just read back to RR[ ][ ]. Is it possible to devise an
implementation in which the reader does not write?

4. Give a multi-writer multi-reader (NWNR) atomic register implementation from 1W1R atomic
registers and sketch a proof of its correctness.
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6. Optimal atomic bit construction

6.1. Introduction

In the previous chapter, we introduced the notions of safe, regular and atomic (linearizable) read/write
objects (also called registers). In the case of 1W1R (one writer one reader) register, assuming that there
is no concurrency between the reader and the writer, the notions of safety, regularity and atomicity
are equivalent. This is no longer true in the presence of concurrency. Several bounded constructions
have been described for concurrent executions. Each construction implements a stronger register from a
collection of weaker base registers. We have seen the following constructions:

• From a safe bit to a regular bit. This construction improves on the quality of the base object with
respect to concurrency. Contrarily to the base safe bit, a read operation on the constructed regular
bit never returns an arbitrary value in presence of concurrent write operations.

• From a bounded number of safe (resp., regular or atomic) bits to a safe (resp., regular or atomic)
b-valued register. These constructions improve on the quality of each base object as measured
by the number of values it can store. They show that “small” base objects can be composed to
provide ”bigger” objects that have the same behavior in the presence of concurrency.

To get a global picture, we miss one bounded construction that improves on the quality in the pres-
ence of concurrency, namely, a construction of an atomic bit from regular bits. This construction is
fundamental, as an atomic bit is the simplest nontrivial object that can be defined in terms of sequen-
tial executions. Even if an execution on an atomic bit contains concurrent accesses, the execution still
appears as its sequential linearization.

In this chapter, we first show that to construct a 1W1R atomic bit, we need at least three safe bits, two
written by the writer and one written by the reader. Then we present an optimal three-bit construction
of an atomic bit.

6.2. Lower bound

In Section 5.1, we presented the construction of a 1W1R atomic register from an unbounded regular
register. The base regular register had to be unbounded because the construction was using sequence
numbers, and the value of the base register was a pair made up of the data value of the register and the
corresponding sequence number. The use of sequence numbers makes sure that new-old inversions of
read operations never happen.

A fundamental question is the following: Can we build a 1W1R atomic register from a finite number
of regular registers that can store only finitely many values, and can be written only by the writer (of the
atomic register)?

This section first shows that such a construction is impossible, i.e., the reader must also be able to
write. In other words, such a construction must involve two-way communication between the reader and
the writer. Moreover, even if we only want to implement one atomic bit, the writer must be able to write
in two regular base bits.
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6.2.1. Digests and sequences of writes

Let A be any finite sequence of values in a given set. A digest of A is a shorter sequence B that
“mimics” A: A and B have the same first and last elements; an element appears at most once in B; and
two consecutive elements of B are also consecutive in A. B is called a digest of A.

As an example let A = v1, v2, v1, v3, v4, v2, v4, v5. The sequence B = v1, v3, v4, v5 is a digest of A.
(there can be multiple digests of a sequence).

Every finite sequence has a digest:

Lemma 3 Let A = a1, a2, . . . , an be a finite sequence of values. For any such sequence there exists a
sequence B = b1, . . . , bm of values such that:

• b1 = a1 ∧ bm = an,

• (bi = bj)⇒ (i = j),

• ∀j : 1 ≤ j < m : ∃i : 1 ≤ i < n : bj = ai ∧ bj+1 = ai+1.

Proof The proof is a trivial induction on n. If n = 1, we have B = a1. If n > 1, let B = b1, . . . , bm be
a digest of A = a1, a2, . . . , an. A digest of a1, a2, . . . , an, an+1 can be constructed as follows:
- If ∀j ∈ {1, . . . ,m} : bj 6= an+1, then B = b1, . . . , bm, an+1 is a digest of a1, a2, . . . , an.
- If ∃j ∈ {1, . . . ,m} : bj = an+1, there is a single j such that bj = an+1 (this is because any
value appears at most once in B = b1, . . . , bm). It is easy to check that B = b1, . . . , bj is a digest of
a1, . . . , an, an+1. 2Lemma 3

Consider now an implementation of a bounded atomic 1W1R register R from a collection of base
bounded 1W1R regular registers. Clearly, any execution of a write operation w that changes the value
of the implemented register must consist of a sequence of writes on base registers. Such a sequence of
writes triggers a sequence of state changes of the base registers, from the state before w to the state after
w.

Assuming that R is initialized to 0, let us consider an execution E where the writer indefinitely
alternatesR.write(1) andR.write(0). Letwi, i ≥ 1, denotes the i-thR.write(v) operation. This means
that v = 1 when i is odd and v = 0 when i is even. Each prefix of E, denoted by E′, unambiguously
determines the resulting state of each base object X , i.e., the value that the reader would obtain if it read
X right after E′, assuming no concurrent writes. Indeed, since the resulting execution is sequential,
there exists exactly one reading function and we can reason about the state of each object at any point in
the execution.

Each write operation w2i+1 = R.write(1), i = 0, 1, . . ., contains a sequence of writes on the base
registers. Let ω1, . . . , ωx be the sequence of base writes generated byw2i+1. LetAi be the corresponding
sequence of base-registers states defined as follows: its first element a0 is the state of the base registers
before ω1, its second element a2 is the state of the base registers just after ω1 and before ω2, etc.; its last
element ax is the state of the base registers after ωx.

Let Bi be a digest derived from Ai (by Lemma 3 such a digest sequence exists).

Lemma 4 There exists a digest B = b0, . . . , by (y ≥ 1) that appears infinitely often in B1, B2, . . ..

Proof First we observe that every digestBi (i = 1, 2, . . .) must consists of at least two elements. Indeed
if Bi is a singleton b0, then the read operation on R applied just before wi and the read operation on
R applied just after wi observe the same state of base registers b0. Therefore, the reader cannot decide
when exactly the read operation was applied and must return the same value—a contradiction with the
assumption that wi changes the value of R.
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Since the base registers are bounded, there are finitely many different states of the base registers that
can be written by the writer. Since a digest is a sequence of states of the registers written by the writer in
which every state appears at most once, we conclude that there can only be finitely many digests. Thus,
in the infinite sequence of digests, B1, B2, . . ., some digest B (of two or more elements) must appear
infinitely often. 2Lemma 4

Note that there is no constraint on the number of internal states of the writer. Since there may be no
bound on the number of steps taken within a write operation, all the sequences Ai can be different, and
the writer may never perform the same sequence of base-register operations twice. But the evolution of
the base-register states in the course of Ai can be reduced to its digest Bi.

6.2.2. Impossibility result and lower bound

Theorem 15 It is not possible to build a 1W1R atomic bit from a finite number of regular registers that
can take a finite number of values and are written only by the writer.

Proof By contradiction, assume that it is possible to build a 1W1R atomic bit R from a finite set S of
regular registers, each with a finite value domain, in which the reader does not update base registers.

An operation r = R.read() performed by the reader is implemented as a sequence of read operations
on base registers. Without loss of generality, assume that r reads all base registers. Consider again
the execution E in which the writer performs write operations w1, w2, . . ., alternating R.write(1) and
R.write(0).

Since the reader does not update base registers, we can insert the complete execution of r between
every two steps in E without affecting the steps of the writer. Since the base registers are regular, the
value read in a base register X by the reader performing r after a prefix of E is unambiguously defined
by the latest value written to X before the beginning of r. Let λ(r) denote the state of all base registers
observed by r.

By Lemma 4, there exists a digest B = b0, . . . , by (y ≥ 1) that appears infinitely often in B1, B2, . . .,
where Bi is a digest of w2i+1. Since each state in {b0, . . . , by} appears in E infinitely often, we can
construct an execution E′ by inserting in E a sequence of read operations r0, . . . , ry such that for each
j = 0, . . . , y, λ(rj) = by−j . In other words, in E′, the reader observes the states of base registers
evolving downwards from by to b0.

By induction, we show that inE′, each rj (j = 0, . . . , y) must return 1. Initially, since λ(r0) = by and
by is the state of the base registers right after someR.write(1) is complete, r0 must return 1. Inductively,
suppose that rj (for some j, 0 ≤ j ≤ y − 1) returns 1 in E′.

rj+1

from by−j−1 to by−j

R.write(1)

λ(rj) = by−j

rj

λ(rj+1) = by−j−1

Figure 6.1.: Two read operations rj and rj + 1 concurrent with R.write(1)

Consider read operations rj and rj+1 (j = 0, . . . , y − 1). Recall that λ(rj) = by−j and λ(rj+1) =
by−j−1. Since digest B appears in B1, B2, . . . infinitely often, E′ contains infinitely many base-register
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writes by which the writer changes the state of base registers from by−j−1 to by−j . Let X be the base
register changed by these writes.

Since X is regular, we can construct an execution E′′ which is indistinguishable to the reader from
E′, where rj are concurrent with a base-register write performed within R.write(1) in which the writer
changes the state of the base registers from by−j−1 to by − j (Figure 6.1).

By the induction hypothesis, rj returns 1 in E′ and, thus, in E′′. Since the implemented register R
is atomic and rj returns the concurrently written value 1 in E′′, rj+1 must also return 1 in E′′. But the
reader cannot distinguish E′ and E′′ and, thus, rj+1 returns 1 also in E′.

Inductively, ry must return 1 in E′. But λ(ry) = b0, where b0 is the state of base registers right after
some R.write(0) is complete. Thus, ry must return 0—a contradiction. 2Theorem 15

Therefore, to implement a 1W1R atomic register from bounded regular registers, we must establish
two-way communication between the writer and the reader. Intuitively, the reader must inform the writer
that it is aware of the latest written value, which requires at least one base bit that can be written by the
reader and read by the writer. But the writer must be able to react to the information read from this bit.
In other words:

Theorem 16 In any implementation a 1W1R atomic bit from regular bits, the writer must be able to
write to at least 2 regular bits.

Proof Suppose, by contradiction, that there exists an implementation of a 1W1R atomic bit R in which
the writer can write to exactly one base bit X .

Note that every write operation on R that changes the value of X and does not overlap with any read
operation must change the state of X . Without loss of generality assume that the first write operation
w1 = R.write(1) performed by the writer in the absence of the reader changes the value of X from 0 to
1 (the corresponding digest is 0, 1).

Consider an extension of this execution in which the reader performs r1 = R.read() right after the
end of w1. Clearly, r1 must return 1. Now add w2 = R.write(0) right after the end of r1. Since the state
of X at the beginning of w2 is 1, the only digest generated by w2 is 1, 0.

Now add r2 = R.read() right after the end of w2, and let E be the resulting execution. Now r2 must
return 0 in E. But since X is regular, E is indistinguishable to the reader from an execution in which r1

and r2 take place within the interval of w1 and thus both must return 1—a contradiction. 2Theorem 16

As we have seen in the previous chapter, there is a trivial bounded algorithm that constructs a regular bit
from a safe bit. This algorithm only requires one additional local variable at the writer. The combination
of this algorithm with Theorem 16 implies:

Corollary 1 The construction of a 1W1R atomic bit from safe bits requires at least 3 1W1R safe bits,
two written by the writer and one written by the reader.

As the construction presented in the next section uses exactly 3 1W1R regular bits to build an atomic
bit, it is optimal in the number of base safe bits.

6.3. From three safe bits to an atomic bit

Now we present an optimal construction of a high level 1W1R atomic bit R from three base 1W1R safe
bits. The high level bit R is assumed to be initialized to 0. It is also assumed that each R.write(v)
operation invoked by the writer changes the value of R. This is done without loss of generality, as the
writer of R can locally keep a copy v′ of the last written value, and apply the next R.write(v) operation
only when it modifies the current value of R.

The construction of R is presented in an incremental way.
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6.3.1. Base architecture of the construction

The three base registers are initialized to 0. Then, as we will see, the read and write algorithms defining
the construction, are such that, any write applied to a base registerX changes its value. So, its successive
values are 0, then 1, then 0, etc. Consequently, to simplify the presentation, a write operation on a base
register X , is denoted “change X”. As any two consecutive write operations on a base bit X write
different values, it follows that X behaves as regular register.

The 3 base safe bits used in the construction of the high level atomic register R are the following:

• REG: the safe bit that, intuitively, contains the value of the atomic bit that is constructed. It is
written by the writer and read by the reader.

• WR: the safe bit written by the writer to pass control information to the reader.

• RR: the safe bit written by the reader to pass control information to the writer.

6.3.2. Handshaking mechanism and the write operation

As we saw in the previous section, the reader should inform the writer when it read a new value v in the
implemented register. Otherwise, the uninformed writer may subsequently repeat the same digest of state
transitions executing R.write(v) so that the reader would be subject to new-old inversion. Therefore,
whenever the writer is informed that a previously written value is read by the reader, it should change
the execution so that critical digests are not repeated.

The basic idea of the construction is to use the control bits WR and RR to implement the handshaking
mechanism. Intuitively, the writer informs the reader about a new value by changing the value of WR so
that WR 6= RR. Respectively, the reader informs the writer that the new value is read by changing the
value of RR so that WR = RR. With these conventions, we obtain the following handshaking protocol
between the writer and the reader:

• After the writer has changed the value of the base register REG, if it observes WR = RR, it
changes the value of WR.

As we can see, setting the predicate WR = RR equal to false is the way used by the writer to
signal that a new value has been written in REG. The resulting is described in Figure 6.2.

operation R.write(v): %Change the value of R %
i change REG ;
ii if WR = RR then change WR; % Strive to establish WR 6= RR %

return ()

Figure 6.2.: The R.write(v) operation

• Before reading REG , the reader changes the value of RR, if it observes that WR 6= RR. This
signaling is used by the writer to update WR when it discovers that the previous value has been
read.

As we are going to see in the rest of this chapter, the exchange of signals through WR and RR is also
used by the reader to check if the value it has found in REG can be returned.
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6.3.3. An incremental construction of the read operation

The reader’s algorithm is much more involved than the writer’s algorithm. To make it easier to un-
derstand, this section presents the reader’s code in an incremental way, from simpler versions to more
involved ones. In each stage of the construction, we exhibit scenarios in which a simpler version fails,
which motivates a change of the protocol.

The construction: step 1 We start with the simplest construction in which the reader establishes
RR = WR and returns the value found in REG . (The line numbers are chosen to anticipate future
modifications of the algorithm.)

3 if WR 6= RR then change RR; % Strive to establish WR = RR %
4 val← REG;
5 return (val)

We can immediately see that this version does not really use the control information: the value re-
turned by the read operation does not depend on the states of RR and WR. Consequently, this version
is subject to new-old inversions: suppose that while the writer changes the value of REG from 0 to 1
(line ii in Figure 6.2), the reader performs two read operations. The first read returns 1 (the “new” value
of R) and the second read returns 0 (the “old” value), i.e., we obtain a new-old inversion.

The construction: step 2 An obvious way to prevent the new-old inversion described in the previ-
ous step is to allow the reader to return the current value of REG only if it observes that the writer has
updated WR to make WR 6= RR since the previous read operation.

1 if WR = RR then return (val);
3′ change RR; % Strive to establish WR = RR %
4 val← REG;
5 return (val)

Here we assume that the local variable val initially contains the initial value of R (e.g., 0). Checking
whether WR 6= RR before changing RR in line 3′ looks unnecessary, since the reader does not touch
the shared memory between reading WR in line 1 and in line 3, so we dropped it for the moment.

Unfortunately, we still have a problem with this construction. When a read is executed concurrently
with a write, it may happen that the read returns a concurrently written value but a subsequent read finds
RR 6= WR and returns an old value found in REG .

Indeed, consider the following scenario (Figure 6.3):

1. w1 = R.write(1) changes REG and starts changing WR.

2. r1 reads WR, finds WR 6= RR and changes RR, reads REG and returns 1.

3. r2 reads WR and still finds WR 6= RR (new-old inversion on WR).

4. w1 completes changing WR and returns.

5. w2 = R.write(0) starts changing REG .

6. r2 changes RR (establishing that RR 6= WR now), reads REG and returns 0.
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7. r3 reads WR, finds WR 6= RR, reads REG and returns 1 (new-old inversion on REG).

8. w2 completes changing REG and returns.

In other words, we obtain a new-old inversion for read operations r2 and r3.

return 0

w1=write(1)

RR6=WR

change WR

change RR

read 1

RR=WR

change REG

RR6=WR

w2=write(0)

RR 6=WR

Writer

Reader

r1

change REG

return 1 r2

change RR

read 0 read 1

r3 return 1

Figure 6.3.: Counter example to step 2 of the construction: new-old inversion for r1 and r2

The construction: step 3 The problem with the scenario above is that read operation r2 changes
RR while it is not necessary: it previously evaluated WR 6= RR due to a new-old inversion on WR.
Thus, when r2 changes RR, it sets WR 6= RR again. Thus, the subsequent read r3 finds WR 6= RR
will be forced to return a value read in REG , and the value can be “old” due to the ongoing change in
REG .

A naı̈ve solution to this could be for the reader to check again if WR 6= RR still holds before
changing RR. By itself, this additional check will not change anything, since we could schedule this
check performed by r2 immediately after the first one and concurrently with w1’s change of WR. Thus,
additionally, the reader may first read REG and only then check if the condition WR 6= RR still holds
and change RR if it does.

1 if WR = RR then return (val);
2′ val← REG;
3 if WR = RR then change RR;
5 return (val)

This way we fix the problem described in Figure 6.3 but face a new one. The value read in REG
may get overly conservative in some cases. Consider, for example, the scenario in Figure 6.4. Here read
operation r2 evaluates WR = RR and returns the old value 1, even though the most recently written
value is actually 0. This is because, the preceding read operation r1 changed RR to be equal to WR
without noticing that REG was meanwhile changed

The construction: step 4 One solution to the problem exemplified in Figure 6.4 is, as put in the
pseudocode below, to evaluate REG after changing RR and then check RR again. If the predicate
RR = WR does not hold after RR was changed and REG was read again, the reader returns the old
(read in line 2) value of REG . Otherwise, the new (read in line 4) value is returned.

1 if WR = RR then return (val);
2 aux← REG; % Conservative value %
3 if WR = RR then change RR;
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return 1

w1=write(1)

Writer

Reader

change RR

w2=write(0)

RR6=WR

read 1

RR 6=WR

r1 return 1 r2

Figure 6.4.: Counter example to step 3 of the construction: r2 returns an outdated value

4 val← REG;
5 if WR = RR then return (val);
7 return (aux)

Unfortunately, there is still a problem here. The variable val evaluated in line 4 may be too conserva-
tive to be returned by a subsequent read operation that finds RR = WR in line 1.

Again, suppose that w1 = R.write(1) is followed a concurrent execution of r1 = R.read() and
w2 = R.write(0) as follows (Figure 6.5):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changing REG from 1 to 0.

3. r1 finds WR 6= RR, reads 0 from REG and stores it in aux (line 2), changes RR, reads 1 from
REG and stores it in val (the write operation on REG performed by w2 is still going on).

4. w2 completes its write on REG , finds RR = WR and starts changing WR.

5. r1 finds WR 6= RR (line 5), concludes that there is a concurrent write operation and returns the
“conservative” value 0 (read in line 2).

6. r2 = R.read() begins, finds RR = WR (the write operation on WR performed by w2 is still
going on), and returns 1 previously evaluated in line 4 of r1.

That is, r1 returned the new (concurrently written) value 0 while r2 returned the old value 1.

RR6=WR RR=WR

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

change RR

read 1
to val

read 0
to aux

RR 6=WR

RR=WR change WR

r2 return 1return 0

Figure 6.5.: Counter example to step 4 of the construction: new-old inversion for r1 and r2
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The construction: last step The complete read algorithm is presented in Figure 6.6. As we
saw in this chapter, safe base registers allow for a multitude of possible execution scenarios, so an
intuitively correct implementation could be flawed because of an overlooked case. To be convinced that
our construction is indeed correct, we provide a rigorous proof below.

operation R.read():
1 if WR = RR then return (val);
2 aux← REG;
3 if WR 6= RR then change RR;
4 val← REG;
5 if WR = RR then return (val);
6 val← REG;
7 return (aux)

Figure 6.6.: The R.read() operation

6.3.4. Proof of the construction

Theorem 17 Let H be an execution history of the 1W1R register R constructed by the algorithm in
Figures 6.2 and 6.6. Then H is linearizable.

Proof Let H be an execution history. By Theorem 5, to show that H is linearizable (atomic), it is
sufficient to show that there exists a reading function π satisfying the assertions A0, A1 and A2.

