
©	 2015	 P.	 Kuznetsov	
	

 
Atomic snapshots"

INF346,	 2015	
	

2 ©	 2015	 P.	 Kuznetsov	 	

The space of registers"

§  Nb of writers and readers:
from 1W1R to NWNR"

§  Size of the value set: from
binary to multi-valued"

§  Safety properties: safe,
regular, atomic "

readers/writers

safety property
value set

All	 registers	 are	 (computaConally)	 equivalent!	

3 ©	 2015	 P.	 Kuznetsov	 	

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From regular to atomic (1W1R)"
V.  From 1W1R to 1WNR (multi-valued atomic)"
VI.  From 1WNR to NWNR (multi-valued atomic)"
VII.  From safe bit to atomic bit (optimal, coming later)"
"

4

This class"
"
§  Atomic snapshot: reading multiple locations

atomically"
ü Write to one, read all!
"
"

5

Atomic snapshot: sequential specification"

§  Each process pi is provided with operations:"
ü updatei(v), returns ok"
ü snapshoti(), returns [v1,…,vN]"

§  In a sequential execution:"
For each [v1,…,vN] returned by snapshoti(), vj (j=1,

…,N) is the argument of the last updatej(.) "
(or the initial value if no such update) "

©	 2015	 P.	 Kuznetsov	 	

6

Snapshot for free?"
Code for process pi:"
"
initially:"
"shared 1W1R atomic register Ri := 0 "
"
upon snapshot()!
"[x1,…,xN] := scan(R1,…,RN) /*read R1,…RN*/"
"return [x1,…,xN] "
"
upon updatei(v) !
"Ri.write(v)"
"

©	 2015	 P.	 Kuznetsov	 	

7 ©	 2015	 P.	 Kuznetsov	 	

Snapshot for free?"

p1

p2

p3

read3()2

	 update1(1)	 	 	 	 	 	 ok	

	 update3(1)	 ok	 update3(2)	 ok	

	 snapshot()	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 [1,1,2]	

read1()1

	 update2(1)	 ok	

	 update1(2)	 	 	 	 	 	 ok	

read2()1

8 ©	 2015	 P.	 Kuznetsov	 	

Snapshot for free?"

p1

p2

p3

	 update1(2)	 	 	 	 	 	 	 ok	 	 update1(1)	 	 	 	 	 	 	 	 	 ok	

	 update3(1)	 ok	 update3(2)	 ok	

	 snapshot()	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 [1,1,2]	
	 update2(1)	 	 	 	 	 ok	

 [1,1,1] [2,1,1] [2,1,2]

read3()2 read1()1 read2()1

9

"
§  What about 2 processes? "
"
§  What about lock-free snapshots?"

ü At least one correct process makes
progress (completes infinitely many
operations)"

"

©	 2015	 P.	 Kuznetsov	 	

10

Lock-free snapshot"
Code for process pi (all written value are unique, e.g.,

equipped with a sequence number)"
"
Initially: "
" "shared 1W1R atomic register Ri := 0"

©	 2015	 P.	 Kuznetsov	 	

upon	 snapshot()	
	 [x1,…,xN]:=	 scan(R1,…,RN)	
	 repeat	
	 	 [y1,…,yN]	 :=	 [x1,…,xN]	 	
	 	 [x1,…,xN]:=	 scan(R1,…,RN)	
	 unCl	 	 [y1,…,yN]	 =	 [x1,…,xN]	 	 	 	
	 return	 [x1,…,xN]	 	 	

upon	 updatei(v)	
	 Ri.write(v)	

11

Linearization"
Assign a linearization point

to each operation"
§  updatei(v) "

ü Ri.write(v) if present"
ü Otherwise remove the op"

§  snapshoti()"
ü if complete – any point

between identical scans"
ü Otherwise remove the op"

Build a sequential history S
in the order of
linearization points "

