
MPRI 2.18.2: Solutions for Quiz 1

1 2-process Peterson’s algorithm

Suppose that p0 executes the first two lines of its algorithm in the reverse order:

1. turn = 1;

2. flag[0] = true;

Then the following execution scenario is possible:

read flag[0] = false

p0

p1

turn = 1

flag[1] = true turn = 0

both p0 and p1 are in CS

flag[0] = true

read turn = 0

(Note that we do not care about the order in which the first two lines are executed by p1.)
Here p0 sets turn to 1, then p1 sets turn to 0, flag[0] to true (the order in which these two

operations are performed does not matter) reads false in flag[0] and proceeds to the critical
section. Then p0 reads 0 in turn and also proceeds to the critical section—a contradiction.

2 N-process Peterson’s algorithm

Algorithm 1 N -process Peterson’s algorithm
1: Shared variables:

2: level[0, . . . , N − 1] = {−1}
3: waiting[0, . . . , N − 2] = {−1}

4: Trying section: code for process pi:

5: for m from 0 to N − 2 do
6: level[i] = m;
7: waiting[m] = i;
8: while(waiting[m] == i && (∃ k 6= i : level[k] >= m));

9: Critical section:

10: . . .
11: Exit section:

12: level[i] = −1;

1

Mutual exclusion. To prove that Algorithm 1 ensures the property of mutual exclusion,
suppose, by contradiction, that it has an execution in which two processes are in their critical
sections at some time t.

We say that a process pi reached level ` (` = 0, . . . , N − 1) if it is in the critical section or
level[i] stores ` or a higher value. Thus, by our assumption, two processes reached level N − 1
at the same time.

Intuitively, a process that reached level ` is in the critical section or in the waiting phase
` or higher. By the algorithm, a process pi executing its `-th waiting phase should wait for
every process that reached level ` to complete their critical sections, unless there is another
process that wrote to waiting[`] after pi.

Suppose, inductively, that for some ` = N − 1 down to 1, a set S of N − ` + 1 processes
reached level ` or higher at some time t`. (In the base case, ` = N − 1 and we have a set of 2
such processes.)

By the algorithm, before time t`, every process pi ∈ S sets level[i] to ` − 1 and writes i
in waiting[` − 1]. Without loss of generality, assume that pi is the last process in S to update
waiting[` − 1] before t`, and let t′ be the time when this happens. Hence, at time t′, for every
other process in pj ∈ S, level[j] stores ` − 1 or a higher value. Indeed, if at time t′, for some
process pj ∈ S, level[j] stores a value less than `− 1, then to reach level ` by time t`, pj must
write j to waiting[`− 1] at some time between t′ and t`, contradicting the assumption that pi
is the last process in S to write to waiting[`− 1] before t`.

Since |S| = N − ` + 1 and ` ≤ N − 1, there is at least one process in S besides pi. Thus,
to reach level `, between t′ and t`, pi must have read a value other than i in waiting[` − 1]:
otherwise, pi would have to wait until all other processes in S complete their critical sections
and set their level variables to −1. Thus, at some time t`−1 between t′ and t`, a process pk /∈ S
has written k in waiting[`−1]. Thus, at time t`−1, at least |S|+1 = N − `+2 processes reached
level `− 1.

pi

S

t`

waiting[`− 1] = k

t`−1
waiting[`− 1] = i

t′

S reached level `S reached level `− 1 S ∪ {pk} reached level `− 1

pk

By induction, we derive that at some time t0, at least N +1 process must have reached level
0, contradicting the fact that we have exactly N processes.

Starvation-freedom. Now we prove that Algorithm 1 ensures the property of starvation-
freedom, i.e., assuming that no process fails in the trying, critical, or exit sections, every process
in the trying section eventually enters its critical section. By the algorithm, the only possiblity
for a process in the trying section not to enter its critical section is to block in line 8 at some
level ` = 0, . . . , N−2. A process pi blocks at level ` if, after setting level[i] to ` and waiting[`]
to i, it keeps reading waiting[`] and level[0, . . . , N − 1] to always find waiting[`] == 1 and
level[j] ≥ ` for some j 6= i. Since, prior to this, every process pi writes i in waiting[`], at
most one process can be blocked at any given level.

2

Suppose, by contradiction that there exists a non-empty set B of blocked processes, and let
pI be the process that is blocked at the highest level `. Let t be the time when pi writes i to
waiting[`] for the last time. Thus, any process pj that reaches level ` must have written j to
waiting[`] before t: otherwise, pi would eventually read a value other than i and “unblock”.
Moreover, any such process that pj must eventually complete level ` and proceed to the critical
section: otherwise, it would block at a level higher than `, violating our choice of pi.

Thus, eventually, pi would find out that no other process has reached level ` and proceed to
level `+ 1 or its critical section if ` = N − 2—a contradiction.