In order to distinguish the operations R.read() and R.write(v), denoted by r and w, from the read
and write operations on the base registers (e.g., “change RR”, “aux ← REG”, etc.), the latter ones
are called actions. The corresponding execution containing, additionally, the invocation and response
events on base registers is denoted L. Let→L denote the corresponding partial relation on the actions.

Moreover, r being a read operation and loc the local variable (aux or val) whose value is returned by
r (in line 1, 5 or 7), ρr denotes the last read action “loc← REG” executed before r returns:

• If r returns in line 7, ρr is the read action “aux← REG” executed in line 2 of r,

• If r returns in line 5, ρr is is the read action “val← REG” executed in line 4 of r, and finally

• If r returns in line 1, ρr is is the read action “val ← REG” executed in line 4 or 6 of some
previous read operation.

Let φ be any regular reading function on REG . Thus, for each read action ρr we can define the
corresponding write action φ(ρr) that writes the value returned by r. The write operation that contains
φ(ρr) determines π(r). If there is no such write operation, i.e., ρr returns the initial value of REG , we
assume that π(r) is the (imaginary) initial write operation that writes the initial value and precedes all
actions in H .

Proof of A0. Let r be a complete read operation in H . By the definition of π, the invocation of the
write action φ(ρr) occurs before the response of ρr and, thus, the response of r in L, i.e., inv[π(ρr)] <L

resp[r]. Thus, inv[π(r)] <L inv[π(ρr)] <L resp[r] and ¬(resp[r] <L inv[π(r)]).
By contradiction, suppose that A0 is violated, i.e., r →H π(r). Thus, resp[r] <L inv[π(ρr)])—a

contradiction.
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Proof ofA1. Since there is only one writer, all writes are totally ordered andw →H π(r) is equivalent
to ¬(π(r)→H w).

By contradiction, suppose that there is a write operation w such that π(r) →H w →H r. If there are
several such write operations, let w be the last one before r, i.e., @ w′: w →H w′ →H r.
We first claim that, in such a context, ρr cannot be a read action of the read operation r (i.e., ρr /∈ r).
Proof of the claim. Recall that φ(ρr) ∈ π(r) (by definition). Let ω be the “change REG” action of
the operation w (ω ∈ w). By the case assumption, we obtain φ(ρr) →L ω. By the definition of φ(ρr),
we have ¬(ρr →L φ(ρr)) and, thus, ¬(ω →L ρr). Therefore, inv[ρr] <L resp[ω]. As ω ∈ w and
w →H r, we have inv[ρr] <L resp[w] <L inv[r]. As ρr started before r, and both are executed by the
same process, we have ρr /∈ r. End of the proof of the claim.

Since ρr /∈ r, by the algorithm in Figure 6.6, the read operation r returns a value in line 1, which
means that it has previously seen WR = RR. On the other hand, after the writer has executed ω within
π(r), it read RR in order to set WR different from RR if they were seen equal. As w →H r and @ w′:
w →H w′ →H r (assumption), it follows that RR has been modified by a read operation in line 3 before
the read operation r starts but after or concurrently with the read action on RR performed by w. Let r′

be that read operation; as there is a single process executing R.read(), we have r′ →H r.
Now we claim that ρr /∈ r′.
Proof of the claim: Let r′′ be the read operation that contains ρr. We show that r′′ 6= r′. We observe that
(Figure 6.7):

- If r′′ updates RR, it does it in line 3, i.e., before executing ρr (in line 4 or 6),

- inv[ρr] <L resp[ω] (since φ is a regular reading function and φ(ρr) precedes ω); the relation
between φ(ρr) precedes ω is indicated by a dotted arrow in Figure 6.7),

- w reads RR after having executed ω (code of the write operation).

It follows from these observations that if r′′ writes intoRR, then it completes the write before w starts
reading RR. But r′ writes to RR either after or concurrently with the read of RR performed within w.
Therefore, r′′ 6= r′ and, thus, ρr /∈ r′. End of the proof of the claim.

But since the reader modifies RR within r′, it also executes line 4 of r′ (val← REG) before execut-
ing r (this follows from the code of the read operation). But, as ρr /∈ r′, this read of REG action within
r′ contradicts the definition of ρr (according to which ρr is the last action “val ← REG” executed
before r starts), which completes the proof of the assertion A1.

r

ω read RR

write RR ρr

r′′

π(r) w

r′

Figure 6.7.: ρr belongs neither to r nor to r′

Proof of A2. By contradiction, suppose that there exist r1 and r2, two complete read operations
in H , such that r1 →H r2 and π(r2) →H π(r1). Without loss of generality, we assume that if r1
returns at line 1, then ρr1 is the read action in line 6 in the immediately preceding read operation. Since
π(r2) 6= π(r1), we have ρr1 6= ρr2. Thus, either ρr1 →L ρr2 or ρr2 →L ρr1.
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• ρr2 →L ρr1.
As ρr1 precedes or belongs to r1, and r1→H r2, we have resp[ρr1] <L inv[r2]. Combined with
the case assumption, the assertion implies ρr2 →L ρr1 →L r2, which contradicts the fact that ρr2

is the last “loc← REG” action executed before r2 started, where loc is val or aux. So, the case
ρr2 →L ρr1 is not possible.

• ρr1 →L ρr2.
By definition φ(ρr1) ∈ π(r1) and φ(ρr2) ∈ π(r2). As π(r2) →H π(r1), we have φ(ρr2) →L

φ(ρr1).

ρr2

resp[ρr1] inv[ρr2] resp[φ(ρr1)]

WR is not modified

inv[φ(ρr1)]

φ(ρr2) φ(ρr1)

ρr1

Figure 6.8.: A new-old inversion on the regular register REG

Thus, we have φ(ρr2)→L φ(ρr1) and ρr1 →L ρr2 (Figure 6.8) which implies a new-old inversion
on the base regular register REG . But since φ is a regular reading function on REG , we have
¬(ρr1 →L φ(rhor1) and ¬(φ(ρr1) →L ρr2). Thus, both ρr1 and ρr2 have to overlap π(ρr1)
(Figure 6.8): inv[φ(ρr1)] <L resp[ρ1] and inv[ρ2] <L resp[φ(ρr1)]. As φ(ρr1) is a base action
that updates REG , and as REG and WR are both updated by the writer, the “value” of the base
register WR does not change while the writer is updating REG or, more formally:

Property P: all read actions on WR performed between resp[ρr1] and inv[ρr2] return the same
value.

We consider three cases according to the line at which r1 returns.

– r1 returns in line 7.
Then ρr1 is “aux← REG” in line 2 of r1. We have the following:
- Since ρr1 →L ρr2 and r1 returns in line 7, ρr2 can only be the read in line 6 of r1 or a later
read action.
- After having performed ρr1, r1 reads WR and if WR 6= RR, it sets RR = WR in line 3.
But r1 returns in line 7, after having seen RR different from WR in line 5 (otherwise, it
would have returned in line 5). Thus, r1 reads different values of WR after ρr1 (line 2 of
r1) and before ρr2 (line 6 of r1 or later). This contradicts property P above.

– r1 returns in line 5.
Then, ρr1 is “val← REG” in line 4 of r1, and r1 sees RR = WR in line 5. Since ρr1 →L

ρr2, r2 does not return in line 1. Indeed, if r2 returns in line 1, the property P implies that
the last read on REG preceding line 1 of r2 is line 4 of r1, i.e., ρr1 = ρr2. Thus, r2 sees
RR 6= WR in line 1, before performing ρr2 is in line 2 or line 4 of r2. But r1 has seen
WR = RR in line 5, after having performed ρr1 in line 4—a contradiction with property P .
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– r1 returns in line 1.
In that case, ρr1 is line 4 or line 6 of the read operation that precedes r1. Again, since
ρr1 →L ρr2, r2 does not return in line 1, from which we conclude that, before performing
ρr2, r2 sees RR 6= WR in line 1. On the other hand, r1 sees RR = WR in line 1 after
having performed ρr1 which contradicts property P and concludes the proof.

Thus, π is an atomic reading function. 2Theorem 17

6.3.5. Cost of the algorithms

The cost of the R.read() and R.write(v) operations is measured by the the maximal and minimal
numbers of accesses to the base registers. Let us remind that the writer (resp., reader) does not read WR
(resp., RR) as it keeps a local copy of that register.

• R.write(v): maximal cost: 3; minimal cost: 2.

• R.read(): maximal cost: 7; minimal cost: 1.

The minimal cost is realized when the same type of operation (i.e., read or write) is repeatedly executed
while the operation of the other type is not invoked.

Notice we have assumed that if R.write(v) and R.write(v′) are two consecutive write operations,
we have v 6= v′. If the user issues two consecutive write operations with the same argument, the cost of
the second one is 0, as it is skipped and consequently there is no accesses to base registers.

6.4. Bibliographic notes

Lamport stated the problem of implementing atomic abstractions from weaker ones [49]. One of the
algorithms can be used to implement an unbounded atomic registers using unbounded regular ones. The
direct bounded construction of a binary atomic shared register discussed in this chapter was proposed
by Tromp [67, 68].
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7. Atomic multivalued register construction

In Chapter 5, we described an implementation of an atomic 1WNR register from regular ones that uses
sequence numbers growing without bound and, thus, must assume base registers of unbounded capacity.
In this chapter, we propose a bounded solution. But let us first recall a few related constructions we
discussed earlier.

7.1. From single-reader regular to multi-reader atomic

In Chapter 6, we discussed how to construct an atomic bit from only three safe bits. One of the bits is
used for storing the value itself, and the other two are used for exchanging control signals between the
writer and the reader. In the one-reader case, we can turn a series of atomic 1W1R bits into an atomic
bounded multi-valued register using the simple transformation algorithm in Section 4.8. But how do we
construct a multi-reader multi-valued atomic register?

It is straightforward to get a regular bounded multi-valued multi-reader register from single-reader
ones (recall the algorithms in Section 4.4). This chapter describes how to construct an atomic one.

We begin with describing a simpler algorithm that, in addition to regular registers used to store the
written value itself, employs an atomic bit used for transmitting control signals from the writer to the
readers.

7.2. Using an atomic control bit

The construction of a multi-reader register using two regular registers REG1 and REG2 and an atomic
bit WFLAG is given in Figure 7.1.

operation R.write(v):
(1) WFLAG ← true;
(2) REG1 ← v;
(3) WFLAG ← false;
(4) REG2 ← v;

operation R.read():
(5) val ← REG1;
(6) if ¬WFLAG then return(val );
(7) val ← REG2;
(8) return (val )

Figure 7.1.: From regular registers and an atomic control bit to an atomic register.

In the algorithm, the value is written twice: first in REG1 and then in REG2. Before writing to
REG1, the writer sets WFLAG to true to signal to the readers the beginning of a new write operation.
After writing to REG1, the writer sets WFLAG back to false .

A read operation reads REG1 and then checks WFLAG . If WFLAG contained false , then the
process returns the value previously read in REG1. If WFLAG contained true , then the process reads
and returns the value in REG2.
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Intuitively, WFLAG = true means that there is a possibility that the value found earlier in REG1 is
written by a concurrent write operation and, therefore, a subsequent read operation might find the older
value in REG1, due to new-old inversion on REG1. To prevent, new-old inversion on the implemented
register, it is therefore necessary to return a more conservative value read in REG2.

Theorem 18 The algorithm in Figure 7.1 implements a 1WMR atomic register using one 1WMR atomic
bit and two 1WMR regular registers.

Proof Let H be a history of the algorithm in Figure 7.1, and let L be the corresponding execution.
Let π be any regular reading function defined on read operations on REG1 or REG2. We extend π
to the high-level read operations on the implemented register R as follows. For each high-level read r
returning the value found by a read operation ρ in REG1 or REG2 (in lines 5 or 7), let π(r) be the
high-level write operation w that contains π(ρ).

It is immediate from the construction that the resulting extension of π on high-level read operations is
regular. Indeed, the interval of every such π(ρ) belongs to the interval of w. Thus, ρ 6→L π(ρ) implies
r 6→H π(r), i.e., A0 is satisfied. Additionally, since every complete write operation contains writes on
both REG1 and REG2, A1 satisfied by π defined over reads of REG1 and REG2 implies that for any
w and r, we cannot have π(r)→H w →H r, i.e., A1 is satisfied.

Now we are going to prove A2. By contradiction, suppose that for two high-level operations r1 and
r2, we have r1 →H r2 and π(r2) →H π(r1). For i = 1, 2, let ρi be the read operation on REG1 or
REG2 that was used by ri to evaluate the returned value. Clearly, ρ1 →L ρ2.

The following cases are possible:

(1) Both ρ1 and ρ2 read REG1.

By property A1 of regular functions, π(ρ1) 6→L ρ2: otherwise we would have π(ρ2) →L

π(ρ1) →L ρ2, i.e., ρ2 would return an “overwritten” value. By property A0, ρ1 6→L π(ρ1).
Thus, given that ρ1 →L ρ2, π(ρ1) is concurrent with both ρ1 and ρ2.

By the algorithm, just before writing to REG1 in π(ρ1), operation π(r1) has set WFLAG to true .
Since π(ρ1) is concurrent with both ρ1 and ρ2, no write on WFLAG took place in the interval
between the response of ρ1 and the invocation of ρ2. Notice that r1 checks WFLAG during this
interval and, thus, true was the last written value on WFLAG when it is read within r1. Thus,
after having read REG1, r1 must have found true in WFLAG and returned the value read in
REG2—a contradiction with the assumption that the value read in REG1 is returned by r1.

(2) Both ρ1 and ρ2 read REG2.

Similarly, usingA0 andA1, we derive that π(ρ1), updating REG2, is concurrent with both ρ1 and
ρ2. By the algorithm, just before writing to REG2, π(r1) has set WFLAG to false . Thus, before
reading REG2, r2 must have read false in WFLAG and returned the value read in REG1—a
contradiction with the assumption that the value read in REG2 is returned by r2.

(3) ρ1 reads REG2 and ρ2 reads REG1.

In π(r1), π(ρ1) is preceded by a write wr1 on REG1: wr1 →L π(ρ1). By A0, ρ1 6→L π(ρ1).
Now relations wr1 →L π(ρ1), ρ1 6→L π(ρ1), and ρ1 →L ρ2 imply wr1 →L ρ2.

But, by our assumption, π(r2) →H π(r1) and, thus, π(ρ2) →L wr1, which, together with
wr1 →L ρ2, implies π(ρ2)→L wr1 →L ρ2, violating A1—a contradiction.

(4) ρ1 reads REG1 and ρ2 reads REG2.
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By the algorithm, after ρ1 has returned, r1 found false in WFLAG . After that r2 read REG1,
found true in WFLAG , and then read and returned the value in REG2. Let rf 1 and rf 2 be the
read operations of WFLAG performed within r1 and r2, respectively. Thus, ρ1 →L rf 1 →L

rf 2 →L ρ2.

Since WFLAG is atomic, there must be a write operation wf on WFLAG changing its value from
false to true (line 1) that is linearized between linearizations of rf 1 and rf 2 and, thus, wf 6→L rf 1

and rf 2 6→L wf . Let wr1 and wr2 be the write operations on, respectively, REG1 and REG2 that
immediately precede wf . (Recall that wr1 and wr2 can belong to the initializing write operation
on R.)

Now we derive that π(ρ1) must be wr1 or an earlier write on REG1. Otherwise, we would get
wf →L π(ρ1) which, combined with ρ1 →L rf 1 and wf 6→L rf 1, implies that ρ1 →L π(ρ1)—a
violation of A0.

On the other hand, byA1, there does not exist wr , a write operation on REG2, such that π(ρ2)→L

wr →L ρ2.

Similarly, π(ρ2) must be wr2 or a later write on REG2. Otherwise, we would get π(ρ2)→L wr2.
But wr2 →L wf , rf 2 6→L wf and rf 2 →L ρ2 imply wr2 →L ρ2. Thus, π(ρ2)→L wr2 →L ρ2—
a violation of A1.

Therefore, π(ρ1)→L π(ρ2) and, thus, π(r1) = π(r2) or π(r1)→H π(r2)—a contradiction.

Hence, π satisfied A2 and the algorithm indeed implements an atomic register. 2Theorem 18

Notice that we only used the fact that WFLAG is atomic in case (4). By replacing WFLAG with
a regular register, or a set of registers providing the functionality of one regular register, we would
maintain atomicity in cases (1)-(3). However, as we will see in the next section, taking care of case (4)
incurs nontrivial changes in processing the remaining cases.

7.3. The algorithm

The bounded algorithm transforming regular multi-valued multi-reader registers into an atomic one is
presented in Figure 7.2. Notice that we replaced the atomic control bit WFLAG in the algorithm in
Figure 7.1 with several regular registers of bounded capacity:

• LEVEL = 0, 1, 2: a ternary regular register used by the writer to signal to the readers at which
“stage of writing” it currently is.

• FC [1, . . . , n]: an array of regular binary registers, each FC [i] is written by reader pi and by read
by the other readers.

• RC [1, . . . , n]: an array of regular binary registers, each RC [i] is written by reader pi and read by
the writer and other readers.

• WC [1, . . . , n]: an array of regular binary registers, written by the writer and read by the readers.

Intuitively, LEVEL = 1 corresponds to WFLAG = true , and LEVEL = 2 and LEVEL = 0
correspond to WFLAG = false in the algorithm in Figure 7.1. But LEVEL is a regular register now.
Hence, to handle the possible new-old inversion on LEVEL, the readers exchange information with each
other using the array FC [1, . . . , n] and with the writer using the arrays RC [1, . . . , n] and WC [1, . . . , n].
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operation R.write(v):
(1) LEVEL← 1;
(2) REG1 ← v;
(3) LEVEL← 2;
(4) LEVEL← 0;
(5) REG2 ← v;
(6) for j = 1, . . . , n do
(7) lr ← RC [j];
(8) WC [j]← ¬lr ;

operation R.read() (code for reader pi):
(9) val ← REG1;
(10) lw ←WC [i];
(11) if lw 6= RC [i] then
(12) FC [i]← false;
(13) RC [i]← lw;
(14) case LEVEL do
(15) 0: return(val );
(16) 2: FC [i]← true; return(val );
(17) 1: for j = 1, . . . , n do
(18) lr ← RC [j];
(19) lf ← FC [j];
(20) lw ←WC [j];
(21) if (lr = lw) ∧ lf then
(22) FC [i]← true;
(23) return (val );
(24) val ← REG2;
(25) return(val );

Figure 7.2.: From bounded regular registers to a bounded atomic register.

Theorem 19 The algorithm in Figure 7.2 implements a 1WMR atomic register using 1WMR regular
registers.

Proof Consider a history H and the corresponding execution L of the algorithm in Figure 7.2. As in
the proof of Theorem 18, we take any reading function π acting over read operations on base regular
registers, and then extend it to high-level read operations on the implemented register R as follows. For
each complete high-level operation r returning the value read by an operation ρ in REG1 (line 9) or
REG2 (line 24), let π(r) be the high-level write operation w that contains π(ρ). It is immediate that π,
as a function on high-level reads, is regular.

Now assume, by contradiction, that π is not atomic, i.e., there exist two high-level operations r1 and
r2, such that r1 →H r2 and π(r2) →H π(r1). For i = 1, 2, let ρi be the read operation on REG1 or
REG2 that was used by ri to evaluate the returned value.

For brevity, we introduce the following notation:

• w1 = π(ρ1) and w2 = π(ρ2);

• wr i,j denotes the write to REGj performed within wi (i = 1, 2, j = 1, 2), if any;

• rr i,j denotes the read of REGj performed within ri (i = 1, 2, j = 1, 2);

• wl i,j denotes j-th write to LEVEL performed within wi (i = 1, 2, j = 1, 2, 3), if any; note that
wl i,j writes the value j mod 3;

• rl i denotes the read operations on LEVEL, performed within ri (i = 1, 2).
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Since every complete high-level write operation contains writes on both REG1 and REG2, it follows
that w2 immediately precedes w1. Otherwise, regardless of which register REG i (i = 1, 2) is read by
ρ2, we would have a write wr on REG i such that π(ρ2) →L wr →L π(ρ1) which, combined with
ρ1 6→L π(ρ1) and ρ1 →L ρ2 (our initial assumption), would imply π(ρ2) →L wr →L ρ2—a violation
of A1 for ρ2.

As in the proof of Theorem 18, we now should consider the four following cases:

(1) ρ1 reads REG2 and ρ2 reads REG1.

Since w2 →H w1, we have π(ρ2) →L wr1,1 →L π(ρ1). Now, by A0, ρ1 6→L π(ρ1), which,
together with ρ1 →L ρ2, implies π(ρ2)→L wr1,1 →L ρ2—a violation of A1 for ρ2.

