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The space of registers"

§  Nb of writers and readers: 
from 1W1R to NWNR"

§  Size of the value set: from 
binary to multi-valued"

§  Safety properties: safe, 
regular, atomic "

# readers/writers 

safety property 
value set 

All	  registers	  are	  (computaConally)	  equivalent!	  
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Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular 

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"
VI.  From 1WNR to NWNR (multi-valued atomic)"
VII.  From safe bit to atomic bit (optimal, coming later)"
"
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This class"
"
§  Atomic snapshot: reading multiple locations 

atomically"
ü Write to one, read all!
"
"
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Atomic snapshot: sequential specification"

§  Each process pi is provided with operations:"
ü updatei(v), returns ok"
ü snapshoti(), returns [v1,…,vN]"

§  In a sequential execution:"
For each [v1,…,vN] returned by snapshoti(), vj (j=1,

…,N) is the argument of the last updatej(.) "
(or the initial value if no such update)  "
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Snapshot for free?"
Code for process pi:"
"
initially:"
"shared 1W1R atomic register Ri := 0 "
"
upon snapshot()!
"[x1,…,xN] := scan(R1,…,RN)      /*read R1,…RN*/"
"return [x1,…,xN]  "
"
upon updatei(v) !
"Ri.write(v)"
"
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Snapshot for free?"

p1 

p2 

p3 

read3()2 

	  update1(1)	  	  	  	  	  	  ok	  

	  update3(1)	  ok	   update3(2)	  ok	  

	  snapshot()	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [1,1,2]	  

read1()1 

	  update2(1)	  ok	  

	  update1(2)	  	  	  	  	  	  ok	  

read2()1 
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Snapshot for free?"

p1 

p2 

p3 

	  update1(2)	  	  	  	  	  	  	  ok	  	  update1(1)	  	  	  	  	  	  	  	  	  ok	  

	  update3(1)	  ok	   update3(2)	  ok	  

	  snapshot()	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [1,1,2]	  
	  update2(1)	  	  	  	  	  ok	  

 [1,1,1]  [2,1,1]  [2,1,2] 

read3()2 read1()1 read2()1 
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"
§  What about 2 processes? "
"
§  What about lock-free snapshots?"

ü At least one correct process makes 
progress (completes infinitely many 
operations)"

"
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Lock-free snapshot"
Code for process pi  (all written value are unique, e.g., 

equipped with a sequence number)"
"
Initially: "
" "shared 1W1R atomic register Ri := 0"
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upon	  snapshot()	  
	  [x1,…,xN]:=	  scan(R1,…,RN)	  
	  repeat	  
	   	  [y1,…,yN]	  :=	  [x1,…,xN]	  	  
	   	  [x1,…,xN]:=	  scan(R1,…,RN)	  
	  unCl	  	  [y1,…,yN]	  =	  [x1,…,xN]	   	  	  	  
	  return	  [x1,…,xN]	  	  	  

upon	  updatei(v)	  
	  Ri.write(v)	  
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Linearization"
Assign a linearization point 

to each operation"
§  updatei(v) "

ü Ri.write(v) if present"
ü Otherwise remove the op"

§  snapshoti()"
ü if complete – any point 

between identical scans"
ü Otherwise remove the op"

Build a sequential history S 
in the order of 
linearization points  "
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 snapshoti()          [1,1,2] 

scan() scan() 

 updatei(1) ok 

[1,1,2] [1,1,2] 

… 
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Correctness: linearizability"
S is legal: every snapshoti() returns the last written value for 

every pj"
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not 

the the argument of the last updatej(v) in S preceding 
snapshoti()  "

"
Let C1 and C2 be two scans that returned [x1,…,xN]"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

C1	  

readj()	  	  xj	  

… 
C2	  

readj()	  	  xj	  

No	  updatej(.)	  
linearized	  here!	  Returns	  the	  

argument	  of	  the	  
last	  updatej(.)!	  
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Correctness: lock-freedom"
An updatei() operation is wait-free (returns in a finite 

number of steps) "
Suppose process pi executing snapshoti() eventually 

runs in isolation (no process takes steps 
concurrently)"

§  All scans received by  pi are distinct"
§  At least one process performs an update between"
§  There are only finitely many processes => at least 

one process executes infinitely many updates"
"

What if base registers are regular?"
"
"
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General case: helping?"
What if an update interferes with a snapshot?"
§  Make the update do the work!"
"
upon snapshot()!
"[x1,…,xN]:= scan(R1,…, RN)"
"[y1,…,yN] := scan(R1,…,RN)"
"if  [y1,…,yN] = [x1,…,xN] then " "
" "return [x1,…,xN]  "
"else"
" "let j be such that "
" " "xj≠yj and xj=(u,U)"
"" "return U "
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If two scans 
differ – some 

update succeeded 
to snapshot! 

