
©	2018	P.	Kuznetsov	
	

 
Atomic and immediate snapshots

MPRI, P1, 2018

2 ©	2018	P.	Kuznetsov		

The space of registers

§  Nb of writers and readers:
from 1W1R to NWNR

§  Size of the value set: from
binary to multi-valued

§  Safety properties: safe,
regular, atomic

readers/writers

safety property
value set

All	registers	are	(computationally)	equivalent!	

3 ©	2018	P.	Kuznetsov		

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I.  From safe to regular (1W1R)
II.  From one-reader to multiple-reader (regular

binary or multi-valued)
III.  From binary to multi-valued (1WNR regular)
IV.  From regular to atomic (1W1R)
V.  From 1W1R to 1WNR (multi-valued atomic)
VI.  From 1WNR to NWNR (multi-valued atomic)
VII.  From safe bit to atomic bit (optimal, coming later)

4

This class

§  Atomic snapshot: reading multiple locations
atomically
ü Write to one, read all

5

Atomic snapshot: sequential specification

§  Each process pi is provided with operations:
ü updatei(v), returns ok
ü snapshoti(), returns [v1,…,vN]

§  In a sequential execution:
For each [v1,…,vN] returned by snapshoti(),

vj (j=1,…,N) is the argument of the last updatej(.)
(or the initial value if no such update)

©	2018	P.	Kuznetsov		

6

Snapshot for free?
Code for process pi:

initially:
shared 1WNR atomic register Ri := 0

upon snapshot()
[x1,…,xN] := scan(R1,…,RN) /*read R1,…RN*/
return [x1,…,xN]

upon updatei(v)
Ri.write(v)

©	2018	P.	Kuznetsov		

7 ©	2018	P.	Kuznetsov		

Snapshot for free?

p1

p2

p3

read3()2

	update1(1)						ok	

	update3(1)	ok	 update3(2)	ok	

	snapshot()																																[1,1,2]	

read1()1

	update2(1)	ok	

	update1(2)						ok	

read2()1

8 ©	2018	P.	Kuznetsov		

Snapshot for free?

p1

p2

p3

	update1(2)							ok		update1(1)									ok	

	update3(1)	ok	 update3(2)	ok	

	snapshot()																																[1,1,2]	
	update2(1)					ok	

 [1,1,1] [2,1,1] [2,1,2]

read3()2 read1()1 read2()1

9

§  What about 2 processes?

§  What about lock-free snapshots?
ü At least one correct process makes

progress (completes infinitely many
operations)

©	2018	P.	Kuznetsov		

10

Lock-free snapshot
Code for process pi (all written values, including the

initial one, are unique, e.g., equipped with a sequence
number)

Initially:
shared 1W1R atomic register Ri := 0

©	2018	P.	Kuznetsov		

upon	snapshot()	
	[x1,…,xN]:=	scan(R1,…,RN)	
	repeat	
	 	[y1,…,yN]	:=	[x1,…,xN]		
	 	[x1,…,xN]:=	scan(R1,…,RN)	
	until		[y1,…,yN]	=	[x1,…,xN]	 			
	return	[x1,…,xN]			

upon	updatei(v)	
	Ri.write(v)	

11

Linearization
Assign a linearization point

to each operation
§  updatei(v)

ü Ri.write(v) if present
ü Otherwise remove the op

§  snapshoti()
ü if complete – any point

between identical scans
ü Otherwise remove the op

Build a sequential history S
in the order of
linearization points

©	2018	P.	Kuznetsov		

 snapshoti() [1,1,2]

scan() scan()

 updatei(1) ok

[1,1,2] [1,1,2]

…

12

Correctness: linearizability
S is legal: every snapshoti() returns the last written value for

every pj
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not

the the argument of the last updatej(v) in S preceding
snapshoti()

Let C1 and C2 be two scans that returned [x1,…,xN]

C1	

readj()		xj	

…
C2	

readj()		xj	

No	updatej(.)	
linearized	here!	Returns	the	

argument	of	the	
last	updatej(.)!	