(2) Both ρ1 and ρ2 read REG2.

Properties A0 and A1 imply that π(ρ1) 6→L ρ2 and ρ1 6→L π(ρ1), i.e., π(ρ1) is concurrent
with both ρ1 and ρ2. Thus, no write on LEVEL takes place between the response of ρ1 and
the invocation ρ2. By the algorithm, immediately before updating REG2, w1 writes 0 to LEVEL.
Thus, before reading REG2, r2 must have read 0 in LEVEL and return the value read in REG1—
a contradiction.

(3) ρ1 reads REG1 and ρ2 reads REG2.

Just before updating REG1 in π(ρ1), w1 writes 1 to LEVEL in operation wl1,1, thus, wl1,1 →L

π(ρ1), ρ1 →L rl1, and ρ1 6→L π(ρ1) (property A0) imply wl1,1 →L rl1 →L rl2.

By the algorithm, r2 must have read 1 in LEVEL. Suppose that wl1,1 6= π(rl2), i.e., rl2 reads 1
written to LEVEL by another write operation wl . Since wl1,1 →L rl2, propertyA1 for rl2 implies
wl1,1 →L wl. By the algorithm, since wl writes 1, we have wl1,2 →L wl . But π(ρ2) →L wr1,2

(since w2 →H w1), rl2 6→L wl (A0 for rl2), and rl2 →L ρ2 (by the algorithm). Therefore,
π(ρ2)→L wr1,2 →L ρ2—a violation of A1 for ρ2. Thus, π(rl2) = wl1,1.

Since rl1 →L rl2 (by the assumption), wl1,2 6→L rl2 (A1 for rl2), and wl1,2 →L wl1,3 (by the
algorithm), we have rl1 →L wl1,3. Also, since wl1,1 →L wr1,1, ρ1 →L rl1 (by the algorithm),
and ρ1 6→L wr1,1 (A0 for ρ1), we have wl1,1 →L rl1. Furthermore, rl1 →L wl1,3: otherwise,
wl1,2 →L wl1,3 and rl1 →L rl2 would imply wl1,1 →L wl1,2 →L rl2—a violation of A1 for rl2.

Thus, by the algorithm, rl1 reads either 1 written by wl1,1 or 2 written by wl1,2. In both cases, r1

(executed, e.g., by reader pi) sets FC [i] to true before returning the value read by ρ1 (in lines 16
or 22).

Since ρ2 reads REG2, we have wr1,2 6→L ρ2, otherwise we would violateA1 by having π(ρ2)→L

wr1,2 →L ρ2. Thus, ρ1 6→L π(ρ1) and wr1,2 6→L ρ2 imply that the writer performs no updates on
registers WC [i] in the interval between the response of ρ1 and before r2 finishes reading WC [i ].
Note that, within this interval, r1 makes sure that RC [i] = WC [i] and then sets FC [i] to true .

Any subsequent operation rw performed by pi writing false in FC [i] or modifying RC [i] can
only take place if pi previously finds out that RC [i] 6= WC [i] (line 11), which cannot take place
before a write on WC [i] performed by the writer which, by the algorithm, must succeed wr1,2:
indeed, after r1 ensures RC [i] = WC [i] and sets FC [i] to true and before it sets FC [i] to false
and modifies RC [i] (lines 12 and 13), the writer must modify WC [i] which can only happen after
wr1,2.

Thus, reads of RC [i] and FC [i] performed by r2 precede rw , and the values read by r2 satisfy
RC [i] = WC [i] and FC [i] = true (Figure 7.3). By the algorithm, r2 must then return the value
of REG1—a contradiction.
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Figure 7.3.: An execution in case (3): r2 finds out that RC [i] = WC [i], so it cannot return the value
read in REG2.

(4) Both ρ1 and ρ2 read REG1.

By A0, ρ1 6→L π(ρ1) and by A1, π(ρ1) 6→L ρ2, i.e., π(ρ1) is concurrent with both ρ1 and ρ2.

Hence, π(rl1) = wl1,1, i.e., r1 reads 1 in LEVEL, and then returns the value of REG1 in line 23
before the response of π(ρ1).

We say that a read operation rk finishes its check-forwarding when it executes the last read oper-
ation on some WC [j] in line 20 before exiting the for loop starting in line 17. For any operation
op, we write cf k →L op if rk finishes its check-forwarding before the invocation of op.

Consider now any (high-level) read operation rk returning in lines 23 or 25 such that:

(1) rlk 6→L wl1,1, and

(2) cf k →L wl1,2.

Note that r1 satisfies these conditions. We establish a contradiction by showing that no such rk
can return in line 23.

For read operations r` and rm, we say that r` finishes check-forwarding before rm, and we write
cf ` →L cf m, if the last read operation of the check-forwarding phase of r` precedes the last read
operation of the check-forwarding phase of rm.

By contradiction, assume that there is a non-empty set R of read operations satisfying condi-
tions (1) and (2) above that return in line 23. Without loss of generality, let rk be any operation in
R, such that no other operation in R finishes its check-forwarding before rk.

By the algorithm, before returning in line 23, rk finds out that, for some reader p`, FC [`] = true
and WC [`] = RC [`]. Let rt be the read operation performed by p` that, according to the reading
function π, wrote this value in FC [`]. Let rf denote the read operation on FC [`] performed within
rk (line 19), and let wf denote the write operation on FC [`] performed within rt (lines 16 or 22),
i.e., π(rf ) = wf . By the algorithm, before executing wf , rt read 1 or 2 in LEVEL.

First we are going to show that rt reads the value written in LEVEL by a write operation that
precedes w1. Since rf →L wl1,2 (rk ∈ R and the check-forwarding phases of reads in R satisfy
condition (2) above), rl t →L wf (by the algorithm), and rf 6→L wf (A0 for rf ), we have rl t →L

wl1,2 that is rl t returns the value written by wl1,1 or an earlier write.

Suppose, by contradiction, that π(rl t) = wl1,1, i.e., rl t returns 1 written by wl1,1. ByA0, we have
rl t 6→L wl1,1. Note that the fact that the last read operation of cf k succeeds rf , cf t →L wf (by
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the algorithm), and rf 6→L wf (A0 for rf ) imply cf t →L cf k. But cf t →L wf and rf →L wl1,2

imply cf t →L wl1,2, i.e., rt satisfies conditions (1) and (2), while cf t →L cf k—a contradiction
with the definition of rk.

Hence, rl t returns a value written by a write operation on LEVEL precedingw1. Since rt modified
FC [`], rl t must have returned 1 or 2, and wl2,3 6→L rl t (otherwise, the only value that rl t can
return is 0). Note that, by the algorithm, any subsequent read operation by p` must set FC [`] to
false (line 12) before modifying RC [`] (line 13). Since rk first reads RC [`] and then reads true in
FC [`] written by wf , the value of RC [`] read by rk must then be the value that rt has “ensured”,
i.e., written or read in its last operation on RC [`]. Also, w2 reads RC [`] after the invocation of rl t
and before rk read RC [`], therefore it must read the same value of RC [`].

Recall that after executing wl2,3, w2 ensures that WC [`] 6= RC [`]. Since, no succeeding update
on WC [`] takes place before rk finishes its check-forwarding, the value of WC [`] read by rk must
be the value that w2 has previously ensured (Figure 7.4).

WC[`] 6= RC[`]

Writer

pk

p`

rt

w1

wl1,2

find WC[`] 6= RC[`]

rk

rlk

cftrlt

read 1 or 2 fromensure
a write preceding wl2,3

wl2,3 wl1,1 π(ρ1)

cfk

w2

WC[`] = RC[`]

ensure

Figure 7.4.: An execution in case (4): rk finds out that RC [`] 6= WC [`], so it cannot return the value
read in REG1.

Thus, rk will find WC [`] 6= RC [`]—a contradiction with the assumption that rk returns line 23
after finding out that FC [`] = true and WC [`] = RC [`].

Thus, the algorithm in Figure 7.2 ensures A0, A1 and A2, and the algorithm indeed implements an
atomic register. 2Theorem 19

7.4. Bibliographic notes

The construction of a multi-reader atomic register is due to Haldar and Vidyasankar [33].

7.5. Exercises

1. Show that the algorithm in Figure 7.1 does not implement an atomic register if we replace the
atomic bit WFLAG with a regular one.
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8. Collects and snapshots

Until now we discussed read-write abstractions in which a read operation returns the last value written
to a single specified register. It would also be convenient to have an abstraction that allows the reader to
get, in a single operation, the vector of the last values written by all the processes. As usual, we expect
the operation to be wait-free, and we explore several definitions of the “last written value”. We start
with from the weaker collect object, and then proceed to the stronger snapshot and immediate snapshot
objects.

8.1. Collect object

A collect object exports the operation store() that is used to post values and the operation collect()
that returns a view, a collection of “most recent” values posted so far. More precisely, a view V is an
n-vector, with one value per process. Intuitively, store(v) is invoked by process pi to replace the value
in position i of the view with v. If no value has been posted by pi so far, the view returned by a collect()
operation contains ⊥ at position i.

8.1.1. Definition and implementation

A collect object can be seen as an array of n elements. Each element i can be updated by process i
using the store() operation. An evaluation of the content of the array can be obtained using the collect()
operation: each position i of the returned n-vector, called a view, contains the argument of a concurrent
store operation or the argument of the latest store operation of pi.

For simplicity, we assume that every value written by a given process pi, including the initial value
in position i, is unique. This way the value at position i in a view V returned by a collect operation is
associated with a unique store operation si by pi that has written that value, and we simply write si ∈ V
(the initial value ⊥ the view is associated with an artificial “initializing” store operation performed by
pi in the beginning). We also say that view V is contained in a view V ′, and we write V ≤ V ′, if for all
j, V [j] is written before V ′[j]. We write V < V ′ if V ≤ V ′ and V 6= V ′.

To define what does it mean for a collect object to behave correctly, consider a history H of events
inv [store()], resp[store()], inv [collect()] resp[collect()] issued by the processes. Recall that <H de-
notes the total order on the events in H and→H denoted the real-time order on the operations in H . As
usual, we assume that H is well-formed: no process invokes a new operation on the collect object be-
fore its previous operation returns. Thus, any two operations invoked by a given process inH are related
by →H . Every history H of invocations and responses on a collect object must satisfy the following
properties (here C denotes a collect operation and si denotes a store operation of process pi):

B0 : For each collect operation C that returns V , and each si ∈ V : C¬ →H si. (No collect returns a
value not yet written.)

B1 : For each collect operation C that returns V , store operations s and s′ by process pi, such that
s′ ∈ V : (s→H C)⇒ (s = s′ ∨ s′ →H s′). (No collect returns an overwritten value.)

B2 : ∀ V, V ′ returned by C,C ′: (C →H C ′) ⇒ (V ≤ V ′). (Every collect contains all preceding
ones.)

83



A straightforward implementation of a collect object maintains n atomic registers, REG [1], . . . ,REG [n],
one per process. To store a value, pi simply writes it to REG [i]. To collect the content, pi reads
REG [1], . . . ,REG [n] in any order. We can construct a collect reading function as a composition of cor-
responding atomic reading functions π1, . . . , πn: for each collect operation, define π(C)[i] = πi(r

C
i ),

where rCi is the read operation on REG [i] performed within C. The reader can easily see that the
resulting reading function satisfies properties B0–B2 above.

8.1.2. A collect object has no sequential specification

An abstraction A has a sequential specification S, if its behavior can be expressed through a set of
sequential histories in S. Formally:

• Every implementation of A is an atomic implementation of S , and

• Every atomic implementation of S is an implementation of A.

Note that the second property implies that every sequential history of S should be a history of A. If an
abstraction A has a sequential implementation, we say that A is an atomic object.

Lemma 5 Collect is not an atomic object.

Proof Suppose, by contradiction, that the collect abstraction has a sequential specification S .
Consider the execution history in Figure 8.1. Here the collect() operation issued by p1 is concurrent

with two store operations issued by p2 and p3. The history could have been exported, for example, by
an execution of the simple algorithm described above (Section 8.1.1), in which p1, within its collect()
operation, reads REG [2] before the write on REG [2] performed by p2 and REG [3] after the write on
REG [3] performed by p3.

By our assumption, the history should be atomic with respect to S. We recall that any linearization
of H should respect the real-time order on operations and, thus, we should put [store(v) by p2] before
[store(v′) by p3] in any linearization of H . We establish a contradiction by showing that there is no way
to find a place for the collect() operation in any such linearization.

Suppose that S allows placing the collect() operation before store(v′) by p3. Thus, S contains a
sequential history that violates property B0 (the collect operation returns a value which is not written
yet).

Now suppose that S allows placing the collect() operation after store(v′) by p3. This results in a
history that violates property B1 (the collect operation returns an overwritten value).

In both cases, S contains a history that does not respect the properties of collect. 2Lemma 5

Note that the proof will hold even for a weaker abstraction that only satisfies B0 and B1: a collect
abstraction would not have a sequential specification even without the requirement that any collect op-
eration should contain all preceding collect operations.

8.2. Snapshot object

One of the reasons why the collect object cannot be captured by a sequential specification is that it allows
concurrent collect operations to return views that are not “ordered”, i.e., not related by containment.

In this chapter, we introduce an “atomic restriction” of collect: a snapshot object that exports two
operations: update() and snapshot(). The snapshot() operation returns a vector of n values (one per
process). The value in position i of the vector contains the argument of the last preceding or a concurrent
update() operation executed by process pi.
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store(v′)

p1

p2

⊥

⊥

⊥
p3

collect()→ [⊥,⊥, v′]

store(v)

Figure 8.1.: A collect object has no sequential specification

8.2.1. Definition

In every history H , a snapshot object satisfies properties B0–B2 of collect (Section 8.1.1), where store
and collect are replaced with update and snapshot , respectively, plus the following two properties:

B3 For any two views V and V ′ obtained by snapshot operations, (V ≤ V ′) ∨ (V ′ ≤ V ).

B4 For any two updates u and u′, where u is performed by a process pi, and any view V obtained by
a snapshot operation, if u′ ∈ V and u→H u′, then V contains u or a later update at position i.

In other words, non-concurrent updates cannot be observed by snapshot operations in the opposite
order: new-old inversion on the level of snapshot and updates is not allowed.

If snapshot operations S and S′ return views V and V ′, respectively, such that V ≤ V ′, we say that S
is contained in S′, and write S ≤ S′. Thus, B3 implies that any two snapshot operations are related by
containment.

8.2.2. The sequential specification of snapshot

The sequential specification of type snapshot is defined as a set of sequential histories of update and
snapshot operations. In every such sequential history, each position i of the vector returned by every
snapshot operation contains the argument of last preceding update operation of pi (if any, or the initial
value⊥ otherwise). Note that, unlike the operational definitions of collect and snapshot objects proposed
above, the definition of the sequential snapshot type is valid even if we do not assume that every value
written by a given process is unique.

Intuitively, a concurrent implementation of the snapshot type gives the illusion of update and snap-
shot operations taking place instantaneously. We show that this type indeed captures the behavior of a
snapshot object.

Lemma 6 The snapshot abstraction is atomic (with respect to the snapshot type).

Proof Consider a finite history H of a snapshot implementation. Recall that H satisfies properties
B0–B2 of collect (where store and collect are replaced with update and snapshot), plus B3 and B4.

We construct a linearization L of H as follows. First we order all complete snapshot operations in H ,
based on the ≤ relation, which is possible by property B3.

Let update(v) = U be an operation performed by pi. U is then inserted in L just before the first
snapshot operation that returns v or a later value in position i, or at the end of the sequence if there is no
such a snapshot. After having done this for every update, we obtain a sequence [U0], S1, [U1], S2, [U2],
. . ., Sk, [Uk], where each [Uj ] is a (possibly empty) sequence of update operations U such that snapshot
Sj returns values older that written by U and Sj+1 returns the value written by U or a later value. Now
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we rearrange elements of each [Uj ] so that the real-time order is respected. This is possible since the
real-time order is acyclic.

Now we show that the resulting linearization L respects the order→H . Consider two operations op
and op′, such that op→H op′. Three cases are possible:

• Both op and op′ are update operations. Let op and op′ belong to [U`] and [Um], respectively. If
` < m, op→L op

′, as [U`] precedes [Um] in L. If ` = m, L), then op→L op
′, as L preserves the

real-time order of H in each [Um].

Suppose now that ` > m. But, by B4, Sm+1 contains op′ and any update that precedes it,
including op. By the construction of L, op′ cannot belong to U`—a contradiction.

• Both op and op′ are snapshot operations that return views V and V ′, respectively. If op′ is in-
complete, then it does not appear in L. If op′ is complete, then by B2, V ≤ V ′. Since L orders
snapshots based on the ≤ relation, if op′ appears in L, we have op→L op

′ in L.

• op is an update and op′ is a snapshot. By B1, op′ returns the value written by op or a later value,
and, by the construction of L and B3, op→L op

′.

• op is a snapshot and op′ is an update. By B0, the value written by op′ does not appear in the result
of op. By the construction of L, op→L op

′.

Thus, any snapshot object is an atomic implementation of the snapshot type.
Now consider a history H of a atomic implementation of the snapshot type. We are going to show

that H satisfies properties B0 − B4. Let L be a linearization of H . Thus, L is a legal (with respect to
the snapshot type) sequential history, that is equivalent to a completion of H and respects the real-time
order in H . In particular, L contains every complete operation in H .

• Suppose that a snapshot operation S returns a value v at position i in H . Since L is legal, v is the
value written by the last update u of pi that precedes S in L. Since L respects the real-time order,
S cannot precede u in H , and, thus, B0 is ensured in H .

• Suppose an update u precedes a snapshot S in H . Since L respects the real-time order of H , u
precedes S also in L. Since L is legal, S returns the value written by u or a later value at the
corresponding position and, thus, B1 is ensured in H .

• Suppose a snapshot S1 precedes a snapshot S2 in H . Since L respects the real-time order of H ,
S1 precedes S2 also in L. Legality of L implies that S1 ≤ S2 and, thus, B2 is ensured in H .

• All complete snapshot operations appear inL and, since L is legal, are related by≤: B3 is ensured
in H .

• Suppose that an update u1 precedes an update u2 and a snapshot S returns the value written by
u2. Since L respects→H and is legal, we have u1 →L u2 and u2 →L S. Thus, u1 →L S and,
since L is legal, S returns the value written by u1 or a later value at the corresponding position:
B4 is ensured in H .

Thus, any atomic implementation of the snapshot type is indeed a snapshot object. 2Lemma 6
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operation update(v) invoked by pi:
sni := sni + 1 { local sequence number generator }
REG[i] := [v, sni] { store the pair }

Figure 8.2.: Update operation

operation snapshot():
1 aa := REG.scan();
2 repeat forever
3 bb := REG.scan();
4 if (aa = bb) then return (aa.val); { return the vector of read values }
5 aa := bb

Figure 8.3.: Snapshot operation

8.2.3. Non-blocking snapshot

We start with a simple non-blocking snapshot implementation that only guarantees that at least one
correct process completes each of its operations. The construction assumes that the underlying base
registers can store values of arbitrary (unbounded) size, i.e., we may associate ever-growing sequence
numbers with every stored value. Then we turn the construction into an unbounded wait-free one.
Finally, we present a wait-free snapshot implementation that uses bounded memory.

Our n-process snapshot implementation uses an array of atomic registers REG []. Each value that
can be stored in a register REG [i] is associated with a sequence number that is incremented each time
a new value is stored. Each REG [i] consists of two fields, denoted REG [i].sn and REG [i].val. The
implementation of update() is presented in Figure 8.2. Here sni is a local variable, initially 0, that pi
uses to generate sequence numbers.

In an update operation, process pi simply writes the value, together with its sequence number, in the
corresponding register. To ensure that the result of every snapshot operation is consistent, i.e., contains
the most recent the implementation uses the “double scan” technique: the process keeps reading registers
REG [1, . . . , n] until two consecutive collects return identical results. The result of the last scan is then
returned by the snapshot operation.

The scan() function asynchronously reads the last (sequence number, data) pairs posted by each pro-
cess:

function REG .scan():
for j ∈ {1, . . . , n} do

R[j] := REG [j];
return (r)

Theorem 20 The algorithm in Figures 8.2 and 8.3 is a non-blocking atomic snapshot implementation.

Proof To prove that the implementation is non-blocking, consider any infinite execution of the algo-
rithm.

