
The Universal Automaton

Sylvain Lombardy1

Jacques Sakarovitch2

1 Institut Gaspard Monge
Université de Marne-la-Vallée
5, boulevard Descartes
Champs-sur-Marne
77454 Marne-la-Vallée Cedex 2, France
Sylvain.Lombardy@univ-mlv.fr

2 École Nationale Supérieure des Télécommunications
46, rue Barrault
75634 Paris Cedex 13, France
Jacques.Sakarovitch@enst.fr

Abstract

This paper is a survey on the universal automaton, which is an au-
tomaton canonically associated with every language. In the last forty
years, many objects have been defined or studied, that are indeed
closely related to the universal automaton.

We first show that every automaton that accepts a given lan-
guage has a morphic image which is a subautomaton of the universal
automaton of this language. This property justifies the name “univer-
sal” that we have coined for this automaton. The universal automaton
of a regular language is finite and can be effectively computed in the
syntactic monoid or, more efficiently, from the minimal automaton of
the language. We describe the construction that leads to tight bounds
on the size of the universal automaton. Another outcome of the effec-
tive construction of the universal automaton is the computation of a
minimal NFA accepting a given language, or approximations of such
a minimal NFA. From another point of view, the universal automaton
of a language is based on the factorisations of this language, and is
thus involved in the problems of factorisations and approximations of
languages. Last, but not least, we show how the universal automaton
gives an elegant solution to the star height problem for some classes
of languages (pure-group or reversible languages).

With every language is canonically associated an automaton, called the
universal automaton of the language, which is finite whenever the language
is regular. It is large, it is complex, it is complicated to compute, but it con-
tains, hopefully, many interesting informations on the language. In the last
forty years, it has been described a number of times, more or less explicitly,

Erich Grädel, Jörg Flum, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 467–514.

468 S. Lombardy, J. Sakarovitch

more or less approximately, in relation with one or another property of the
language. This is what we review here systematically.

1 A brief history of the universal automaton

The origin of the universal automaton is not completely clear. A well-
publicized note [ADN92] credits Christian Carrez of what seems to be the
first definition of the universal automaton in a report that remained un-
published [Car70]. The problem at stake was the computation of the, or
of a, NFA with minimal number of states that recognizes a given regular
language L. And Carrez’s report states the existence of an automaton UL,
very much in the way we do in Section 2, with the property that it contains
a morphic image of any automaton which recognizes L, and thus a copy of
any minimal NFA which recognizes L.

At about the same time, Kameda and Weiner tackled the same problem
and, without stating the existence of UL, described a construction for a NFA
recognizing L with minimal number of states [KW70], a construction which
we recognize now as being similar to the construction of UL we propose in
Section s.con-uni-aut.

Soon afterwards, in another context, and with no connexion of any kind
with the previous problem (cf. Section 6) Conway proposed the definition
of what can be seen also as an automaton attached to L and which is again
equal to UL [Con71] (cf. Section 3.1).

Among other work related to UL, but without reference to the previous
one, let us quote [CNP91] and [MP95]. Eventually, we got interested in
the universal automaton as we discovered it contains other informations on
the languages that those studied before (see Section 7.1) and we made the
connexion between the different instances [LS03, LS02].

2 Creation of the universal automaton

No wonder, we first fix some notations. IfX is a set, P (X) denote the power
set of X , i.e. the set of subsets of X . We denote by A∗ the free monoid
generated by a set A. Elements of A∗ are words, the identity of A∗ is the
empty word, written 1A∗ . The product in A∗ is denoted by concatenation
and is extended by additivity to P (A∗): XY = {uv | u ∈ X, v ∈ Y }.

An automaton A is a 5-tuple A = 〈Q,A,E, I, T 〉, where Q is a finite set
of states, A is a finite set of letters, E, the set of transitions, is a subset
of Q × A× Q, and I (resp. T), the set of initial (resp. terminal) states, is
a subset of Q. Such an automaton A defines an action1 ⊲ of A∗ on P (Q),

1 Normally, we would have denoted the action by a simple ·; but later, in Section 5,
we shall need to consider an action on the right and an action on the left, hence a
lateralized symbol which makes the reading easier. Moreover, when necessary, i.e.

when several automata are considered at the same time, we shall even specify as a

The Universal Automaton 469

by setting first for all p ∈ Q and all a ∈ A

p ⊲ a = {q ∈ Q | (p, a, q) ∈ E},

and then by additivity and the definition of an action for all X ∈ P (Q)

X ⊲ 1A∗ = X , X ⊲ a =
⋃

p∈X

p ⊲ a , X ⊲ wa = (X ⊲ w) ⊲ a.

The behaviour |A| (or the accepted language) of an automaton A =
〈Q,A,E, I, T 〉 is the set of words that label a path from an initial state to
a terminal state, i.e.

|A| = {w ∈ A∗ | ∃i ∈ I, t ∈ T i
w

−−→
A

t} = {w ∈ A∗ | I ⊲ w ∩ T 6= ∅}.

A subset of A∗ is called a language and a language is regular if it is the
behaviour of some finite automaton.

Let A = 〈Q,A,E, I, T 〉 be an automaton over A∗. For each state p of A,
the past of p is the set of labels of computation which go from an initial
state of A to p, and we write it PastA(p); i.e.

PastA(p) = {w ∈ A∗ | ∃i ∈ I i
w

−−→
A

p} = {w ∈ A∗ | p ∈ I ⊲ w}.

Dually, the future of p is the set of labels of computations that go from p
to a final state of A and we write it FutA(p), i.e.:

FutA(p) = {w ∈ A∗ | ∃t ∈ T p
w

−−→
A

t} = {w ∈ A∗ | p ⊲ w ∩ T 6= ∅}.

Likewise, for each pair of states (p, q) of A, the transitional language of
(p, q) is the set of labels of computations that go from p to q and we write
it TransA(p, q), i.e.:

TransA(p, q) = {w ∈ A∗ | p
w

−−→
A

q} = {w ∈ A∗ | q ∈ p ⊲ w}.

For each p, q in Q, we clearly have

[PastA(q)] [FutA(q)] ⊆ |A|. (∗)

Thus, in every automaton, each state induces a set of ‘factorisations’ —
which is the name we give to equations of the type (∗) — of the language it
recognizes. The starting point of the construction is to prove the converse of
this observation, namely that we can construct from the set of factorisations
of a language L of A∗ an automaton which accepts L.

subscript the automaton that defines the action in action: p ⊲
A

a.