©	 2015	 P.	 Kuznetsov	 	

 snapshoti() [1,1,2]

scan() scan()

 updatei(1) ok

[1,1,2] [1,1,2]

…

12

Correctness: linearizability"
S is legal: every snapshoti() returns the last written value for

every pj"
Suppose not: snapshoti() returns [x1,…,xN] and some xj is not

the the argument of the last updatej(v) in S preceding
snapshoti() "

"
Let C1 and C2 be two scans that returned [x1,…,xN]"
"
"
"
"
"
"
"
"
"
"
"
"
"
"

C1	

readj()	 	 xj	

…
C2	

readj()	 	 xj	

No	 updatej(.)	
linearized	 here!	 Returns	 the	

argument	 of	 the	
last	 updatej(.)!	

©	 2015	 P.	 Kuznetsov	 	

13

Correctness: lock-freedom"
An updatei() operation is wait-free (returns in a finite

number of steps) "
Suppose process pi executing snapshoti() eventually

runs in isolation (no process takes steps
concurrently)"

§  All scans received by pi are distinct"
§  At least one process performs an update between"
§  There are only finitely many processes => at least

one process executes infinitely many updates"
"

What if base registers are regular?"
"
"

©	 2015	 P.	 Kuznetsov	 	

14

General case: helping?"
What if an update interferes with a snapshot?"
§  Make the update do the work!"
"
upon snapshot()!
"[x1,…,xN]:= scan(R1,…, RN)"
"[y1,…,yN] := scan(R1,…,RN)"
"if [y1,…,yN] = [x1,…,xN] then " "
" "return [x1,…,xN] "
"else"
" "let j be such that "
" " "xj≠yj and xj=(u,U)"
"" "return U "

©	 2015	 P.	 Kuznetsov	 	

If two scans
differ – some

update succeeded
to snapshot!

Would this work?

upon	 updatei(v)	
	 S	 :=	 snapshot()	
	 Ri.write(v,S)

	

15

Not that easy!"

©	 2015	 P.	 Kuznetsov	 	

 snapshot2() [0,0,0]

snapshot() [0,0,0]

scan()

 update1(1) ok

[0,0,1]

scan()

[1,0,1]

update3(1) ok

write1(1,[0,0,0])

write3(1,[0,0,0])

p1

p2

p3

16

General case: wait-free atomic snapshot"

©	 2015	 P.	 Kuznetsov	 	

upon	 snapshot()	
[x1,…,xN]:=	 scan(R1,…,RN)	
while	 true	 do	
	 [y1,…,yN]	 :=	 [x1,…,xN]	 	
	 [x1,…,xN]:=	 scan(R1,…,RN)	
	 if	 [y1,…,yN]	 =	 [x1,…,xN]	 then	
	 	 return	 [x1,…,xN]	
	 else	 if	 movedj	 and	 xj	 ≠	 yj	 then	
	 	 	 let	 xj	 =	 (u,U)	
	 	 	 return	 U	
	 for	 each	 j:	 movedj	 :=	 movedj	 ∨xj	 ≠	 yj	 	
	 	 	 	 	 	

upon	 updatei(v)	
	 S	 :=	 snapshot()	
	 Ri.write(v,S)

	

If	 a	 process	 moved	
twice:	 its	 last	

snapshot	 is	 valid!	 	

17

Correctness: wait-freedom"
Claim 1 Every operation (update or snapshot) returns

in O(N2) steps (bounded wait-freedom)"
snapshot: does not return after a scan if a concurrent

process moved and no process moved twice "
§  At most N-1 concurrent processes, thus

(pigeonhole), after N scans:"
ü Either at least two consecutive identical scans"
ü Or some process moved twice! ""

update: snapshot() + one more step"

©	 2015	 P.	 Kuznetsov	 	

18

Correctness: linearization points"
updatei(v): linearize at the Ri.write(v,S)"
complete snapshot()!
§  If two identical scans: between the scans"
§  Otherwise, if returned U of pj: at the linearization

point of pj’s snapshot"