The update operation terminates in only one base-object step. Suppose now that a snapshot operation
performed by a correct process pi never terminates. By the algorithm, pi thus executes infinitely many
scans of REG . The only reason not to return in line 4 is to find out that one of the positions in REG has
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changed since the last scan. Thus, for every two consecutive scan operations C1 and C2 executed by pi,
another process pj executes an update operation U such that write to REG [j] in U takes place between
the read of REG [j] in C1 and the read of REG [j] in C2. Since there are only finitely many processes,
at least one process performs infinitely update operations concurrently with the snapshot operation of
pi. Thus, in every infinite execution of the algorithm, at least one correct process completes every its
operation. So the implementation is indeed non-blocking.

Now we show that the implementation is linearizable with respect to the snapshot type. LetE be any
finite execution of the algorithm andH be the corresponding history. Consider any complete snapshot()
operation in E. Let C1 and C2 be its last two scans. By the algorithm, C1 and C2 return the same result.
Now we choose the linearization point of the snapshot operation to be any point in E between the
response of C1 and the invocation of C2 (see example in Figure 8.4). Otherwise, if a snapshot operation
does not return in E, we remove the operation from our completion of the corresponding history H .

Consider now an update(v) operation executed by a process pi in E. We linearize the operation at
the point when it performs a write on REG [i] in E (if it does not, we remove it from the completion of
H).

Let L be the resulting linearization of H , i.e., the sequential history where operations appear in the
order of their linearization points in E. By the construction, L is equivalent to a completion of H . Also,
since each operation is linearized within its interval in E, L respects the real-time order of H . We show
that L is legal, i.e., at every position i, every snapshot operation in L returns the value written by the
latest preceding update of pi.

Let S be a snapshot operation in L, and let C1 and C2 be the two last scans of S. For each pi, let ui
be the last update operation of pi preceding S in L. Recall that ui is linearized at the write on REG [i]
and S is linearized between the response of C1 and the invocation of C2. Since, by the algorithm, C1

and C2 read the same value in REG [i], no write on REG [i] takes place between the read of REG [i]
performed within C1 and the read of REG [i] performed within C2. Thus, since the write operation
performed within ui is the last write on REG [i] to precede the linearization point of S in E, we derive
that it is also the last write on REG [i] to precede the read of REG [i] performed within C1.

Therefore, for each pi, the value of pi returned byC1 and, thus, by S is the value written by ui. Hence,
L is legal, and the algorithm in Figures 8.2 and 8.3 gives a linearizable implementation of snapshot.

2Theorem 20

8.2.4. Wait-free snapshot

In the non-blocking snapshot implementation in Figures 8.2 and 8.3, update operations may starve a
snapshot operation out by “selfishly” updating REG . This implementation can be turned into a wait-
free one using helping: an update operations can help concurrent snapshot operations terminate. An
update operation may itself take a snapshot of and store the result together with the new value in REG .
Of course, for this helping mechanism to work, we need to make sure that the intertwined snapshot and
update operations do not prevent each other from terminating.

First we can make the following two observations on the non-blocking snapshot implementation:

• If two consecutive scans performed within a snapshot operation are not identical, then at least one
process has concurrently performed an update operation.

• If a snapshot operation S issued by a process pi witnesses that the value of REG [j] has changed
twice, i.e., pj concurrently executed two update operations u1 and u2, then the second of these
updates was entirely performed within the interval of S. This is because S observed the value
written by u1 (and, thus, u2 was invoked after the invocation of S) and the (atomic) write by pj
of the base atomic register REG [j] is the last operation of u2.
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aai[4].sn = d

bbi[1].sn = a

bbi[3].sn = c

bbi[4].sn = d

first scan()

linearization point of snapshot()

Figure 8.4.: Linearization point of a snapshot() operation

As the execution interval of the second update falls entirely within the interval of S, we may use the
update to “help” S as follows:

• Within u2, pj takes a snapshot itself (using the algorithm in Figure 8.3) and writes the result help
to REG [j].

• Within S, pi uses the result read in REG [j] as the response of S. This is going to be a valid result,
since the execution of u2 (and, thus, of the snapshot performed by u2) takes place entirely within
the interval of S, so S can simply “borrow” the snapshot result help from U2.

Note that for this kind of helping to work, S must witness at least two concurrent updates of the same
process. For example, even though the write on REG [j] performed within u1 takes place within the
interval of S, the snapshot written by u1 together with its value may have taken place way before the
invocation of S. Thus, adopting the result of u1’s snapshot as the result of S may violate linearizability,
since it may miss updates executed after the snapshot taken by u1 but before the invocation of S. This
is why, before adopting the snapshot taken by pj , pi should wait until it observes the second change in
REG [j].

The resulting implementations of update() and snapshot() are described in Figure 8.5. The atomic
register REG [i] consists now of three fields, REG [i].val and REG [i].sn as before, plus the new field
REG [i].help array that contains the result of the snapshot taken by pi in the course of its latest update
operation.

The new local variable idcould helpi is used by process pi when it executes snapshot(). Ini-
tially ∅, idcould helpi contains the set of the processes that terminated update operations concurrently
with the snapshot operation currently executed by pi (lines 11-15). When pi observes that a process
pj ∈ could help updated its value in REG , i.e., pi finds out that aai[j].sn 6= bbi[j].sn, pi returns
REG [j].help array as the result of its snapshot operation.
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operation update(v) invoked by pi:
(1) help arrayi := snapshot();
(2) sni := sni + 1;
(3) REG[i] := (v, sni, help arrayi)

operation snapshot():
(4) could helpi := ∅;
(5) aai := REG.scan();
(6) while true do
(7) bbi := REG.scan();
(8) if (∀j ∈ {1, . . . , n} : aai[j].sn = bbi[j].sn) then
(9) return (aai.val)
(10) else for all j ∈ {1, . . . , n} do
(11) if (aai[j].sn 6= bbi[j].sn) then
(12) if (j ∈ could helpi) then
(13) return (bbi[j].help array)
(14) else
(15) could helpi := could helpi ∪ {j}
(16) aai := bbi

Figure 8.5.: Atomic snapshot object construction

8.2.5. The snapshot object construction is bounded wait-free

Theorem 21 Each update() or snapshot() operation returns after at most O(n2) operations on base
registers.

Proof Let us first observe that an update() by a correct process always terminates as long as the
snapshot() operation it invokes always returns. So, the proof consists in showing that any snapshot()
issued by a correct process pi terminates.

Suppose, by contradiction, that a snapshot operation executed by pi has not returned after having
executed n times the while loop (lines 5-16). Thus, each time it has executed the loop, pi has found out
that for some new j /∈ could helpi, aai[j].sn 6= bbi[j].sn (line 11), i.e., pj has executed a new update()
operation since the last scan() of pi. After this j is added to the set could helpi in line 14.

Note that i /∈ could helpi (pi does not change the value of REG [i] while executing snapshot()).
Thus, after n− 1 iterations, could helpi contains all other n− 1 processes {1, . . . , i− 1, i+ 1, . . . , n}.
Therefore, when pi executes the while loop for the nth time, for any pj such that aai[j].sn 6= bbi[j].sn
(line 11), it finds j ∈ idcould helpi in line 12. By the algorithm, pi returns in line 13, after having
executed n iterations in lines 5-16—a contradiction.

Thus, every snapshot operation returns after having executed at most n while loops in lines 5-16.
Since every loop involves exactly n base-object reads (in the scan operation on registers REG [1], . . .,
REG [n]), every snapshot terminates in n2 base-object steps. An update operation additionally executes
only one base-object write, thus its complexity is also within O(n2). 2Theorem 21

8.2.6. The snapshot object construction is atomic

Theorem 22 The object built by the algorithms described in Figure 8.5 is atomic with respect to the
snapshot type.

Proof Let E be an execution of the algorithm and H be the corresponding history of E. To prove that
the algorithm is indeed an atomic snapshot implementation, we construct a linearization of H , i.e., a
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total order L on the operations in H such that: (1) L is equivalent to a completion of H , (2) L respects
the real-time order of H , and (3) L is legal, i.e., each snapshot() operation S in L returns, for each
process pj , the value written by the last update() operation of pj that precedes S in L.

The desired linearization L is built as follows. The linearization point of a complete update() oper-
ation in E is the write in the corresponding 1WMR register (line 3). Incomplete update operations are
not included to L. The linearization point of a snapshot() operation S issued by a process pi depends
on the line at which it returns.
(i) If S returns in line 9 (successful double scan()), then the linearization point is any time between
the end of the first scan() and the beginning of the second scan() (see the proof of Theorem 20 and
Figure 8.4).
(ii) If S returns in line 13 (i.e., pi terminates with the help of another process pj), then the linearization
point is defined recursively as the linearization point of the corresponding update operation of pi. In the
example depicted in Figure 8.6, the arrows show the direction in which snapshot results are adopted by
one operation from another.

pi

pj1

pjk

snapshot()

successful double scan

help array

help array

update()

update() update()

snapshot()

snapshot()

update()

Figure 8.6.: Linearization point of a snapshot() operation (case ii)

We show now that the linearization point is well-defined. If S returns in line 13, the array (say
help array) returned by pi has been provided by an update() operation executed by some process
pj1 . As we observed earlier, this update() has been entirely executed within the interval of S, since
help array is the result of the second update operation of pj that is observed by pi to be concurrent with
S. Thus, this update started after the invocation of S and its last event (the write in REG [j] in line 8)
before the response of S.

Recursively, help array has been obtained by pj1 from a successful double scan, or from another
process pj2 . As there are at most n concurrent processes, it follows by induction that there is a process
pjk that has executed a snapshot() operation within the interval of S and has obtained help array from
a successful double scan.

The linearization point of the snapshot() operation issued by pi is thus defined as the linearization
point of snapshot() operation of pjk whose double scan determined help array .

This association of linearization points to the operations in H results in a complete sequential history
L that puts the operations in H in the order their linearization points appear in E.
L trivially satisfies properties (1) and (2) stated at the beginning of the proof. Reusing the proof of

Theorem 20, we observe that, for every pj , every snapshot operation S (be it a standalone snapshot or a
part of an update) returns the value written to REG [j] by the last update of pj to precede the linearization
point of S in E. Thus, L also satisfies (3), and the algorithm in Figure 8.5 is an atomic implementation
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of snapshot. 2Theorem 22

8.3. Bounded atomic snapshot

Implementing atomic abstractions is of our central concern. In Chapter 6, we described a space-optimal
implementation of an atomic bit using three safe bits. In Chapter 7, we discussed how to implement a
multi-valued bounded atomic registers from bounded regular registers.

In contrast, our implementation of the atomic snapshot abstraction in Section 8.2.4 assumes under-
lying atomic registers of unbounded capacity. Indeed, the values written to the abstraction by update
operations are assumed to be unique, e.g., equipped with distinct sequence numbers that are taken in an
unbounded range.

On can see an apparent gap between these transformations, and a natural question is whether we can
use atomic registers of bounded size to implement atomic snapshot.

8.3.1. Double collect and helping

The unbounded construction of atomic snapshots was based on two simple ideas: double collect and
helping.

Two consecutive collects returning identical results within a snapshot operation guarantee that no
register has been changed in the interval of time between the return of the first collect and the invocation
of the second one. Thus, all the updates affecting the result of these collects can be safely linearized
before the end of the first one.

If, after taking n collects, process pi did not observe two identical ones, then at least one of the n− 1
other processes (let us denote it pj) performed two concurrent updates. Now assume that each update
operation of pj includes taking a snapshot and attaching its outcome to the written snapshot value.
Clearly, the snapshot attached to the second update performed by pj and witnessed by pi took place
within the interval of the snapshot operation of pi. Thus, it is safe for pi to adopt this outcome as its
own.

Notice, however, that these mechanisms rely on the assumption that every value written to the snapshot
object is unique: otherwise two identical collects do not necessarily imply that no concurrent update took
place. An amusing exercise is to find an incorrect execution of our algorithm, assuming that the “unique-
write” requirement is lifted. Intuitively, the so called ABA problem (A in a snapshot position is replaced
with B and then with A again, so that a concurrent reader does not see the change) may cause a snapshot
operation to return an inconsistent value (see Exercise 3).

In histories with an unbounded number of updates, using a distinct value for each update operation
requires unbounded memory. But suppose now that we are after a bounded atomic snapshot object:
processes only write values from a bounded range. It turns out that a simple bounded-space handshaking
mechanism can be used to detect modifications in a snapshot position.

8.3.2. Binary handshaking

Let us recall the signalling mechanism in the 1W1R atomic register construction (Chapter 6): the writer
uses a special bit W to inform the reader that the value of the implemented register has been modified,
and the reader uses another special bit R to inform the writer that the last written value has been read.

Intuitively, in an atomic snapshot construction, every process executing a snapshot operation acts as a
reader, and every process executing an update operation acts as a writer. Therefore, for each distinct pair
of processes (pi, pj), we can maintain two atomic binary registers W [i, j] and R[i, j], where W [i, j] can
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be written by pi when it performs an update and read by pj when it performs a snapshot, while R[i, j]
can be written by pj when it performs a snapshot and read by pi when it performs an update.

Now suppose that after pi modifies REG [i], it also checks R[i, j] for each j 6= i and sets W [i, j] to
be different from R[i, j]. Respectively, whenever pj collects the values of REG it checks W [i, j] and,
if needed, sets R[i, j] to be equal to W [i, j]. Therefore, whenever pj takes a subsequent scan of REG
and observes R[i, j] 6= W [i, j], it may deduce that REG [i] has been recently changed.

It is still, however, possible that pi changes REG [i] but pj takes its scan before pi modifies W [i, j].
That is why we also introduce an additional toggle bit that is attached to the value written to REG [i].
The bit REG [i].toggle is inverted each time REG [i] is written by pi. This way pj can detect a concurrent
update operation via a change either in REG [i].toggle or in W [i, j].

8.3.3. Bounded snapshot using handshaking

Figure 8.7 describes a bounded implementation of the snapshot object. Now the atomic register REG [i]
consists of three fields, REG [i].val for the written value, REG [i].help array for the result of the snap-
shot taken by pi within its latest update operation, and REG [i].toggle for the bit inverted with each new
update performed by pi.

The update operation is very similar to that in the unbounded algorithm (Figure 8.5). But instead of
using a unique sequence number with every written value, process pi inverts the toggle bit and makes
sure that W [i, j] 6= R[i, j], in order to inform every other process pj that a new value has been written.

In the snapshot operation, process pi first ensures that W [j, i] = R[j, i] for every j 6= i, and then
performs two scans of REG . We are going to show that, for any j 6= i, REG [j].toggle has different
values in these two scans or W [j, i] does not equal R[j, i] if and only if REG [j] has been concurrently
modified. Thus, if no j satisfies the conditions in line 14, it is safe to return the outcome of the latest
scan taken by pi (line 20). If, for some j, the conditions are satisfied in three iterations, then it is
safe to return the snapshot attached to last the value written by pj (line 16). Note that, unlike the
unbounded version (Figure 8.5), this algorithm cannot return after two concurrent modification of the
shared memory performed by another process are abserved (see Exercise 6).

8.3.4. Correctness

Essentially, we use the correctness arguments of the unbounded snapshot algorithm (Section 8.2.4).
As before, we linearize each update operation of a process pi at the point it writes to REG [i]. Each
snapshot operation that detected no conflicts and returned in line 20 in any point between the end of its
first scan (line 11) and the beginning of its second scan (line 12), taken just before returning. Recursively,
each snapshot operation that adopts the value written by a concurrent update operation op (line 16) is
linearized at the linearization point of the corresponding snapshot operation performed within op (line 1).

It remains to prove two points in this bounded algorithm though.
First, we need to show that if a snapshot operation S does not detect any change in REG [j] in line 14,

then indeed no REG [j] has not been modified between the moment it was read in line 11 and the moment
point it was read in line 12.

Lemma 7 Let s1 and s2 be two consecutive scans performed within a snapshot operation S by a process
pi. If REG [j] has been modified between the moment it has been read in s1 and the moment it has been
read in s2, then the check in line 14 performed by S immediately after s2 will succeed.

Proof If REG [j] has been modified only once after it was read in s1 but before it was read in s2, then
the toggle field is different in aai[j] and bbi[j] and, thus, the check in line 14 will succeed.
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operation update(v) invoked by pi:
(1) help arrayi := snapshot();
(2) REG[i] := (v, help array i,¬REG[i].toggle);
(3) for all j ∈ {1, . . . , n}, i 6= j do
(4) if R[i, j] =W [i, j] then
(5) W [i, j] := 1−W [i, j]

operation snapshot():
(6) could helpi := [0, . . . , 0];
(7) while true do
(8) for all j ∈ {1, . . . , n}, i 6= j do
(9) if R[j, i] 6=W [j, i] then
(10) R[j, i] := 1−R[j, i]
(11) aai := REG.scan();
(12) bbi := REG.scan();
(13) for all j ∈ {1, . . . , n}, i 6= j do
(14) if R[j, i] 6=W [j, i] or

aai[j].toggle 6= bbi[j].toggle then
(15) if could helpi[j] = 2 then
(16) return (REG[j].help array)
(17) else
(18) could helpi[j] := could helpi[j] + 1
(19) else
(20) return (bbi.val)

Figure 8.7.: Bounded atomic snapshot

Suppose now that REG [j] has been modified twice or more in the chosen interval. By the update
algorithm, between any two modifications of REG [j], pj must make sure that R[j, i] 6= W [j, i] (lines 3-
5). Since between s1 and s2, pi does not modify R[j, i], when it reads W [j, i] immediately after the
scans (line 14), it will find R[j, i] 6= W [j, i] in line 14 and the check will succeed. 2Lemma 7

Thus, a snapshot operation that, for all j, passed through the checks in line 14 and returned in line 20
can be safely linearized at any point between its last two scans.

Second, we need to show that it is also safe to a snapshot operation to “borrow” the outcome of a
snapshot taken by a process that has been witnessed “moving” three times (line 16). within the interval
of S. For this, we first prove the following auxiliary result:

Lemma 8 Let s1 and s2 be two consecutive scans performed within a snapshot operation S by a process
pi (lines 11 and 12). If the check in line 14 performed by S immediately after s2 succeeds for some j,
then REG [j] or W [j, i] has been modified in the interval between time t1, when W [j, i] has been read
just by pi before s1 (line 9), and time t2, when W [j, i] has been read by pi just after s2 (line 14).

Proof Suppose that the check in line 14 succeeds because the toggle bit of REG [j] has changed. This
can only happen if pj has written to REG [j] (line 2)) between the reads of the register performed by pi
within s1 and s2 and, thus, in the desired interval.

Suppose now that pi finds out, in line 14, that R[j, i] 6= W [j, i]. But after having read W [j, i] at time
t1 and before executing s1, pi has made sure thatR[j, i] = W [j, i] (lines 9 and 10. Thus, the only reason
to find out later that R[j, i] 6= W [j, i] can be a modification of W [j, i] (line 5) performed in the interval
between t1 and t2. 2Lemma 8
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Lemma 9 If a snapshot operation S returns the view provided by an update operation U (line 16), then
the execution of the snapshot S′ taken by U falls within the interval of S.

Proof Suppose that pi, within a snapshot operation S, returns the view written by an update operation
U performed by pj . By the algorithm and Lemma 8, during S, pj “moved” (by modifying REG [j] or
W [j, i]) at least three times.

Note that pj can modify each of the registers REG [j] and W [j, i] at most once during an update
operation: in lines 2 and 5, respectively. Thus, if three checks in line 14 performed by S succeed, the
first and the third modifications of REG [j] and W [j, i] witnessed by S must belong to different update
operations performed by pj , let us denote these update operations by U1 and U2.

Since an update operation performed by pj first takes a snapshot, then writes the outcome to REG [j]
(together with its value and the toggle bit), and then modifies W [j, i] (if needed), we conclude that
the value read by S in REG [j] in line 16 was written by a concurrent operation U , which is U2 or a
subsequent update operation. But since U1 is concurrent with S and U succeeds U1, we have that the
snapshot operation S′ taken within U is entirely contained within the interval of S. 2Lemma 9

Thus, we can safely assign the linearization point of S to the linearization point of S′. As in the un-
bounded case, this recursive assignment of linearization points to snapshot operations is well-defined.
The reader is encouraged to check this and to show that the sequential history based on these lineariza-
tion points is legal, following the proof for the unbounded algorithm.

8.4. Bibliographic notes

The collect abstraction was introduced by Aspnes and Waarts [5], refined and implemented in an adaptive
way by Attiya, Fouren, and Gafni [7]. The notion of atomic snapshot was introduced by Afek et al. in [1].

Exercises

1. Would the algorithm implementing collect (Section 8.1.1) be correct if instead of atomic registers
regular ones were used?

If not, would it be correct if we only require properties B0 and B1 to be satisfied?