470 S. Lombardy, J. Sakarovitch

q

Figure 1. Representation of the past and future of q in A

2.1 Factorisations of a language

In the rest of this paper, L is a language of A∗. We call subfactorisation
of L a pair (X,Y) of languages of A∗ such that XY ⊆ L and factorisation
a subfactorisation (X,Y) which is maximal for the inclusion, that is, if X ⊆
X ′, Y ⊆ Y ′ and X ′Y ′ ⊆ L then X = X ′ and Y = Y ′. We write FL

for the set of factorisations of L. If (X,Y) is in FL then X is called a left
factor and Y a right factor of L. The maximality condition on factorisations
already implies that the left and right factors are in a 1-1 correspondence.
The notion of quotient allows to be even more precise.

The left quotient (resp. the right quotient) of L by a word v is the
language2 v−1L = {w ∈ A∗ | vw ∈ L} (resp. the language Lv−1 = {u ∈
A∗ | uv ∈ L}).

If WZ ⊆ L then Z is contained in Y =
⋂

w∈W w−1L and thus Y is
maximum such that WY ⊆ L. From which a series of properties are easily
derived, that are worth stating for further usage, with, or without, explicit
reference.

Proposition 2.1.

(i) For every (X,Y) in FL,

Y =
⋂

x∈X

x−1L and X =
⋂

y∈Y

Ly−1.

(ii) Conversely, any intersection of left quotients is a right factor, and any
intersection of right quotients is a left factor.

(iii) If W and Z are such that WZ ⊆ L, then there exists (at least) one
factorisation (X,Y) of L such that W ⊆ X and Z ⊆ Y

(iv) The property ‘(X,Y) is a factorisation of L’ induces a bijection be-
tween the left and right factors of L.

2 Sometimes called residual of L.

The Universal Automaton 471

Corollary 2.2. A language is regular if, and only if, it has a finite number
of factorisations.

Remark 2.3. We write Lt for the transpose of L, that is, the set of mir-
ror image of words in L. If (X,Y) is a factorisation of L, (Y t, X t) is a
factorisation of Lt. By duality, we unterstand the change from L to Lt.

2.2 Universal automaton of a language

The definition of factorisations of a language allows in turn to set up the
definition we are aiming at.

Definition 2.4. The universal automaton UL of L is defined as UL =
〈FL, A,E

L, IL, T L〉, where:

IL = {(X,Y) ∈ FL | 1A∗ ∈ X} , T L = {(X,Y) ∈ FL | 1A∗ ∈ Y },

EL = {
(

(X,Y), a, (X ′, Y ′)
)

∈ FL×A×FL | XaY ′ ⊆ L}.

From the maximality of the factorisations follows:

(X,Y) ∈ IL ⇐⇒ Y ⊆ L , (X,Y) ∈ T L ⇐⇒ X ⊆ L, (1.1)
(

(X,Y), a, (X ′, Y ′)
)

∈ EL ⇐⇒ Xa ⊆ X ′ ⇐⇒ aY ′ ⊆ Y . (1.2)

The description of computations in the universal automaton is then a gen-
eralisation of the above equation.

Lemma 2.5. For all (X,Y) and (X ′, Y ′) in FL and for every w in A+, it
holds:

(X,Y)
w

−−→
UL

(X ′, Y ′) ⇐⇒ XwY ′ ⊆ L⇐⇒ Xw ⊆ X ′ ⇐⇒ wY ′ ⊆ Y .

Proof. By induction on |w|. The property holds true for |w| = 1, by defini-
tion of EL and by (1.2).

Suppose that (X,Y)
aw

−−−→
UL

(X ′, Y ′); there exists then (X ′′, Y ′′) in FL

such that (X,Y)
a

−−→
UL

(X ′′, Y ′′) and (X ′′, Y ′′)
w

−−→
UL

(X ′, Y ′). We thus have

Xa ⊆ X ′′ and X ′′w ⊆ X ′, hence XawY ′ ⊆ L.
Conversely, XawY ′ = [Xa] [wY ′] ⊆ L implies that there exists (X ′′, Y ′′)
in FL such that Xa ⊆ X ′′ and wY ′ ⊆ Y ′′, thusXaY ′′ ⊆ L andX ′′wY ′ ⊆ L,
which, by induction hypothesis, gives (X,Y)

aw
−−−→
UL

(X ′, Y ′). q.e.d.

A fundamental property of the universal automaton is given by the follow-
ing.

Proposition 2.6. If (X,Y) is a factorisation of L, it then holds:

PastUL((X,Y)) = X and FutUL((X,Y)) = Y .

472 S. Lombardy, J. Sakarovitch

Proof. The definition of T L itself states that FutUL((X,Y)) contains 1A∗ if,
and only if, Y contains 1A∗ . Let w be a non empty word in FutUL((X,Y)),

that is, (X,Y)
w

−−→
UL

(X ′, Y ′) with 1A∗ in Y ′. By Lemma 2.5, XwY ′ ⊆ L;

as 1A∗ is in Y ′, Xw ⊆ L and w is in Y by maximality of Y . Therefore
FutUL((X,Y)) ⊆ Y .

Conversely, if (X,Y) is in FL, XY = [XY] [1A∗] ⊆ L and there exists
a right factor Y ′, containing 1A∗ , such that XY Y ′ ⊆ L. By Lemma 2.5
again, Y ⊆ FutUL((X,Y)).

The other equality is obtained by duality. q.e.d.

As 1A∗L = L1A∗ = L, L is both a right and a left factor, to which
correspond the left factor Xs and the right factor Ye. We call (Xs, L) the
starting factorisation, and (L, Ye) the ending factorisation.3

Corollary 2.7. UL recognises L.

Proof. For any factorisation (X,Y) in IL, Y ⊆ L since 1A∗ ∈ X . Then
|UL| =

⋃

(X,Y)∈IL FutUL((X,Y)) =
⋃

(X,Y)∈IL Y is contained in L. Since

(Xs, L) ∈ IL then |UL| = L. q.e.d.

The universal automaton is canonically associated with L, like the min-
imal deterministic automaton or the minimal co-deterministic automaton;
unlike them, it is not lateralised, that is, not oriented from left to right nor
from right to left. It is a restatement of Corollary 2.2 that L is regular
if, and only if, UL is finite. And the universal automaton ULt of Lt is the
transpose automaton of UL.

