
Declarative, Distributed Configuration1

Sanjai Narain, Dana Chee, Chung-Min Chen, Brian Coan, Ben Falchuk, Dov Gordon, Jon Kirsch,

Siun-Chuon Mau, Aditya Naidu, Simon Tsang, Applied Communication Sciences, USA

Sharad Malik, Shuyuan Zhang, Princeton University, USA

It is well documented that configuration errors account for 50% to 80% of downtime and vulnerabilities
in networks. The Assured and Dynamic Configuration(ADC) system [1, 2, 3] offers a set of fundamental
tools to help eliminate such errors. These tools are for requirement specification, configuration
synthesis, diagnosis, repair, verification, moving-target defense and symbolic reachability analysis. These
exploit the power of modern SAT and SMT solvers and are being transitioned to real enterprises.
ADC’s specification language contains fundamental logical structures and relationships associated with
different protocols. It formalizes the idea that network security and functionality requirements as
specified, for example, in architecture diagrams, can be regarded as a superposition of such logical
structures and relationships. These are modeled as constraints on configuration variables within and
across components. Superposition is accomplished with Boolean operators.

A SAT or SMT solver is used to solve requirements to compute values of configuration variables
satisfying all requirements. In contrast, traditional configuration languages force one to specify the
value of every configuration variable, in effect, forcing one to manually solve the constraint satisfaction
problem.

As shown in Figure 1. ADC System ArchitectureADC’s
overall architecture is the same as that of Software-
Defined Networking (SDN). It assumes a global
controller at which one can design and generate the
configurationfor the network as a whole. It also
assumes an out-of-band network over which the
controller monitors the current configurations and
downloads new ones to components.

The major difference with SDN is that ADC assumes
full-featured routers, not just those that do forwarding
and access-control. Thus, ADC does not require one to
reimplement the well engineered routing, security and
performance management protocols available in
modern routers. In fact, it lets one take full advantage
of these by letting one just correctly configure these
and have them do the “heavy lifting”. For example,
cryptographic separation of multiple fault-tolerant
virtual private networks can be accomplished by
configuring IPSec, GRE, RIP and OSPF [1, 2].

The Distributed ADC (DADC) system removes the
assumptions of a centralized controller and out-of-band control network. Decentralization is

1
 This work has been funded by Air Force Research Laboratory under contract FA8750-13-C-0030. "Approved for

Public Release; Distribution Unlimited : 88ABW-2014 1877 22 April 2014"

System Requirement

Network Components

ADC

New

Configuration

Current

Configuration

Figure 1. ADC System Architecture

accomplished by a new Configuration-Agreement Protocol (CAP) based on the total ordering guarantees
of group communication protocols such as JGroups, and the determinism of SAT and SMT solvers.

The challenge of in-band configuration is maintaining the invariant that the controller does not lose
connectivity to a node before it has reconfigured it. This invariant is encoded as a constraint on current
and final static routes and solved by a SAT or SMT solver to compute a safe reconfiguration order. If only
dynamic routing is used then no constraint solver is used. The reconfiguration order is computed from a
reverse breadth-first search traversal of the network as a tree with the controller as root.

As shown in Figure 2, the set of network components is partitioned into enclaves each controlled by a
DADC controller. Each controller has the full functionality of a centralized ADC server. Controllers
communicate with each other over a CAP bus. Also communicating over this bus are Enterprise
Management Systems and Intrusion Detection and Response Systems that provide information about
the dynamic state of components: up, down, compromised.

CAP guarantees that messages
are delivered to all controllers in
the same order. Therefore it
presents to each controller an
identical view of the dynamic
state of all components. Each
controller also has the identical
System Requirement governing
the whole network. Upon receipt
of a message, each controller
solves the System Requirement
in the context of the current
dynamic state. Since SAT or SMT
solvers that we use are deterministic, each controller arrives at identical conclusions about the new
configurations of all components, not just its own. Each controller then applies configurations relevant
to its enclave to the enclave components, and the entire network converges to a new configuration
satisfying System Requirement.

We are currently exploring the application of DADC ideas to SDN and vice versa. For example, a DADC-
like domain-specific constraint language and SAT/SMT solvers could simplify controller programming.
CAP ideas could be used to design distributed SDN controllers. DADC’s in-band configuration algorithm
could be used to design similar algorithms for SDN. DADC could be used to manage a hybrid legacy and
SDN network. Conversely, SDN languages like Frenetic [4] may be used to improve DADC’s specification
language.

References

1. Sanjai Narain, Sharad Malik. ConfigAssure: A Science of Configuration. Proceedings of MILCOM,
2013, San Diego, CA.

2. Sanjai Narain, Dana Chee, Sharad Malik. Demonstrating Assured and Dynamic Configuration Over a
Live, Emulated Network.pdf

3. Sanjai Narain, Sharad Malik, Ehab Al-Shaer. Towards Eliminating Configuration Errors in Cyber
Infrastructure. Proceedings of IEEE Symposium on Configuration Analytics and Automation,
Arlington, VA, 2011.pdf

4. Frenetic: A Family of Network Programming Languages. http://www.frenetic-lang.org/

DADC-2DADC-1 DADC-3 DADC-4

EMSIDRS

Network and Host Components

Configuration Agreement Protocol (CAP) Logical Bus

Figure 2: Distributed ADC system architecture

http://www.argreenhouse.com/papers/narain/ADC-Live-Demo.pdf
http://www.argreenhouse.com/papers/narain/ADC-Standalone-Demo.pdf

