Fault-Tolerant Distributed Services
and Paxos

INF346, 2015

© 2015 P. Kuznetsov and M. Vukolic



So far...

Shared memory synchronization:
- Wait-freedom and linearizability
« Consensus and universality
« Fine-grained locking and TM

© 2012 P. Kuznetsov



Message-passing

= Consider a network where every two
processes are connected via a reliable
channel

v'no losses, no creation, no duplication

« Which shared-memory results translate into
message-passing?

= Implementing a distributed service

© 2012 P. Kuznetsov 3



Implementing message-passing

Theorem 1 A reliable message-passing
channel between two processes can be
implemented using two 1TW1R registers

Corollary 1 Consensus is impossible to solve in
an asynchronous message-passing system if
at least one process may crash

© 2012 P. Kuznetsov



ABD algorithm:
implementing shared memory

Theorem 2[ABD] A 1TW1R regular register can
be implemented in a (reliable) message-
passing model where a majority of processes
are correct

© 2012 P. Kuznetsov



Implementing a TW1R register

Upon write(v)
t++
send [v,t] to all
walt until received [ack,t] from a majority

return ok

Upon read()
r++
send [?,r] to all
wait until received {(t',v ,r)} from a
majority
return v. with the highest t’

© 2012 P. Kuznetsov



Implementing a 1TW1R register, contd.

Upon receive [v,t]
1f t>t. then
V, := V

t. := t

1

send [ack,t] to the writer

Upon receive [?,r]
send [v;,t,,r] to the reader

© 2012 P. Kuznetsov



Quiz 1

= Does the ABD algorithm used by one reader
implement an atomic register?

« If it is run by multiple readers? Multiple
writers?

« How to turn it into atomic, with multiple
readers? Multiple writers?

© 2015 P. Kuznetsov



A correct majority is necessary

Otherwise, the reader may miss the latest written value

The quorum (set of involved processes) of any write
operation must intersect with the quorum of any read
operation:

-7 ~o
- ~

- ~

. ~
. ~
. ~
’ \
’ \
’ \
’ \
l \
] \
1 \
I 1
\ 1
\ ]
\ !
\ ’
\ ’
\ ’
\ ’
N ’
N -

N ;

~ e

W writes v I R reads v

© 2012 P. Kuznetsov



How to build
a consistent and reliable system?

Service
Service accepts requests
from clients and returns
responses

= Liveness: every persistent
client receives a response debit($100) ok

« Safety: responses
constitute a total order
w.r.t. a sequential (‘g @
specification " Clients




How to build a fault-tolerant system?

Replication:

=  Service = collection of
servers

» Some servers may fail

Service

debit($100)

A

ok



CAP theorem [Brewer 2000]

No system can combine:

» Consistency: all servers observe the same
evolution of the system state

« Availability: every client’s request is eventually
served

= Partition-tolerance: the system operates
despite a partial failure or loss of
communication

Sounds familiar, no?

© 2015 P. Kuznetsov 12



Strongly consistent
replicated state machine

Universal construction in message-passing:

» Clients access the service via a standard
interface

= Servers run replicas of the (sequential)
service

« (A subset of) faulty servers do not affect
consistency and availability

Leslie Lamport: The Part-Time Parliament.
,(A\CM ')I'rans. Comput. Syst. 16(2): 133-169
1998

© 2015 P. Kuznetsov

13



Paxos: some history

« Late 80s: a three-phase
consensus algorithm
v'A Greek parliament reaching
agreement

= 1989: a Paxos-based fault-
tolerant distributed database

« 1990: rejected from TOCS

“All three referees said that the

paper was mildly interesting, though
not very important, but that all the

Paxos stuff had to be removed.”

14

14




This submission was recently discovered behind a
filing cabinet 1in the TOCS editorial office.
Despite 1its age, the editor-in-chief felt that it
was worth publishing. Because the author 1is
currently doing field work 1in the Greek 1isles and
cannot be reached, I was asked to prepare 1t for
publication.

The author appears to be an archeologist with
only a passing 1interest 1in computer science. This
is unfortunate, even though the obscure ancient
Paxon civilization he describes 1s of 1ittle
interest to most computer scientists, 1ts
legislative system 1s an excellent model for how
to 1implement a distributed computer system 1n an
asynchronous environment.