Example 2.8.

(i) Let L1 = A∗abA∗. The set FL1
= {u, v, w} is easily computed: u =

(A∗, A∗abA∗), v = (A∗aA∗, A∗bA∗) and w = (A∗abA∗, A∗). Figure 2
shows UL1

.

(ii) Figure 2 also shows the universal automaton of L2 = aA∗. This
example allows us to see that a universal automaton is not necessarily
trim: a factorisation (∅, A∗) (resp. (A∗,∅)), if it exists, corresponds
to a non-accessible (resp. a non-co-accessible) state.

2.3 Universality of the universal automaton

We begin with the definition of morphism of automata and some related
notions that will be central to our purpose.

3 Conway, who did not define the universal automaton as such, called them initial and
final factorisation respectively, an option that is not open to us.

The Universal Automaton 473

u v w
a

a+ b

b

a+ b

a+ b a+ b a+ b

a+ b

(1 + aA∗, aA∗) (aA∗, A∗)

(A∗,∅)

a

a+ b
a+ b a+ b

a a+ b

a+ b

Figure 2. The universal automaton of L1 (left) and of L2 (right)

2.3.1 Morphisms, quotients and minimal automata

In the sequel, A = 〈Q,A,E, I, T 〉 and B = 〈R,A, F, J, U〉 are two automata
over A∗.

Definition 2.9. A map ϕ from Q into R is a morphism of automata, and
we write ϕ : A → B if, and only if,

ϕ(I) ⊆ J, ϕ(T) ⊆ U, and ϕ(E) = {
(

ϕ(p), a, ϕ(q)
)

| (p, a, q) ∈ E} ⊆ F .

The morphism ϕ is surjective if B = 〈ϕ(Q), A, ϕ(E), ϕ(I), ϕ(T)〉 (we also
say that B is a morphic image of A).

If ϕ : A → B is a morphism, the image of a computation in A is a
computation in B, with the same label, which directly implies the following.

Proposition 2.10. Let ϕ be a morphism from A into B. Then, for every
state p of A,

PastA(p) ⊆ PastB(ϕ(p)) , FutA(p) ⊆ FutB(ϕ(p)), (1.3)

and then
|A| ⊆ |B|. (1.4)

The notion of morphism is not lateralised and if ϕ : A → B is a morphism
then so is ϕ : At → Bt. If ϕ : A → B is a surjective morphism and if moreover
|A| = |B|, then any two states p and q of A such that ϕ(p) = ϕ(q) are said
to be mergible (in A).

Proposition 2.11. The universal automaton UL has no mergible states.

Proof. Suppose, by way of contradiction, that ϕ : UL → C is a surjective
morphism and that |C| = L.

If ϕ((X,Y)) = ϕ((X ′, Y ′)) = s the combination of Proposition 2.6 and
Proposition 2.10 yields X ∪ X ′ ⊆ PastC(s) and Y ∪ Y ′ ⊆ FutC(s) from
which follows (X ∪X ′)(Y ∪ Y ′) ⊆ PastC(s)FutC(s) ⊆ L, impossible by the
maximality of factorisations. q.e.d.

474 S. Lombardy, J. Sakarovitch

Definition 2.12. A morphism ϕ : A → B is Out-surjective if

(i) for every (r, a, s) in F and every p such that ϕ(p) = r there exists q
such that ϕ(q) = s and (p, a, q) in E;

(ii) for every p in Q, if ϕ(p) is in U then p is in T .

The notion of Out-surjectivity is lateralised and ϕ : A → B is said to
be In-surjective if ϕ : At → Bt is Out-surjective. If ϕ : A → B is both
surjective and Out-surjective (resp. and In-surjective) B — and ϕ — is
called a quotient (resp. a co-quotient) of A. An easy proof by induction on
the length of the computations establishes the following.

Proposition 2.13. If the automaton B is a quotient (resp. a co-quotient)
of the automaton A then |A| = |B|.

We thus have three distinct notions of maps for automata: morphism,
quotient, and co-quotient, that lead to three distinct notions of minimality.
The minimal quotient of a (non deterministic) automaton A exists and is
unique, canonically associated with A — not with |A| unless A is determin-
istic —, defined by a generalisation of the so-called Nerode equivalence, and
computed, if necessary, by a kind of Moore algorithm. The same is true of
co-quotient, up to a transposition. The notion of minimality with respect
to morphism is slightly more tricky and unicity is lost.

Definition 2.14. Let A be an automaton over A∗ that accepts a lan-
guage L. We say that A is m-minimal if the following two properties hold:

(i) every proper subautomaton of the trim part of A accepts a language
that is strictly contained in L;

(ii) every proper morphic image of A accepts a language that contains
strictly L.

In other words, an automaton is m-minimal if every state is necessary
–unless it is a sink or a co-sink– and no two states are mergible.

We have decided to coin that new term ‘m-minimal’ for there are too
many ‘minimal’ around. A minimal quotient is not necessarily m-minimal
and the sentence ‘A minimal quotient is not necessarily minimal ’ sounds
definitively too awkward. Of course, neither a minimal quotient, nor a m-
minimal automaton have a minimal number of states for accepting the same
language. Some consistency is given by the following.

Proposition 2.15. The minimal automaton of a language L (which is the
minimal quotient of any deterministic automaton that recognises L) is m-
minimal.

The Universal Automaton 475

Proof. Every state p of the minimal automaton of L is characterised by its
future which is equal to u−1L, for any u in its past. If p and q are two
distinct states there is one, say p, whose future contains a word w which is
not in the future of q. For any v in the past of q, w does not belong to v−1L,
that is, vw does not belong to L and still would be accepted in any morphic
image where p and q were merged. q.e.d.

2.3.2 Morphisms into the universal automaton

The following property of the universal automaton is the one that has been
appealing to most people. We call it ‘universality property’ and the univer-
sal automaton gets its name from it.

Theorem 2.16. If A is an automaton that recognises any subset K of L,
then there exists a morphism from A into UL.

This result is established via the definition of a map from A into UL,
canonically associated with A, and which is then shown to be a morphism.

Definition 2.17. Let A = 〈Q,A,E, I, T 〉 be an automaton that recognises
a subset K of L. The (left) canonical map ϕ : Q→ FL is defined by ϕ(p) =
(Xp, Yp) with

Yp = {v ∈ A∗ | PastA(p)v ⊆ L} =
⋂

u∈PastA(p)

u−1L. (1.5)

In other words, ϕ is defined by associating with every state p of A the
factorisation of L with the largest possible right factor that is compatible
with the past of p in A.