©	 2015	 P.	 Kuznetsov	 	

 snapshot() [0,1,0]

scan() scan()
 update2(2) ok

[0,1,0] [0,2,0]

…

[0,1,0]

[0,0,0]

 update2(1) ok
[0,0,0]

p1

p2

19

The linearization is:"

§  Legal: every snapshot operation returns the
most recent value for each process"

§  Consistent with the real-time order: each
linearization point is within the operation’s
interval"

§  Equivalent to the run (locally
indistinguishable)"

"
(Full proof in the lecture notes, Chapter 6)"

©	 2015	 P.	 Kuznetsov	 	

20

One-shot atomic snapshot (AS)"
Each process pi:"
"updatei(vi)"
"Si := snapshot()"

"
Si = Si[1],…,Si[N]"
(one position per

process)"
"

©	 2012	 P.	 Kuznetsov	 	

Vectors	 Si	 saCsfy:	
§  Self-‐inclusion:	 for	 all	 i:	 vi	 is	 in	
Si	

§  Containment:	 for	 all	 i	 and	 j:	
Si	 is	 subset	 of	 Sj	 or	 Sj	 is	
subset	 of	 Si	

	 	

21 ©	 2012	 P.	 Kuznetsov	 	

“Unbalanced” snapshots"

p1

p2

p3

	 snapshot()	 	 	 	 	 [1,1,0]	 	 update1(1)	 	 	 ok	

	 update3(1)	 ok	

	 update2(1)	 	 	 ok	 	 snapshot()	 	 	 	 	 [1,1,1]	

	 snapshot()	 	 	 	 	 [1,1,1]	

p1	 sees	 p2	 but	 misses	 	
its	 snapshot	 	 	

22

Enumerating possible runs:  
two processes"

Each process pi (i=1,2):"
"updatei(vi)"
"Si := snapshot()"

"
Three cases to consider:"
(a) p1 reads before p2 writes"
(b) p2 reads before p1 writes"
(c) p1 and p2 go “lock-step”:

first both write, then both
read"

"
"
"
"

©	 2012	 P.	 Kuznetsov	 	

p1

p2

(a)

p1

p2

(b)

p1

p2

(с)

23

Quiz: atomic snapshots "

Prove that one-shot atomic snapshot satisfies
self-inclusion and containment:"

§  Self-‐inclusion:	 for	 all	 i:	 vi	 is	 in	 Si	
§  Containment:	 for	 all	 i	 and	 j:	 Si	 is	 subset	 of	 Sj	 or	 Sj	 is	
subset	 of	 Si	

""
"

©	 2015	 P.	 Kuznetsov	 	

24

Bibliographic project"
§  15	 mins	 presentaCon	 of	 a	 research	 paper	 +	 5	 mins	
discussion	 	
ü What	 is	 the	 problem?	 What	 is	 its	 moCvaCon?	
ü What	 is	 the	 idea	 of	 the	 soluCon?	
ü What	 is	 new	 and	 what	 is	 interesCng	 here?	

●  Technical	 details:	 less	 necessary	

§  Final	 grade	 =	 1/3	 for	 the	 presentaCon	 (April	 22)	 	 +	 2/3	 exam	
(April	 24)	

	
§  The	 list	 of	 papers	 (with	 pdfs)	 and	 the	 link	 to	 a	 form	 to	
submit	 your	 choice:	
ü hap://perso.telecom-‐paristech.fr/~kuznetso/INF346-‐2015/	
ü By	 March,	 2015	

©	 2015	 P.	 Kuznetsov	 	

© 2015 P. Kuznetsov"
!

Algorithms for Concurrent
Systems 

 
Implementing an atomic bit"

MPRI, period 1, 2015"
"

26 ©	 2015	 P.	 Kuznetsov	 	

The space of registers"

§  Nb of writers and readers:
from 1W1R to NWNR"

§  Size of the value set: from
binary to multi-valued"

§  Safety properties: safe,
regular, atomic "

readers/writers

safety property
value set

All	 registers	 are	 (computaConally)	 equivalent!	

