
MPRI 2.18.2

Mid-Term Homework: Solutions

Problem 1: Bakery with Safe Registers

Show that the original Lamport’s bakery algorithm (slide 21 in class01-intro.pdf) is correct even when all
the registers it uses are only safe.

Solution. We prove first mutual exclusion: no two processes are in their critical sections at the same
time.

Assume the contrary: pi with ticket number `i and pj with ticket number `j are at the critical section
at a given time tc. Assume that (`i, i) << (`j , j).

Notice that the binary registers flag[i] and flag[i] are only updated in order to change their values
(setting it from true to false or vice versa). Thus, as we have seen in the class, the registers behave like
regular ones: only the last written or a concurrently written values can be read in them.

Thus, when pj passes the first waiting phase (waiting until pi is not in the doorway), it reads false in
flag[i] written by a concurrent or a preceding write by pi.

Let wf be the last write on flag[i] that pi performs before tc. By the algorithm pi writes false in wf .
Let rf be the last read of flag[i] that pj performs before tc. By the algorithm rf returns false.

Two cases are possible:

• wf is performed before or concurrenty with rf .

In this case, every read of label[i] performed by pj after reading flag[i] and before attending its
critical section at time tc is not concurrent with any write on label[i] by pi and, by the definition
of a safe register, every such read must return `i.

Since, by our assumption, (`i, i) << (`j , j), pj cannot be in its critical section at time tc—a
contradiction.

• wf is performed after rf .

Thus, for rf to return false, the preceding write w′f of true to flag[i] must be performed by pi after or
concurrently with rf . Thus, when read of label[j] performed by pi after w′f is not overlapping with
a write on label[j] and must return `j . By the algorithm, `i ≥ `j + 1 and, thus, (`j , j) << (`i, i)—a
contradiction.

To prove starvation-freedom, assume, by contradiction again, that a process pi is blocked forever in
its trying section, even though every process is correct.

Without loss of generality, assume that pi’s ticket number `i is such that (`i, i) << (`j , j) for every
other process pj that is blocked forever in its trying section. By the algorithm, there is a time after
which for all such blocked processes pj , flag[j] = false.

Now the two following cases are possible:

• All processes are blocked in their trying sections. Hence, eventually, pi will find out that (`i, i) <<
(`j , j) for all j 6= i and enter its critical section—a contradiction.

• Some process pk is not blocked in its trying section. Eventually, pk will exit its trying section and
set label[k] to a value higher than `i and flag[k] to false. Again, eventually, pi will find out that
(`i, i) << (`j , j) for all j 6= i and enter its critical section—a contradiction.

1

Problem 2: Safety and Liveness

A property is a set of histories. Here we consider histories in which processes propose values in {0, 1}
and then output values in {commit, abort}. We assume that in a history, a process proposes a value at
most once, outputs a value at most once, and only if it previously proposed a value.

Classify the following properties into safety/liveness. If a property is an intersection of the two,
specify the corresponding safety and liveness properties. Justify your answers.

• Every process eventually outputs a value.

Every finite execution can be extended to contain a commit or abort event for every process. Thus,
this is a liveness property.

• If every process proposes 1 and no process crashes (stops taking steps), then no process can output
abort.

Any finite execution in which every process proposes 1 and some process outputs abort can be
extended to an infinite one in which some process is faulty (takes only finitely many steps). Thus,
this is a liveness property.

• Eventually, all processes output the same value.

As we assumed that a process outputs a value at most once, any finite execution in which two
different values are output violates the property.

An infinite execution in which some process never outputs a value also violates the property.

Thus, the property is a mixture of safety and liveness. We can represent it as the intersection of
the liveness property:

– Every process eventually outputs,

and the safety property:

– No two processes output different values.

Problem 3: Progress Conditions

We say that a property P is stronger than a property P ′ if P ⊆ P ′. What is the relation between
starvation-freedom (SF) and lock-freedom (LF)? Explain why.