Proof of Theorem 2.16. Let p in Q and ϕ(p) = (Xp, Yp). It follows directly
from the definition that PastA(p) ⊆ Xp and FutA(p) ⊆ Yp from which we
deduce that ϕ(I) ⊆ IL and ϕ(T) ⊆ T L.

Moreover, (p, a, q) in E implies PastA(p)a ⊆ PastA(q) from which one
deduces PastA(p)aYq ⊆ PastA(q)Yq ⊆ L hence aYq ⊆ Yp and by (1.2),
ϕ is a morphism, that will be called (left) canonical morphism (from A
to UL). q.e.d.

If we apply Theorem 2.16 to a m-minimal automaton A accepting L
we get a morphism from A into UL that has to be injective since A is
m-minimal. We have thus proved (see an example at Figure 3):

Corollary 2.18. Every m-minimal automaton accepting L is a subautoma-
ton of UL.

On the other hand, an automaton A accepting L and that has stricly
more states than UL is sent into UL by a morphism which is necessarily non
injective. We have thus proved:

476 S. Lombardy, J. Sakarovitch

u v w
a b

b a a+ b

u v w
a b

a+ b b a

u v w
a b

a+ b a+ b

Figure 3. Three m-minimal subautomata of UL1

Corollary 2.19. The universal automaton UL is the largest automaton
recognizing L without merging states.

Proposition 2.20. The universal automaton UL is minimal for the univer-
sality property.

Proof. Suppose C has the universality property (with respect to L). As UL

accepts L, there should be a morphism from UL into C; as UL has no merging
states, this morphism should be injective: C has at least as many states
as UL. q.e.d.

3 Exploration of the universal automaton

The universal automaton we have just defined may be seen in different ways,
from different perspective, bringing to light other characteristics and prop-
erties of this unique and canonical object. We consider here three of them.
The first one is Conway’s method, that yields the ‘fatest’ version of the
universal automaton. The second one follows a universal algebra track that
eventually makes easy and natural a geometric description of factorisations
that was presented by Courcelle, Niwinski and Podelski ([CNP91]). The
third one, due to Lombardy [Lom01] produces the most ‘emaciated’ ver-
sion, an automaton where only the minimal information is kept and where
an interesting and hidden structure is thus discovered, especially in the case
of pure group languages.

3.1 The factor matrix

We keep the previous notation: UL = 〈FL, A,E
L, IL, T L〉 is the universal

automaton of the language L of A∗. Automata are matrices (and vectors);
this is the way we look at them in this section. As we are interested in
matrices (and vectors) of dimension FL, we use throughout the section the
following notation: if M is a square matrix of dimension FL and for brevity,
we write MX,Y ′ instead of M(X,Y),(X′,Y ′) for the entry at row (X,Y) and
column (X ′, Y ′), for all (X,Y) and (X ′, Y ′) in FL. For a row-vector (resp.
a column-vector) V we write VY (resp. VX) instead of V(X,Y). Proposi-
tion 2.1 (iv) legitimates this shorthand.

A first example is EL itself, viewed as a matrix with entries in P (A∗)
(indeed in P (A)):

EL

X,Y ′ = {a ∈ A | XaY ′ ⊆ L}

The Universal Automaton 477

for all factorisations (X,Y) and (X ′, Y ′) in FL. On the other hand, the left
factors are naturally ordered by inclusion, an order that carries over on FL:

(X,Y) 6 (X ′, Y ′) ⇐⇒ X ⊆ X ′ ⇐⇒ Y ′ ⊆ Y .

As any relation on FL, this order is described by a Boolean matrix CL:

∀(X,Y), (X ′, Y ′) ∈ FL CL

X,Y ′ = 1 ⇐⇒ X ⊆ X ′ ⇐⇒ XY ′ ⊆ L;

and since CL is the matrix of a reflexive and transitive relation, it holds:

(CL)∗ = CL. (1.6)

The characterisation of EL by Equation (1.2) yields that CL

X,Y ′ = 1 implies,
for all (X ′′, Y ′′) in FL, EL

X′,Y ′′ ⊆ EL

X,Y ′′ and EL

X′′,Y ⊆ EL

X′′,Y ′ , which
means:

CL · EL = EL · CL = EL. (1.7)

Definition 3.1. The factor matrix of a language L is the matrix FL of
dimension FL with entries in P (A∗) defined by:

FL

X,Y ′ = {w ∈ A∗ | XwY ′ ⊆ L}

for all factorisations (X,Y) and (X ′, Y ′) in FL. Every entry of FL is called
a factor of L.

By definition, FL

X,Y ′ is the maximal Z such that XZY ′ ⊆ L. By defini-

tion4 also, FL ∩{1A∗} = CL and FL ∩{A} = EL. Lemma 2.5 states exactly
that

FL ∩ {A+} = (EL)+ and thus FL = CL + (EL)+ = CL + (EL)∗.

Classical formulas for the star of a sum, together with (1.6) and (1.7) yields:

Proposition 3.2. FL = (CL + EL)∗.

From which one deduces:

Corollary 3.3. FL = (FL)∗.

A direct consequence of which is:

∀(X,Y), (X ′, Y ′), (X ′′, Y ′′) ∈ FL FL

X,Y ′FL

X′,Y ′′ ⊆ FL

X,Y ′′ . (1.8)

Conversely, we have:

4 It should be obvious that F L ∩ K is the matrix of dimension FL obtained by taking
the intersection of every entry of F L with K.

478 S. Lombardy, J. Sakarovitch

Lemma 3.4. If W,Z ⊆ A∗ and (X,Y), (X ′, Y ′) in FL are such that WZ ⊆
FL

X,Y ′ then there exists (X ′′, Y ′′) in FL such that W ⊆ FL

X,Y ′′ and Z ⊆
FL

X′′,Y ′ .

Proof. If WZ ⊆ FL

X,Y ′ then XWZY ′ ⊆ L and there exists a factorisa-
tion (X ′′, Y ′′) that dominates the subfactorisation (XW,ZY ′) of L. The
inclusions XW ⊆ X ′′ and ZY ′ ⊆ Y ′′ yield the conclusion. q.e.d.

