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The space of registers

§  Nb of writers and readers: 
from 1W1R to NWNR

§  Size of the value set: from 
binary to multi-valued

§  Safety properties: safe, 
regular, atomic 

# readers/writers 

safety property 
value set 

All	registers	are	(computationally)	equivalent!	
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Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I.  From safe to regular (1W1R)
II.  From one-reader to multiple-reader (regular 

binary or multi-valued)
III.  From binary to multi-valued (1WNR regular)
IV.  From regular to atomic (1W1R)
V.  From 1W1R to 1WNR (multi-valued atomic)
VI.  From 1WNR to NWNR (multi-valued atomic)
VII.  From safe bit to atomic bit (optimal, coming later)
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This class

§  Atomic snapshot: reading multiple locations 
atomically
ü Write to one, read all
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Atomic snapshot: sequential specification

§  Each process pi is provided with operations:
ü updatei(v), returns ok
ü snapshoti(), returns [v1,…,vN]

§  In a sequential execution:
For each [v1,…,vN] returned by snapshoti(),             

vj (j=1,…,N) is the argument of the last updatej(.) 
(or the initial value if no such update)  
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Snapshot for free?
Code for process pi:

initially:
shared 1WNR atomic register Ri := 0 

upon snapshot()
[x1,…,xN] := scan(R1,…,RN)      /*read R1,…RN*/
return [x1,…,xN]  

upon updatei(v) 
Ri.write(v)
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Snapshot for free?

p1 

p2 

p3 

read3()2 

	update1(1)						ok	

	update3(1)	ok	 update3(2)	ok	

	snapshot()																																[1,1,2]	

read1()1 

	update2(1)	ok	

	update1(2)						ok	

read2()1 
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Snapshot for free?

p1 

p2 

p3 

	update1(2)							ok		update1(1)									ok	

	update3(1)	ok	 update3(2)	ok	

	snapshot()																																[1,1,2]	
	update2(1)					ok	

 [1,1,1]  [2,1,1]  [2,1,2] 

read3()2 read1()1 read2()1 
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§  What about 2 processes? 

§  What about lock-free snapshots?
ü At least one correct process makes 

progress (completes infinitely many 
operations)
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Lock-free snapshot
Code for process pi  (all written values, including the 

initial one, are unique, e.g., equipped with a sequence 
number)

Initially: 
shared 1W1R atomic register Ri := 0
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upon	snapshot()	
	[x1,…,xN]:=	scan(R1,…,RN)	
	repeat	
	 	[y1,…,yN]	:=	[x1,…,xN]		
	 	[x1,…,xN]:=	scan(R1,…,RN)	
	until		[y1,…,yN]	=	[x1,…,xN]	 			
	return	[x1,…,xN]			

upon	updatei(v)	
	Ri.write(v)	
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Linearization
Assign a linearization point 

to each operation
§  updatei(v) 

ü Ri.write(v) if present
ü Otherwise remove the op

§  snapshoti()
ü if complete – any point 

between identical scans
ü Otherwise remove the op

Build a sequential history S 
in the order of 
linearization points  
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 snapshoti()          [1,1,2] 

scan() scan() 

 updatei(1) ok 

[1,1,2] [1,1,2] 

… 
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Correctness: linearizability
S is legal: every snapshoti() returns the last written value for 

every pj
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not 

the the argument of the last updatej(v) in S preceding 
snapshoti()  

Let C1 and C2 be two scans that returned [x1,…,xN]

C1	

readj()		xj	

… 
C2	

readj()		xj	

No	updatej(.)	
linearized	here!	Returns	the	

argument	of	the	
last	updatej(.)!	
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Correctness: lock-freedom
An updatei() operation is wait-free (returns in a finite 

number of steps) 
Suppose process pi executing snapshoti() eventually 

runs in isolation (no process takes steps 
concurrently)

§  All scans received by  pi are distinct
§  At least one process performs an update between
§  There are only finitely many processes => at least 

one process executes infinitely many updates

What if base registers are regular?
©	2018	P.	Kuznetsov		
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General case: helping?
What if an update interferes with a snapshot?
§  Make the update do the work!

upon snapshot()
[x1,…,xN]:= scan(R1,…, RN)
[y1,…,yN] := scan(R1,…,RN)
if  [y1,…,yN] = [x1,…,xN] then  

return [x1,…,xN]  
else

let j be such that 
xj≠yj and xj=(u,U)

return U 
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If two scans 
differ – some 

update succeeded! 
Would this work? 

upon	updatei(v)	
	S	:=	snapshot()	
	Ri.write(v,S) 

	



15 

Not that easy!

