
© P. Kuznetsov

Implementing an atomic bit

MPRI, P1, 2019

2© P. Kuznetsov

The space of registers

§ Nb of writers and readers:
from 1W1R to NWNR

§ Size of the value set: from
binary to multi-valued

§ Safety properties: safe,
regular, atomic

readers/writers

safety property
value set

All registers are (computationally) equivalent!

3

Transformations
From 1W1R binary safe to 1WNR multi-valued atomic

I. From safe to regular (1W1R)
II. From one-reader to multiple-reader (regular

binary or multi-valued)
III. From binary to multi-valued (1WNR regular)
IV. From 1W1R regular to 1W1R atomic

(unbounded)
V. From 1W1R atomic to 1WNR atomic

(unbounded)
üCan be turned into bounded using a bounded (in n) number of

signaling registers

4

This class

§ The problem: implement a binary 1W1R
atomic register (atomic bit) from binary 1W1R
safe ones (safe bits)
üFrom a few safe bits only
üNo unbounded multi-valued registers
üNo ever-growing timestamps

5

An optimal solution

§ No sequence numbers?
§ Bounded number of safe bits, O(1)?
§ Bounded number of base actions, O(1)?

Can we do it if the reader does not write?

6

Safe bit to regular bit? Easy
§ the writer is allowed only to change the value

write(1)

read()=>1

p1

p2

write(1)

Can we get an atomic bit this way?

7

Impossible if the reader does not write
for bounded # of regular bits!

Proof sketch (by contradiction):
§ Suppose only the writer executes writes on the

base (regular) bits (the reader only reads the base
objects).

§ Every write operation W(1) is a sequence of writes
actions w1, …wk on base regular bits
üCorresponds to the sequence of shared-memory states

s0,s1,…,sk (defined for sequential runs)

© P. Kuznetsov

write(1)
p1

w1 w2 wk
s0 s1 sk…

ok

8

Proof (contd): digests
§ There are only finitely many states!

(bounded # of base registers)
§ Each sequence s0,s1,…,sk of states (though possibly

unbounded) defines a bounded digest d0,d1,…,dm
ü d0=s0, dm=sk (same global state transition)
ü di=dj => i=j (all digest elements are distinct)
ü for all (di,di+1), exists (sj,sj+1) such that sj=di and sj+1=di+1

7,4,8,4,2,8,3 => 7,4,8,3
§ Each write operation “looks” like its digest
§ There are only finitely many digests!

© P. Kuznetsov

9

Proof (contd.): counter-example
§ Consider a run with infinitely many alternating writes:

W1(1),W(0),W2(1),… (no reads)
üWrites W1,W2,… give an infinite sequence of digests

D1,D2,…
§ At least one digest D=d0,d1,…,dm appears infinitely

often in D1,D2,…
üWhy?

§ We can amend our run with a sequence of reads
R0,R1,…,Rm (in that order), each Ri “sees” state
dm-i
üHow?

© P. Kuznetsov

10

Quiz 1
§ Explain why there can be only finitely many

digests
§ Explain why in the construction of the proof

there is at least one digests that appears
infinitely often

§ Show how to construct the sequence of reads
operations R0,R1,…,Rm (in that order)
overlapping with W1(1),W(0),W2(1),… , where
each Ri “sees” state dm-i

© P. Kuznetsov

11

Proof (contd.): the “switch”
§ R0 “sees” dm and, thus, returns 1

üCould have happened right after W(1)
§ Rm “sees” d0 and, thus, returns 0

üCould have happened right before W(1)

ÞThere exists i such that Ri returns 1 and Ri+1
returns 0 (by induction on i=0,…,m)

© P. Kuznetsov

12

Proof (contd.): contradiction
§ The (sequential) execution of Ri and Ri+1 is

indistinguishable (to the reader) from a
concurrent one

© P. Kuznetsov

write(1)
p1

write to a base bit

dm-i-1 …

ok

Ri

p2

… dm-i

dm-i dm-i-1

1 0 Ri+1

New-old inversion!

13

The reader must write
§ And the writer must read
§ But how the writer would tell what it read?

