Quiz 1

 What if we reverse the order of the first two lines the 2process Peterson's algorithm

P0:	P1:
turn = 1;	turn = 0;
<pre>flag[0] = true;</pre>	<pre>flag[1] = true;</pre>
Vould it work?	•••

Would it work?

- Prove that Peterson's N-process algorithm ensures:
 - ✓ mutual exclusion: no two processes are in the critical section at a time
 - ✓ starvation freedom: every process in the trying section eventually reaches the critical section (assuming no process fails in the trying, critical, or exit sections)
- Extra: show that the bounded (black-white) Bakery algorithm in correct

Quiz 2: safety

- Let S be a safety property. Show that if all finite runs of an implementation I are safe (belong to S) then all runs of I in are safe
- 2. Show that every unsafe run σ has an unsafe finite prefix σ' : every extension of σ' is unsafe
- 3. Show that every property is a mixture of a safety property and a liveness property

Quiz 3: linearizability/progress

- Show that linearizability is compositional:
 - $\checkmark A$ history H on AxB is linearizable if and only if H_A and H_B are linearizable

 Show how the elements of the "periodic table of progress" are related to each other:

✓ Property P is weaker than property P' if P' is a subset of P

Quiz 4: queues

- Show that the sequential queue implementation considered before is linearizable and wait-free as is if used by two processes: one performing only enqueue operations and one performing only dequeue operations
- Devise a simple queue implementation shared by any number of processes in which enqueue and dequeue operations can run concurrently (data races between these operations are allowed)