Would this work? 

upon	  updatei(v)	  
	  S	  :=	  snapshot()	  
	  Ri.write(v,S) 
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Not that easy!"

©	  2015	  P.	  Kuznetsov	  	  

 snapshot2()           [0,0,0] 

snapshot()  [0,0,0] 

scan() 

 update1(1)                      ok 

[0,0,1] 

scan() 

[1,0,1] 

update3(1)    ok 

write1(1,[0,0,0]) 

write3(1,[0,0,0]) 

p1 

p2 

p3 
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General case: wait-free atomic snapshot"
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upon	  snapshot()	  
[x1,…,xN]:=	  scan(R1,…,RN)	  
while	  true	  do	  
	  [y1,…,yN]	  :=	  [x1,…,xN]	  	  
	  [x1,…,xN]:=	  scan(R1,…,RN)	  
	  if	  [y1,…,yN]	  =	  [x1,…,xN]	  then	  
	   	  return	  [x1,…,xN]	  
	  else	  if	  movedj	  and	  xj	  ≠	  yj	  then	  
	  	   	  let	  xj	  =	  (u,U)	  
	  	   	  return	  U	  
	  for	  each	  j:	  movedj	  :=	  movedj	  ∨xj	  ≠	  yj	  	  
	   	   	  	  	  	  

upon	  updatei(v)	  
	  S	  :=	  snapshot()	  
	  Ri.write(v,S) 

	  

If	  a	  process	  moved	  
twice:	  its	  last	  

snapshot	  is	  valid!	  	  
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Correctness: wait-freedom"
Claim 1 Every operation (update or snapshot) returns 

in O(N2) steps (bounded wait-freedom)"
snapshot: does not return after a scan if a concurrent 

process moved and no process moved twice "
§  At most N-1 concurrent processes, thus 

(pigeonhole), after N scans:"
ü Either at least two consecutive identical scans"
ü Or some process moved twice! ""

update: snapshot() + one more step"
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Correctness: linearization points"
updatei(v): linearize at the Ri.write(v,S)"
complete snapshot()!
§  If two identical scans: between the scans"
§  Otherwise, if returned U of pj: at the linearization 

point of pj’s snapshot"
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 snapshot()                               [0,1,0] 

scan() scan() 
 update2(2) ok 

[0,1,0] [0,2,0] 

… 

[0,1,0] 

[0,0,0] 

 update2(1) ok 
[0,0,0] 

p1 

p2 
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The linearization is:"

§  Legal: every snapshot operation returns the 
most recent value for each process"

§  Consistent with the real-time order: each 
linearization point is within the operation’s 
interval"

§  Equivalent to the run (locally 
indistinguishable)"

"
(Full proof in the lecture notes, Chapter 6)"
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One-shot atomic snapshot (AS)"
Each process pi:"
"updatei(vi)"
"Si := snapshot()"

"
Si = Si[1],…,Si[N]"
(one position per 

process)"
"
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Vectors	  Si	  saCsfy:	  
§  Self-‐inclusion:	  for	  all	  i:	  vi	  is	  in	  
Si	  

§  Containment:	  for	  all	  i	  and	  j:	  
Si	  is	  subset	  of	  Sj	  or	  Sj	  is	  
subset	  of	  Si	  
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“Unbalanced” snapshots"

p1 

p2 

p3 

	  snapshot()	  	  	  	  	  [1,1,0]	  	  update1(1)	  	  	  ok	  

	  update3(1)	  ok	  

	  update2(1)	  	  	  ok	   	  snapshot()	  	  	  	  	  [1,1,1]	  

	  snapshot()	  	  	  	  	  [1,1,1]	  

p1	  sees	  p2	  but	  misses	  	  
its	  snapshot	  	  	  
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Enumerating possible runs:  
two processes"