©	2018	P.	Kuznetsov		

13

Correctness: lock-freedom
An updatei() operation is wait-free (returns in a finite

number of steps)
Suppose process pi executing snapshoti() eventually

runs in isolation (no process takes steps
concurrently)

§  All scans received by pi are distinct
§  At least one process performs an update between
§  There are only finitely many processes => at least

one process executes infinitely many updates

What if base registers are regular?
©	2018	P.	Kuznetsov		

14

General case: helping?
What if an update interferes with a snapshot?
§  Make the update do the work!

upon snapshot()
[x1,…,xN]:= scan(R1,…, RN)
[y1,…,yN] := scan(R1,…,RN)
if [y1,…,yN] = [x1,…,xN] then

return [x1,…,xN]
else

let j be such that
xj≠yj and xj=(u,U)

return U

©	2018	P.	Kuznetsov		

If two scans
differ – some

update succeeded!
Would this work?

upon	updatei(v)	
	S	:=	snapshot()	
	Ri.write(v,S)

	

15

Not that easy!

©	2018	P.	Kuznetsov		

 snapshot2() [0,0,0]

snapshot() [0,0,0]

scan()

 update1(1) ok

[0,0,1]

scan()

[1,0,1]

update3(1) ok

write1(1,[0,0,0])

write3(1,[0,0,0])

p1

p2

p3

16

General case: wait-free atomic snapshot

©	2018	P.	Kuznetsov		

upon	snapshot()	
[x1,…,xN]:=	scan(R1,…,RN)	
while	true	do	
	[y1,…,yN]	:=	[x1,…,xN]		
	[x1,…,xN]:=	scan(R1,…,RN)	
	if	[y1,…,yN]	=	[x1,…,xN]	then	
	 	return	[x1,…,xN]	
	else	if	movedj	and	xj	≠	yj	then	
		 	let	xj	=	(u,U)	
		 	return	U	
	for	each	j:	movedj	:=	movedj	∨xj	≠	yj		
	 	 				

upon	updatei(v)	
	S	:=	snapshot()	
	Ri.write(v,S)

	

If	a	process	moved	
twice:	its	last	

snapshot	is	valid!		

17

Correctness: wait-freedom
Claim 1 Every operation (update or snapshot) returns

in O(N2) steps (bounded wait-freedom)
snapshot: does not return after a scan if a concurrent

process moved and no process moved twice
§  At most N-1 concurrent processes, thus

(pigeonhole), after N scans:
ü Either at least two consecutive identical scans
ü Or some process moved twice!

update: snapshot() + one more step

©	2018	P.	Kuznetsov		

18

Correctness: linearization points
updatei(v): linearize at the Ri.write(v,S)
complete snapshot()
§  If two identical scans: between the scans
§  Otherwise, if returned U of pj: at the linearization

point of pj’s snapshot

©	2018	P.	Kuznetsov		

 snapshot() [0,1,0]

scan() scan()
 update2(2) ok

[0,1,0] [0,2,0]

…

[0,1,0]

[0,0,0]

 update2(1) ok
[0,0,0]

p1

p2

19

The linearization is:

§  Legal: every snapshot operation returns the
most recent value for each process

§  Consistent with the real-time order: each
linearization point is within the operation’s
interval

§  Equivalent to the run (locally
indistinguishable)

(Full proof in the lecture notes, Chapter 6)
©	2018	P.	Kuznetsov		

20

One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per

process)

©	2012	P.	Kuznetsov		

Vectors	Si	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	
Si	

§  Containment:	for	all	i	and	j:	
Si	is	subset	of	Sj	or	Sj	is	
subset	of	Si	

		

21 ©	2012	P.	Kuznetsov		

“Unbalanced” snapshots

p1

p2

p3

	snapshot()					[1,1,0]		update1(1)			ok	

	update3(1)	ok	

	update2(1)			ok	 	snapshot()					[1,1,1]	

	snapshot()					[1,1,1]	

p1	sees	p2	but	misses		
its	snapshot			

22

Enumerating possible runs:  
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”:

first both write, then both
read

©	2012	P.	Kuznetsov		

p1

p2

(a)

p1

p2

(b)

p1

p2

(с)

23

Quiz 1: atomic snapshots

1.  Prove that one-shot atomic snapshot
satisfies self-inclusion and containment:
ü Self-inclusion: for all i: vi is in Si

ü Containment: for all i and j: Si is subset of Sj or Sj
is subset of Si

2.  Show that the atomic snapshot is subject to
the ABA problem (affecting correctness) in
case the written values are not unique

24

One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per

process)

©	2015	P.	Kuznetsov		

Vectors	Si	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	
Si	

§  Containment:	for	all	i	and	j:	
Si	is	subset	of	Sj	or	Sj	is	
subset	of	Si	

		