2. Give a sequentially consistent wait-free implementation of atomic snapshot with O(n) step com-
plexity.

3. Show that the non-blocking atomic snapshot algorithm (Section 8.2.3) is not correct if the values
of update operations are not unique.

Hint: consider an instance of the classical ABA problem: a register is written with value A, then
overwritten with value B, and then overwritten with A again, so that a concurrent reader reading
A and then A again cannot detect that the register temporarily stored B.

4. Show that the bounded implementation of atomic snapshot (Section 8.3) is not correct if we do
not use toggle bits.

5. Show, by presenting a counter-example, that the bounded snapshot algorithm (Figure 8.7) would
be incorrect if we did not use the toggle bit.

6. Show that the bounded algorithm is incorrect if the condition in line 15 is replaced with could helpi[j] =
1.
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7. Show that the bounded algorithm is incorrect if line 16 is replaced with return (bbi[j].help array).
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9. Immediate snapshot and iterated
immediate snapshot

In Chapter 8, we discussed the atomic-snapshot abstraction that provides two operations, update, which
allows a process to write a value in a dedicated memory location, and snapshot, which atomically returns
the “current” state of the memory. Strong and useful, the atomic-snapshot abstraction, however, does not
preclude a situation when snapshots taken by different processes are “unbalanced”: a snapshot Si taken
by pi contains a value written by pj but the snapshot Sj taken by pj contains more recent values (and,
thus, is more up-to-date) than Si. In this chapter, we discuss a restricted version of atomic snapshot,
called immediate snapshot, that only exports “balanced” runs: IF pi “sees” pj , than Si contains Sj .

9.1. Immediate snapshots

9.1.1. Definition

An immediate-snapshot object exports a single operation update snapshot() that takes a value as a pa-
rameter and returns a vector of values (a view) in response. It is required that the executions of these
operations appear as executed in “batches”. In each batch, a fixed subset of processes execute their
update snapshot() in parallel: the processes in the subset first execute their updates and then take their
snapshots. Obviously, the results of the snapshots taken by the processes in the same batch are iden-
tical. Intuitively, these snapshots are operations “immediate” in the sense that the snapshot taken by a
process does not “lag” too much behind its update. As we shall see, the immediate-snapshot model has
a straightforward geometrical representation which, in turn, enables simple and elegant reasoning about
the model’s computability.

As in the original definition of atomic snapshots (Chapter 8), we assume that each written value is
unique. Any history of an immediate-snapshot object satisfies the following properties.

• Self-inclusion. For any operation update snapshot(vi) that returns Vi, we have (i, vi) ∈ Vi.

• Containment. For any two operations update snapshot(vi) and update snapshot(vj) that return
Vi and Vj , respectively, we have Vi ≤ Vj or Vj ≤ Vi.

• Immediacy. For any operation update snapshot(vi) and update snapshot(vj) that return Vi and
Vj , respectively, if (i, vi) ∈ Vj then Vj ≤ Vi.

The first two properties will automatically hold if we take an atomic snapshot object and implement
update snapshot(vi) as update(vi) followed by snapshot(). However, the immediacy property will not
be satisfied here: it is possible that an update operation of a process pi is followed by an update and
snapshot operation of another process pj , and then multiple updates and snapshots of other processes
(see, e.g., Figure 9.1). The subsequent snapshot by pi would then strictly succeed the snapshot taken by
pj , as it would contain the updates that occurred after pj performed its snapshot (see Exercise 3).

Notice that the immediacy property implies that the immediate snapshot object has no sequential
specification. Indeed, a history in which update snapshot(vi) and update snapshot(vj) return Vi and
Vj , respectively, such that (i, vi) ∈ Vj and (j, vj) ∈ Vj does not allow for a legal ordering of these two
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snapshot()→ [1, 1, 1]

p1

p2

p3

update1(1)

update2(1)

snapshot()→ [1, 1,⊥]

update3(1)

snapshot()→ [1, 1, 1]

Figure 9.1.: An example of an “unbalanced” execution: p1 sees p2 but misses p2’s snapshot

operations with a sequential semantics that matches the properties above. We leave it to the reader to
prove this claim, e.g., along the lines of the proof of Lemma 5 (Exercise 1).

9.1.2. Block runs

We can view the immediate-snapshot model as a subset of runs of the conventional atomic-snapshot
model in which every process alternates between performing updates (on its distinct location in the
shared memory) and taking atomic snapshots. Every run in the immediate-snapshot model is induced
by a block sequence:

B1, B2, B2, . . . ,

where each Bi is a non-empty set of processes. The induced run consists in B1 performing updates (in
an arbitrary order) and then taking snapshots (in the arbitrary order), followed by all processes in B2

performing updates and then taking snapshots, and so on.
It is not hard to see that the snapshots taken by the members of the same Bi are identical and for all

i < j, the snapshot Vi taken by Bi and the snapshot Vj taken by Bj satisfy Vi ≤ Vj . Moreover, if Vi
only contains values that processes in Bj , j ≤ i have written in the induced run. Thus, if (i, vi) ∈ Vj ,
where vi is the value written by pi just before it obtained immediate snapshot Vi, then Vi ≤ Vj .

9.1.3. A one-shot implementation

We begin with an implementation of the immediate-snapshot abstraction, assuming that every process
performs at most one update snapshot() in a run.

The algorithm, presented in Figure 9.2, uses a shared array of 1WMR atomic registers REG [1 : n],
where REFG [i] can be written only by pi and read by all processes. Each REFG [i] stores a pair (`i, vi),
initially (n+ 1,⊥), where vi is the value written by pi and `i is the level reached by pi so far.

Operation

The algorithm operates as follows. Every process pi begins with posting its value vi in VAL[i] and
announcing its participating at level n by writing n in REG [i] and . Then it reads REG [1 : n] to check
the levels reached by other processes. If all n processes are at levels n or less, then pi returns the set of
n their values (read in VAL). Otherwise, pi goes down to level n − 1. If, inductively, after writing `
(` = n− 1, . . . , 1) in REG [i] and checking REG [1 : n], pi finds out that ` processes reached levels ` or
lower, it returns the values of these ` processes. Clearly, the process returns at level 1 at the latest, i.e.,
the algorithm is bounded wait-free: it takes O(n2) basic reads and writes to complete an operation.
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Shared:
value array of registers VAL[1, . . . , n], initially ⊥
integer array of registers REG[1, . . . , n], initially n+ 1

Local:
value array val [1, . . . , n], initially ⊥
integer level , initially n+ 1

operation update snapshot(vi) invoked by pi:
VAL[i] := vi

(1) repeat
(2) level := level − 1
(3) REG[i] := level
(4) V := ∅
(5) for each j ∈ {1, . . . , n} do

` := REG[j]
if ` ≤ level then V := V ∪ {j}

(6) until |V | ≥ level
(7) for each j ∈ {1, . . . , n} do

if j ∈ V then val [j] := VAL[j]
(8) return (val)

Figure 9.2.: A one-shot IS implementation

Correctness

To get an intuition about the algorithm’s correctness, let us consider a run in which a set of k processes
proceed in lock step, i.e., the k processes alternate between concurrently writing to REG and reading
REG [1 : n]. Notice that in this run, whenever a process reaches a level ` and reads REG [1 : n], it
witnesses exactly k processes at the same level. Thus, all the processes will return the same set of k
values as soon as they reach level k.

At the other extreme, consider a sequential execution of n processes performing update snapshot()
operations one by one. The first process, as it only sees itself, will be obliged to return at level 1.
Inductively, the k-th process in the sequential order (k = 2, . . . , n), will output at level k: it will see
itself and k − 1 processes before it. Thus, the processes will return strictly increasing sets of values,
from a singleton containing the value of the first process to the

More generally, the last process pi to reach level n, i.e., to write (n, vi) in REG [i] will see exactly
n processes at levels n or lower. Thus, pi returns the set of n values, and at most n − 1 processes will
reach levels n− 1 or lower. Inductively, we can show that if ` processes reach level ` (` = n, . . . , 2), at
least one process will return at this level, and at most `− 1 will proceed to level `− 1.

Formally, what we need to show is that, in every run of the algorithm, the sets of values returned
by the processes satisfy the three properties of immediate snapshot: self-inclusion, containment and
immediacy.

Lemma 10 The algorithm in Figure 9.2 is bounded wait-free.

Proof In every round (lines 1–6), a process performs one write and n reads. In the round n (reaching at
level 1), the process will see at least one value (its own). Thus, at the latest, the process returns in round
n and, thus, every operation performs O(n2) basic read-write steps. 2Lemma 10

Consider any run of the algorithm. Let S` denote the set of processes that ever reach level ` in that
run. By the algorithm, S1 ⊆ S2 ⊆ . . . ⊆ Sn.
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Lemma 11 For all ` ∈ {1, . . . , n}, |S`| ≤ `.

Proof We proceed by downward induction on `. The base case ` = n is trivial, as there are at most n
processes taking steps in any run.

Suppose that for some ` ∈ {2, . . . , n}, |S`| ≤ `, i.e., at most ` processes reach level `. If |S`| < `,
then we are done, as S`−1 ⊆ S`. Otherwise, suppose that |S`| = `, and let pj be the last process in this
set of ` processes that reaches level `, i.e., writes ` in REG in line 3. By the algorithm, pj witnesses
exactly n processes at levels ` and lower and, thus, returns in level `. Therefore, at most ` − 1 process
ever reach level `− 1. 2Lemma 11

Theorem 23 The algorithm in Figure 9.2 is a bounded wait-free implementation of immediate snapshot.

Proof By Lemma 10, the algorithm is bounded wait-free.
Consider any run of the algorithm, and let Vi denote the set of values returned by a process pi in that

run. Let `i denote the level at which pi returns. By the algorithm, pi reached level `i by writing `i in
REG [i], then read REG [1 : n] and then returned the set of `i values written by processes that reached
level `i or lower.

Thus, pi returned values written by a subset of S`i of size `i or more, including its own value—the
property of self-inclusion is ensured. Furthermore, by Lemma 11, S`i ≤ `i and, thus, pi returned exactly
the values of processes in S`i .

Consider any other process pj that returned in the given run and suppose, without loss of generality,
that pj returned at level `j < `i. Recall that S`j ⊆ S`i and, thus, Vj ⊆ Vi—the property of containment
is ensured.

Finally, consider any process pj such that pj ∈ S`i and, thus, vj ∈ Vi. Since pj reached level `i in
that run, it can only return some the values written by some S`j such that `j ≤ `i. Since , S`j ⊆ S`i , we
have Vj ⊆ Vi—the property of immediacy is ensured. 2Theorem 23

9.2. Fast renaming

To illustrate how the IS model can be used, we describe an elegant algorithm solving the classical
renaming problem. In the renaming algorithm, processes take, as inputs, with original names from a
large range and return, as outputs, new names taken in a smaller range the size of which is proportional
to the number of participating processes. More precisely, the following properties must be satisfied in
every run of a renaming algorithm:

• Termination: Every correct process eventually output a name.

• Uniqueness: Now two distinct processes output the same name.

• Name-Adaptivity: The output names belong to the range {1, . . . , 2p − 1}, where p is the number
of participating processes.

To rule out a trivial solution in which process pi outputs name i we add the following requirement:

• Anonymity: For all pi and pj , the algorithm of pi with input x is the same as the algorithm of pj
with input x.
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We should be careful here. In solving renaming, assuming that a single-writer multi-reader share
memory is available somewhat undermines the very motivation behind this problem that, even
though there is a bound on the number of participating processes in every run, the participants
themselves may come from a very large (unbounded) space. One may ask how the assignment
of distinct single-writer registers to participating can be implemented in such a system. The chal-
lenge of simulating single-writer multi-reader memory in such a system (also called bootstraping)
has been addressed in [20, 21]. In this chapter, we however rule this out by assuming anonymous
algorithms.

9.2.1. Snapshot-based renaming

A simple snapshot-based renaming algorithm in Figure 9.3 is based on “arbitration”. A process starts
with writing its input name in its dedicated register. Then it takes a snapshot of the memory to evaluate
the set of participants, selects a name based on its ranking in the set (using the compare operator), writes
the chosen name, together with its input, back in its register, and takes a snapshot again. If no other
process chose the same name, the process terminates with the chosen output. Otherwise, the process
chooses, as its new name, the first name with its ranking in the current set of participants that is not
claimed by another process and repeats the procedure.

Shared:
atomic-snapshot object AS

operation rename(vi) invoked by pi with input vi:
name := 1
repeat forever

AS .update([name, vi])
S := AS .snapshot()
if S contains no [name′, vj ] such that name′ = name and vj 6= vi then

return name
rank := the rank of vi in {vj | [∗, vj ] ∈ S}
free := {u | [u, ∗] /∈ S}
name := the r-th element in free

Figure 9.3.: A renaming algorithm using atomic snapshots

When p processes participating, the largest name a process may choose is 2p− 1. Intuitively, a given
process can “block” at most two names at a time: one it has written to the memory and one that it is
about to write. As a result, in the worst case, the process may see p− 1 blocked and have rank p among
the participants: thus, the largest name 2p− 1.

9.2.2. IS-based renaming

In the recursive IS-based algorithm described in Figure 9.3, we use one-shot IS instances to evaluate the
set of participating processes. Each invocation of the IS instance is associated with a range of names
that the processes invoking this instance are allowed to return. The range is determined via a starting
point (denoted start) and a direction (denoted dir ∈ {−1, 1}) in which names of the range, starting from
start, are allocated. A list of integer values tags contains the sequence of starting points of preceding
recursive calls of get name.
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For instance, if p processes invoke get name(tags, start, dir), then the algorithm guarantees that all
names output by these processes fall within the range start + dir, . . . , start + dir(2p − 1) of 2p − 1
names.

The property of IS that the number of processes that output a set of values of size ` is precisely `minus
the number of processes that output strictly smaller sets of values guarantees that all output names are
distinct.

For each sequence L of values in {1, . . . , n}, the algorithm uses a distinct one-shot IS object IS[L]. A
process invokes get name(L, f, d) where L is the list of sizes of sets obtained in all preceding IS calls.
As we will show, all such sequences L are monotonically decreasing.

IS[7 · 3 · 2]

7 outputs 1

6

4, 5

(ε, 0, 1)

range 1, . . . , 13

IS[ε]

1

2

4

7

(7, 13,−1)

range 8, . . . , 12

outputs 12

1, 2

3

IS[7]

3

1

(4, 7,−1)

range 4, 5, 6 5 outputs 4

IS[4]

2

1

range 2

(2, 3,−1)
IS[2]

1

1, 2, 3

range 9, 10, 11

(7 · 3, 8, 1)

range 10

2 outputs 9

1

1

2

IS[7 · 3] (7 · 3 · 2, 11,−1)

6 outputs 2

4 outputs 6

1 outputs 101

Figure 9.4.: An execution of the renaming algorithm in Figure 9.5

The get a new name, every process pi invokes get name(ε, 0, 1), where ε is the empty list. Within
get name(L, start, dir), the process first invokes IS[L].update snapshot(vi), where vi is its input name,
to get a set S of input names. If vi happens to be the largest name in S, pi returns the “most far-
away” name in the range start + dir, . . . , start + dir(2|S| − 1), i.e., name = start + dir(2|S| − 1).
Otherwise, pi selects name as a new starting point and inverses the direction by recursively calling
get name(L · |S|, name,−dir) to get its new name.

In Figure 9.4, we describe an execution of the algorithm for seven processes with original names
1, . . . , 7. The processes invoke get name with parameters (ε, 0, 1) which means that they compete for
names in the range 1, . . . , 13}. Suppose that after accessing IS[ε], processes with names 1, 2 and 3 see
all 7 processes, processes with names 4, 5 see four processes 4, 5, 6, 7, processwith name 6 sees 6, 7 and
process with name 7 sees only itself.

As their names are not the maximal in the set, 1, 2 and 3 invoke get name with parameters (7, 13,−1),
i.e., they compete for names in the range 12, 11, 10, 9, 8 (in the descending order). After accessing IS[7],
process with name 3 sees only itself and outputs 12 (the “first” name in the range). Processes with names
1 and 2 see all of the three processes and invoke get name with parameters (7 · 3, 8, 1) to compete for
names in the range 9, 10, 11 (in the ascending order).

After accessing IS[7 ·3], process 2 sees only itself and outputs 9 (the “first” name in the corresponding
range). Process with name 1 sees both 1 and 2 and, thus, invokes get name(7 · 3 · 2, 11,−1) to finally
output 10.

Given that an access to one-shot IS object exhibitsO(n2) read-write steps, we get the following result.

Lemma 12 In every run of the renaming algorithm in Figure 9.5, every correct process returns inO(n2)
read-write steps.
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Shared:
for each L, list of values in {1, . . . , n}: one-shot IS instance IS[L]

operation get name(L, start, dir) invoked by pi with input vi:
(1) S := IS [L].update snapshot(vi)
(2) st := start + dir(2|S| − 1)
(3) if vi = max(S) then
(4) name := st

else
(5) name := get name(L · |S|, st,−dir)
(6) return name

operation rename(vi) invoked by pi with input vi:
(7) return get name(ε, 0, 1)

Figure 9.5.: A renaming algorithm using one-shot IS instances

Proof By the algorithm, the participating processes start with calling get name(ε, 0, 1). We observe
first that the participant with the highest input name will return the value computed in line 6 of this
call. Indeed, regardless of the set of participating processes, it obtains in line 1, it will always itself
to have the maximal name. The property holds for any recursive call of get name (line 5). Thus, the
number of processes that reach line 5 within a call of get name is at least by one smaller than the
number of processes that started this call. When the total number of processes preforming a call of
get name(L, start, dir) drops to one, this process will return the value computed in 6.

Thus, in the worst case, a process returns in the n-th recursive calls of get name. Each recursive
call involves a single invocation of a single invocation of update snapshot on a one-shot IS instance
which gives O(n2) read-write complexity per instance and, thus, O(n3) total step complexity per call of
rename(vi). 2Lemma 12

The safety properties of renaming (Uniqueness and Name-Adaptivity) are shown via the following aux-
iliary lemma:

Lemma 13 Suppose that at most k > 0 processes call get name(L, s, d) in a run of the algorithm in
Figure 9.5. Then these calls can only return distinct values outside {s+ d, . . . , s+ d(2k − 1)}.

Proof We note first that, since the size of the set returned by a one-shot IS instance unambiguously
identifies the set itself, every two processes that call get name(L,−,−) agree on the remaining two
parameters.

Now we proceed by induction on k. The claim holds trivially when k = 1: the only process to call
get name(L, start, dir) obtains a set of size 1 from IS[L] and returns value start + dir computed in line 6.

Now suppose that the claim holds for all values k′ < k and consider a run in which k processes call
get name(L, start, dir).

Suppose that the k processes obtained sets of distinct sizes 1 ≤ `1 < . . . < `m from IS[L].
We can show that `m = k and if m ≤ 2, then for all j = 2 . . . ,m, the number of processes that

obtained a set of size `j is `j − `j−1. We leave it to the reader to prove this claim (Exercise 2).
Note that the process with the highest input name that obtained the set of size `1 will output a value.

Thus, at most `1 − 1 < k processes can recursively call get name(L · `1, s + d(2`1 − 1),−d). If
`1 > 1, by the induction hypothesis, these at most `1 − 1 processes can only get names in the range
{s + d(2`1 − 1) − d, . . . , s + d(2`1 − 1) − d(2(`1 − 1) − 1)} = {s + d, . . . , s + d(2`1 − 2)} ⊆
{s+ d, . . . , s+ d(2k − 1)}.
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Now suppose that m ≥ 2 and consider j = 2, . . . ,m. By the algorithm, at most `j − `j−1 < k
can recursively call get name(L · `j , s + d(2`j − 1),−d) which, by the induction hypothesis, can only
return names in the range {s + d(2`j − 1) − d, . . . , s + d(2`j − 1) − d(2(`j − `j−1) − 1)} = {s +
2`j−1d, . . . , s+ d(2`j − 2)} which, as 1 ≤ `j−1 < `j ≤ k, is a subset of {s+ d, . . . , s+ d(2k − 1)}.

Thus, all outputs of recursive calls of get name are distinct subsets of non-overlapping ranges {s +
d, . . . , s+ 2`1d− 2d)}, {s+ 2`1d, . . . , s+ 2`2d− 2d}, . . ., {s+ 2`m−1d, . . . , s+ 2`md− 2d}, all of
which are subsets of {s+d, . . . , s+d(2k−1)}. Moreover, the output names computed in line 4 belong
to the set {s+ d(2`1− 1), . . . , s+ d(2`m− 1)} which does not intersect with the ranges above. Hence,
all outputs values are distinct and belong to {s+ d, . . . , s+ d(2k − 1)}. 2Lemma 13

We are finally ready to prove that our algorithm is correct.

