
©	  2015	  P.	  Kuznetsov	  
	  

INF346:	  Shared-‐memory	  compuCng 
 

Correctness of algorithms:  
safety and liveness"

INF346,	  2015	  
	  



2 ©	  2015	  P.	  Kouznetsov	  	  

How to treat a (computing) system 
formally "

§  Define models (tractability, realism)"
§  Devise abstractions for the system design 

(convenience, efficiency)"
§  Devise algorithms and determine complexity bounds"



3 

Basic abstractions"

§  Process abstraction – an entity  performing 
independent computation"

§  Communication "
ü Message-passing: channel abstraction"
ü Shared memory: objects!

© 2015 P. Kuznetsov !



4 ©	  2015	  P.	  Kouznetsov	  	  

Processes"
§  Automaton Pi (i=1,...,N): "

ü States"
ü Inputs"
ü Outputs"
ü Sequential specification "
"

Algorithm = {P1,…,PN}"
§  Deterministic algorithms"
§  Randomized algorithms"

 
Pi 
 

Communication 
media 

Application 



5 ©	  2015	  P.	  Kouznetsov	  	  

Shared memory"
§  Processes communicate by applying operations on 

and receiving responses from shared objects!
§  A shared object instantiates a state machine"

ü States"
ü Operations/Responses"
ü Sequential specification"

§  Examples: read-write registers, TAS,CAS,LL/SC,…"

P1 

P2 

P3 

O1 Oj OM … … 



6 

Implementing an object"
Using base objects, create an illusion that an object O 

is available"

deq()	  

x	  

enq(x)	  

ok	  

empty	  deq()	  
Queue	  

Base	  	  
objects	  

©	  2015	  P.	  Kuznetsov	  	  



7 

Correctness"
What does it mean for an implementation to be 

correct?"

§  Safety ≈ nothing bad ever happens"
ü Can be violated in a finite execution, e.g., by 

producing a wrong output or sending an incorrect 
message"

ü What the implementation is allowed to output"

§  Liveness ≈ something good eventually happens"
ü Can only be violated in an infinite execution, e.g.,"
by never producing an expected output "
ü Under which condition the implementation outputs"

©	  2015	  P.	  Kuznetsov	  	  



8 

In our context"
Processes access an (implemented) abstraction 

(e.g., bounded buffer, a queue, a mutual 
exclusion) by invoking operations"

§  An operation is implemented using a sequence 
of accesses to base objects "
§ E.g.: a bounded-buffer using reads, writes, TAS, etc. "

§  A process that never fails (stops taking steps) in 
the middle of its operation is called correct"
§ We typically assume that a correct process invokes 

infinitely many operations, so a process is correct if it 
takes infinitely many steps"

©	  2015	  P.	  Kuznetsov	  	  



9 

Runs"
A system run is a sequence of events"

ü E.g., actions that processes may take"

Σ –  event alphabet"
ü  E.g., all possible actions"

Σ*U{∞} is the set all finite and infinite runs"
""

A property P is a subset of Σ*U{∞} "
An implementation satisfies P if every its run is 

in P "
"
"
"
"
"
"

©	  2015	  P.	  Kuznetsov	  	  



10 

Safety properties"
P is a safety property if:"
"
§  P is prefix-closed: if σ is in P, then each prefix of 
σ is in P"

"
§  P is limit-closed:  for each infinite sequence of 

traces σ0, σ1, σ2,…, such that each σi is a prefix 
of σi+1 and each σi is in P, the limit trace σ is in P"

(Enough to prove safety for all finite traces of an 
algorithm)"

"
"

©	  2015	  P.	  Kuznetsov	  	  



11 

Liveness properties"
"
P is a liveness property if every finite σ in Σ* has 

an extension in P  "
"
(Enough to prove liveness for all infinite runs) "
"
"
A liveness property is dense: intersects with 

extensions of every finite trace  "

©	  2015	  P.	  Kuznetsov	  	  



12 

Safety? Liveness?"