27

Transformations"
From 1W1R binary safe to 1WNR multi-valued atomic"

I.  From safe to regular (1W1R)"
II.  From one-reader to multiple-reader (regular

binary or multi-valued)"
III.  From binary to multi-valued (1WNR regular)"
IV.  From 1W1R regular to 1W1R atomic

(unbounded)"
V.  From 1W1R atomic to 1WNR atomic

(unbounded)"
ü Can be turned into bounded using bounded (in n) sequence numbers"

28

This class"

§  The problem: implement a binary 1W1R
atomic register (atomic bit) from binary 1W1R
safe ones (safe bits)"
ü From a few safe bits only "
ü No unbounded multi-valued registers"
ü No ever-growing timestamps"
 "

29

An optimal solution"

§  No sequence numbers?"
§  Bounded number of safe bits, O(1)?"
§  Bounded number of base actions, O(1)?"

Can we do it if the reader does not write?"

30

Safe bit to regular bit? Easy"
§  the writer is allowed only to change the value"

	 write(1)	

read()=>1	

p1	

p2	

	 write(1)	

Can we get an atomic bit this way?"

31

Impossible if the reader does not write  
for bounded # of regular bits!"

Proof sketch (by contradiction): "
§  Suppose only the writer executes writes on the

base (regular) bits."
§  Every write operation W(1) is a sequence of writes

actions w1, …wk on base regular bits"
ü Corresponds to the sequence of shared-memory states

s0,s1,…,sk (defined for sequential runs)"

©	 2015	 P.	 Kuznetsov	 	

	 write(1)	 	
p1	

w1	 w2	 wk	
s0	 s1	 sk	 …

	 ok	

32

Proof (contd): digests"
§  There are only finitely many states!"

(bounded # of base registers)"
§  Each sequence s0,s1,…,sk of states (though possibly

unbounded) defines a bounded digest d0,d1,…,dm"
ü  d0=s0, dm=sk (same global state transition)"
ü  d0=s0 => i=j (all digest elements are distinct)"
ü  for all (di,di+1), exists (sj,sj+1) such that sj=di and sj+1=di+1"
" "7,4,8,4,2,8,3 => 7,4,8,3 "

§  Each write operation “looks” like its digest"
§  There are only finitely many digests! "

©	 2015	 P.	 Kuznetsov	 	

33

Proof (contd.): counter-example"
§  Consider a run with infinitely many alternating writes:

W1(1),W(0),W2(1),… (no reads)"
ü Writes W1,W2,… give an infinite sequence of digests D1,D2,

…"
§  At least one digest D=d0,d1,…,dm appears infinitely

often in D1,D2,…"
ü Why?"

§  We can amend our run with a sequence of reads
R0,R1,…,Rm (in that order), each Ri “sees” state
dm-i"
ü How?"

""
©	 2015	 P.	 Kuznetsov	 	

34

Proof (contd.): the “switch” "
§  R0 “sees” dm and, thus, returns 1"

ü Could have happened right after W(1)"
§  Rm “sees” d0 and, thus, returns 0"

ü Could have happened right before W(1)"
"

⇒ There exists i such that Ri returns 1 and Ri+1
returns 0 (by induction on i=0,…,m)"

"

©	 2015	 P.	 Kuznetsov	 	

35

Proof (contd.): contradiction"
§  The (sequential) execution of Ri and Ri+1 is

indistinguishable (to the reader) from a
concurrent one"

©	 2015	 P.	 Kuznetsov	 	

	 write(1)	 	
p1	

write	 to	 a	 base	 bit	

dm-‐i-‐1	
…

	 ok	

	 Ri	 	

p2	

	 	

… dm-‐i	

dm-‐i	 dm-‐i-‐1	

1	 	 	 	 0	 	 	 Ri+1	 	

New-‐old	 inversion!	