Keith Marzullo
University of California, San Diego
(preface for the TOCS 1998 paper)

15 15



Paxos today

« Underlies a large number of practical system
when strong consistency is needed

v'Google Megastore, Google Spanner
v'Yahoo Zookeeper

v'"Microsoft Azure
v

« ACM SIGOPS Hall of Fame Award in 2012
= Turing award 2014

16 16



Consensus: recall the definition

A process proposes an input value in V (IVI=2) and tries to
decide on an output value in V

= Agreement: No two process decide on different values
Validity: Every decided value is a proposed value

Termination: No process takes infinitely many steps without
deciding

(Every correct process decides)

17



Model

= Asynchronous system

= Reliable communication channels
= Processes fail by crashing

= A majority of correct processes

But we proved that 1-resilient consensus is
impossible even with shared memory!

“CAP theorem” is violated!
Where is the trick?

© 2015 P. Kuznetsov 18



QQ: an oracle

= Eventual leader failure detector

« Produces (at every process) events:
v'<«Q, leader, p>
v'We also write p=leader()

« Eventually, all correct processes output the same
correct process as the leader

Can be implemented in eventually synchronous
system:

v'There is a bound on communication delays and
processing that holds only eventually

v'There is an a priori unknown bound in every run

19



Leader election Q: example

There is a time after which the same correct process
is considered leader by everyone.

(Sufficient to output a binary flag leader/not leader)

pl p2 p3 p3 p3 p3

pl

p2 p4 pl p3 p3
p2

p4 pl p4 p3 p3

p3

4
p4 P ><— ————————————————————————————————————————————————————————————————————————————————— >

© 2011 P. Kouzne tsov 20



Paxos/Synod algorithm

« Let’s try to decouple liveness (termination)
from safety (agreement)

» Synod made out of two components:
v'Q - the eventual leader oracle
v'(ofcons) obstruction-free consensus

21



Obstruction-free Consensus (ofcons)

« Similar to consensus
v’ except for Termination
v ability to abort

» Request:
v «ofcons, propose, v>

= Indications:
v’ <ofcons,decide, v’
v’ <ofcons,abort>

22 22



Obstruction-free Consensus

« C1. Valdity:
v'Any value decided is a value proposed

= C2. Agreement:
v'"No two correct processes decide differently

= C3. Obstruction-Free Termination:

vIf a correct process p proposes, it eventually
decides or aborts.

vIf a correct process decides, no correct process
aborts infinitely often.

vIf a single correct process proposes a value
sufficiently many times, p eventually decides.

73 23



Consensus vs. OF-Consensus

abort Q
25 25 abort
25 1 o5 11

cons ofcons

g .

24



Consensus vs. OF-Consensus

e S

cons ofcons

v L

25



Consensus using Q and ofcons

« Straightforward
v'Assume that in cons everybody proposes

upon (cons, propose, V)
while not(decided)
if self=leader() then
result = ofcons.propose(v)
if result=(decide,v’) then

return v’

26



Link to Paxos/Synod

= External cons.propose events come Iin a state
machine replication algorithm as requests
from clients
v'As in universal construction

« Focus now on implementing OFCons

27



OFCons

= Not subject to FLP impossibility!

« Can be implemented in fully asynchronous

system
v"Using the correct-majority assumption

v'Or read-write

« Synod OFCons: a 2-phase algorithm

28



Synod OFCons |

Code of every process pi:

Initially:

ballot:=i-n; proposal:=nil; readballot:=0; imposeballot:=0;
estimate:= nil; states:=[nil,0]"

upon (ofcons, propose, Wv»
proposal := v; ballot:=ballot + n; states:=[nil,0]"
send [READ, ballot] to all

upon receive [READ,ballot’] from p;
if readballot = ballot’ or imposeballot = ballot’ then
send [ABORT, ballot’] to pj
else
readballot:=ballot’
send [GATHER, ballot’, imposeballot, estimate] to pj

upon receive [ABORT, ballot] from some process
return abort

29



Synod OFCons |

upon receive [GATHER, ballot, estballot, est] from pj
states[pj]:=[est,estballot]

upon #states = majority //collected a majority of responses
if d states[pk]#[nil, 0] then
select states[pk]=(est,estballot) with highest estballot
proposal:=est;
states:=[nil,0]"
send [IMPOSE, ballot, proposal] to all

upon receive [IMPOSE,ballot’,v] from p,
if readballot > ballot’ or imposeballot > ballot’ then
send [ABORT, ballot’] to p;
else
estimate := v; imposeballot:=ballot’
send [ACK, ballot’] to p;

30



Synod OFCons I

upon received [ACK, ballot] from majority
send [DECIDE, proposal] to all

upon receive [DECIDE, V]
send [DECIDE, v] to all

return [decide, V]

31



Correctness
. Validity

= Agreement (try to do it yourselves)
v"When is the decided value determined?