Solution. The two properties are incomparable: LF * SF and SF * LF.
Indeed, an execution in which every process is correct but only one process makes progress (which

can, e.g., happen in our the lock-free atomic snapshot algorithm discussed in the lecture) is in LF but
not in SF.

Further, any execution in which some process is faulty and no process makes progress is in SF
(trivially, as the condition on the scheduler imposed by SF) but not in LF.

Problem 4: Atomic Registers

Consider the implementation of a one-writer N -reader (1WNR) atomic register (Transformation V in
the slides).

In the read() operation, the process writes the value it just read back to RR[][]. Is it possible to find
an implementation in which the reader does not write? Justify your answer.

2

Solution. Suppose, by contradiction that such an implementation is possible.
Let the writer change the value of the implemented register from 0 to 1. Let the corresponding write

operation modify a sequence of registers R1, . . . , Rk and let ω1, . . . , ωk be the corresponding (atomic)
write operations.

Let vi,`, ` = 1, . . . , k, denote the value that a read operation performed by pi and applied right after
ω` must return. Let vi,0 denote the value that pi will return just before ω1.
Claim 1. vi,0 = 0, vi,k = 1, and for all ` = 1, . . . , k − 1, vi,` ∈ {0, 1}.

Immediate from the fact that the implemented register is atomic.
Claim 2. For all ` = 1, . . . , k, i and j, vi,` = vj,`.

Indeed, suppose by contradiction, that for some ` ∈ {1, . . . , k − 1}, we have vi,` 6= vj,`. By Claim 1,
we can uppose, without loss of generality, that vi,` = 1 and vj,` = 0.

Now we schedule, just after ω`, a read operation of pi followed by a read operation by pj . By the
definition of vj,`, the read operation of pi must return 1. Further, as implemented read operations do
not modify the memory, the read operation of pi must return vj,` = 0.

Thus, we constructed a new-old inversion, establishing a contradiction.
Claim 3. There exists ` ∈ {1, . . . , k}, such that for all i, vi,`−1 = 0 and vi,` = 1.

Immediate from Claim 1 and Claim 2.
Consider ` established in Claim 3. Recall that ω` is an atomic write operation on a 1W1R register

R`. Let R` be read by a distinct process pi. As R` can only be read by pi, no process pj , j 6= i, can
distinguish its read operation executed just before ω` from its read operation executed just after ω`.
Thus, for all j 6= i, we have vj,`−1 = vj,`, contradicting Claim 2.

Problem 5: ABA in Atomic Snapshots

Show that the atomic snapshot is subject to the ABA problem (affecting correctness) in case the written
values are not unique.

Solution. Figure 1 gives an example of a run in which p1 and p2 update the memory concurrently
with a snapshot taken by p2. In the first scan, p2 sees the old value od p1 (1) and the new value of p3
(2), then p3 and p1 write back their “old” values (in this order), and then we repeat this scenario with
the second scan of p2.

The resulting execution is not linearizable: there is no place between the updates where we can
linearize the snapshot operation by p2.

R[1].write(2)

R[3].write(2)

Update(2)

R[3].write(2)

Update(2)

R[2].write(1)

Update(1)

Update(1)

R[3].write(1)

R[1].write(1)

Update(1)

p1

p2

p3

Snapshot()

R[1].read() R[2].read() R[3].read() R[1].read() R[2].read() R[3].read()

Update(2)

R[3].write(1)

Update(1)

R[1].write(1)

Update(1) Update(2)

R[1].write(2)

[1,1,1] [2,1,1] [2,1,2][2,1,2] [2,1,1]

[1,1,2] [1,1,2]
[1,1,2]

[1,1,1] [2,1,1]

Figure 1: ABA in atomic snapshots: p2 gets two identical scans, but the scan outcome (in red) does not
belong to the set of allowed snapshots (in blue).

3