36

The reader must write"
§  And the writer must read"
§  But how the writer would tell what it read?"

ü The writer needs at least two bits!"
ü Why?"

§  Suppose the writer writes to one bit only"
ü  there are exactly two digests 0,1 and 1,0 "
ü  suppose infinitely many W(1) operations export digests 0,1 "
ü new-old inversion:"

©	 2015	 P.	 Kuznetsov	 	

	 write(1)	 	
p1	

change	 the	 base	 bit	
from	 0	 to	 1	

	 ok	

	 read()	 	

p2	

	 	 1	 	 	 	 	 read()	 	 0	 	

37

Optimal construction?"

§  Two bits for the writer"
ü  REG: for storing the current value"
ü  WR: for signaling to the reader"

§  One bit for the reader"
ü RR: for signaling to the writer"

Necessary, but is it also sufficient?"

©	 2015	 P.	 Kuznetsov	 	

38

Evolutionary approach: Iteration 1"
The reader should be able to distinguish the two

cases:"
ü A new value was written: WR≠RR:"
ü The value is unchanged: WR=RR: "

©	 2015	 P.	 Kuznetsov	 	

Writer:	
	
change	 REG	
if	 WR=RR	 then	 change	 WR	 	
	
	

Reader:	
	
if	 WR≠RR	 then	 change	 RR	 	
val:=	 REG	
return	 val	

Does	 not	 work:	 the	 read	 value	 does	 not	 depend	 on	 RR	 	

39

Iteration 2"
Return the “old” value if nothing changed"
"(local variable val initialized to the initial value
of REG)"

©	 2015	 P.	 Kuznetsov	 	

Writer:!
!
change REG"
if WR=RR then change WR "
"
"

Reader:!
"
if WR=RR then return val!
change RR"
val:= REG"
return val"

40

Counter-‐example	 2	
Does	 not	 work?	 r1	 reads	 the	 new	 value	 and	 r2	 reads	 the	
old	 one	

	

©	 2015	 P.	 Kuznetsov	 	

41

Counter-example 2, corrected"
Does not work: a read finds WR≠RR, a subsequent

read finds WR≠RR and reads an old value in
REG (new-old inversion)"

"

©	 2015	 P.	 Kuznetsov	 	

Unfortunately, we still have a problem with this construction. When a read is executed concurrently

with a write, it may happen that the read returns a concurrently written value but a subsequent read finds

RR ̸= WR and returns an old value found in REG .

Indeed, consider the following scenario (Figure 5.3):

1. w1 = R.write(1) completes.

2. r1 reads WR, finds WR ̸= RR and changes RR.

3. w2 = R.write(0) begins, changes REG to 0, reads RR, finds WR = RR, changes WR, restoring

the predicate WR ̸= RR, and completes.

4. w3 = R.write(1) begins and starts changing REG from 0 to 1.

5. r1 concurrently reads REG and returns the new value 1

6. r2 = R.read() begins, finds RR ̸= WR, reads REG and returns the old value 0 (which is perfectly

possible since the write operation on REG performed by w3 is not yet finished).

In other words, we obtain ta new-old inversion for read operations r1 and r2.

read 0

w1=write(1)

RR ̸=WR

change WR

r3

read 1

change RR

read 1

RR=WR

change REG

change RR RR ̸=WR

return 1

w2=write(0)

RR ̸=WR

Writer

Reader

r1

change REG

return 1 r2 return 0

Figure 5.3: Counter example to step 2 of the construction: new-old inversion for r1 and r2

The construction: step 3 The problem with the scenario above is that a read operation is too quick to

return the new value of REG without noticing that the writer has meanwhile changed WR. A subsequent

read operation may observe RR = WR and thus return the value read in REG (line 4) which may, in case

of a slow concurrent write, still be the old value.

One solution to circumvent this is to evaluate REG before changing RR. If the predicate RR = WR

does not hold after RR was changed (line 3′) and REG was read again (line 4), then the reader returns the

older (conservative) value of REG .