Theorem 24 The algorithm in Figure 9.5 solves renaming with O(n3) read-write step complexity.

Proof Consider any run of the algorithm. By Lemma 12, every correct process returns inO(n3) steps—
the Termination property holds.

Suppose that p processes participate. Since every process obtains a new name by calling get name(ε, 0, 1),
Lemma 13 implies that all output names are distinct and belong to {1, . . . , 2p−1}—the Uniqueness and
Name-Adaptivity properties are satisfied. Finally, the algorithm only uses input names and not process
identifiers, ensuring the Anonymity property. 2Theorem 24

9.3. Long-lived immediate snapshot

The immediate-snapshot (IS) model is at least as powerful as the classical read-write one. Assuming the
full-information protocol (every written value contains the outcome of the most recent update snapshot()
operation), a run the IS model can be represented as a run of the full-information Atomic-Snapshot
model. Thus, anything that can be solved in the AS model, can also be solved in the IS one.

In this section, we show that the inverse is also true. We present an algorithm that, in the AS model,
simulates a run of IS model.

9.3.1. Overview of the algorithm

The idea behind our simulation is to use the one-shot implementation in Figure 9.2 on an unbounded
number of floors. Intuitively, each floor corresponds to the total number of write operations a process
completed at a given point of a run. For simplicity, we assume that every process maintains a local
counter (initially 0) that is incremented and used as an argument each time the update snapshot operation
is invoked. The operation returns a view: an array of counter values of all the processes.

In the update snapshot operation, every process pi first updates a snapshot memory with its current
counter valus, takes a snapshot V . The starting floor s for pi is then computed as the sum of counter
values in V :

∑
j V [j]. The process then registers its view at floor s (line 4) and, starting from floor

s − 1 downwards, accesses IS instances until it finds a registered view with a previous value of pi that
was “seen” by some process in the view obtained from the IS instance at that floor. At this moment, pi
returns a view constructed as a “maximum” of the registered view at that floor and the view returned by
the corresponding one-shot IS instance.

More precisely, for each floor f we maintained the following shared variables:

• viewf , used to register the view associated with this floor;

• IS f , a one-shot IS instance;
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• flagf [1, . . . , n], an array of boolean flags, one for each process. The flag is used to signal that a
non-⊥ value is written in viewf by a concurrent process.

When a process pi enters a floor f , it first check if there is a registered view (viewf 6= ⊥) and stores the
result in flagf [i]. Then it gets a view W of concurrently active processes in IS f . To return at floor f , pi
must ensure that at least one process in W has witnessed a previous value of pi in viewf .

To ensure that the first invocation of update snapshot of every process returns at floor 0 or higher, we
initialize view0 with [0, . . . , 0] and flag0 with [true, . . . , true]. For f > 1, viewf initially stores ⊥ and
flagf initially stores [false, . . . , false].

Shared:
C, a collect object, each position C[i] is a counter value for pi
For each floor f ∈ N:

ISf , one-shot IS instance
viewf , register storing a view, initially ⊥ for f > 0 and [0, . . . , 0] for f = 0
flagf [1, . . . , n], array of boolean registers, initially [false, . . . , false] for f > 0 and [true, . . . , true] for f = 0

operation update snapshot(count) invoked by pi:
(1) C.update(count) { publish a new distinct value }
(2) V := C.snapshot() { get a view }
(3) f :=

∑
j V [j] { compute the starting floor }

(4) viewf := V { register at floor f }
(5) flagf [i] := true { set the flag at floor f }
(6) repeat forever
(7) f := f − 1
(8) flagf [i] := (view[f ] 6= ⊥) { check if any process started at level f }
(9) W := ISf .update snapshot(count) { Access IS at floor f }
(10) if (for some j ∈W , flagf [j] = true and count > viewf [i]) then
(11) return max(W, viewf ) { take the maximum of the two views }

Figure 9.6.: A long-lived IS memory implementation

9.3.2. Proof of correctness

First we observe that views registered different floors are related by containment.

Lemma 14 Let V and V ′ be views written, respectively, in viewf and viewf ′ , such that f ≤ f ′. Then
V ≤ V ′. Also, if f < f ′, then V ′ � V .

Proof Recall that every value V written in variables viewf is a snapshot of atomic-snapshot memory C
of size f , i.e.,

∑
j V [j] = f . Since all such snapshots are related by containment, every value written in

viewf can only be V , and every value V ′ witten in viewf ′ f ′ > f must satisfy V ≤ V ′. 2Lemma 14

We should first that the algorithm uses the one-shot IS instances correctly, i.e., no process accesses a
given instance more than once.

Lemma 15 No one-shot instance IS f is invoked more than once by a given process.

Proof A given invocation of update snapshot by a process pi involves at most one invocation of IS f

(when it reaches floor f ).
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What remains to show is that different invocations of update snapshot by pi, op1 and op2, do not
invoke the same IS instance. Suppose that op1 starts at floor f (line 3). By the algorithm, within op1, pi
writes a view containing its value in viewf and accesses IS at floors < f .

A subsequent operation op2 will take a snapshot of written values containing a strictly higher value
for pi and, thus, will start at floor > f . Within op2, pi either returns at a floor > f or reaches floor f
and, by Lemma 14, finds out that viewf contains its previous value and returns before accessing lower
floors. 2Lemma 15

Lemma 16 The algorithm in Figure 9.6 satisfies the Self-inclusion property.

Proof Let pi return from an invocation of update snapshot(count) at floor f . The returned view V
contains the maximun between the values for pi found in viewf and the view W returned by IS f

(line 11).
By the condition in line 10, viewf contains an value < count . By the Self-inclusion property of

one-shot IS instances, (i, count) ∈W and, thus, (i, count) ∈ V . 2Lemma 16

Lemma 17 Let pi return Vi at floor fi and pj return Vj at floor fj , such that fi < fj . Then Vi ≤ Vj .

Proof By Lemma 14, viewfi ≤ viewpj .
Let Wi be the value obtained by pi from IS fi . We are going to show that Wi[k] ≤ Vj [k], for all

pk ∈ Wi, i.e., every value found in Wk is at most as recent as Vj [k]. Suppose that Wi[k] = (k, v), i.e.,
pk invoked IS fi with the argument of its v-th operation. Let sk be the starting floor of pk.

If sk ≤ fj , then, by Lemma 14, (k, v) ∈ view sk−1 ≤ viewfj ≤ Vj . Now suppose that sk > fj . Thus,
pk must have passed floor fj before reaching level fi and invoking IS fi .

If pj reads v in viewfj [k], then we are done, as (k, v) ∈ viewfj [k] ≤ Vj .
Now suppose that pj reads an earlier value in v in viewfi [k]. By Lemma 14, if pk reads a non-⊥ value

in viewfi , then it must reads the same value as pj did. Therefore, to pass floor fj , pk must find false in
all flagfj [x], px ∈Wk, where Wk is view obtained by pk from IS fj (line 10).

In contrast, to return at floor fj , pj must have found true in some flagfj [y], py ∈ Wj . By the
algorithm, py wrote true to flagfj [y] before invoking IS fj . Thus, if py /∈ Wk: otherwise, pk should
have also found true in flagfj [y]. But Wk and Wj , as outcomes of IS fj , must be related by containment
and, since py ∈ Wj and py /∈ Wk, we have Wk < Wj . By the Self-inclusion property of IS, we obtain
(k, v) ∈Wj ⊆ Vj . 2Lemma 17

Lemma 18 Algorithm in Figure 9.6 satisfies the Containment property.

Proof Let pi return Vi at floor fi and pj return Vj at floor fj , such that fi < fj . If fi < fj , then, by
Lemma 17, Vi ≤ Vj .

Suppose now that fi = fj . By Lemma 14, pi and pj find the same view in viewfi . The Containment
property of one-shot IS ensures that the views Wi and Wj obtained by pi and pj from IS fi are related
by containment, as are Vi and Vj . 2Lemma 18

Lemma 19 Algorithm in Figure 9.6 satisfies the Immediacy property.

Proof Let pi return Vi at floor fi and pj return Vj at floor fj . Let (i, v) ∈ Vi and (i, v) ∈ Vj . We show
that Vi ≤ Vj .
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Suppose that fi > fj . By the condition in line 10, pi read a value < v in viewfi [i] and, by Lemma 19,
pj read a value < v in viewfj [i]—a contradiction.

If fi < fj , then, by Lemma 17, Vi ≤ Vj .
If fi = fj , then, by Lemma 14, they find the same view in viewfi and, by the condition in line 10,

(i, v) /∈ viewfi . Since (i, v) ∈ Vj , we must then have (i, v) ∈ Wj . By the Immediacy property of
one-shot IS, we get Wi ≤Wj and, thus, Vi ≤ Vj . 2Lemma 19

Lemma 20 Algorithm in Figure 9.6 is bounded wait-free with O(n3) step complexity.

Proof Suppose that a process pi starts its v-th IS operation, updates its position in C with v, takes a
snapshot of C, and registers the resulting view V at floor s = |V | =

∑
j V [j]. If s ≤ n, we are done,

as pi can only pass through most n floors before, in the worst case, it reaches floor 0 containing view
[0, . . . , 0] and flags [true, . . . , true]. Since each floor involves accessing a one-shot IS instance with
O(n2) step complexity, we get O(n3) total step complexity.

Suppose now that s > n, i.e., there is a non-empty set of processes that invoked at least two operations
before time t when pi took its v-th snapshot of C. Let pj be the process in this set that was the last to
perform its penultimate update of C before t, let it happen at time t′ < t.

As at most n updates of C take place between t′ and t, V ′, the result of the subsequent snapshot of C
taken by pj is such that |V ′| ≥ |V | −n. Since pj performed exactly one update of C between t′ and t, it
must have registered V ′ at its starting floor s′ = |V ′| ≥ |V | − n = s− n and set flag [j] to true before
t. The value of pi in V ′ is smaller than v and, thus, pi must return from its v-the operation at level s′ or
higher, after passing through at most n floors. 2Lemma 20

Lemmas 16, 18, 19 and 20 imply:

Theorem 25 Algorithm in Figure 9.6 is a bounded wait-free implementation of the IS memory with
O(n3) read-write step complexity.

9.4. Iterated immediate snapshot

We now consider iterated shared-memory models. In such models, processes communicate via a series
of shared memories M1, M2, . . .. A process proceeds in consecutive rounds 1, 2, . . ., and in each round
i it accesses memory Mi. In this section, we assume that every memory Mi is an instance of immediate
snapshot, and a process simply applies the update snapshot() operation to access it.

Iterated immediate snapshot memory (IIS) is of particular interest for us for two reasons. First, IIS is
equivalent to the conventional (non-iterated) read-write shared-memory model, as long as we are con-
cerned with solving distributed tasks or designing non-blocking algorithms (Section 9.4.1). Second, it
has a very simple geometric representation, enabling a straightforward characterization of computability
(Section 9.4.2).

9.4.1. An equivalence between IIS and read-write

It is straightforward to implement IIS in the read-write shared memory model using the construction in
Section 9.1 for each Mi independently.

For the other direction, it is hopeless to look for wait-free implementations of the read-write memory
in the IIS model in which every correct process is able to complete each of its operations. Consider a run
in which a correct process pi is “left behind” in every IIS iteration and, as a result, it never appears in the
view of any other process. No write operation performed by pi in any read-write implementation, based
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on IIS, will be able to affect read operations performed other processes. Thus, no correct read-write
implementation can guarantee that pi completes any of its writes in that run.

However, as we will show now, IIS can simulate read-write memory in a non-blocking way. Recall
that a non-blocking implementation guarantees that in an infinite execution at least one process makes
progress. We focus on algorithms in which a process may complete its computation and terminate or
perform infinitely many reads and writes. Thus, our simulation will guarantee that every correct process
either terminates or performs infinitely many (simulated) reads and writes.

We use IIS to implement the read-write model in which memory is organized as a vector of single-
writer multiple-reader registers, and every process alternates updates of its dedicated register with atomic
snapshots of the memory. Again, we assume that every process runs the full-information protocol: first
it writes its input value and every subsequent update includes the outcome of the preceding snapshot.

The implementation maintains, at every process pi, a local array ci[1, . . . , n], called a vector clock.
Each ci[j] has two components:

• ci[j].clock that contains the number of update operations of pj “witnessed” by pi so far, and

• ci[j].val that contains the most recent value of pj’s vector clock “witnessed” by pi so far.

The simulation, presented in Figure 9.7, works as follows. To perform an update, pi increments
ci[i].clock and sets ci[i].clock to be the “most recent” vector clock observed so far. To take a memory
snapshot, pi goes through multiple iterations of IIS until the “size” of the currently observed vector
clock, |ci| =

∑
j ci[j].clock , gets “large enough”. We explain what we mean by “most recent” and

“large enough” below.
In every round of our implementation, pi writes its current view of the memory and stores an update

of it in a local variable view = view [1], . . . , view [n] (line 3). Then for every process pj , pi computes
the position

k = argmax `view [`][j].clock

and fetches view [k][j].val . The resulting vector of the “most recent” values written by the processes is
denoted by top(view).

Then pi checks if |c| = ∑
j c[j].clock , the sum of clock values of all the processes equals the current

round number. Intuitively, the condition that the currently simulated snapshot of pi contains all the most
recent written values and relates by containment to the results of all other simulated snapshot operations.
Indeed, as the clock values grow monotonically, snapshots S and S′ produced in IIS rounds r and r′,
r ≤ r′, satisfy S ≤ S′.

Formally, every process pi goes through a number of phases, where phase k = 1, 2, . . . starts when
pi’s local variable ci[i].clock is assigned value k (line 1 for k = 1 or line 11 for k > 1). Phase k ends
when pi departs after executing line 8 or starts phase k+1. The argument of the write operation of phase
k is the value of c[i].val initialized at the end of phase k− 1 in line 10 if k > 1 and the input value of pi
otherwise. The outcome of the k-th simulated snapshot operation is chosen to be the last value of c.val
computed in line 5 of the phase.

To justify that our simulation is correct, we first prove a few auxiliary lemmas. Let view r
i and cri

denote, respectively, the view and the clock vector evaluated by process pi in round r, i.e., in lines 4
and 5, respectively, of the rth iteration of the algorithm. We say that cri ≤ crj if ∀k : cri [k].clock ≤
crj [k].clock , i.e., cri contains at least as recent perspective on the simulated state as crj . Recall that
|cri | =

∑
j c

r
i [k].clock.

Lemma 21 For all r ∈ N, pi, pj ∈ Π, |cri | ≤ |crj | implies cri ≤ crj .
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Shared variables: IS memories IS1, IS2, . . .

Local variables at each pi: ci[1, . . . , n], initially [⊥, . . . ,⊥]

Code for process pi:
(1) r := 0; c[i].clock := 1; ci[i].val := input of pi; { memorize pi’s input }
(2) repeat forever
(3) r := r + 1
(4) view := ISr.update snapshot(c) { update the view using ISr }
(5) c := top(view) { update the clock vector with the most recent information }
(6) if |c| = r then { if the current snapshot is complete }
(7) if decided(c.val) then { if ready to decide }
(8) return decision(c.val)
(9) endif
(10) ci[i].val := c { compute the next value to write }
(11) ci[i].clock := ci[i].clock + 1 { update the local clock }
(12) endif
(13) end repeat

Figure 9.7.: Implementing AS using IIS

Proof By the Set Inclusion property of IS (see Section 9.1), the views evaluated by pi and pj in line 4
of round r are related by containment, i.e., view r

i ⊆ view r
j or view r

j ⊆ view r
i . Since cri and crj are

computed as the vector of the most up-to-date values gathered from the views (line 5), we have cri ≤ crj
or crj ≤ cri .

Suppose, by contradiction that |cri | ≤ |crj | but cri � crj , i.e., crj ≤ cri but crj 6= cri . Since the operation
|c| sums up the values of c[i].clock , we get |crj | > |cri |—a contradiction. Thus, |cri | ≤ |crj | indeed implies
cri ≤ crj . 2Lemma 21

Since, by Lemma 21, |cri | = |crj | implies cri = crj , we have:

Corollary 2 All processes that complete a snapshot operation in round r, evaluate the same clock vector
c, |c| = r.

Lemma 22 For all r ∈ N, pi ∈ Π, |cri | ≥ r.

Proof By the Self-inclusion property of IS, c1
1[i].clock = 1, and, thus, |c1

1| ≥ 1. Suppose, inductively,
that for all pi, |cri | ≥ r for some r ≥ 1.

Since the view computed by pi in round r is written afterward to ISr+1, the values of |cri | do not
decrease with r. Thus, if |cri | > r, then |cr+1

i | ≥ |cri | ≥ r + 1. On the other hand, if |cri | = r, i.e.,
pi completes its snapshot operation in round r, then pi increments ci[i].clock and we have |cr+1

i | >
|cri |+ 1 ≥ r + 1. In both cases, |crr+1| ≥ r + 1 and the claim follows by induction. 2Lemma 22

The values of cri .clock can only increase with r. Thus, by Lemmas 21 and 22, we have:

Corollary 3 If |cri | = r (i.e., pi completes a snapshot operation in round r), then for all pj and r′ > r,
we have cri ≤ cr

′
j .

Now we show that some correct process always makes progress in the simulated run. We say that a
process terminates once it reaches line 8. Note that if a process terminates in round r, it does not access
any ISr′ , for r′ > r.
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Lemma 23 For all r ∈ N, if there is a correct process reaches round r, eventually some correct non-
terminating process its current phase in round r′ ≥ r.

Proof By contradiction, assume that there is an execution in which some correct non-terminated process
is in round r and no correct non-terminated process ever completes its current phase, i.e., no process pi
ever increases the value of ci[i].clock . Thus, there exists a clock vector c such that ∀r′ ≥ r, pi ∈ Π:
cr

′
i = c.

By Lemma 22, for all pi and r′ ≥ r, |c| = |cri | ≥ r. Consider round r′ = |c| ≥ r. By the assumption,
every correct non-terminated process pi evaluates cr

′
i = c and, by the algorithm, terminates in round

r′—a contradiction. 2Lemma 23

Now we are ready to prove correctness of our simulation.

Theorem 26 Every run R simulated by the algorithm in Figure 9.7 is indistinguishable from a run Rs

of the full information protocol in the AS model in which either every correct (in R) process terminates
or some correct process takes infinitely many steps.

Proof Given R, we construct Rs as follows. Assuming that pi completes its kth phase in r, let W k
i and

Sk
i denote, respectively, the corresponding simulated update and snapshot operations. First we order all

resulting Sk
i according to the round numbers in which they were completed. Then we place each W k

i

just before the first snapshot that contains the kth simulated view of pi.
By Corollary 2, all snapshot outcomes produced in the same round are identical. By Corollary 3,

snapshot outcomes grow with the round numbers. Thus, in Rs, every two snapshots are related by
containment, and every next snapshot is a copy or a superset of the previous one. Furthermore, the Self-
inclusion property of one-shot IS instances used in the algorithm implies that every Sk

i contains the kth
simulated view of pi. Thus, in Rs, every pi executes the operations appear in the order they take place
in R: W 1

i , S1
i , W 2

i , S2
i , . . . .

By construction, the outcome of every Sr
i contains the most recent written value for each process.

2Theorem 26

Now suppose that a given distributed task is solvable in the AS model: in every run, every process
eventually reaches a decided state, captured in line 7 of our algorithm.

Assuming, without loss of generality, that a decided process simply stops taking steps, our non-
blocking solution brings the next correct process to the output, then the next one, etc., until every correct
process outputs. Note that there is no loss of generality in assuming that a process stops after producing
an output, since it juts corresponds to the execution in which the process crashes just after deciding.

Therefore, Theorem 26 implies that IIS is equivalent to AS (or, more generally the read-write model)
in terms of task solving:

Corollary 4 A task is solvable in IIS if and only if it is solvable in the read-write asynchronous model.

Note that in the above prove is that we do not use the Immediacy property of IS. Thus, the simulation
would still be correct even if we replace view := ISr.update snapshot(c) in line 4 with ASr.update(c)
followed by view := ASr.snapshot(c).

9.4.2. Geometric representation of IIS

The IIS model allows for a simple geometric representation. All possible runs of one round of IIS can
be represented as a standard chromatic subdivision of the (n− 1)-dimensional simplex.
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The example depicted in Figure 9.8 describes the views obtained by three processes, p1, p2, and p3,
after each executes For example, the blue corner of the triangle models the view of p1 in a run where
it only sees itself. The internal points on the blue-green face model the views of p1 and p2 in runs
where they see each other but miss p3. Finally, the internal points of the triangle model the views of the
processes in which they see all three. A triangle in the subdivision models the set of views that can be
obtained in the same run.