Each process pi (i=1,2):"
"updatei(vi)"
"Si := snapshot()"

"
Three cases to consider:"
(a) p1 reads before p2 writes"
(b) p2 reads before p1 writes"
(c) p1 and p2 go “lock-step”: 

first both write, then both 
read"

"
"
"
"
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p1 

p2 

(a) 

p1 

p2 

(b) 

p1 

p2 

(с) 
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Quiz: atomic snapshots "

Prove that one-shot atomic snapshot satisfies 
self-inclusion and containment:"

§  Self-‐inclusion:	  for	  all	  i:	  vi	  is	  in	  Si	  
§  Containment:	  for	  all	  i	  and	  j:	  Si	  is	  subset	  of	  Sj	  or	  Sj	  is	  
subset	  of	  Si	  

""
"
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Bibliographic project"
§  15	  mins	  presentaCon	  of	  a	  research	  paper	  +	  5	  mins	  
discussion	  	  
ü What	  is	  the	  problem?	  What	  is	  its	  moCvaCon?	  
ü What	  is	  the	  idea	  of	  the	  soluCon?	  
ü What	  is	  new	  and	  what	  is	  interesCng	  here?	  

●  Technical	  details:	  less	  necessary	  

§  Final	  grade	  =	  1/3	  for	  the	  presentaCon	  (April	  22)	  	  +	  2/3	  exam	  
(April	  24)	  

	  
§  The	  list	  of	  papers	  (with	  pdfs)	  and	  the	  link	  to	  a	  form	  to	  
submit	  your	  choice:	  
ü hap://perso.telecom-‐paristech.fr/~kuznetso/INF346-‐2015/	  
ü By	  March,	  2015	  
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The space of registers"

§  Nb of writers and readers: 
from 1W1R to NWNR"

§  Size of the value set: from 
binary to multi-valued"

§  Safety properties: safe, 
regular, atomic "

# readers/writers 

safety property 
value set 

All	  registers	  are	  (computaConally)	  equivalent!	  
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Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular 

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From 1W1R regular to 1W1R atomic 

(unbounded)"
V.  From 1W1R atomic to 1WNR atomic 

(unbounded)"
ü Can be turned into bounded using bounded (in n) sequence numbers"
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This class"

§  The problem: implement a binary 1W1R 
atomic register (atomic bit) from binary 1W1R 
safe ones (safe bits)"
ü From a few safe bits only "
ü No unbounded multi-valued registers"
ü No ever-growing timestamps"
 "
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An optimal solution"

§  No sequence numbers?"
§  Bounded number of safe bits, O(1)?"
§  Bounded number of base actions, O(1)?"

Can we do it if the reader does not write?"
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Safe bit to regular bit? Easy"
§  the writer is allowed only to change the value"

	  write(1)	  

read()=>1	  

p1	  

p2	  

	  write(1)	  

Can we get an atomic bit this way?"
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Impossible if the reader does not write  
for bounded # of regular bits!"

Proof sketch (by contradiction): "
§  Suppose only the writer executes writes on the 

base (regular) bits."
§  Every write operation W(1) is  a sequence of writes 

actions w1, …wk on base regular bits"
ü Corresponds to the sequence of shared-memory states 

s0,s1,…,sk  (defined for sequential runs)"

©	  2015	  P.	  Kuznetsov	  	  

	  write(1)	  	  
p1	  

w1	   w2	   wk	  
s0	   s1	   sk	  … 

	  ok	  
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Proof (contd): digests"
§  There are only finitely many states!"

(bounded # of base registers)"
§  Each sequence s0,s1,…,sk of states (though possibly 

unbounded) defines a bounded digest d0,d1,…,dm"
ü  d0=s0, dm=sk (same global state transition)"
ü  d0=s0 => i=j (all digest elements are distinct)"
ü  for all (di,di+1), exists (sj,sj+1) such that sj=di and sj+1=di+1"
" "7,4,8,4,2,8,3 => 7,4,8,3    "

§  Each write operation “looks” like its digest"
§  There are only finitely many digests! "

©	  2015	  P.	  Kuznetsov	  	  
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Proof (contd.): counter-example"
§  Consider a run with infinitely many alternating writes: 

W1(1),W(0),W2(1),… (no reads)"
ü Writes W1,W2,… give an infinite sequence of digests D1,D2,

…"
§  At least one digest D=d0,d1,…,dm appears infinitely 

often in D1,D2,…"
ü Why?"