§  Processes propose values and decide on values:"
""
!Σ=Ui,v{proposei(v),decidei(v)}U{base-object accesses}!
"
"

ü Every decided value was previously proposed"
ü No two processes  decide differently"
ü Every correct (taking infinitely many steps) 

process eventually decides"
ü No two correct processes decide differently"

"

"
©	  2015	  P.	  Kouznetsov	  	  



13 

Quiz: safety"

1.  Let S be a safety property. Show that if all finite 
runs of an implementation I are safe (belong to 
S) that all runs of I in are safe"

2.  Show that every unsafe run σ has an unsafe 
finite prefix σ’: every extension of σ’ is unsafe"

3.  Show that every property is a mixture of a safety 
property and a liveness property"

"

"
©	  2015	  P.	  Kouznetsov	  	  



14 

How to distinguish safety and liveness: 
rules of thumb"

Let P be a property (set of runs)"
§  If every run that violates P is infinite"

ü P is liveness"
§  If every run that violates P has a finite prefix 

that violates P "
ü P is safety"

§  Otherwise, P is a mixture of safety and 
liveness"
"

© 2015 P. Kuznetsov !



15 

Example: implementing a 
concurrent queue"

What is a concurrent FIFO queue?"
"
ü FIFO means strict temporal order"
ü Concurrent means ambiguous temporal order"



16 © Nir Shavit 

When we use a lock…"
shared  

 items[]; 
 tail, head := 0  

 
deq() 
 
  lock.lock();                    
    if (tail = head)         
       x := empty; 
    else  
       x := items[head];       
       head++;       
  lock.unlock(); 
  return x;       
  



17 © Nir Shavit 

Intuitively…"
deq() 
 
  lock.lock();                    
    if (tail = head)         
       x := empty; 
    else  
       x := items[head];       
       head++;       
  lock.unlock(); 
  return x;       
     
  

All	  modificaCons	  	  
of	  queue	  are	  done	  	  
in	  mutual	  exclusion	  



18 

time 

It Works"

q.deq 

q.enq 

 enq  deq 

   lock() unlock() 

lock() unlock() 
Behavior	  is	  

“SequenCal”	  

enq 

deq 

We	  describe	  
the	  concurrent	  via	  the	  sequenCal	  	  

© Nir Shavit 



19 

Linearizability (atomicity):  
A Safety Property"

§  Each complete operation should"
ü “take effect”"
ü Instantaneously"
ü Between invocation and response events"

§  A concurrent execution is correct if its 
“sequential equivalent” is correct"

(To be defined formally later)"



20 

Why not using one lock?"
§  Simple – automatic transformation of the 

sequential code"
§  Correct – linearizability for free"
§  In the best case, starvation-free: if the lock is 

“fair” and every process cooperates, every 
process makes progress  "

§  Not robust to failures/asynchrony"
ü  Cache misses, page faults, swap outs"

§  Fine-grained locking?"
ü  Complicated/prone to deadlocks "

©	  2015	  P.	  Kuznetsov	  	  



21 

Liveness properties"
§  Deadlock-free:!

ü If every process cooperates (takes enough steps), some 
process makes progress !

§  Starvation-free: !
ü If every process cooperates, every process makes 

progress "

§  Lock-free (sometimes called non-blocking): "
ü Some active process makes progress"

§  Wait-free: "
ü Every active process makes progress"

§  Obstruction-free:  "
ü Every process makes progress if it executes in isolation"

©	  2015	  P.	  Kuznetsov	  	  



22 

Periodic table of liveness properties  
[©	  2013	  Herlihy&Shavit]"

© 2015 Kuznetsov!

independent   
non-blocking!

!

dependent !
non-blocking!

!

dependent!
blocking!

every process 
makes progress"

wait-freedom" obstruction-
freedom"

starvation-freedom"

some process 
makes progress"

lock-freedom" ?" deadlock-freedom"

What are the relations (weaker/stronger) between these 
progress properties?"

"


