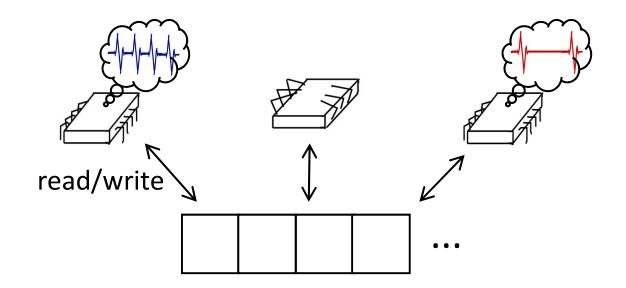
Fault-Tolerant Computability in Anonymous Shared-Memory Model

Nayuta Yanagisawa

Department of Mathematics, Kyoto University

2017@France


I'm here to talk about ...

my recent results concerning anonymous shared-memory distributed computing

Anonymous Shared-Memory Model^{3/27}

A distributed system consists of

- A set of n + 1 anonymous and asynchronous processes, which are prone to crash failures;
- *multi-writer*/multi-reader atomic registers.

Why Difficult?

Anonymous processes execute an *identical program*, causing troubles:

• No single-writer shared object

A value written by a process may be overwritten before other processes see it.

Undetectability of multiplicity (clone)
 In the worst case, processes that have an identical local state cannot detect the activity of others.

Outline

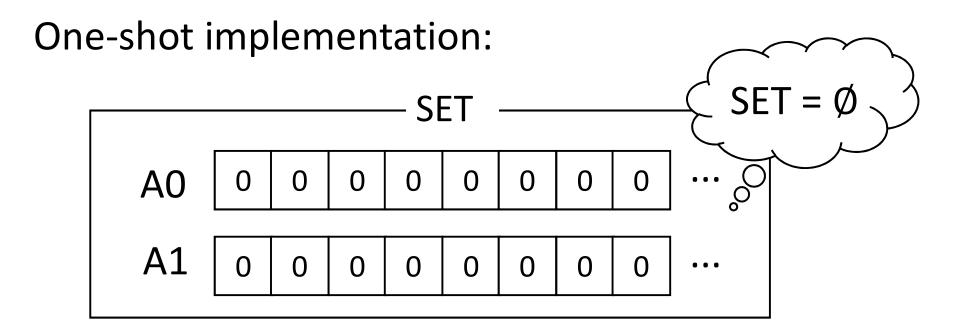
I investigate distributed computability in the anonymous shared-memory model.

- 1. Infinitely-valued atomic weak set object
- *2. t*-resilient (t + 1)-set agreement protocol
- 3. Topological characterization of *t*-resilient solvable colorless tasks

6/27

1. Atomic Weak Set Object

Atomic Weak Set Object 7/27

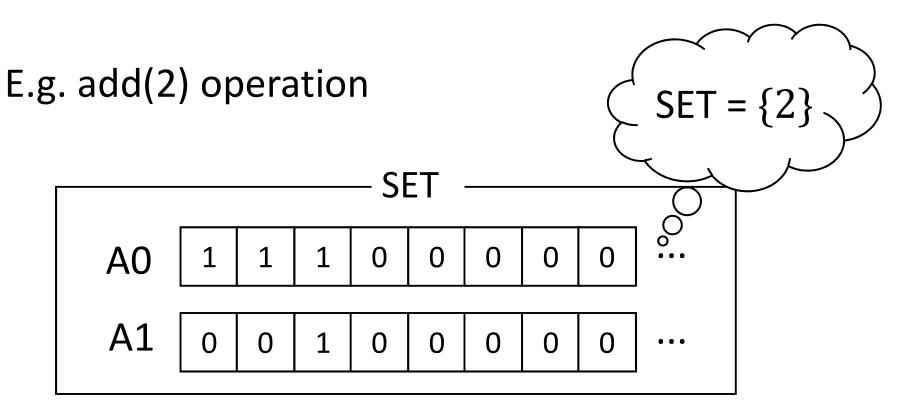

An *atomic weak set object*, denoted by SET, is an atomic object used for storing values.

SET supports the two operations, *add* and *get*:

- A process can atomically add v ∈ {0,1,2 ... }
 to SET by the add(v) operation.
- A process can atomically obtain the content of SET by the get() operation.

Wait-Free Implementation

Theorem 1 An atomic weak set object SET has a wait-free implementation in the anonymous model.