A matrix, together with initial and final vectors, is an automaton and one
can see 〈FL, A, F

L, IL, T L〉 as a generalised automaton where the transitions
are labelled by the factors of L, instead of by letters. Figure 4 shows the
factor matrix of the languages L1 and L2 of Example 2.8 in this way.

u v w
A∗aA∗

A∗

A∗bA∗

A∗

A∗ A∗ A∗

A∗abA∗

A∗

(1 + aA∗, aA∗) (aA∗, A∗)

(A∗,∅)

aA∗

A∗

A∗ A∗

aA∗ A∗

A∗

Figure 4. The factor matrix of L1 (left) and of L2 (right)

The starting and ending factorisations play a special role in the factor
matrix. Since XsL = LYe = L, we have XsLYe = L where L is obviously
maximal: FL

Xs,Ye
= L.

For every (X,Y) in FL, FL

Xs,Y is maximal in XsF
L

Xs,Y Y ⊆ L thus in the
factorisation (FL

Xs,Y , Y) of Ys = L, hence FL

Xs,Y = X and dually FL

X,Ye
= Y .

3.2 The syntactic nature of the universal automaton

All that has been done so far for languages, that is, subsets of a free monoid,
could have easily been done as well for subsets in any monoid: the freeness
of the base monoid A∗ was not involved, at the very most the generators
of A∗ were considered but this also could have been bypassed, especially
with the help of the factor matrix. If M is a monoid and K a subset of M ,
a subfactorisation of K is a pair (X,Y) of subsets of M such that XY ⊆ K
and a factorisation is a subfactorisation (X,Y) that is maximal for the
inclusion, that is, if X ⊆ X ′, Y ⊆ Y ′ and X ′Y ′ ⊆ K then X = X ′ and
Y = Y ′. We write FK for the set of factorisations of K. If (X,Y) is in FK

then X is called a left factor and Y a right factor of K. And so on.
On the other hand, the study of regular languages relies heavily on

the notion of morphisms (of monoids) and that of syntactic monoid (of a
language). A language L of A∗ is said to be recognised by a morphism α,

The Universal Automaton 479

α : A∗ → N , if α−1(α(L)) = L or, which is the same, if L is a union of
classes for the map equivalence of α, that is a congruence of A∗. The same
could be said of a subset K, replacing L, of a monoid M , replacing A∗. The
quotient of A∗ by the coarsest congruence that saturates L is the syntactic
monoid of L, denoted Synt(L). A language of A∗, a subset of a monoid M ,
is said to be recognisable if it is recognised by a morphism into a finite
monoid, or, which is the same, if its syntactic monoid is finite.

We like to say that a property is ‘syntactic’ if true for a language L,
or a subset K, recognised by a surjective morphism α, it is true for α(L)
or α(K). The factorisations, the universal automaton, are ‘syntactic ob-
jects’, as shown by the following.

Proposition 3.5. Let L be a language of A∗, recognised by a surjective
morphism α.

(i) Any factor of L is recognised by α.

(ii) If (X,Y) is a factorisation of L, (α(X), α(Y)) is a factorisation of α(L).

(iii) α establishes a bijection between the factorisations of L and those
of α(L).

Proof. Let (X,Y) be a factorisation of L: XY ⊆ L. Then α(X)α(Y) ⊆
α(L) and (α(X), α(Y)) is a subfactorisation of α(L) which we suppose
dominated by a factorisation (U, V). From α(X) ⊆ U and α(Y) ⊆ V
we deduce X ⊆ α−1(α(X)) ⊆ α−1(U) and Y ⊆ α−1(α(Y)) ⊆ α−1(V)
and α−1(U)α−1(V) ⊆ α−1(α(L)) = L. Since (X,Y) is a factorisation,
X = α−1(U) and Y = α−1(V).

This shows at the same time that, (i)X = α−1(α(X)) and Y = α−1(α(Y)),
and (ii) α(X) = U and α(Y) = V : (α(X), α(Y)) is a factorisation of α(L).

For the same reason, α−1(α(FL

X,Y)) = FL

X,Y for all factorisations (X,Y)
and (X ′, Y ′) of L.

Conversely, let (U, V) be a factorisation of α(L); then (α−1(U), α−1(V))
is a subfactorisation of α−1(α(L)) = L which we suppose dominated by
a factorisation (X,Y). Since (U, V) is a factorisation, neither U ⊆ α(X)
or V ⊆ α(Y) may be strict inclusion and (α−1(U), α−1(V)) is a factori-
sation. q.e.d.

Example 3.6. The syntactic monoid of L1 is M1 = {1M1
, x, y, t, z} defined

by the relations xx = x, yy = y, yx = t, and xy = xt = ty = z. The
syntactic morphism α : A∗ → M1 sends a onto x and b onto y. Then
α(L1) = z and the factorisations of z in M1 are ({z},M1), (M1, {z}),
and ({x, t, z}, {y, t, z}).

480 S. Lombardy, J. Sakarovitch

Let M be any monoid and let ψM : M×M →M be the map defined by
ψM ((u, v)) = uv. (This map is not a morphism unless M is commutative.)
It can be seen as the multiplication table of M : in a matrix T of size M×M ,
each element m appears as the entry (u, v) of T , for all (u, v) in ψ−1

M (m).
A factorisation of a subset K of M appears as a maximal rectangle in

the subset ψ−1
M (K) and this point of view, possible in the general case, is

without doubt the simplest when M is finite.

Example 3.7. The table of the monoid M1, cleverly laid out (we have
inverted the order of the elements x and y by row and column) is shown in
Figure 5. The factorisations of the subset {z} are made clearly visible with
rectangles. The figure also show the factor matrix of {z}, under the form
of an automaton labelled with subsets.

1M1
x y t z

y t y t z

x x z z z

t t z z z

z z z z z

u v w

{x, t, z}

M1

{y, t, z}

M1

M1 M1 M1

z

M1

Figure 5. Factorisations and factor matrix of {z} in M1

Example 3.8. We consider the (additive) monoid Z/3Z. Figure 6 shows
the factorisations of the subset {1, 2} and its universal automaton. The
states are labelled by the left factor of the corresponding factorisation, and
the label of the transitions is always the generator 1. This automaton is
thus (up the addition of the transitions having the label b) the universal
automaton of the language L3 = {w ∈ {a, b}∗ | |w|a 6≡ |w|b mod 3} since
Synt(L3) = Z/3Z and the image of L3 there is {1, 2}.