As we can see, the resulting views and runs result in a nice simplicial complex that is simply a subdi-
vision of the triangle corresponding to the initial state of the system. Multiple rounds of the IIS model
can thus be represented as an iterated standard chromatic subdivision, where each of the triangles is
subdivided, then each of the resulting triangles is subdivided, etc.

Synchronous
run: {p1, p2, p3}

Ordered run:
{p2}, {p1}, {p3}

p1 sees {p1, p2} p3 sees {p2, p3}

p2 sees {p1, p2} p2 sees {p2, p3}

p2 sees {p1, p2, p3}

p1 sees {p1} p3 sees {p3}

p2 sees {p2}

Figure 9.8.: One round of 3-process IIS as a standard chromatic subdivision of a chromatic 2-simplex:
red vertices model possible resulting states of p1, blue–p2, and white–p3.

Notice that one round of the (full-information) AS model produces runs that do not fit the subdivision
depicted in Figure 9.8. For example, the AS model allows a run in which p1 only sees itself and p2,
but both p2 and p3 see all three processes. In Figure 9.8 this runs corresponds to the triangle formed
by the blue vertex on the face (p1, p2) and the green and read vertices in the interior that overlaps with
other triangles in the subdivision. But since this run does not satisfy the Immediacy property of IS, it is
excluded by the IS model.

The fact that one round of the IS model is captured by the subdivision depicted in Figure 9.8 is obvious
for three processes. More generally, to model runs of the IIS model in a system of n processes, consider
the initial system state s represented as (n−1)-dimensional chromatic simplex s, i.e., a set of n vertices,
each vertex corresponding to a distinct process. Chrs is now defined inductively on the dimension of s.

If s is zero dimensional, which corresponds to a system of only one process, we let Chrs = s.
Suppose now, inductively, that s has dimension n−1, and that we already took the chromatic subdivision
of its (n − 2)-skeleton, i.e., all subsets of size at most n − 1. Take a new (n − 1)-simplex s′. For each
face t of s, let t̄′ be the complementary face of s′, that is, the face of s′ corresponding to the processes
that do not appear in t. Then every simplex consisting of the vertices t̄′ and the vertices of any simplex
in the chromatic subdivision of t is added to the resulting simplicial complex Chrs. If we iterate this
construction k times we obtain the kth chromatic subdivision, ChrkC.

Bibliographic notes

Borowsky and Gafni [12] introduced the notion of immediate snapshot (IS) and gave the first one-shot
IS implementation for the read-write model.

The task of renaming was originally posed and solved by Attiya et al. [6] for the message-passing
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model. The adaptive renaming algorithm in Figure 9.3 is due to Attiya and Welch [10, Chapter 16]
who adapted the algorithm by Attiya et al. [6] to the read-write shared-memory model. Attiya, Fouren
and Gafni [8] claimed that this algorithm and several alternative algorithms published at the time ex-
pose exponential (in p) read-write step complexity in some executions. The O(p3) renaming algorithm
described in Figure 9.5 was proposed by Borowsky and Gafni [12].

The long-lived IS simulation described in Section 9.3 is a simplified and slightly corrected version of
the adaptive simulation by Attiya, Fouren and Gafni [7]. The IIS-based simulation of the conventional
read-write model presented in Section 9.4 is due to Gafni and Rajsbaum [29].

The proof that Chrs is indeed a subdivided simplex was sketched by Linial [52] and independently
found Kozlov [44]. A thorough discussion on the combinatorial methods in distributed computing can
be found in [36].

Exercises

1. Show that the IS object does not have a sequential specification.

2. Suppose that k processes accessed a one-shot IS objects and obtained sets of distinct sizes 1 ≤
`1 < . . . < `s.

Show that `s = k and if s ≤ 2, then for all j = 2 . . . , s, the number of processes that obtained a
set of size `j is `j − `j−1.

3. Assuming the full information protocol, show that the IS model is stronger that the AS model:
every run of the IS model can be represented as a run of AS model.

4. Prove that the algorithm described in Figure 9.3 is correct. Will it remain correct if we replace
update and snapshot with store and collect , respectively.

5. Does the AS-based renaming algorithm in Figure 9.3 have a run in which n processes output
names 1, 2, . . . , n? What about the IS-based algorithm in Figure 9.5?

112



Part IV.
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10. Consensus and universal construction

In the first part of this book, we considered multiple powerful abstractions that can be implemented, in
the wait-free manner, from read-write registers. In this chapter, we address a more general question:

Given object types T and T ′, is there a wait-free implementation of an object of type T
from objects of type T ′?

We define a fundamental consensus object type and show that consensus objects are universal: any object
type can be implemented, in the wait-free manner, using read-write registers and consensus objects.
In the next chapter, we show that read-write register cannot, by themselves, implement a wait-free
consensus object shared by 2 processes and, thus, are not universal even in a system of 2 processes. This
observation brings the notion of a consensus number of a given object type: the maximal number of
processes in which the type is universal.

Overall, in this chapter we give a definition of consensus and demonstrate its power in implementing
arbitrary object types. In the next chapter, we discuss the downside of this abstraction, namely, the
difficulty of its implementations.

10.1. Consensus object: specification

The consensus object type exports an operation propose() that takes one input parameter v in a value
set V (|V | ≥ 2) and returns a value in V . Let ⊥ denote a default value that cannot be proposed by a
process (⊥ /∈ V ). Then V ∪ {v}is the set of states a consensus object can take, ⊥ is its initial state,
and its sequential specification is defined in Figure 10.1. A consensus objects can thus be seen as a
“write-once” register that keeps forever the value proposed by the first propose() operation. Then, any
subsequent propose() operation returns the first written value.

Given a linearizable implementation of the consensus object type, we say that a process proposes v if
it invokes propose(v) (we then say that it is a participant in consensus). If the invocation of propose(v)
returns a value v′, we say that the invoking process decides v′, or v′ is decided by the consensus object.
We observe now that any execution of a wait-free linearizable implementation of the consensus object
type satisfies three properties:

• Agreement: no two processes decide different values.

• Validity: every decided value was previously proposed.

Indeed, otherwise, there would be no way to linearize the execution with respect to the sequential
specification in Figure 10.1 which only allows to decide on the first proposed value.

operation propose(v):
if (x = ⊥) then x := v endif;
return (x).

Figure 10.1.: Sequential specification of consensus
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• Termination: Every correct process eventually decides.

This property is implied by wait-freedom: every process taking sufficiently many steps of the
consensus implementation must decide.

10.2. A wait-free universal construction

In this section, we show that if, in a system of n processes, we can wait-free implement consensus, then
we can implement any total object type.

Recall that a total object type can be represented as a tuple (Q, q0, O,R, δ), where Q is a set of states,
q0 ∈ Q is an initial state, O is a set of operations, R is a set of responses, and δ is a binary relation on
O ×Q × R ×Q, total on O ×Q: (o, q, r, q′) ∈ δ if operation o is applied when the object’s state is q,
then the object can return r and change its state to q′. Note that for non-deterministic object types, there
can be multiple such pairs (r, q′) for given o and q.

The goal of our universal construction is, given an object type τ = (Q,O,R, δ), to provide a wait-free
linearizable implementation of τ using read-write registers and atomic consensus objects.

10.2.1. Deterministic objects

For deterministic object types, δ can be seen as a function O × Q → R × Q that associates each state
an operation with a unique response and a unique resulting state. The state of a deterministic object
is thus determined by a sequence of operations applied to the initial state of the object. The universal
construction of an object of a deterministic type is presented in Figure 10.2.

Every process pi maintains a local variable linearized i that stores a sequence of operations that are
executed on the implemented object do far. Whenever pi has a new operation op to be executed on the
implemented object it “registers” op in the shared memory using a collect object R. As long as pi finds
new operations that were invoked (by pi itself or any other process) but not yet executed in R, it tries to
agree on the order in which operations must be executed using the “next” consensus objectC[ki] that was
not yet accessed by pi. If the set of operations returned C[ki] contains op, pi deterministically computes
the response of op using the specification of the implemented object and linearized i. Otherwise, pi
proceeds to the next consensus object C[ki + 1].

Intuitively, this way the processes make sure that their perspectives on the evolution of the imple-
mented object’s state are mutually consistent.

Correctness.

Lemma 24 At all times, for all processes pi and pj , linearized i and linearized j are related by contain-
ment.

Proof We observe that each linearized i is constructed by adding the batches of requests decided by
consensus objects C1, C2, . . ., in that order. The agreement property of consensus (applied to each of
these consensus objects) implies that, for each pj , either linearized i is a prefix of linearized j , or vice
versa. 2Lemma 24

Lemma 25 Every operation returns in a finite number of its steps.

Proof Suppose, by contradiction, that a process pi invokes an operation op and executes infinitely
many steps without returning. By the algorithm, pi forever blocks in the repeat-until clause in lines 8-
14. Thus, pi proposes batches of requests containing its request (op, i, seq i) to an infinite sequence of
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Shared objects:
R, collect object, initially ⊥
C1, C2, . . . , consensus objects

Local variables, for each process pi:
integer seq i, initially 0 { the number of executed requests of pi }
integer ki, initially 0 { the number of batches of executed requests }
sequence linearized i, initially empty { the sequence of executed requests }

Code for operation op executed by pi:
6 seq i := seq i + 1
7 R.store(op, i, seq i) { publish the request }
8 repeat
9 V := R.collect() { collect all current requests }
10 requests := V − {linearized i} { choose not yet linearized requests }
11 ki := ki + 1
12 decided := C[ki].propose(requests)
13 linearized i := linearized i.decided { append decided requests }
14 until (op, i, seq i) ∈ linearized i

15 return the result of (op, i, seq i) in linearized i using δ and q0

Figure 10.2.: Universal construction for deterministic objects

consensus instancesC1, . . . but the decided batches never contain (op, i, seq i). By validity of consensus,
there exists a process pj 6= pi that accesses infinitely many consensus objects. By the algorithm, before
proposing a batch to a consensus object, pj first collects the batches currently stored by other processes in
a collect object R. Since pi stores its request in R and never updates it since that, eventually, every such
process pj must collect the pi’s request and propose it to the next consensus object. Thus, every value
returned by the consensus objects from some point on must contain the pi’s request—a contradiction.

2Lemma 25

Theorem 27 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 10.2 describes a wait-free
linearizable implementation of τ using consensus objects and atomic registers.

Proof Let H be the history an execution of the algotihm in Figure 10.2. By Lemma 24, local variables
linearized i are prefixes of some sequence of requests linearized . Let L be the legal sequential history,
where operations and are ordered by linearized and responses are computed using q0 and δ. We con-
struct H ′, a completion of H , by adding responses to the incomplete operations in H that are present in
L. By construction, L agrees with the local history of H ′ for each process.

Now we show that L respects the real-time order of H . Consider any two operations op and op′ such
that op →H op′ and suppose, by contradiction that op′ →L op. Let (op, i, si) and (op′, j, sj) be the
corresponding requests issued by the processes invoking op and op′, respectively. Thus, in linearized ,
(op′, j, sj) appears before (op, i, si), i.e., before op terminates it witnesses (op′, j, sj) being decided
by consensus objects C1, C2, . . . before (op′, j, sj). But, by our assumption, op →H op′ and, thus,
(op′, j, sj) has been stored in the collect object R after op has returned. But the validity property of
consensus does not allow to decide a value that has not yet been proposed—a contradiction. Thus,
op→L op

′, and we conclude that H is linearizable. 2Theorem 27

117



Shared objects:
R, collect object, initially ⊥ { published requests }
C1, C2, . . . , consensus objects
S, collect object, initially (1, ε) { the current consensus object and the last committed sequence of requests }

Local variables, for each process pi:
integer seq i, initially 0 { the number of executed requests of pi }
integer ki, initially 0 { the number of batches of executed requests }
sequence linearized i, initially ε { the sequence of executed requests }

Code for operation op executed by pi:
16 seqi := seq i + 1
17 R.store(op, i, seqi) { publish the request }
18 (ki, linearized i) := max(S.collect()) { get the current consensus object and the most recent state }
19 repeat
20 V := R.collect() { collect all current requests }
21 requests := V − {linearized i} { choose not yet linearized requests }
22 decided := C[ki].propose(requests)
23 linearized i := linearized i.decided { append decided requests }
24 ki := ki + 1
25 until (op, i, seqi) ∈ linearized i

26 S.store((ki + 1, linearized i)) { publish the current consensus object and state }
27 return the result of (op, i, seq i) in linearized i using δ and q0

Figure 10.3.: Bounded wait-free universal construction for deterministic objects

10.2.2. Bounded wait-free universal construction

The implementation described in Figure 10.2 is wait-free but not bounded wait-free. A process may take
arbitrarily many steps in the repeat-until clause in lines 8-14 to “catch up” with the current consensus
object.

It is straightforward to turn this implementation into a bounded wait-free. Before returning an opera-
tion’s response (line 15), a process posts in the shared memory the sequence of requests it has witnessed
committed together with the id of the last consensus object it has accessed. On invoking an operation,
a process reads the memory to get the “most recent” state on the implemented object and the “current”
consensus id. Note that multiple processes concurrently invoking different operations might get the same
estimate of the “current state” of the implementation. In this case only one of them may “win” in the
current consensus instance and execute its request. But we argue that the requests of “lost” processes
must be then committed by the next consensus object, which implies that every operation returns in a
bounded number of its own steps.

The resulting implementation is presented in Figure 10.3.
To prove the following theorem, we recall that collect objectsR and S can be implemented withO(n)

read-write step complexity (Chapter 8).

Theorem 28 For each type τ = (Q, q0, O,R, δ), the algorithm in Figure 10.3 describes a wait-free
linearizable implementation of τ using consensus objects and atomic registers, where every operation
returns in O(n2) shared-memory steps.

Proof As before, all invoked operations are ordered in the same way using a sequence of consensus
objects, so the proof of linearizability is similar the one of Theorem 27.

To prove bounded wait-freedom, consider a request (op, i, `) issued by a process pi. By the algorithm,
pi first publishes its request and obtains the current state of the implemented object (line 18), denoted k
and s, respectively. Then pi proposes all requests it observes to be proposed but not yet committed to
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consensus object Ck. If (op, i, `) is committed by Ck, then pi returns after taking O(n) read-write steps
(we assume that both collect operations involve O(n) read-write steps).

Suppose now that (op, i, `) is not committed by Ck. Thus, another process pj has previously proposed
to Ck a set of requests that did not include (op, i, `). Thus, pj collected requests in line 20 before or
concurrently with the store operation in which pi published (op, i, `) (line 17). Moreover, pj did not store
the result of its operation in S (line 26) before pi performed its collect of S in line 18. The situation may
repeat when pi proceeds to consensus object Ck+1, but only if there is another process pk that previously
“won” Ck+1 with a sequence not containing (op, i, `), but has not yet stored its state in S. Note that pk
must be different from pj , otherwise , pj would store ki + 1 in S before collecting R which, as (op, i, `)
was not found in R by pj should have happened before of concurrently with the store in S performed by
pi.

There can be at most n−1 processes that may prevent pi from “winning” consensus objects and, thus,
pi may perform at most n−1 iterations in lines 19-25. As each iteration consists ofO(n) shared-memory
steps, we get O(n2) step complexity for individual operations. 2Theorem 28

10.2.3. Non-deterministic objects

The universal construction in Figure 10.2 assumes the object type is deterministic, where for each state
and each operation there exists exactly one resulting state and response pair. Thus, given a sequence of
request, there is exactly one corresponding sequence of responses and state transitions.

A “dumb” way to use our universal construction is to consider any deterministic restriction of the
given object type. But this may not be desirable if we expect the shared object to behave probabilisti-
cally (e.g., in randomized algorithms). A “fair” non-deterministic universal construction can be derived
from the algorithm in Figure 10.3 as follows. Instead of only proposing a sequence of requests in line 22,
process pi (using a local random number generator) proposes a sequence of responses and state transi-
tions corresponding to a sequence of operations requests applied to the last state in linearized i. One of
the proposed sequences of responses and state transitions will “win” the consensus instance and will be
used to compute the new object state.

10.3. Bibliographic notes

The “Byzantine generals” problem, consisting in reaching agreement in a synchronous system of pro-
cesses subject to Byzantine (arbitrary) failures, was introduced by Lamport, Shostak and Pease [61, 50].
Fisher, Lynch, and Paterson considered the problem of reaching agreement in asynchronous crash-prone
systems and introduced the notion of consensus.

Universality of consensus is inspired by the replicated state machine approach proposed by Lam-
port [48] and elaborated by Schneider [64]. The consensus-based universal construction that gives a
wait-free implementation of any (total) sequential type was proposed by Herlihy [35]. Hadzilacos and
Toueg defined a closely related abstraction of total-order broadcast and showed that it is equivalent to
consensus (assuming reliable communication media) [32].

Exercises

1. Show that the two definitions of consensus given in Section 10.1 are equivalent: a wait-free lin-
earizable consensus object (Figure 10.1) satisfies the properties of Agreement, Validity and Ter-
mination and, vice versa, any algorithm using atomic base objects satisfying these three properties
is a wait-free linearizable consensus implementation.
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2. Find an algorithm solving the relaxation of consensus in which only two out of the three properties
are satisfied.

3. Show that the algorithm described in Figure 10.2 is not bounded wait-free.
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11. Consensus number and the consensus
hierarchy

In the previous chapter, we introduced a notion of a universal object type. Using read-write registers and
objects of a universal type and, one can implement an object of any total type in the wait-free manner.
As we have shown, one example of a universal type is consensus. Therefore, the power of an object type
can be measured by the ability of its objects to implement consensus.

We show in this section that atomic registers cannot implement a consensus object shared by two
processes, thus, the register type is not universal even in a system of two processes. If, however, in
addition to registers, we may use queue objects, then we can implement 2-processe consensus, but not
3-process consensus.

More generally, we introduce the notion of consensus number of an object type T , the largest number
of processes for which T is universal. Consensus numbers are fundamental in capturing the relative
power of object types, and we show how to evaluate the consensus power of various object types.

11.1. Consensus number

The consensus number of an object type T , denoted by cons(T ), is the highest number n such that it
is possible to wait-free implement a consensus object from atomic registers and objects of type T , in a
system of n processes. If there is no such largest n, i.e., consensus can be implemented in a system of
arbitrary number of processes, the consensus number of T is said to be infinite.

Note that if there exists a wait-free implementation of an object in a system of n process implies a
wait-free implementation in a system of any n′ < n processes. Thus, the notion of consensus number is
well-defined. By the definition, if cons(T ) < cons(T ′), then there is no wait-free implementation of an
object of type T ′ from objects of type T and registers in a system of cons(T ) + 1 or more processes.

If atomic registers are strong enough to wait-free implement consensus for any number of processes,
i.e., cons(regiter) = ∞, then all object types would have the same consensus number, and the very
notion of consensus number would be useless. We show below that this is not the case. Moreover, we
show that for each n, there exists object types T , such that cons(T ) = n, i.e., the consensus hierarchy
is populated for each level n.

11.2. Preliminary definitions

In this section, we introduce some machinery that is going to be used to compute consensus numbers
of object types. Let us consider an algorithm A that implements a wait-free consensus object assuming
that processes only propose values 0 and 1, we call it a binary consensus object.

11.2.1. Schedule, configuration and valence

We consider a system in which n sequential processes communicate by invoking operations on “base”
atomic (linearizable) objects of types T1, . . . , Tx. As the base objects are atomic, an execution in this
system can be modeled by a sequential history that (1) includes all the operations on base objects issued

121



by the processes (except possibly the last operation of a process if that process crashes), (2) is legal with
respect to the type of each base object, and (3) respects the real time occurrence order on the operations.
Recall that this sequential history is called a linearization.

Schedules and configurations A schedule is a sequence of base-object operations. In the follow-
ing, we assume that the base object types are deterministic and the processes are running deterministic
wait-free consensus algorithms. Thus, we can represent an operation in a schedule only by the identifier
of the process that issues that operation.

A configurationC is a global state of the system execution at a given point in time. It includes the state
of each base object plus the local state of each process. The configuration p(C) denotes the configuration
obtained from C by applying an operation issued by the process p. More generally, given a schedule
S and a configuration C, S(C) denotes the configuration obtained by applying to C the sequence of
operations defining S.

In an input configuration of algorithm A, base objects and processes are in their initial states. In
particular, for binary consensus, the initial state of a process can be 0 or 1, depending on the value the
process is about to propose.