1 if WR = RR then return (val) end if;

2 aux← REG; % Conservative value %

3′ change RR; % Strive to establish WR = RR %

4 val ← REG;

5 if WR = RR then return (val) end if

7 return (aux)

77

42

Iteration 3"

©	 2015	 P.	 Kuznetsov	 	

Writer:	
	
change	 REG	
if	 WR=RR	 then	 change	 WR	 	
	
	

Reader:	
	
if	 WR=RR	 then	 return	 val	
val:=	 REG	
if	 WR≠RR	 change	 RR	
return	 val	 	

Only change RR if needed "
(read REG before, because otherwise we do not fix the
counter-example)"

Construct a counter-example?"

43

Counter-example 3"
Does not work: a read sets RR=WR while the value

in val has been overwritten"
"

©	 2015	 P.	 Kuznetsov	 	

This way we fix the problem described in Figure ?? but face a new one. The value read in REG may get

overly conservative in some cases. Consider, for example, the scenario in Figure 5.4. Here read operation

r2 evaluates WR = RR and returns the old value 1, even though the most recently written value is actually

0. This is because, the preceding read operation r1 changed RR to be equal to WR without noticing that

REG was meanwhile changed

return 1

w1=write(1)

Writer

Reader
change RR

w2=write(0)

RR ̸=WR

read 1

RR ̸=WR

r1 return 1 r2

Figure 5.4: Counter example to step 3 of the construction: new-old inversion for r1 and r2

The construction: step 4 One solution to the problem exemplified in Figure 5.4 is, as put in the pseu-

docode below, to evaluate REG after changing RR and then check RR again. If the predicate RR = WR

does not hold after RR was changed and REG was read again, the reader returns the old (read in line 2)

value of REG . Otherwise, the new (read in line 4) value is returned.

1 if WR = RR then return (val) end if;

2 aux← REG; % Conservative value %

3 if WR = RR then change RR; end if;

4 val ← REG;

5 if WR = RR then return (val) end if

7 return (aux)

Unfortunately, there is still a problem here. The variable val evaluated in line 4 may be too conservative

to be returned by a subsequent read operation that finds RR = WR in line 1.

Again, suppose that w1 = R.write(1) is followed a concurrent execution of r1 = R.read() and w2 =
R.write(0) as follows (Figure 5.5):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changing REG from 1 to 0.

3. r1 finds WR ̸= RR, reads 0 from REG and stores it in aux (line 2), changes RR, reads 1 from REG

and stores it in val (the write operation on REG performed by w2 is still going on).

4. w2 completes its write on REG , finds RR = WR and starts changing WR.

5. r1 finds WR ̸= RR (line 5), concludes that there is a concurrent write operation and returns the

“conservative” value 0 (read in line 2).

6. r2 = R.read() begins, finds RR = WR (the write operation on WR performed by w2 is still going

on), and returns 1 previously evaluated in line 4 of r1.

That is, r1 returned the new (concurrently written) value 0 while r2 returned the old value 1.

78

SoluCon:	 check	 WR	 again	 before	 returning	 the	 value	

44

Iteration 4"

©	 2015	 P.	 Kuznetsov	 	

Writer:	
	
change	 REG	
if	 WR=RR	 then	 change	 WR	 	
	
	

Reader:	
	
if	 WR=RR	 then	 return	 val	
aux	 :=	 REG	
if	 WR≠RR	 change	 RR	
val:=	 REG	
if	 WR=RR	 then	 return	 val	 	
return	 aux	

Read WR twice, if WR changed while the read
is executed, return a conservative (old) value "

45

Counter-example 4"
Still a problem: the value stored in val can be

too conservative"

©	 2015	 P.	 Kuznetsov	 	

Solution: evaluate val again"