©	2018	P.	Kuznetsov		

 snapshot2()           [0,0,0] 

snapshot()  [0,0,0] 

scan() 

 update1(1)                      ok 

[0,0,1] 

scan() 

[1,0,1] 

update3(1)    ok 

write1(1,[0,0,0]) 

write3(1,[0,0,0]) 

p1 

p2 

p3 
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General case: wait-free atomic snapshot
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upon	snapshot()	
[x1,…,xN]:=	scan(R1,…,RN)	
while	true	do	
	[y1,…,yN]	:=	[x1,…,xN]		
	[x1,…,xN]:=	scan(R1,…,RN)	
	if	[y1,…,yN]	=	[x1,…,xN]	then	
	 	return	[x1,…,xN]	
	else	if	movedj	and	xj	≠	yj	then	
		 	let	xj	=	(u,U)	
		 	return	U	
	for	each	j:	movedj	:=	movedj	∨xj	≠	yj		
	 	 				

upon	updatei(v)	
	S	:=	snapshot()	
	Ri.write(v,S) 

	

If	a	process	moved	
twice:	its	last	

snapshot	is	valid!		
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Correctness: wait-freedom
Claim 1 Every operation (update or snapshot) returns 

in O(N2) steps (bounded wait-freedom)
snapshot: does not return after a scan if a concurrent 

process moved and no process moved twice 
§  At most N-1 concurrent processes, thus 

(pigeonhole), after N scans:
ü Either at least two consecutive identical scans
ü Or some process moved twice!

update: snapshot() + one more step

©	2018	P.	Kuznetsov		
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Correctness: linearization points
updatei(v): linearize at the Ri.write(v,S)
complete snapshot()
§  If two identical scans: between the scans
§  Otherwise, if returned U of pj: at the linearization 

point of pj’s snapshot
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 snapshot()                               [0,1,0] 

scan() scan() 
 update2(2) ok 

[0,1,0] [0,2,0] 

… 

[0,1,0] 

[0,0,0] 

 update2(1) ok 
[0,0,0] 

p1 

p2 
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The linearization is:

§  Legal: every snapshot operation returns the 
most recent value for each process

§  Consistent with the real-time order: each 
linearization point is within the operation’s 
interval

§  Equivalent to the run (locally 
indistinguishable)

(Full proof in the lecture notes, Chapter 6)
©	2018	P.	Kuznetsov		
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One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per 

process)

©	2012	P.	Kuznetsov		

Vectors	Si	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	
Si	

§  Containment:	for	all	i	and	j:	
Si	is	subset	of	Sj	or	Sj	is	
subset	of	Si	
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“Unbalanced” snapshots

p1 

p2 

p3 

	snapshot()					[1,1,0]		update1(1)			ok	

	update3(1)	ok	

	update2(1)			ok	 	snapshot()					[1,1,1]	

	snapshot()					[1,1,1]	

p1	sees	p2	but	misses		
its	snapshot			
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Enumerating possible runs:  
two processes

Each process pi (i=1,2):
updatei(vi)
Si := snapshot()

Three cases to consider:
(a) p1 reads before p2 writes
(b) p2 reads before p1 writes
(c) p1 and p2 go “lock-step”: 

first both write, then both 
read

©	2012	P.	Kuznetsov		

p1 

p2 

(a) 

p1 

p2 

(b) 

p1 

p2 

(с) 
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Quiz 1: atomic snapshots 

1.  Prove that one-shot atomic snapshot 
satisfies self-inclusion and containment:
ü Self-inclusion: for all i: vi is in Si

ü Containment: for all i and j: Si is subset of Sj or Sj 
is subset of Si

2.  Show that the atomic snapshot is subject to 
the ABA problem (affecting correctness) in 
case the written values are not unique
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One-shot atomic snapshot (AS)
Each process pi:

updatei(vi)
Si := snapshot()

Si = Si[1],…,Si[N]
(one position per 

process)
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Vectors	Si	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	
Si	

§  Containment:	for	all	i	and	j:	
Si	is	subset	of	Sj	or	Sj	is	
subset	of	Si	
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Topological representation: one-shot AS

p1	sees	{p1}		 p3	sees	{p3}		

p2	sees	{p2}		

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p1,p2,p3}	

Balanced	run:	
two	steps	of	p2,	

then	p1,	then	
p3	
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Topological representation: one-shot AS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

“unbalanced”	
run		

p3	sees	{p1,p2,p3}	
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One-shot immediate snapshot (IS)
One operation: 

WriteRead(v)