3 Safety

Safety of an implementation

The set of runs of an implementation I is trivially prefix-closed : every prefix of a run of I is
also a run if I.

Suppose that all finite runs of I are safe (with respect to some safety property P). We want
to show that even infinite runs of I are also in P .

Let σ be any infinite run of I. Let σ1, . . ., σk, . . . be prefixes of σ, where σi, i = 1, 2, . . .,
has length i. By our assumption, every σi is in P . Since P is limit-closed, σ = lim i→∞σi is
also in P .

Checking safety

We want to argue that to check that a safety property P is violated, we can look for a finite
run.

Indeed, consider a run σ /∈ P . If σ is finite we are done: for every extension σ′ of σ, we have
σ′ /∈ P (otherwise, P is not prefix-closed).

Let σ be infinite. Suppose, by contradiction, that σ has no unsafe prefixes, Then, by limit-
closedness of P , we get that σ (as the infinite limit of these safe prefixes) is safe—a contradiction.

Determining safety

Given a property P , we want to construct S, a safety property, and L, a liveness property, such
that P = S ∩ L.

S can be constructed as a prefix- and limit-closure of P , defined as P plus all prefixes and
limits of runs in P :

S = {σ : ∃σ′ ∈ P, σ is a prefix of σ′}∪
{σ : ∃σ1, σ2, . . . ∈ P, ∀i, σi is a prefix of σi+1, σ = limi→∞ σi}

By construction, S is prefix- and limit-closed.
We define L as the largest possible set that gives P under intersection with S:

L = P ∪ ¬S

Recall that a liveness property must contain extensions of all possible runs: something
good should always be able to happen eventually. In this sense, it is better to make L as
large as possible.

3

By construction, S ∩ L = P .
It remains to show that L is indeed a liveness property, i.e., for every finite σ, there exists

σ′ ∈ L, an extension of σ.
Consider any σ /∈ L. By the definiton of L, σ ∈ S − P , and, by the definition of S, σ is

either a finite prefix of a run in P or an infinite limit of a sequence of runs in P . Since, σ is
finite, we derive that an extension of σ is in P .

4 Linearizability is compositional

See Theorem 2.6 in the textbook.

5 Liveness

First of all, we observe that wait-freedom (WF) is a subset of every other property in the table,
i.e., WF is the strongest liveness property in the set.

Consider obstruction-freedom (OF) and lock-freedom (LF) and take any run σ ∈ LF . LF is
an independent property, so it guarantees progress to some process in all runs, while OF only
guarantees progress if some process runs in isolation (for sufficiently long). Therefore, every run
in LF is also in OF. Further, any run in which no process ever runs in isolation, e.g., in which
processes run one-by-one in the round-robin order, but no process makes progress is, trivially,
in OF, not in LF. Thus, LF (OF .

Here we use standard logical reasoning. Consider a set of runs defined as follows:

P = {σ : Aσ ⇒ Bσ},

i.e., P consists of all runs σ, such that if σ satisfies A, then it satisfies B. Then any run
that does not satisfy A is trivially in P .

For example, consider the property: “I like all fruits, but if it is an apple, then I only
like red ones.” Then if you give me an orange, I should like it.

Similarly, when deadlock-freedom says: “if every process is correct, then some process
makes progress”, a run in which not every process is correct, is trivially deadlock-free.

The remaining relations can be established analogously.

6 Queue implementations

The case of one enqueuer and one dequeuer

In the sequential impemenation presented in Slide 40 of the first lecture (only the deq operation
is descrbed, the complementing enq operation is naturally deined), only the enqueuer is updating
tail and only the dequeuer can update head. Thus, the only possible race conditions that can
be observed here are of the read-write type.

Formally, assuming that both head and tail are atomic shared variables, we linearize deq at
the moment it writes to head, and enq—at the moment when it writes to tail. Showing that
the resulting history is legal is left as an exercise.

4

https://www.amazon.fr/Algorithms-concurrent-systems-Petr-Kuznetsov/dp/2889152839

Two-lock algorithm

The algorithm discussed above can be easily generalized to the multi-enqueuer multi-dequeueur
case by using two locks: one for head and one for tail. An enqueuer must hold the lock on tail
before add an element and a dequeuer must hold the lock on head to fetch an element.

As all enq (resp., deq) can only be executed sequentially, any execution of this algorithm
can be seen as an execution of the one-enqueuer one-dequeuer algorithm above. The liveness
property of the algorithm is determined by the type of locks we use: e.g., by using starvation-free
locks, we obtain a starvation-free queue implementation.

5

	2-process Peterson's algorithm
	N-process Peterson's algorithm
	Safety
	Linearizability is compositional
	Liveness
	Queue implementations