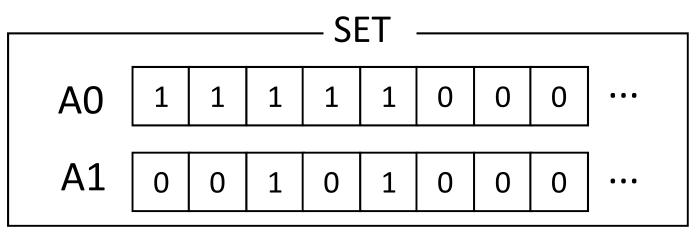


8/27

Add Operation

9/27

To perform an add(k) operation, a process writes 1 to A0[i] (i = 0, ..., k) and writes 1 to A1[k].



Get Operation

To perform a get operation, a process read A1[i] until it sees A0[i] = 0. (first collect)

Then, the process read A1 again in the same manner. (second collect)

If the two collects are identical, return $\{i \mid \text{first_collect}[i] \neq 0\}$; otherwise repeat.

Application

- Set agreement protocol (next section)
- Simple approximate agreement protocol based on [Moran 95]

[Moran 95] Shlomo Moran. Using approximate agreement to obtain complete disagreement: the output structure of input-free asynchronous computations. (ISTCS 1995)

12/27

2. Set Agreement Protocol

k-Set Agreement

- *Termination*: Every non-faulty process eventually decide;
- *k-agreement*: The set of outputs holds at most k distinct values;
- *Validity*: Every output value is equal to some process's input value.

(t + 1)-Set Agreement

Theorem 2

There exists an anonymous *t*-resilient protocol for the (t + 1)-set agreement problem.

Note: I assume that every value is encoded into a non-negative integer.

Set Agreement Protocol

15/27

See manuscript

Correctness of Protocol 16/27

Termination: A process waits only when it sees more than t + 1 values and its value is the minimum among them. This ensure that some t + 1 set of processes never jump to Line 13 in each execution.

k-agreement: see manuscript.

Remark

Our protocol can be seen as an extension of the anonymous consensus protocol proposed by Attiya et al. [Attiya02]

[Attiya02] Hagit Attiya, Alla Gorbach, and Shlomo Moran. Computing in totally anonymous asynchronous shared memory systems. Information and Computation, 2002.

18/27

3. Topological Characterization

Colorless Task

A colorless task is a triple $T = (I, O, \Delta)$, where

- *I* and *O* are finite simplicial complexes;
- $\Delta: I \to 2^O$ is a carrier map.

Topological Characterization

Theorem 3

A colorless task $T = (I, O, \Delta)$ is *t*-resilient solvable in the anonymous model iff

(*) there is a continuous map $f: |\operatorname{skel}^t I| \to |O|$ s.t. $f(|s|) \subseteq |\Delta(s)|$ for all $s \in \operatorname{skel}^t I$.

Theorem 4 [Herlihy & Rajsbaum '10]

A colorless task $T = (I, O, \Delta)$ is wait-free solvable in the *non-anonymous* model iff (*). Corollary 5

A colorless task $T = (I, O, \Delta)$ is *t*-resilient solvable in the anonymous model iff it is *t*-resilient solvable in the non-anonymous model.

Anonymous shared-memory computing = Non-anonymous shared-memory computing

(... as long as colorless tasks are concerned)

Proof of Thm 3: Only If Part 22/27

T is solvable in the anonymous model

- \Rightarrow T is solvable in the non-anonymous model
- \Rightarrow A continuous map exists (Theorem 4)

Proof of If Part

$$\exists f: |\operatorname{skel}^{t}I| \to |O| \text{ s.t.} \\ f(|s|) \subseteq |\Delta(s)| \text{ for all } s \in \operatorname{skel}^{t}I. \\ \Rightarrow \exists \delta: \operatorname{Bary}^{k}\operatorname{skel}^{t}I \to O \text{ s.t.} \\ \delta(\operatorname{Bary}^{k}\operatorname{skel}^{t}s) \subseteq \Delta(s) \text{ for every } s \in I. \\ (\text{finite approximate agreement theorem})$$

There is an anonymous protocol that solves $T = (I, Bary^k skel^t I, Bary^k skel^t).$

Summary

I have investigate distributed computability in the anonymous shared-memory model.

- 1. Infinitely-valued atomic weak set object
- 2. t-resilient (t + 1)-set agreement protocol
- 3. Topological characterization of *t*-resilient solvable colorless tasks

Further Research

25/27

Uniform solvability of colorless tasks

- Infinite simplicial complex
- Generalized simplicial approximation
- Reducing to Gafni & Koutsoupias 2002

Computability for general decision tasks

- Full-information protocol is not known.
- Just started.

26/27

Thank you!

27/27

Why Important?

28/27

why important