Each process pi:
Si := WriteReadi(vi)
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Vectors	S1,…,SN	satisfy:	
§  Self-inclusion:	for	all	i:	vi	is	in	
Si	

§  Containment:	for	all	i	and	j:	
Si	is	subset	of	Sj	or	Sj	is	
subset	of	Si	

§  Immediacy:	for	all	i	and	j:	if	vi	
is	in	Sj,	then	is	Si	is	a	subset	
of	Sj	
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Topological representation: one-shot IS

p1	 p3	

p2	

p2	sees	{p1,p2}	

p1	sees	{p1,p2}	

p3	sees	{p2,p3}	

p2	sees	{p2,p3}	

A	subdivision!	
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IS is equivalent to AS (one-shot)

§  IS is a restriction of one-shot AS => IS is stronger 
than one-shot AS
ü Every run of IS is a run of one-shot AS

§  Show that a few (one-shot) AS objects can be used 
to implements IS
ü One-shot ReadWrite() can be implemented using a series 

of update and snapshot operations

©	2015	P.	Kuznetsov		
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IS from AS
shared variables:

A1,…,AN – atomic snapshot objects, initially [T,…,T]

Upon WriteReadi(vi)
r := N+1
while true do

r := r-1  // drop to the lower level

Ar.updatei(vi)     
S :=  Ar.snapshot()
if |S|=r then      // |S| is the number of non-T values in S

return S

©	2015	P.	Kuznetsov		
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Drop levels: two processes, N>3

©	2015	P.	Kuznetsov		

...	

N	

N-1	

2	

1	

See	<	N	

See	<	N-1	

See	1	or	2	

See	1	
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Correctness
The outcome of the algorithm satisfies Self-Inclusion, 

Snapshot, and Immediacy

§  By induction on N: for all N>1, if the algorithm is 
correct for N-1, then it is correct for N

§  Base case N=1: trivial

©	2015	P.	Kuznetsov		
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Correctness, contd. 
§  Suppose the algorithm is correct for N-1 processes
§  N processes come to level N 

ü At most N-1 go to level N-1 or lower
ü (At least one process returns in level N)
ü Why?

§  Self-inclusion, Containment and Immediacy hold for 
all processes that return in levels N-1 or lower

§  The processes returning at level N return all N 
values
ü The properties hold for all N processes! Why?

©	2015	P.	Kuznetsov		
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Iterated Immediate Snapshot (IIS)
Shared variables:

IS1, IS2, IS3,…   // a series of one-shot IS 

Each process pi with input vi:
r := 0
while true do

r := r+1
vi := ISr.WriteReadi(vi)

©	2015	P.	Kuznetsov		
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Iterated standard chromatic subdivision (ISDS)

p1	 p3	

p2	
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ISDS: one round of IIS

p1	 p3	

p2	
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ISDS: two rounds of IIS

p1	 p3	

p2	
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IIS is equivalent to (multi-shot) AS

§  AS can be used to implement IIS (wait-free)
ü Multiple instances of the construction above (one per 

iteration)

§  IIS can be used to implement multi-shot AS in the 
lock-free manner:
ü At least one correct process performs infinitely many read 

or write operations
ü Good enough for protocols solving distributed tasks!

©	2015	P.	Kuznetsov		
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From IIS to AS 
We simulate an execution of full-information protocol (FIP) in the 

AS model, i.e., each process pi runs:

state := input value of pi
repeat

updatei(state)
state := snapshot() 

until undecided(state)

(the input value and the decision procedure depend on the 
problem being solved) 

If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k 
(“without loss of generality” – every written value is unique)

©	2015	P.	Kuznetsov		

Recursively,	vector	
of	vectors	
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From IIS to AS: non-blocking simulation 
Shared: IS1,IS2,…  // an infinite  sequence of one-shot IS 

memories
Local: at each process, c[1,…,N]=[(0,T),…,(0,T)] 
Code for process pi:

r:=0; c[i].clock:=1; // pi‘s initial value
repeat forever

r:=r+1
view := ISr.WriteRead(c)  // get the view in ISr
c := top(view)  // get the top clock values
if |c|=r then // the current snapshot completed

if undecided(ctop) then 
c[i].val:=ctop;
c[i].clock:=c[i].clock+1 // update the clock

else 
return decision(ctop) // return the decision

©	2015	P.	Kuznetsov		
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From IIS to AS 
Each process pi maintains a vector clock c[1,…,N]
§  Each c[j] has two components:

ü c[j].clock: the number of updates of pj “witnessed” by pi 
(c.clock  - the corresponding vector)

