Implementing an atomic bit

MPRI, P1, 2019

© P. Kuznetsov

The space of registers

= Nb of writers and readers:

» Size of the value set: from

from TW1R to NWNR # readers/writers

binary to multi-valued
« Safety properties: safe,

regular, atomic /\

safety property

value set

All registers are (computationally) equivalent!

2

© P. Kuznetsov

Transformations

From 1W1R binary safe to TWNR multi-valued atomic

. From safe to regular (1W1R)

. From one-reader to multiple-reader (regular
binary or multi-valued)

. From binary to multi-valued (1WNR regular)

Iv. From 1W1R reqgular to 1W1R atomic
(unbounded)

V. From 1W1R atomic to TWNR atomic

(unbounded)

v Can be turned into bounded using a bounded (in n) number of
signaling registers

This class

= The problem: implement a binary 1W1R
atomic register (atomic bit) from binary 1W1F
safe ones (safe bits)

v'From a few safe bits only
v'"No unbounded multi-valued registers
v'No ever-growing timestamps

(44

An optimal solution

» No sequence numbers?
» Bounded number of safe bits, O(1)?
« Bounded number of base actions, O(1)?

Can we do it if the reader does not write?

Safe bit to regular bit? Easy

= the writer is allowed only to change the value

write(1) ‘i"[it_eil_) _____
read()=>1

Can we get an atomic bit this way?

Impossible if the reader does not write
for bounded # of regular bits!

Proof sketch (by contradiction):

= Suppose only the writer executes writes on the
base (regular) bits (the reader only reads the base
objects).

« Every write operation W(1) is a sequence of writes
actions wy, ...w, on base regular bits

v'Corresponds to the sequence of shared-memory states
So,S1,-..,Sk (defined for sequential runs)

write(1) ok

pll — — — I

Proof (contd): digests

There are only finitely many states!
(bounded # of base registers)

Each sequence sg,s;,...,S, of states (though possibly
unbounded) defines a bounded digest dy,d4,...,d,,
v do=Sy, d,=Sk (Same global state transition)
v di=d, => i=j (all digest elements are distinct)
v for all (d;,di,1), exists (s;,S;,1) such that s;=d; and s;,1=d;,;
7,4,8,4,2,8,3 =>7,4,8,3
Each write operation “looks” like its digest

There are only finitely many digests!

© P. Kuznetsov 8

Proof (contd.): counter-example

« Consider a run with infinitely many alternating writes:
W,(1),W(0),W5(1),... (no reads)

v'Writes W,,W,,... give an infinite sequence of digests
D,,D,,...

= At least one digest D=d,,d;,...,d, appears infinitely
often in D4,D,,...

v'Why?
« We can amend our run with a sequence of reads

Ry, R;,....R, (in that order), each R, “sees” state
dm-i
v'How?

© P. Kuznetsov

Quiz 1

= Explain why there can be only finitely many
digests

= Explain why in the construction of the proof
there is at least one digests that appears
infinitely often

« Show how to construct the sequence of reads
operations Ry,R;,...,R,, (in that order)
overlapping with W.(1),W(0),W,(1),... , where
each R, “sees” state d,,.

© P. Kuznetsov 10

Proof (contd.): the “switch”

« R, “sees” d., and, thus, returns 1
v'Could have happened right after W(1)

= R,, “sees” d, and, thus, returns 0
v'Could have happened right before W(1)

= There exists i such that R, returns 1 and R;,
returns O (by induction on i=0,...,m)

77

© P. Kuznetsov

Proof (contd.): contradiction

= The (sequential) execution of R, and R, is
indistinguishable (to the reader) from a
concurrent one

write(1) write to a base bit ok

P2 | | |
dm-i dm-i-1

New-old inversion!

© P. Kuznetsov

12

The reader must write

= And the writer must read

= But how the writer would tell what it read?
v The writer needs at least two bits!
v'Why?
« Suppose the writer writes to one bit only
v there are exactly two digests 0,1 and 1,0
v' suppose infinitely many W(1) operations export digests 0,1
v'new-old inversion:

write(1) change the base bit ok
from0Oto1l
P1 ‘
read() 1 read() 0

g T

13

© P. Kuznetsov

Optimal construction?

= Two bits for the writer
v" REG: for storing the current value
v" WR: for signaling to the reader

= One bit for the reader
v'RR: for signaling to the writer

Necessary, but is it also sufficient?