§  We can amend our run with a sequence of reads 
R0,R1,…,Rm (in that order), each Ri “sees” state    
dm-i"
ü How?"

""
©	  2015	  P.	  Kuznetsov	  	  
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Proof (contd.): the “switch” "
§  R0 “sees” dm and, thus, returns 1"

ü Could have happened right after W(1)"
§   Rm “sees” d0 and, thus, returns 0"

ü Could have happened right before W(1)"
"

⇒ There exists i such that Ri returns 1 and Ri+1 
returns 0 (by induction on i=0,…,m)"

"
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Proof (contd.): contradiction"
§  The (sequential) execution of  Ri and Ri+1 is 

indistinguishable (to the reader) from a 
concurrent one"
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	  write(1)	  	  
p1	  

write	  to	  a	  base	  bit	  

dm-‐i-‐1	  
… 

	  ok	  

	  Ri	  	  

p2	  

	  	  

… dm-‐i	  

dm-‐i	   dm-‐i-‐1	  

1	  	   	  	  0	  	  	  Ri+1	  	  

New-‐old	  inversion!	  
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The reader must write"
§  And the writer must read"
§  But how the writer would tell what it read?"

ü The writer needs at least two bits!"
ü Why?"

§  Suppose the writer writes to one bit only"
ü  there are exactly two digests 0,1 and 1,0 "
ü  suppose infinitely many W(1) operations export digests  0,1 "
ü new-old inversion:"
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	  write(1)	  	  
p1	  

change	  the	  base	  bit	  
from	  0	  to	  1	  

	  ok	  

	  read()	  	  

p2	  

	  	  1	  	   	  	  	  read()	  	   0	  	  
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Optimal construction?"

§  Two bits for the writer"
ü  REG: for storing the current value"
ü  WR: for signaling to the reader"

§   One bit for the reader"
ü RR: for signaling to the writer"

Necessary, but is it also sufficient?"

©	  2015	  P.	  Kuznetsov	  	  
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Evolutionary approach: Iteration 1"
The reader should be able to distinguish the two 

cases:"
ü A new value was written: WR≠RR:"
ü The value is unchanged: WR=RR: "

©	  2015	  P.	  Kuznetsov	  	  

Writer:	  
	  
change	  REG	  
if	  WR=RR	  then	  change	  WR	  	  
	  
	  

Reader:	  
	  
if	  WR≠RR	  then	  change	  RR	  	  
val:=	  REG	  
return	  val	  

Does	  not	  work:	  the	  read	  value	  does	  not	  depend	  on	  RR	  	  
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Iteration 2"
Return the “old” value if nothing changed"
"(local variable val initialized to the initial value 
of REG)"
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Writer:!
!
change REG"
if WR=RR then change WR "
"
"

Reader:!
"
if WR=RR then return val!
change RR"
val:= REG"
return val"
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Counter-‐example	  2	  
Does	  not	  work?	  r1	  reads	  the	  new	  value	  and	  r2	  reads	  the	  
old	  one	  

	  

©	  2015	  P.	  Kuznetsov	  	  
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Counter-example 2, corrected"
Does not work: a read finds WR≠RR, a subsequent 

read finds WR≠RR and reads an old value in 
REG (new-old inversion)"

"
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Unfortunately, we still have a problem with this construction. When a read is executed concurrently

with a write, it may happen that the read returns a concurrently written value but a subsequent read finds

RR ̸= WR and returns an old value found in REG .

Indeed, consider the following scenario (Figure 5.3):

1. w1 = R.write(1) completes.

2. r1 reads WR, finds WR ̸= RR and changes RR.

3. w2 = R.write(0) begins, changes REG to 0, reads RR, finds WR = RR, changes WR, restoring

the predicate WR ̸= RR, and completes.

4. w3 = R.write(1) begins and starts changing REG from 0 to 1.

5. r1 concurrently reads REG and returns the new value 1

6. r2 = R.read() begins, finds RR ̸= WR, reads REG and returns the old value 0 (which is perfectly

possible since the write operation on REG performed by w3 is not yet finished).