25

Topological representation: one-shot AS

p1	sees	{p1}		 p3	sees	{p3}		

p2	sees	{p2}		

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p1,p2,p3}	

Balanced	run:	
two	steps	of	p2,	

then	p1,	then	
p3	

26

Topological representation: one-shot AS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

“unbalanced”	
run		

p3	sees	{p1,p2,p3}	

27

One-shot immediate snapshot (IS)
One operation:

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)

©	2015	P.	Kuznetsov		

Vectors	S1,…,SN	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	
Si	

§  Containment:	for	all	i	and	j:	
Si	is	subset	of	Sj	or	Sj	is	
subset	of	Si	

§  Immediacy:	for	all	i	and	j:	if	vi	
is	in	Sj,	then	is	Si	is	a	subset	
of	Sj	

	

		

28

Topological representation: one-shot IS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

A	subdivision!	
	

29

IS is equivalent to AS (one-shot)

§  IS is a restriction of one-shot AS => IS is stronger
than one-shot AS
ü Every run of IS is a run of one-shot AS

§  Show that a few (one-shot) AS objects can be used
to implements IS
ü One-shot ReadWrite() can be implemented using a series

of update and snapshot operations

©	2015	P.	Kuznetsov		

30

IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1 // drop to the lower level

Ar.updatei(vi)
S := Ar.snapshot()
if |S|=r then // |S| is the number of non-T values in S

return S

©	2015	P.	Kuznetsov		

31

Drop levels: two processes, N>3

©	2015	P.	Kuznetsov		

...	

N	

N-1	

2	

1	

See	<	N	

See	<	N-1	

See	1	or	2	

See	1	

32

Correctness
The outcome of the algorithm satisfies Self-Inclusion,

Snapshot, and Immediacy

§  By induction on N: for all N>1, if the algorithm is
correct for N-1, then it is correct for N

§  Base case N=1: trivial

©	2015	P.	Kuznetsov		

33

Correctness, contd.
§  Suppose the algorithm is correct for N-1 processes
§  N processes come to level N

ü At most N-1 go to level N-1 or lower
ü (At least one process returns in level N)
ü Why?

§  Self-inclusion, Containment and Immediacy hold for
all processes that return in levels N-1 or lower

§  The processes returning at level N return all N
values
ü The properties hold for all N processes! Why?

©	2015	P.	Kuznetsov		

34

Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,… // a series of one-shot IS

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)

©	2015	P.	Kuznetsov		

35

Iterated standard chromatic subdivision (ISDS)

p1	 p3	

p2	

36

ISDS: one round of IIS

p1	 p3	

p2	

37

ISDS: two rounds of IIS

p1	 p3	

p2	

38

IIS is equivalent to (multi-shot) AS

§  AS can be used to implement IIS (wait-free)
ü Multiple instances of the construction above (one per

iteration)

§  IIS can be used to implement multi-shot AS in the
lock-free manner:
ü At least one correct process performs infinitely many read

or write operations
ü Good enough for protocols solving distributed tasks!

©	2015	P.	Kuznetsov		

39

From IIS to AS
We simulate an execution of full-information protocol (FIP) in the

AS model, i.e., each process pi runs:

state := input value of pi
repeat

updatei(state)
state := snapshot()

until undecided(state)

(the input value and the decision procedure depend on the
problem being solved)

If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k
(“without loss of generality” – every written value is unique)

©	2015	P.	Kuznetsov		

Recursively,	vector	
of	vectors	

40

From IIS to AS: non-blocking simulation
Shared: IS1,IS2,… // an infinite sequence of one-shot IS

memories
Local: at each process, c[1,…,N]=[(0,T),…,(0,T)]
Code for process pi:

r:=0; c[i].clock:=1; // pi‘s initial value
repeat forever

r:=r+1
view := ISr.WriteRead(c) // get the view in ISr
c := top(view) // get the top clock values
if |c|=r then // the current snapshot completed

if undecided(ctop) then
c[i].val:=ctop;
c[i].clock:=c[i].clock+1 // update the clock

else
return decision(ctop) // return the decision

©	2015	P.	Kuznetsov		

41

From IIS to AS
Each process pi maintains a vector clock c[1,…,N]
§  Each c[j] has two components:

ü c[j].clock: the number of updates of pj “witnessed” by pi
(c.clock - the corresponding vector)

ü c[j].val: the most recent value of pj’s vector clock
“witnessed” by pi (c.val – the corresponding vector)