RR ̸=WR RR=WR

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

change RR

read 1
to val

read 0
to aux

RR ̸=WR

RR=WR change WR

r2 return 1return 0

Figure 5.5: Counter example to step 4 of the construction: new-old inversion for r1 and r2

The construction: last step The complete read algorithm is presented in Figure 5.6. As we saw in this

chapter, safe base registers allow for a multitude of possible execution scenarios, so an intuitively correct

implementation could be flawed because of an overlooked case. To be convinced that our construction is

indeed correct, we provide a rigorous proof below.

operation R.read():
1 if WR = RR then return (val) end if;

2 aux← REG;

3 if WR ̸= RR then change RR end if;

4 val← REG;

5 if WR = RR then return (val) end if;

6 val← REG;

7 return (aux)

Figure 5.6: The R.read() operation

5.3.4 Proof of the construction

Theorem 16 Let H be an execution history of the 1W1R register R constructed by the algorithm in Fig-

ures 5.2 and 5.6. Then H is linearizable.

Proof Let H be an execution history. By Theorem 5, to show that H is linearizable (atomic), it is sufficient

to show that there exists a reading function π satisfying the assertions A0, A1 and A2.

In order to distinguish the operations R.read() and R.write(v), denoted by r and w, from the read and

write operations on the base registers (e.g., “change RR”, “aux ← REG”, etc.), the latter ones are called

actions. The corresponding execution containing, additionally, the action invocation and response events is

denoted L. Let→L denote the corresponding partial relation on the actions.

Moreover, r being a read operation and loc the local variable (aux or val) whose value is returned by r
(in line 1, 5 or 7), ρr denotes the last read action “loc← REG” executed before r returns:

• If r returns in line 7, ρr is the read action “aux← REG” executed in line 2 of r,

• If r returns in line 5, ρr is is the read action “val ← REG” executed in line 4 of r, and finally

• If r returns in line 1, ρr is is the read action “val ← REG” executed in line 4 or 6 of some previous

read operation.

79

46

Final solution [Tromp, 1989]"
Writer protocol!
!
change REG"
if WR=RR then

change WR "
"
"

Reader protocol!
"
(1) if WR=RR then return val "
(2) aux := REG"
(3) if WR≠RR then change RR"
(4) val :=REG"
(5) if WR=RR then return val"
(6) val := REG"
(7) return aux"

47

Proof sketch: reading functions"
A reading function π: for each complete read operation r

(returning v), π(r) is a write operation w(v)"
"
Show that for every run of the algorithm, there exists an

atomic reading function π: "
"
(A0) No read r precedes π(r)"

No read returns a value not yet written"
(A1) w precedes r => w=π(r) or w precedes π(r)"

No read obtains an overwritten value"
(A2) r1 precedes r2 => π(r2) does not precede π(r1)"

No new/old inversion "
"
A run is linearizable iff an atomic reading function exists

(Chapter 4.2.4 of the lecture notes)"

©	 2015	 P.	 Kuznetsov	 	

48

Proof: constructing π"
§  Let r return a value v"
§  Let ρr be the read of REG that got the value of r"

ü  If r returns in line 7, ρr is the read action in line 2 of r"
ü  If r returns in line 5, ρr is is the read action in line 4"
ü  If r returns in line 1, ρr is is the read in line 4 or 6 of

some previous r’ (depending on how r’ returns)"
§  Let ϕr be the last write action on REG that

precedes or is concurrent to ρr and writes the
value returned by r (and ρr)"

§  Define π(r) as the write operation that contains ϕr "

©	 2015	 P.	 Kuznetsov	 	

49

Proof: show that π is atomic"
§  A0 is easy: by construction of π, π(r) precedes or

is concurrent to r"

§  A1? A2? "

Hint: assume the contrary and come to absurdum"
"
§  A complete proof in lecture notes "
§  R. Guerraoui, Vukolic. A Scalable and Oblivious

Atomicity Assertion. CONCUR 2008"
"
"

©	 2015	 P.	 Kuznetsov	 	