In other words, we obtain ta new-old inversion for read operations r1 and r2.

read 0

w1=write(1)

RR ̸=WR

change WR

r3

read 1

change RR

read 1

RR=WR

change REG

change RR RR ̸=WR

return 1

w2=write(0)

RR ̸=WR

Writer

Reader

r1

change REG

return 1 r2 return 0

Figure 5.3: Counter example to step 2 of the construction: new-old inversion for r1 and r2

The construction: step 3 The problem with the scenario above is that a read operation is too quick to

return the new value of REG without noticing that the writer has meanwhile changed WR. A subsequent

read operation may observe RR = WR and thus return the value read in REG (line 4) which may, in case

of a slow concurrent write, still be the old value.

One solution to circumvent this is to evaluate REG before changing RR. If the predicate RR = WR

does not hold after RR was changed (line 3′) and REG was read again (line 4), then the reader returns the

older (conservative) value of REG .

1 if WR = RR then return (val) end if;

2 aux← REG; % Conservative value %

3′ change RR; % Strive to establish WR = RR %

4 val ← REG;

5 if WR = RR then return (val) end if

7 return (aux)

77
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Iteration 3"
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Writer:	  
	  
change	  REG	  
if	  WR=RR	  then	  change	  WR	  	  
	  
	  

Reader:	  
	  
if	  WR=RR	  then	  return	  val	  
val:=	  REG	  
if	  WR≠RR	  change	  RR	  
return	  val	  	  

Only change RR if needed "
(read REG before, because otherwise we do not fix the 
counter-example)"

Construct a counter-example?"
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Counter-example 3"
Does not work: a read sets RR=WR while the value 

in val has been overwritten"
"

©	  2015	  P.	  Kuznetsov	  	  

This way we fix the problem described in Figure ?? but face a new one. The value read in REG may get

overly conservative in some cases. Consider, for example, the scenario in Figure 5.4. Here read operation

r2 evaluates WR = RR and returns the old value 1, even though the most recently written value is actually

0. This is because, the preceding read operation r1 changed RR to be equal to WR without noticing that

REG was meanwhile changed

return 1

w1=write(1)

Writer

Reader
change RR

w2=write(0)

RR ̸=WR

read 1

RR ̸=WR

r1 return 1 r2

Figure 5.4: Counter example to step 3 of the construction: new-old inversion for r1 and r2

The construction: step 4 One solution to the problem exemplified in Figure 5.4 is, as put in the pseu-

docode below, to evaluate REG after changing RR and then check RR again. If the predicate RR = WR

does not hold after RR was changed and REG was read again, the reader returns the old (read in line 2)

value of REG . Otherwise, the new (read in line 4) value is returned.

1 if WR = RR then return (val) end if;

2 aux← REG; % Conservative value %

3 if WR = RR then change RR; end if;

4 val ← REG;

5 if WR = RR then return (val) end if

7 return (aux)

Unfortunately, there is still a problem here. The variable val evaluated in line 4 may be too conservative

to be returned by a subsequent read operation that finds RR = WR in line 1.

Again, suppose that w1 = R.write(1) is followed a concurrent execution of r1 = R.read() and w2 =
R.write(0) as follows (Figure 5.5):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changing REG from 1 to 0.

3. r1 finds WR ̸= RR, reads 0 from REG and stores it in aux (line 2), changes RR, reads 1 from REG

and stores it in val (the write operation on REG performed by w2 is still going on).

4. w2 completes its write on REG , finds RR = WR and starts changing WR.

5. r1 finds WR ̸= RR (line 5), concludes that there is a concurrent write operation and returns the

“conservative” value 0 (read in line 2).

6. r2 = R.read() begins, finds RR = WR (the write operation on WR performed by w2 is still going

on), and returns 1 previously evaluated in line 4 of r1.