§  To perform an update: increment c[i].clock and set
c[i].val to be the “most recent” vector clock

§  To take a snapshot: go through iterated memories
until |c|= Σjc[j].clock is “large enough”,
ü  i.e. |c|= r (the current round number)
ü As we’ll see, |c|≥r: every process pi begins with c[i]=1

©	2015	P.	Kuznetsov		

42

§  We say that c≥c’ iff for all j, c[j].clock ≥ c’[j].clock (c observes
a more recent state than c)
ü Not always the case with c and c’ of different processes

§  |c|= Σjc[j].clock (sum of clock values of the last seen values)

§  For c = c[1],…c[N] (vector of vectors c[j]), top(c) is the vector
of most recent seen values:

c[1] = [1 3 2]
c[2] = [4 2 1]
c[3] = [2 1 5]

top(c) = [4 3 5]

©	2015	P.	Kuznetsov		

43

From IIS to AS: correctness
Let cr denote the vector evaluated by an undecided process pi in

round r (after computing the top function)
Lemma 1 |cr|≥r
Proof sketch
cr+1≥cr (by the definition of top)

Initially |c1|≥1 (each process writes c[1].clock=1 in IS1)

Inductively, suppose |cr|≥r, for some round r:
§  If |cr|=r, then c’, such that |c’|=r+1, is written in ISr+1
§  If |cr|>r, then c’, such that c’≥cr (and thus |c’|≥|cr|) is written

in in ISr+1

In both cases, cr+1 ≥ r+1

©	2015	P.	Kuznetsov		

44

From IIS to AS: correctness
Lemma 2 Let cr and cr’ be the clock vectors evaluated by

processes pi and pj, resp., in round r. Then |cr|≤ |cr’| implies
cr≤ cr’

Proof sketch
Let Si and Sj be the outcomes of ISr received by pi and pj

cr = top(Si) and cr’ = top(Sj)
Either Si is a subset of Sj or Sj is a subset of Si (the
Containment property of IS)

Suppose Si is a subset of Sj, then each clock value seen by pi
is also seen by pj Why?

=> |cr|≤ |cr’| and cr≤ cr’ Why?

©	2015	P.	Kuznetsov		

45

From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete
a snapshot operation in round r, get the same clock
vector c, |c|=r

Corollary 2 (to Lemmas 1 and 2) If a process
completes a snapshot operation in round r with clock
vector c, then for each clock vector c’ evaluated in
round r’≥r, we have c ≤ c’

©	2015	P.	Kuznetsov		

46

From IIS to AS: linearization
Lemma 3 Every execution’s history is linearizable (with respect

to the AS spec.)
Proof sketch
Linearization
§  Order snapshots based on the rounds in which they complete
§  Put each update(c) just before the first snapshot that contains

c (if no such snapshot – remove)
By Corollaries 1 and 2, snapshots and updates put in this order

respect the specification of AS – legality
The linearization points take place “within the interval” of k-th

update and k-th snapshot of pi - between the k-th and the
(k+1)-th updates of c[i].val – precedence

©	2015	P.	Kuznetsov		

47

From IIS to AS: liveness
Lemma 4 Some correct undecided process completes

infinitely many snapshot operations (or every
process decides).

Proof sketch
By Lemma 1, a correct process pi does not complete
its snapshot in round r only if |cr|>r
Suppose pi never completes its snapshot
=> cr keeps grows without bound and
=> some process pj keeps updating its c[j]
=> some process pj completes infinitely many

snapshots
(Chapter 9 in lecture notes)

©	2015	P.	Kuznetsov		

48

IIS=AS for wait-free task solutions
§  Suppose we simulate a wait-free protocol for solving

a task:
ü Every process starts with an input
ü Every process taking sufficiently many steps (of the full-

information protocol) eventually decides (and thus stops
writing new values, but keeps writing the last one)

ü Outputs match inputs (we’ll see later how it is defined)
§  If a task can be solved in AS, then it can be solved in

IIS
ü We consider IIS from this point on

©	2015	P.	Kuznetsov		

49

Quiz 2

1.  Would the (one-shot) IS algorithm be correct if we
replace Ar.updatei(vi) with Ur[i].write(vi) and
Ar.snapshot() with scan(Ur[1],…,Ur[N])?

2.  Would it be possible to use only one array of N
registers?

3.  Complete the proofs of Lemma 2 and Corollaries 1
and 2

©	2015	P.	Kuznetsov		