Valence The notion of valence is fundamental in proving consensus impossibility results. Let C be a
configuration resulting after a finite execution of algorithm A.

We say that configuration C is v-valent if every schedule applied to C leads to v as the decided value.
We say that v is the valence of that configuration C. A 0-valent or 1-valent configuration is said to be
monovalent. A configuration that is not monovalent is said to be bivalent.

By the definition, every descendant S(C) of a monovalent configuration C must be monovalent.
Similarly, if a configuration C has a bivalent descendant S(C), then C is bivalent.

Lemma 26 Every configuration of a wait-free consensus implementation A is monovalent or bivalent.

Proof Let S(C) a configuration of A reachable from an initial configuration C by a finite schedule S.
Since the algorithm is wait-free, for any sufficiently long S′, some process must decide in S′(S(C)).
Since only 0 and 1 can be proposed and, thus, decided, the set of values that can be decided in extensions
of S(C) is a non-empty subset of {0, 1}. 2Lemma 26

Lemma 27 A configuration in which a process decides is monovalent.

Proof By Lemma 26, if a configuration Suppose, by contradiction, that a process p decides v ∈ {0, 1}
in a bivalent configuration S(C). Since C is bivalent, there exists a schedule S′(S(C)) in which value
1− v is decided, contradicting the agreement property of consensus. 2Lemma 27

The corollary of Lemmas 26 and 27 is that no process can decide in a bivalent configuration.

11.2.2. Bivalent initial configuration

Our next observation is that any wait-free consensus algorithm must have a bilent initial configuration
C. In other words, for some distribution of input values, the decided value may depend on the schedule:
in some S(C), 0 is decided and in some S′(C), 1 is decided.

Lemma 28 Any wait-free consensus implementation for 2 or more processes has a bivalent initial con-
figuration.
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Proof Let C0 be the initial configuration in which all the processes propose 0, and Ci, 1 ≤ i ≤ n,
the initial configuration in which the processes from p1 to pi propose the value 1, while all the other
processes propose 0. So, all the processes propose 1 in Cn. Thus, any two adjacent configurations Ci−1

and Ci, 1 ≤ i ≤ n, differ only in pi’s proposed value: pi proposes 0 in Ci−1 and 1 in Ci. Moreover, it
follows from the validity property of consensus and Lemma 26, that C0 is 0-valent and Cn is 1-valent.

Let us assume that all configurationsC0, . . . , Cn are monovalent. As n ≥ 2, there are two consecutive
configurations Ci−1 and Ci, such that Ci−1 is 0-valent and Ci is 1-valent.

Since the algorithm is wait-free, for any sufficiently long schedule S, some process pj decides in
S(Ci−1), and, since Ci−1 is 0-valent, the decided value must be 0. Let us suppose that pi takes no steps
in S.

But as every process besides pi has the same inputs in Ci−1 and Ci and the states of base objects in
the two initial configurations are identical, no process besides pi can distinguish S(Ci−1) and S(Ci).
Thus, pj must also decide 0 in S(Ci), contradicting the assumption that Ci is 1-valent. 2Lemma 28

Note that the proof above would work even if we assume that at most one process may initially
crash. In particular, if pi crashes before taking any step, then no other process can distinguish an
execution starting from Ci−1 from an execution starting from Ci.

11.2.3. Critical configurations

We now show that every wait-free consensus algorithm for two or more processes has a critical config-
uration D with the following properties:

• D is bivalent;

• for every process pi, pi(D) is monovalent;

• there exists an object X , such that every process pi is about to access X in its next step in D.

In other words, one step of any given process applied to a critical configuration determines the decision
value.

Lemma 29 Any wait-free consensus implementation A for 2 or more processes has a critical configu-
ration.

Proof By Lemma 28, A has a bivalent initial configuration C. We are going to prove that C has a
critical descendant S(C).

Suppose not, i.e., for every schedule S, there exists pi such that pi(S(C)) is bivalent. Therefore,
starting from C, we inductively construct an infinite schedule S̃ that, when applied to C, only goes
through bivalent configurations: for every its prefix S, S(C) is bivalent. Indeed, let q1 be any process
such that q1(C) is bivalent, q2 be any process such that q2(q1(C)), etc. Then, by Lemma 27, starting
from C, the resulting infinite schedule S̃ = q1, q2, . . . can never reach a configuration in which a process
decides—a contradiction with the assumption that A is a wait-free consensus algorithm.

Thus, C has a bivalent descendant configuration D such that for every pi, pi(D) is monovalent.
Now suppose, by contradiction, that there exist two processes p and q that access different objects in

their next steps enabled in D. We can safely assume that p(D) is 0-valent and q(D) is 1-valent. We
encourage the reader to see why this is the case.
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Bivalent configuration D

X .op1() by p

0-valent configuration p(D) 1-valent configuration q(D)

X .op1() by p

Y .op2() by q

Y .op2() by q

q(p(D)) ≡ p(q(D))

Figure 11.1.: Operations issued on distinct objects

Then the steps of p and q applied to D commute, i.e., q(p(D)) and p(q(D)) are identical: in the two
configurations, base-objects states and process states are the same (Figure 11.1).

Since p(D) is 0-valent, q(p(D)) is 0-valent, and since q(D) is 1-valent, p(q(D)) is 1-valent—a con-
tradiction.

Thus, D is indeed a critical configuration of algorithm A. 2Lemma 29

Note that Lemma 29 holds for any wait-free consensus algorithm. By analyzing steps that pro-
cesses can apply to a critical configuration and using the number of available processes, we can
deduce the consensus number of any given object type.

11.3. Consensus number of atomic registers

Atomic registers are fundamental objects in concurrent shared-memory systems. In this section, we
show that they are however too weak to solve wait-free consensus even for two processes. Put differently,
the consensus number of object type atomic register is 1.

Theorem 29 There does not exist a wait-free consensus implementation for two processes from atomic
registers.

Proof By contradiction, suppose that there exists a wait-free consensus algorithm A for two processes,
p and q, using atomic registers. By Lemma 29, A has a critical configuration D, i.e., D is bivalent, p(D)
and q(D) are monovalent, and the two processes are about to access the same register R in their next
steps enabled in D. Since p(D) and q(D) are the only two one-step descendants of D, it must hold that
p(D) and q(D) have different valences. Without loss of generality, assume that p(D) is 0-valent and
q(D) is 1-valent.

Let OP1 and OP2 be base-object operations performed by, respectively, processes p and q in their next
steps enabled in configuration D.

The following cases are then possible:

• OP1 and OP2 are read operations

124



As a read operation on an atomic register does not modify its value, this case is the same as the
previous one where p and q access distinct registers.

• One of the two operations OP1 and OP2 is a write. Without loss of generality, suppose that q is
about to write in R in D (Figure 11.2).

Consider configurations q(p(D) and q(D). Since p accessed R in OP1 and q writes in R in OP2,
the state of D is the same in the two configurations. Thus, the only difference between the two is
the local state of p: p took one more step after D in q(p(D), but not in q(D).

Schedule S ′ (only by q)

D

W riteq(D) (1-valent)Readp(D) (0-valent)

Writeq(Readp(D))

Schedule S ′

q decides

q decides

Figure 11.2.: Read and write issued on the same register

Recall that q(p(D) is 0-valent and q(D) is 1-valent. Take any sufficiently long schedule S only
containing steps of q, such that some process q decides in S(q(p(D))). Since q cannot distinguish
S(q(p(D))) from S(q(D)), it should decide the same value in S(q(D)).

But q(p(D)) is 0-valent and p(D) is 1-valent—a contradiction.

The case when p writes in its next step in D is symmetric.

2Theorem 29

As solving consensus for one process is trivial, the following result is immediate from Theorem 29.

Corollary 5 cons(atomic-register) = 1

11.4. Objects with consensus numbers 2

In this section, we show that the hierarchy of object types based on consensus numbers is “populated”:
for ever n, there exists an object type T , such that cons(T ) = n. We begin with showing that objects
types test&set and queue have consensus number 2.
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11.4.1. Consensus from test&set objects

A test&set object stores a binary value, initially 0, and exports a single (atomic) test&set operation that
writes 1 to it and returns the old value. Its sequential specification is defined as follows:

operation X.test&set ():
loc := X;
X := 1;
return (prev).

Thus, the first process to access a (non-initialized) test&set object hets 0 (we call it a winner) and all
subsequent processes get 1.

The consensus algorithm described in Figure 11.3 uses one test&set object TS and two 1W1R atomic
registers REG [0] and REG [1].

When the process pi (for convenience, we assume that i ∈ {0, 1}) invokes propose(v) on the consen-
sus object, it “publishers” its input value v in REG [i] (line 1).

Then pi accesses TS (line 2). If it wins, it decides its own input value (line 3). Otherwise, it decides
the value proposed by the other process p1−i (line 4). Intuitively, as exactly one process wins TS, only
the value proposed by the winner can be decided.

operation propose(v) issued by pi:
(1) REG[i] := v;
(2) aux := TS .test&set ();
(3) if (aux = 0) then return (v)
(4) (aux = 1) else return (REG[1− i])

Figure 11.3.: From test&set to consensus

Theorem 30 The algorithm in Figure 11.3 is a wait-free consensus implementation for two processes
using test&set objects and atomic registers.

Proof As every process performs at most three shared-memory steps before deciding, the algorithm is
clearly wait-free.

Let pi be the process that, in a given execution of the algorithm, accesses TS first and decides its
own input value v. By the algorithm, pi previously wrote v in atomic register REG [i]. Thus, p1−i that
accesses TS after pi, will after that find v in REG [i] and return it.

Thus, the two processes can only return that inout value of the winner, and the agreement and validity
properties of consensus are satisfied.. 2Theorem 30

11.4.2. Consensus from queue objects

Recall that a queue object exports two operations enqueue and dequeue, where enqueue(v) adds
element v to the end of the queue and dequeue() removes the element at the head of the queue and
returns it; if the queue is empty, the default value ⊥ is returned.

A wait-free consensus algorithm for two processes that uses two registers and a queue is presented in
Figure 11.4. The algorithm assume that the queue is initialized with the sequence of items < w, ` >.
The first process first to perform a dequeue operation on this queue gets w and considers itself a winner.
As in the previous algorithm, the value proposed by the winner will be decided.

Using the arguments of the proof of Theorem 30, we obtain:
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operation propose(v) issued by pi:
(1) REG[i] := v;
(2) aux := Q.dequeue();
(3) if (aux = w) then return (REG[i])
(4) (aux = `) else return (REG[1− i])

Figure 11.4.: From queue to consensus

Theorem 31 The algorithm in Figure 11.4 is a wait-free consensus implementation for two processes
using queue objects and atomic registers.

11.4.3. Consensus numbers of test&set and queue

As we have shown, test&set and queue objects , combined with atomic registers, can be used to wait-
free implement consensus in a system of two processes. We show below that the objects have consensus
number 2, i.e., they cannot be used to solve consensus for three or more processes.

Theorem 32 There does not exist a wait-free consensus implementation for three processes from objects
of types in {test&set,queue,atomic-registers}.

Proof By contradiction, suppose that there exists a wait-free consensus algorithm A for two processes,
p, q, and r using atomic registers, test&set objects and queues.

By Lemma 29, A has a critical configuration D, i.e., D is bivalent, p(D), q(D), and r(D) are mono-
valent, and all the three processes are about to access the same object X . Without loss of generality,
assume that p(D) is 0-valent, while q(D) and r(D) are 1-valent.

It is immediate from the proof of Theorem 29 that X must be a test&set object or a queue.

1. X is a test&set object.

The two test&set operations on X performed by p and q result in two configurations q(p(D))
and p(q(D)) that only p and q can distinguish: the state of r and the states of all objects (including
X) are identical in the two configurations.

Consider a schedule S in which r runs solo (neither p nor q appear in S) starting from q(p(D)) and
r decides in S(q(p(D))). Since p(D) is 0-valent, r must decide 0 in S(q(p(D))). But S(q(p(D))
is indistinguishable to r from S(p(q(D)))—a contradiction with the assumption that q(D) is 1-
valent.

2. X is a queue.

Let OPp the operation issued by p that leads from D to p(D), OPq the operation issued by q that
leads from D to q(D), and OPr the operation issued by r that leads from D to r(D).

Here we consider the following possible subcases:

• OPp and OPq are dequeue operations.

Then, regardless of the state of X in D, q(p(D)) and p(q(D)) are identical, except for the
local states of P and q. Thus, in a solo schedule, r can never distinguish two configurations
of opposite valences—a contradiction.
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• OPp is an enqueue operation and OPq is a dequeue operation.

If, in configuration D, X is empty, then q(p(D)) and q(D) only differ in the local states of
p and q, and X is left empty in both configurations.

If X is non-empty in D, then q(p(D)) and p(q(D)) are identical.

In both cases, in solo extensions, r cannot distinguish two configurations of opposite valences—
a contradiction.

0-valent configuration p(D)

Bivalent configuration D

1-valent configuration q(D)

Q.enqueue(a) by p Q.enqueue(b) by q

Figure 11.5.: enqueue() operations by p and q

• Now we are left with the most interesting case: OPp and OPq are enqueue operations, let a
and b be, respectively, the arguments of the two operations.

Configurations q(p(D)) and p(q(D)) differ only in the state of X: in q(p(D)), the element
enqueued by p precedes the element enqueued by q, and in q(p(D))—vice versa.

Consider a solo schedule of p applied to q(p(D)). To decide, p must be able to distinguish
the run from a run starting applied q(p(D)), p should eventually access X .

Let Sp be the solo schedule of p such that in Sp(q(p(D))), p is about to dequeue element a
it previously enqueued (in operation OPp).

Note that in Sp(q(p(D))) and Sp(p(q(D))) differ only in the state of X and, thus, to decide
in a solo schedule applied to Sp(q(p(D))), q must eventually access X to dequeue its own
element in X enqueued by operation OPq.

Similarly, Let Sq be the solo schedule of p such that in Sq(Sp(q(p(D)))), q is about to
dequeue element b it previously enqueued (in operation OPp).

Finally, we observe that Sq(Sp(q(p(D)))) and Sq(Sp(p(q(D)))) still differ only in the state
ofX (Figure 11.5): in the first configuration,X begins with a; b and in the second configuration—
with a; b. Thus, by the dequeue operations of p and q in reversed orders, we obtain two
identical configurations, q(p(Sq(Sp(q(p(D)))))) and p(q(Sq(Sp(p(q(D)))))), of opposite
valences—a contradiction.

a

k ≥ 0 items

enqueue() side dequeue() sideb

Figure 11.6.: State of the queue object Q in configuration q(p(D))

2Theorem 32

Theorems 30, 31, and 32 imply

Corollary 6 cons(test&set) = cons(queue) = 2.
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operation propose(v):
` := `+ 1
if (x = ⊥) then x := v
if (` ≤ n) then

return (x);
else

return (⊥);

Figure 11.7.: Consensus specification: sequential execution of popose(v)

11.5. Objects of n-consensus type

In this section, we show that for each n ∈ N, there exists object types T , such that cons(T ) = n, i.e.,
the hierarchy of object types implied by their consensus numbers is populated for each level n.

The sequential specification of the n-consensus object type is given in Figure 11.7. The state of an
n-consensus object is defined by two variables: x (initially⊥)—the value to be decided and ` (initially
0)—the number of propose operations perfomed on the object so far. As with the consensus type,
the argument of the first propose operation fixes x. However, only first n propose operation return a
decided value. All subsequent operations return ⊥.

We suggest the reader to compute the consensus number of the type, following the lines of the proofs
above:

Theorem 33 For all n ∈ N, cons(n-consensus) = n.

11.6. Objects whose consensus number is +∞
We now complete the picture by showing that some object types have an infinite consensus number:
atomic objects of these types, combined with atomic registers can be used to solve consensus among
any number of processes. We discuss two such object types: compare&swap objects and augmented
queue.

11.6.1. Consensus from compare&swap objects

A compare&swap object that stores a value x exports a single compare&swap() operation that takes
two values as arguments, old and new , with the following sequential specification:

operation compare&swap(old ,new):
prev := x;
if (x = old) then x := new;
return (prev)

From compare&swap objects to consensus Implementing consensus from a single compare&swap
object in a system of any number n of processes is straightforward (Figure 11.8) The base compare&swap
object CS is initialized to ⊥, a default value that cannot be proposed to the consensus object. When a
process proposes a value v, it invokes CS .compare&swap(⊥, v) (line 1). If ⊥ is returned, the process
decides its value (line 2). Otherwise, it decides the value returned by the compare&swap object (line
3).
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operation propose(v) issued by pi:
(1) aux := CS .compare&swap(⊥, v);
(2) if aux = ⊥ then return(v)
(3) else return(aux )

Figure 11.8.: From compare&swap to consensus

Theorem 34 cons(compare&swap) =∞.

Proof The algorithm in Figure 11.8 is clearly wait-free. Let pi be the first process to execute CS .compare&swap ()
operation in a given execution. (Recall that “the first” is defined based on the linearization order on op-
erations on CS .) Clearly, any subsequent call of CS.compare&swap () returns the input value of pi
and, thus, only this value can be decided. 2Theorem 34

11.6.2. Consensus from augmented queue objects

An augmented-queue object is a previously considered queue with an additional peek() operation
that returns the first item of the queue without removing it. Intuitively, the object type has infinite
consensus power, as the first element to be enqueued can then be “peeked” and returned as a decision
value (assuming that the queue is initially empty).

operation propose(v) issued by pi:
Q.enqueue(v);
return(Q.peek())

Figure 11.9.: From an augmented queue to consensus

Figure 11.9 gives a simple wait-free implementation of a consensus object from an augmented queue.
The construction is pretty simple. The augmented queue Q is initially empty. A process first enqueues
its input value and then invokes the peek() operation to obtain the first value that has been enqueued.
It is easy to see that the construction works for any number of processes, and we have the following
theorem:

Theorem 35 cons(augmented-queue) =∞.

11.7. Consensus hierarchy

Consensus numbers establish a hierarchy on the power of object types to wait-free implement a con-
sensus object, i.e., to wait-free implement any object defined by a sequential specification on total op-
erations. As we have shown, the lowest level object types (of consensus number 1) include atomic-
registers, the second weakest class of object types (of consensus number 2) includes test&set and
queue, and the strongest class (of consensus number∞) includes compare&swap and augmented-
queue. We also showed that for all n ∈ N, there are object types, e.g., n-consensus, that have
consensus number exactly n, i.e., every level in the hierarchy is “populated.”

Consensus numbers also allow ranking the power of classical synchronization primitives (provided
by shared memory parallel machines) in presence of process crashes: compare&swap is stronger than
test&set that is, in turn, stronger than atomic read/write operations. Interestingly, they also show that
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classical objects encountered in sequential computing such as stacks and queues are as powerful as
the test&set or fetch&add synchronization primitives when one is interested in providing upper layer
application processes with wait-free objects.

Fault-tolerance can be impossible to achieve when the designer is not provided with powerful enough
atomic synchronization operations. As an example, a FIFO queue that has to tolerate the crash of a single
process, cannot be built from atomic registers. This follows from the fact that the consensus number of
a queue is 2, while the he consensus number of atomic registers is 1.

Bibliographic notes

The hierarchy of object types based on consensus numbers was originally introduced by Herlihy [35].
The article also contains multiple examples of how the consensus number of an object type can be
computed. Jayanti observed that the consensus hierarchy, as defined originally by Herlihy, is not robust:
there are combinations of lower level types that turn out to be stronger than a higher level type [41]. To
fix this, Jayanti proposes a refined definition that has been used since then. The question of robustness
of the resulting consensus hierarchy remains however open. Lo and Hadzilacos [54] give examples of
non-deterministic types that give a higher level type under composition, but it remains unclear whether
deterministic types are robust.

The impossibility of implementing wait-free consensus for two processes using atomic registers pre-
sented in this chapter involves elements (valence and critical configurations) of the original proof by
Fisher, Lynch and Paterson [27] who showed that even 1-resilient (i.e., tolerating the failure of a sin-
gle process) consensus is impossible to solve in an asynchronous message-passing system. Loui and
Abu-Amara extended the proof to read-write shared-memory systems [55].

In this book, we get the 1-resilient consensus impossibility (Chapter ??) by a simulation-based reduc-
tion to the wait-free impossibility.

Exercises

1. Complete the proof of Lemma 29 by confirming that if a configuration D satisfies the first two
properties of a critical configuration, but not the third one, then there exist descendants p(D) and
q(D) such that p(D) is 0-valent and q(D) is 1-valent.

2. Prove Corollary 6.
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Part V.
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