That is, r1 returned the new (concurrently written) value 0 while r2 returned the old value 1.
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Iteration 4"

©	  2015	  P.	  Kuznetsov	  	  

Writer:	  
	  
change	  REG	  
if	  WR=RR	  then	  change	  WR	  	  
	  
	  

Reader:	  
	  
if	  WR=RR	  then	  return	  val	  
aux	  :=	  REG	  
if	  WR≠RR	  change	  RR	  
val:=	  REG	  
if	  WR=RR	  then	  return	  val	  	  
return	  aux	  

Read WR twice, if WR changed while the read 
is executed, return a conservative (old) value "
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Counter-example 4"
Still a problem: the value stored in val can be 

too conservative"

©	  2015	  P.	  Kuznetsov	  	  

Solution: evaluate val again"

RR ̸=WR RR=WR

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

change RR

read 1
to val

read 0
to aux

RR ̸=WR

RR=WR change WR

r2 return 1return 0

Figure 5.5: Counter example to step 4 of the construction: new-old inversion for r1 and r2

The construction: last step The complete read algorithm is presented in Figure 5.6. As we saw in this

chapter, safe base registers allow for a multitude of possible execution scenarios, so an intuitively correct

implementation could be flawed because of an overlooked case. To be convinced that our construction is

indeed correct, we provide a rigorous proof below.

operation R.read():
1 if WR = RR then return (val) end if;

2 aux← REG;

3 if WR ̸= RR then change RR end if;

4 val← REG;

5 if WR = RR then return (val) end if;

6 val← REG;

7 return (aux)

Figure 5.6: The R.read() operation

5.3.4 Proof of the construction

Theorem 16 Let H be an execution history of the 1W1R register R constructed by the algorithm in Fig-

ures 5.2 and 5.6. Then H is linearizable.

Proof Let H be an execution history. By Theorem 5, to show that H is linearizable (atomic), it is sufficient

to show that there exists a reading function π satisfying the assertions A0, A1 and A2.

In order to distinguish the operations R.read() and R.write(v), denoted by r and w, from the read and

write operations on the base registers (e.g., “change RR”, “aux ← REG”, etc.), the latter ones are called

actions. The corresponding execution containing, additionally, the action invocation and response events is

denoted L. Let→L denote the corresponding partial relation on the actions.

Moreover, r being a read operation and loc the local variable (aux or val) whose value is returned by r
(in line 1, 5 or 7), ρr denotes the last read action “loc← REG” executed before r returns:

• If r returns in line 7, ρr is the read action “aux← REG” executed in line 2 of r,

• If r returns in line 5, ρr is is the read action “val ← REG” executed in line 4 of r, and finally

• If r returns in line 1, ρr is is the read action “val ← REG” executed in line 4 or 6 of some previous

read operation.

79



46 

Final solution [Tromp, 1989]"
Writer protocol!
!
change REG"
if WR=RR then 

change WR "
"
"

Reader protocol!
"
(1) if WR=RR then return val "
(2) aux := REG"
(3) if WR≠RR then change RR"
(4) val :=REG"
(5) if WR=RR then return val"
(6) val := REG"
(7) return aux"
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Proof sketch: reading functions"
A reading function π: for each complete read operation r 

(returning v), π(r) is a write operation w(v)"
"
Show that for every run of the algorithm, there exists an 

atomic reading function π:  "
"
(A0) No read r precedes π(r)"

No read returns  a value not yet written"
(A1)  w precedes r => w=π(r) or w precedes π(r)"

No read obtains an overwritten value"
(A2) r1 precedes r2 => π(r2) does not precede π(r1)"

No new/old inversion  "
"
A run is linearizable iff an atomic reading function exists 

(Chapter 4.2.4 of the lecture notes)"
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Proof: constructing π"
§  Let r return a value v"
§  Let ρr be the read of REG that got the value of r"

ü  If r returns in line 7, ρr is the read action in line 2 of r"
ü  If r returns in line 5, ρr is is the read action in line 4"
ü  If r returns in line 1, ρr is is the read in line 4 or 6 of 

some previous r’ (depending on how r’ returns)"
§  Let ϕr be the last write action on REG that 

precedes or is concurrent to ρr and writes the 
value returned by r (and ρr)"

§  Define π(r) as the write operation that contains ϕr "
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Proof: show that π is atomic"
§  A0 is easy: by construction of π, π(r) precedes or 

is concurrent to r"

§  A1? A2? "

Hint: assume the contrary and come to absurdum"
"
§  A complete proof in lecture notes "
§  R. Guerraoui, Vukolic. A Scalable and Oblivious 

Atomicity Assertion. CONCUR 2008"
"
"
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