© P. Kuznetsov

4

Evolutionary approach: Iteration 1

The reader should be able to distinguish the two
cases:

v'A new value was written: WR#RR;:
v'The value is unchanged: WR=RR:

Writer: Reader:
change REG if WRZRR then change RR
if WR=RR then change WR val:= REG

return val

Does not work: the read value does not depend on RR

© P. Kuznetsov 15

lteration 2

Return the “old” value if nothing changed

(local variable val initialized to the initial value
of REQG)

Writer: Reader:
change REG If WR=RR then return val
If WR=RR then change WR change RR

val:= REG

return val

© P. Kuznetsov 76

Counter-example 27

r, reads the new value and r, reads the old one?
Is this the case?

wi=write(1) wo=write(0) ws=write(1)
change REG
Writer
r1 return 1 return O
RR #WR read 1 n REG read 0 in REG
Reader -
change RR RR #WR

© P. Kuznetsov 17

Counter-example 2, corrected

Does not work: a read finds WR#RR, a subsequent
read finds WR£RR and reads an old value in
REG (new-old inversion)

wy=write(1) wo=write(0)
change WR change REG
Writer change REG
1 return 1 7o return 0 73 return 1
RR#WR read 1 RR#WR read 0 read 1
Reader

change RR RR=WR change RR RR#AWR

18

© P. Kuznetsov

lteration 3

Only change RR if needed

(read REG before, because otherwise we do not fix the
counter-example)

Writer: Reader:
if WR=RR then return val
change REG val:= REG
if WR=RR then change WR if WR#RR change RR
return val

Construct a counter-example?

© P. Kuznetsov 19

lteration 4

Read WR twice, if WR changed while the read
IS executed, return a conservative (old) value

Writer: Reader:
if WR=RR then return val
change REG Jux ‘= REG
if WR=RR then change WR if WR#RR change RR
val:= REG

if WR=RR then return val
return aux

© P. Kuznetsov 21

Counter-example 4

Still a problem: the value stored in val can be
too conservative

wy=write(1) wy=write(0)
change REG RR=WR change WR
Writer
T return 0 7o return 1
read 0 change RR RRZWR | | RR=WR
Reader

RR#AWR read 1
to val

Solution: evaluate val again

22

© P. Kuznetsov

Final solution [Tromp, 1989]

Writer protocol Reader protocol

change REG

£ WR=RR then (1) if WR=RR then return val

change WR (2) aux := REG

3) If WR#RR then change RR
4) val :=REG
5) If WR=RR then return val
6) val := REG
(7)

7) return aux

23

Proof sketch: reading functions

A reading function 1t for each complete read operation r
(returning v), 1(r) is a write operation w(v)

Show that for every run of the algorithm, there exists an
atomic reading function

(AO) No read r precedes 11(r)
No read returns a value not yet written

(A1) w precedes r => w=T1(r) or w precedes 11(r)
No read obtains an overwritten value

(A2) r, precedes r, => 11(r,) does not precede 1(r,)
No new/old inversion

A run is linearizable iff an atomic reading function exists
(Chapter 4.2.4 of the lecture notes)

© P. Kuznetsov 24

Proof: constructing 1t

« Letrreturn a value v

« Let p, be the read of REG that got the value of r
v If rreturns in line 7, p, is the read action in line 2 of r
v If rreturns in line 5, p, is is the read action in line 4
v Ifrreturnsin line 1, p, is is the read in line 4 or 6 of
some previous r' (depending on how r’ returns)

= Let ¢, be the last write action on REG that
precedes or is concurrent to p, and writes the
value returned by r (and p,)

« Define 1i(r) as the write operation that contains ¢,

25

© P. Kuznetsov

Proof: show that mtis atomic

« AO is easy: by construction of m, 1i(r) precedes or
IS concurrent to r

« A1?7 A2?
Hint: assume the contrary and come to absurdum

« A complete proof in lecture notes (Chapter 7)

« R. Guerraoui, Vukolic. A Scalable and Oblivious
Atomicity Assertion. CONCUR 2008

26

© P. Kuznetsov

Quiz 2

« Find a mistake in the “counter-example" of
Slide 17

= Find a counter-example to the algorithm in
Slide 19

© P. Kuznetsov 27