ü c[j].val: the most recent value of pj’s vector clock 
“witnessed” by pi (c.val – the corresponding vector)

§  To perform an update: increment c[i].clock and set 
c[i].val to be the “most  recent” vector clock

§  To take a snapshot: go through iterated memories 
until |c|= Σjc[j].clock is “large enough”,
ü  i.e. |c|= r (the current round number)
ü As we’ll see, |c|≥r: every process pi begins with c[i]=1   

©	2015	P.	Kuznetsov		
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§  We say that c≥c’ iff for all j, c[j].clock ≥ c’[j].clock (c observes 
a more recent state than c)
ü Not always the case with c and c’ of different processes

§  |c|= Σjc[j].clock (sum of clock values of the last seen values)

§  For c = c[1],…c[N] (vector of vectors c[j]), top(c) is the vector 
of  most recent seen values:

c[1] = [1 3 2]
c[2] = [4 2 1]
c[3] = [2 1 5]

top(c) = [4 3 5]

©	2015	P.	Kuznetsov		
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From IIS to AS: correctness
Let cr denote the vector evaluated by an undecided process pi in 

round r (after computing the top function)
Lemma 1 |cr|≥r
Proof sketch
cr+1≥cr (by the definition of top)

Initially |c1|≥1 (each process writes c[1].clock=1 in IS1)

Inductively, suppose |cr|≥r, for some round r:
§  If |cr|=r, then c’, such that |c’|=r+1, is written in ISr+1
§  If |cr|>r, then c’, such that  c’≥cr (and thus |c’|≥|cr|) is written 

in in ISr+1

In both cases, cr+1 ≥ r+1

©	2015	P.	Kuznetsov		
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From IIS to AS: correctness
Lemma 2 Let cr and cr’ be the clock vectors evaluated by 

processes pi and pj, resp., in round r. Then |cr|≤ |cr’| implies 
cr≤ cr’ 

Proof sketch
Let Si and Sj be the outcomes of ISr received by pi and pj 

cr = top(Si) and cr’ = top(Sj) 
Either Si is a subset of Sj or Sj is a subset of Si  (the 
Containment property of IS)

Suppose Si is a subset of Sj, then each clock value seen by pi 
is also seen by pj  Why?

=> |cr|≤ |cr’| and cr≤ cr’ Why?
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From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete 
a snapshot operation in round r, get the same clock 
vector c, |c|=r

Corollary 2 (to Lemmas 1 and 2)  If a process 
completes a snapshot operation in round r with clock 
vector c, then for each clock vector c’ evaluated in 
round r’≥r, we have c ≤ c’ 

©	2015	P.	Kuznetsov		
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From IIS to AS: linearization
Lemma 3 Every execution’s history is linearizable (with respect 

to the AS spec.) 
Proof sketch
Linearization
§  Order snapshots based on the rounds in which they complete
§  Put each update(c) just before the first snapshot that contains 

c (if no such snapshot – remove)
By Corollaries 1 and 2, snapshots and updates put in this order 

respect the specification of AS – legality
The linearization points take place “within the interval” of   k-th 

update  and k-th snapshot of pi   -     between the k-th and the 
(k+1)-th updates of c[i].val – precedence 

©	2015	P.	Kuznetsov		
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From IIS to AS: liveness
Lemma 4 Some correct undecided process completes 

infinitely many snapshot operations (or every 
process decides). 

Proof sketch
By Lemma 1, a correct process pi does not complete 
its snapshot in round r only if |cr|>r
Suppose pi never completes its snapshot
=> cr keeps grows without bound and
=>  some process pj keeps updating its c[j]
=>   some process pj completes infinitely many 

snapshots
(Chapter 9 in lecture notes)

©	2015	P.	Kuznetsov		
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IIS=AS for wait-free task solutions
§  Suppose we simulate a wait-free protocol for solving 

a task:
ü Every process starts with an input
ü Every process taking sufficiently many steps (of the full-

information protocol) eventually decides (and thus stops 
writing new values, but keeps writing the last one)

ü Outputs match inputs (we’ll see later how it is defined)
§  If a task can be solved in AS, then it can be solved in 

IIS
ü We consider IIS from this point on

©	2015	P.	Kuznetsov		
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Quiz 2

1.  Would the (one-shot) IS algorithm be correct if we 
replace   Ar.updatei(vi) with Ur[i].write(vi) and 
Ar.snapshot() with scan(Ur[1],…,Ur[N])? 

2.  Would it be possible to use only one array of N 
registers? 

3.  Complete the proofs of Lemma 2 and Corollaries 1 
and 2 
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