üThe writer needs at least two bits!
üWhy?

§ Suppose the writer writes to one bit only
ü there are exactly two digests 0,1 and 1,0
ü suppose infinitely many W(1) operations export digests 0,1
ünew-old inversion:

© P. Kuznetsov

write(1)
p1

change the base bit
from 0 to 1

ok

read()

p2

1 read() 0

14

Optimal construction?

§ Two bits for the writer
ü REG: for storing the current value
ü WR: for signaling to the reader

§ One bit for the reader
üRR: for signaling to the writer

Necessary, but is it also sufficient?

© P. Kuznetsov

15

Evolutionary approach: Iteration 1
The reader should be able to distinguish the two

cases:
üA new value was written: WR≠RR:
üThe value is unchanged: WR=RR:

© P. Kuznetsov

Writer:

change REG
if WR=RR then change WR

Reader:

if WR≠RR then change RR
val:= REG
return val

Does not work: the read value does not depend on RR

16

Iteration 2
Return the “old” value if nothing changed

(local variable val initialized to the initial value
of REG)

© P. Kuznetsov

Writer:

change REG
if WR=RR then change WR

Reader:

if WR=RR then return val
change RR
val:= REG
return val

17

Counter-example 2?
r1 reads the new value and r2 reads the old one?
Is this the case?

© P. Kuznetsov

18

Counter-example 2, corrected
Does not work: a read finds WR≠RR, a subsequent

read finds WR≠RR and reads an old value in
REG (new-old inversion)

© P. Kuznetsov

Unfortunately, we still have a problem with this construction. When a read is executed concurrently

with a write, it may happen that the read returns a concurrently written value but a subsequent read finds

RR ̸= WR and returns an old value found in REG .

Indeed, consider the following scenario (Figure 5.3):

1. w1 = R.write(1) completes.

2. r1 reads WR, finds WR ̸= RR and changes RR.

3. w2 = R.write(0) begins, changes REG to 0, reads RR, finds WR = RR, changes WR, restoring

the predicate WR ̸= RR, and completes.

4. w3 = R.write(1) begins and starts changing REG from 0 to 1.

5. r1 concurrently reads REG and returns the new value 1

6. r2 = R.read() begins, finds RR ̸= WR, reads REG and returns the old value 0 (which is perfectly

possible since the write operation on REG performed by w3 is not yet finished).

In other words, we obtain ta new-old inversion for read operations r1 and r2.

read 0

w1=write(1)

RR ̸=WR

change WR

r3

read 1

change RR

read 1

RR=WR

change REG

change RR RR ̸=WR

return 1

w2=write(0)

RR ̸=WR

Writer

Reader

r1

change REG

return 1 r2 return 0

Figure 5.3: Counter example to step 2 of the construction: new-old inversion for r1 and r2

The construction: step 3 The problem with the scenario above is that a read operation is too quick to

return the new value of REG without noticing that the writer has meanwhile changed WR. A subsequent

read operation may observe RR = WR and thus return the value read in REG (line 4) which may, in case

of a slow concurrent write, still be the old value.

One solution to circumvent this is to evaluate REG before changing RR. If the predicate RR = WR

does not hold after RR was changed (line 3′) and REG was read again (line 4), then the reader returns the

older (conservative) value of REG .

1 if WR = RR then return (val) end if;

2 aux← REG; % Conservative value %

3′ change RR; % Strive to establish WR = RR %

4 val ← REG;

5 if WR = RR then return (val) end if

7 return (aux)

77

19

Iteration 3

© P. Kuznetsov

Writer:

change REG
if WR=RR then change WR

Reader:

if WR=RR then return val
val:= REG
if WR≠RR change RR
return val

Only change RR if needed
(read REG before, because otherwise we do not fix the
counter-example)

Construct a counter-example?