» OF Termination
v'Show that a correct process that proposes either decides
or aborts

vIf a single process keeps going

¢ It will eventually propose with a highest ballot number not seen so
far

e This process will not abort with such a ballot number

32



Time Complexity

= Fault-free time complexity: 4 message delays

+ 1 communication step for decision relaible
broadcast

« Optimizations
v'Getting rid of the first READ phase

= Allow a single process (presumed leader, say
p1) to skip the READ phase in its 15t ballot

v'Reduces fault-free/sync time complexity to 2

33 33



From Synod to Paxos

« Paxos is a state-machine replication (SMR) protocol
v'i.e., a universal construction given a sequential object

» Implemented as totally-ordered broadcast: exports
one operation toBroadcast(m) and issues toDeliver(m’)
notifications

34 34



From Synod to Paxos: TO-Broadcast

« Every message m (to)broadcast by a correct process
p; is eventually (to)delivered by p.

- Every message m delivered by a process p, is
eventually delivered by every correct process

« No message is delivered unless it was previously
broadcast

= No message is delivered twice

= The messages are delivered in the same order at all
processes

Implies totally ordered (linearizable) execution of clients
requests

35 35



From Synod to Paxos

= But consensus (Synod) is one shot...

v"How to most efficiently transform Synod to
toBroadcast (Paxos)?

« Shared-memory universal construction?

36 36



Paxos SMR

Clients initiate requests

Servers run consensus
v'Multiple instances of consensus (Synod)

v'Synod instance 25 used to agree on the 25"
request to be ordered

Both clients and servers have the (unreliable)
estimate of the current leader (some server)

Clients send requests to the leader
The leader replies to the client

37 37



Paxos failure-free/sync message flow

Q) e O
\ o

QO—O0—0 O /O

REA ATHER
. IMPOS
O SETNG
\. N J
N Y
Read phase Impose phase

38 38



Observation

« READ phase involves no updates/new
consensus proposals
v'Makes the leader catch up with what happened
before
« Most of the time the leader will remain the
same
v'+ nothing happened before (e.g., new requests)

39 39



Optimization

« Run READ phase only when the leader changes
v’and for multiple Synod instances simultaneously

» Use the same ballot number for all future Synod
instances
v'run only IMPOSE phases in future instances

v'Each message includes ballot number (from the last
READ phase) and RegNum, e.g., RegNum = 11 when
we’re trying to agree what the 11 operation should be

» When a process increments a ballot number it
also READs

v'e.g., when leader changes

40 40



Paxos Failure-Free Message Flow

O O
O O—O— O &
~_ : N
INCEAANCIVAS
9 99
N N

41



Potential Issues?

« Holes/gaps detected in the READ phase

v'The leader detected a value in READ/GATHER
for requests 1-12, 14, and 17

v'but not for 13, 15 and 16

« The leader then runs the IMPOSE phase for
iInstances 13, 15 and 16 with a special
proposal
v'A noop value (“do nothing”)

42 42



What’s next? Handling CAP

Paxos provides strong consistency
v" All servers (replicas) witness the same state evolution

v’ Liveness assuming the eventual leader (or eventual synchrony) may
not be sartisfactory

v Especially for large-scale (geo) replication
Eventual consistency

v Assuming no more updates, all replicas eventually converge to the
same state

v Simple and efficient
v'Amazon’s Dynamo
v"Too weak?

Causal consistency

v + Causally related [Lamport 78] events are observed in the same
(causal) order

In real systems:
v A mixture of all this ©

© 2015 P. Kuznetsov 43



Bibliographic project

= 10 mins presentation of a research paper + 5
mins discussion
v'"What is the problem? What is its motivation?
v'"What is the idea of the solution?

v'"What is new and what is interesting here?
e Technical details: less necessary

« Final grade = 1/3 for the presentation (April 22)
+ 2/3 exam (April 24)

= The list of paper assignments:

v http://perso.telecom-paristech.fr/~kuznetso/
INF346-2015/

© 2015 P. Kuznetsov 44