0 1 2

1 2 0

2 0 1

0 1 2

1,2 2,0 0,1

Figure 6. Factorisations and universal automaton of {1, 2} in Z/3Z

The Universal Automaton 481

Proposition 3.5 holds for a recognisable subset K of any monoid M .
This implies that such a subset is accepted by an automaton with a finite
number of states, whose transition matrix is the factor matrix FL. To
make this automaton really finite, the monoid is required to be generated
by a finite set G, and the transitions of the universal automaton of K are
then given by FL ∩ G. This automaton accepts K, and more precisely,
for every element x of K, for every factorisation x = x1 . . . xn of x over
G, the sequence (x1, . . . , xn) is the label of (at least) one computation of
the universal automaton. This is the reason why the universal automaton
relates to recognisable subsets and not to rational subsets.

Actually, a subset K of a monoid is rational if and only if there exists
a finite automaton such that for every element of K, there is at least a
factorisation of this element that labels a computation, whereas a subset K
of a finitely generated monoid is recognisable if and only if there exists a
finite automaton such that for every element of K, every factorisation of
this element (w.r.t. the generators) is accepted. 5

3.3 The écorché of the universal automaton

The order on the factorisations of L considered above (and induced by
the inclusion order on the left factors) can be used to give a simplified

description of UL. Indeed, if (X,Y)
a

−−→
UL

(X ′, Y ′) then,

∀(X1, Y1) ∈ FL (X1, Y1) 6 (X,Y) =⇒ (X1, Y1)
a

−−→
UL

(X ′, Y ′),

∀(X2, Y2) ∈ FL (X ′, Y ′) 6 (X2, Y2) =⇒ (X,Y)
a

−−→
UL

(X2, Y2).

Moreover, if (X,Y) is initial, any larger factorisation is initial and, dually,
if it is final, any smaller factorisation is final. The order on factorisations is
described by the matrix CL and what we have just observed is a rewording
of (1.7): CL · EL = EL · CL = EL and of IL = CL · IL and T L = T L · CL.

A solution of XaY ′ ⊆ L is maximal if

X1aY2 ⊆ L and X ⊆ X1 , Y ′ ⊆ Y2 =⇒ X = X1 and Y ′ = Y2

for all factorisations (X1, Y1) and (X2, Y2) in FL. That is, (X,Y) is as large

as possible, and (X ′, Y ′) as small as possible such that (X,Y)
a

−−→
UL

(X ′, Y ′).

We then define the matrix HL of dimension FL and with entries in P (A)
by

a ∈ HL

X,Y ′ =⇒ XaY ′ ⊆ L is maximal.

5 By virtue of Kleene Theorem, in the free monoid, recognisable subsets and rational
subsets are the same: they are regular languages.

482 S. Lombardy, J. Sakarovitch

On the other hand, we note that the starting factorisation (Xs, L) is the
smallest factorisation that is initial in UL and, dually, the ending factorisa-
tion (L, Ye) is the largest factorisation that is final. All these observation
amount to the following.

Proposition 3.9.

(i) HL is the minimal matrix such that EL = CL ·HL · CL;

(ii) IL is the Xs-th row of CL;

(iii) T L is the Ye-th column of CL.

Further economy in the description consists in considering the ”maxi-
mal” solutions of XY ′ ⊆ L that are not in FL and in defining the Boolean
matrix DL by:

DL

X,Y ′ = 1 ⇐⇒ (X,Y) ∈ max{(X ′′, Y ′′) ∈ FL | X ⊂ X ′}.

That is, DL

X,Y ′ is the matrix of the Hasse diagram of the order on factori-
sations.

This definition directly yields

Proposition 3.10. DL is the minimal matrix such that CL = (DL)∗.

Definition 3.11. We call écorché of UL the automaton:
EL = 〈FL, A,D

L ∪HL, {(Xs, L)}, {(L, Ye)}〉.

The automaton UL is then obtained from EL by backward and for-
ward closure of the spontaneous transitions. In the sequel, we rather draw
écorchés instead of universal automata, because they have less transitions
and it is often easier to understand the structure of the universal automaton
on the écorché.

Example 3.12. The factorisations of L1 = A∗abA∗ are totally ordered

u = (A∗, L1) > v = (A∗aA∗, A∗bA∗) > w = (L1, A
∗),

and so are the factorisations of L2 = aA∗:

(aA∗, A∗) 6 (1 + aA∗, aA∗) 6 (A∗,∅).

Figure 7 shows the écorché of the universal automata of these two languages.

In the case of pure-group languages, that is, languages whose syntac-
tic monoid is a group, the écorché of the universal automaton has a very
special form. The states of the strongly connected components are the pair-
wise uncomparable factorisations. The non spontaneous transitions, that is,

The Universal Automaton 483

u v w
a b

1A∗ 1A∗

b a (1 + aA∗, aA∗) (aA∗, A∗)

(A∗,∅)

a

1A∗

1A∗

b

a+ b

Figure 7. The écorché of UL1
(left) and UL2

(right)

the transitions described by the matrix HL, are all the transitions in these
strongly connected components whereas the spontaneous transitions put an
order on the strongly connected components and the écorché is thus decom-
posed into levels. Figure 8 shows the écorché of UL3

. A more complicated
écorché for a pure group language is shown at Figure 15, where the levels
appear even more clearly. We shall characterise them at Subsection 7.2.

0 1 2

2,0 0,1 1,2

Figure 8. Ecorché of the universal automaton of {1, 2} in Z/3Z

4 Construction of the universal automaton

The universal automaton has been defined, and then described. From what
we have already seen, it follows immediately that the universal automaton of
a regular language is effectively computable. We present now an algorithm
[Lom02], somehow optimal, which performs the task. From this construction
of UL we then derive an effective description of the (left) canonical morphism
from any automaton B which accepts L into UL. An example of a method
for finding a small NFA accepting a given language is described in the last
subsection.