21

Iteration 4

© P. Kuznetsov

Writer:

change REG
if WR=RR then change WR

Reader:

if WR=RR then return val
aux := REG
if WR≠RR change RR
val:= REG
if WR=RR then return val
return aux

Read WR twice, if WR changed while the read
is executed, return a conservative (old) value

22

Counter-example 4
Still a problem: the value stored in val can be

too conservative

© P. Kuznetsov

Solution: evaluate val again

RR ̸=WR RR=WR

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

change RR

read 1
to val

read 0
to aux

RR ̸=WR

RR=WR change WR

r2 return 1return 0

Figure 5.5: Counter example to step 4 of the construction: new-old inversion for r1 and r2

The construction: last step The complete read algorithm is presented in Figure 5.6. As we saw in this

chapter, safe base registers allow for a multitude of possible execution scenarios, so an intuitively correct

implementation could be flawed because of an overlooked case. To be convinced that our construction is

indeed correct, we provide a rigorous proof below.

operation R.read():
1 if WR = RR then return (val) end if;

2 aux← REG;

3 if WR ≠ RR then change RR end if;

4 val← REG;

5 if WR = RR then return (val) end if;

6 val← REG;

7 return (aux)

Figure 5.6: The R.read() operation

5.3.4 Proof of the construction

Theorem 16 Let H be an execution history of the 1W1R register R constructed by the algorithm in Fig-

ures 5.2 and 5.6. Then H is linearizable.

Proof Let H be an execution history. By Theorem 5, to show that H is linearizable (atomic), it is sufficient

to show that there exists a reading function π satisfying the assertions A0, A1 and A2.

In order to distinguish the operations R.read() and R.write(v), denoted by r and w, from the read and

write operations on the base registers (e.g., “change RR”, “aux ← REG”, etc.), the latter ones are called

actions. The corresponding execution containing, additionally, the action invocation and response events is

denoted L. Let→L denote the corresponding partial relation on the actions.

Moreover, r being a read operation and loc the local variable (aux or val) whose value is returned by r
(in line 1, 5 or 7), ρr denotes the last read action “loc← REG” executed before r returns:

• If r returns in line 7, ρr is the read action “aux← REG” executed in line 2 of r,

• If r returns in line 5, ρr is is the read action “val ← REG” executed in line 4 of r, and finally

• If r returns in line 1, ρr is is the read action “val ← REG” executed in line 4 or 6 of some previous

read operation.

79

23

Final solution [Tromp, 1989]
Writer protocol

change REG
if WR=RR then

change WR

Reader protocol

(1) if WR=RR then return val
(2) aux := REG
(3) if WR≠RR then change RR
(4) val :=REG
(5) if WR=RR then return val
(6) val := REG
(7) return aux

24

Proof sketch: reading functions
A reading function π: for each complete read operation r

(returning v), π(r) is a write operation w(v)

Show that for every run of the algorithm, there exists an
atomic reading function π:

(A0) No read r precedes π(r)
No read returns a value not yet written

(A1) w precedes r => w=π(r) or w precedes π(r)
No read obtains an overwritten value

(A2) r1 precedes r2 => π(r2) does not precede π(r1)
No new/old inversion

A run is linearizable iff an atomic reading function exists
(Chapter 4.2.4 of the lecture notes)

© P. Kuznetsov

25

Proof: constructing π
§ Let r return a value v
§ Let ρr be the read of REG that got the value of r

ü If r returns in line 7, ρr is the read action in line 2 of r
ü If r returns in line 5, ρr is is the read action in line 4
ü If r returns in line 1, ρr is is the read in line 4 or 6 of

some previous r’ (depending on how r’ returns)
§ Let ϕr be the last write action on REG that

precedes or is concurrent to ρr and writes the
value returned by r (and ρr)

§ Define π(r) as the write operation that contains ϕr

© P. Kuznetsov

26

Proof: show that π is atomic
§ A0 is easy: by construction of π, π(r) precedes or

is concurrent to r

§ A1? A2?

Hint: assume the contrary and come to absurdum

§ A complete proof in lecture notes (Chapter 7)
§ R. Guerraoui, Vukolic. A Scalable and Oblivious

Atomicity Assertion. CONCUR 2008
© P. Kuznetsov

27

Quiz 2
§ Find a mistake in the “counter-example" of

Slide 17
§ Find a counter-example to the algorithm in

Slide 19

© P. Kuznetsov