4.1 Computation of the factorisations

As above, let L be a language of A∗. The key for the construction of UL

is the computation of the factorisations of L. From Proposition 2.1, every
right factor of a language is an intersection of left quotients of this lan-
guage. As the quotients of the languages are the futures of the states of any

484 S. Lombardy, J. Sakarovitch

deterministic automaton A that accepts the language, for every factoriza-
tion (Xi, Yi) of the language L, there exists a subset P of states of A such
that Yi =

⋂

p∈P FutA(p). But this subset may be not unique. The set of
subsets P such that the intersection of the futures of states in P is equal to
Yi is closed under union, thus there exists a unique maximal Pi such that
Yi =

⋂

p∈Pi
FutA(p). To get an efficient representation of factorisations, we

have to compute these maximal subsets corresponding to factorisations.
Let A = 〈Q,A, δ, i, T〉 be a complete accessible deterministic automaton

that accepts L. Let QA be the set of states of Acod, the co-determinisation
of A; QA is a subset of P (Q), i.e. an element of P (P (Q)). We denote
by IA the closure under intersection of QA. Notice that IA always contains
Q itself (as the intersection of an empty set of elements of QA).

Theorem 4.1. The mapping ψA from IA into FL defined by:

ψA : IA −→ FL

P 7−→ (X,Y), with Y =
⋂

p∈P

FutA(p)

is a bijection.

Proof. As every intersection of left quotient is a right factor of the language,
this mapping is well defined. In order to prove that this is a bijection, we
prove that

FL −→ P (Q)

(X,Y) 7−→ {p | Y ⊆ FutA(p)}

is a mapping from FL onto IA. Let (X,Y) be a factorisation and P = {p |
Y ⊆ FutA(p)}. Let Acod = 〈QA, A,H, J, t〉 be the co-determinisation of A
and let R be the set of states of Acod that contain P .

By construction of the co-determinisation, for every state s in Acod and
for every word u in FutAcod

(s), it holds: s = {p | u ∈ FutA(p)}. Hence R is
the set of states of Acod whose future has a non empty intersection with Y .
Moreover, Y =

⋃

s∈R FutAcod
(s). Hence, a state p of A belongs to every state

of R if and only if its future contains Y . Thus, P =
⋂

s∈R s ∈ IA. q.e.d.

Remark 4.2. This construction can take any deterministic automaton as
input and give the same result. Indeed, when a deterministic automaton
is co-determinised, states that are Nerode-equivalent (i.e. that would be
merged by a minimisation algorithm) appear exactly in the same states of
the co-determinisation. They become indissociable and the set IA actually
does not depend on the input, but only on the language L.

The Universal Automaton 485

Remark 4.3. The order on factorisations is realised on IA by the inclusion
order.

Proposition 4.4. Let A = 〈Q,A, δ, i, T〉 be a complete deterministic au-
tomaton. Let P in IA and (X,Y) = ψA(P). Then

X =
⋃

p∈P

PastA(p) and P = i ⊲ X .

Proof. Let (X,Y) be a factorisation; X = {u | uY ⊆ L} = {u | Y ⊆ u−1L}.
For every word u in X , let p = i ⊲ u; as A is deterministic, u−1L = FutA(p).

Hence, p is in P ; therefore, X ⊆
⋃

p∈P PastA(p). Conversely, let v be a word
in the past of some state p in P . It holds vFutA(p) ⊆ L and Y ⊆ FutA(p),
hence v is in X . q.e.d.

We have thus characterized the factorisations of the language, that is
the states of the universal automaton. We can now give a construction for
the universal automaton.

Proposition 4.5. Let A = 〈Q,A, δ, i, T〉 be a complete deterministic au-
tomaton that accepts L. The automaton 〈IA, A,D, J, U〉 defined by:

D = {(P, a, S) ∈ IA ×A× IA | P ⊲ a ⊆ S} , (1.9)

J = {P ∈ IA | i ∈ P} , U = {P ∈ IA | P ⊆ T }, (1.10)

is isomorphic to the universal automaton of L: UL = 〈FL, A,E
L, IL, T L〉.

Proof. Theorem 4.1 defines a bijection from IA onto FL. We have to check
that the definitions of D, J and U correspond to EL, IL and T L of Defini-
tion 2.4. Let (XP , YP) and (XS , YS) the factorisations corresponding to P
and S:

YP =
⋂

p∈P

FutA(p), YS =
⋂

p∈S

FutA(p).

We have

P ⊲ a ⊆ S ⇐⇒ YS ⊆
⋂

p∈P⊲a

FutA(p)

⇐⇒ aYS ⊆
⋂

p∈P

FutA(p) = YP ⇐⇒ XPaYS ⊆ L.

ψA(J) ={(X,Y) ∈ FL | Y ⊆ L}

={(X,Y) ∈ FL | 1A∗ ∈ X}.

486 S. Lombardy, J. Sakarovitch

ψA(U) = {(X,Y) ∈ FL | 1A∗ ∈ Y }.

q.e.d.

Remark 4.6. Once IA is computed, the construction of UL goes as follow:
IA is the set of states; for every P in IA, if i is in P , make P initial, if P is
a subset of T , make P final; for every letter a, compute P ⊲a, and for every

R in IA that contains P ⊲ a, add a transition (P, a,R).

4.2 Computation of the canonical morphism

If the universal automaton is computed from a complete deterministic ac-
cessible automaton A, the left canonical morphism from any equivalent
automaton B into the universal automaton can be computed in polynomial
time.

Let P be the accessible part of the product of A by B. Every state of P
is a pair (p, q) of a state of A and a state of B. Let Rq be the set of states p
of A such that (p, q) is a state of P . We define an application ϕB from the
states of B into IA: ϕB(q) is the smallest element of IA which contains Rq.

Proposition 4.7. The morphism from B into UL induced by ϕB is the left
canonical morphism.

Proof. Let r be a state of B. It holds Rq = i ⊲
A

PastB(q). Let Y =
⋂

p∈Rq
FutA(p). As A is deterministic, the futures of its states are quo-

tients and thus Y is a right factor. We show that this is the largest right
factor such that [PastB(q)] [Y] ⊆ L.

PastB(q) =
⋃

p∈Rq

PastP((p, q)) ⊆
⋃

p∈Rq

PastA(p)

As
[

⋃

p∈Rq
PastA(p)

] [

⋂

p∈Rq
FutA(p)

]

⊆ L, [PastB(q)] [Y] ⊆ L. Let v be a

word which is not in Y . There exists a state p in Rq such that v is not in
FutA(p) and there exists a word u in PastB(q) such that p = i ⊲

A
u. We have

v 6∈ u−1L and uv 6∈ L. This proves that Y is maximal.
We show now that Y is the right factor of ψA(ϕB(q)). As ϕB(q) is the

smallest element of IA which contains Rq, they correspond to the same
right factor, i.e. Y =

⋂

p∈ϕB(q) FutA(p). q.e.d.

4.3 Searching for NFA of minimal size

It is known that the computation of a NFA with minimal size from the
minimal automaton of a language is a PSPACE-complete problem [JR93].
However, the universal automaton is a good framework to explain exact
algorithms or to describe heuristics that give approximate solutions.

The Universal Automaton 487

First, the universal automaton of a language contains any equivalent
NFA with minimal size, since the canonical morphism from this NFA into
the universal automaton is injective.

Then an exact algorithm would consist in enumerating all subautomata
of the universal automaton (starting with the smallest) and testing if they
accept every word of the language.

This fact is the base of many heuristics. There exist several conditions on
subautomata of the universal automaton built as in Proposition 4.5. Each
of these conditions is either necessary or sufficient for the subautomaton
accepts the language. In [Pol05], Polák has made a comparison between
a large set of these conditions. They all give tractable algorithms that
compute NFA accepting the language, hopefully small, but not necessarily
of minimal size.

The first authors that give such a condition are Kameda and Weiner
in [KW70]. They build a table, whose rows are indexed by the states of the
minimal automaton and the columns by the states of its co-determinisation,
and read factorisations in this table. They define a property of cover, that
guarantees that a set of factorisations corresponds to an automaton (actu-
ally a subautomaton of the universal automaton, even if they do not define
it), that accepts the language.

Along the same line of work, Matz and Potthoff [MP95] have defined
another automaton, which they call fundamental automaton and which con-
tains, strictly in some cases, the universal automaton. They then give a con-
dition that guarantees that a subautomaton of the fundamental automaton
accepts the language. We present here a condition that is inspired by this
one and which is an example of a heuristic that search for small NFA.

Proposition 4.8. Let A = 〈Q,A, δ, i, T〉 be a deterministic complete au-
tomaton and let UL be the universal automaton built from A. Let R be a
subset of IA such that:

(i)
⋃

P∈R,P⊆T P = T ;

(ii) for every P in R, for every letter a, for every q in Q such that q⊲a = p,

there exists S in R, such that q is in S and S ⊲ a ⊆ P .

Then the subautomaton of UL with set of states R accepts the language.

Proof. Let u be a word of L. Let p0 = i, p1, . . . , pk the states of the compu-
tation in A labeled by u. The state pk is final, hence there exists Pk final
in R that contains pk. If there exists Pi that contains pi, as pi = pi−1 ⊲ ui,

there exists Pi−1 in R that contains pi−1 such that there is a transition from
Pi−1 to Pi labeled by a. Hence, by induction, the word u is accepted by the
subautomaton. q.e.d.

488 S. Lombardy, J. Sakarovitch

5 Size of the universal automaton

It follows from the construction of the universal automaton that UL has at
most 2n states if the size of the minimal deterministic automaton is n. The
computation for the language {w | |w| 6= 0 mod n} shows that this bound
is tight (cf. Section 7.2 below and also [GKP06]).

As the determinisation of a non deterministic n-state automaton may
give at most a 2n-state automaton, we immediately get a 22n

upper bound
for the size of the universal automaton with respect to the minimal non
deterministic automaton that accepts the language.

This bound is not tight, for the worst cases in determinisation and in
the construction of the universal automaton cannot occur in a row. We give
here the proof that the tight bound is given by the Dedekind numbers and
also that, in the case of a unary alphabet, the conjunction of worst cases
may occur, but the determinisation does not yield a 2n blow-up then.

5.1 Bounds for the universal automaton

The n-th Dedekind number D(n) is defined as the number of monotonous
Boolean functions with n variables. Since such a function is characterised by
a Boolean expression in disjunctive normal form whose clauses are pairwise
uncomparable, it is also the number of antichains of P ([1;n]) (ordered by
inclusion).

Theorem 5.1 (Lombardy, [Lom07]). Let A be an NFA with n states that
accepts a language L. Then:

(i) UL has at most D(n) states;

(ii) the trim part of UL has at most D(n) − 2 states.

For every integer n, there exist automata with n states for which these
bounds are reached.

Remark 5.2. There is no closed form expression for D(n), and its exact
value is only known for n smaller than 9 (cf. [Wie91]). However, Kor-
shunov [Kor81] has given an approximate expression of D(n). For instance,
if n is even,

D(n) ∼ 2(n
n/2) exp

((

n

n/2 − 1

)

(2−n/2 + n22−n−5 − n2−n−4)

)

.

Figure 9 gives a visual comparison betweenD(n) and the double exponential
function n 7→ 22n

.

Definition 5.3. Let O be an ordered set. An upset V of O is an upperly
closed subset of O:

∀x ∈ V , ∀y ∈ O, x 6 y =⇒ y ∈ V . (1.11)

The Universal Automaton 489

1

2520

0.2

151050

0.8

0.6

0.4

0

Figure 9. The graph of log2 D(n)
2n

Notice that an upset may be empty and may also be equal to O itself. If
Q is a set, P (Q) or every subset of P (Q) is naturally ordered by inclusion.
Upsets of P (Q) are naturally in bijection with antichains by taking their
minimal elements.

We now use the construction given in the previous section. As we start
with a non deterministic automaton, we first determinize it to obtain an
automaton D that is used to build the universal automaton.

Proposition 5.4. Let A = 〈Q,A,E, I, T 〉 be a non deterministic automa-
ton. Let D = 〈R,A, F, {I}, U〉 be the determinisation of A and C =
〈S,A,G,K, {U}〉 the co-determinisation of D. Every element of S is an
upset of R.

Proof. Let X and Y be two states of D such that X ⊆ Y . It holds
FutD(X) =

⋃

p∈X FutA(p) ⊆
⋃

p∈Y FutA(p) = FutD(Y). Let P be a state of
C which contains X . For every v in FutC(P), P = v ⊳

D
U . As X is in P , v is

in FutD(X), thus in FutD(Y). Hence, Y is in P . q.e.d.

Proposition 5.5. Let A = 〈Q,A,E, I, T 〉 be a non deterministic automa-
ton that recognizes a language L. The universal automaton of L has at
most D(card(Q)) states, where D(n) it the n-th Dedekind number.

Proof. Let n = card(Q) and let D be the determinisation of A. As the
intersection of two upsets is an upset, the elements of ID are upsets of
P (Q), and D(n) is equal to the number of upsets of P (Q). q.e.d.

Proposition 5.6. Let A = 〈Q,A,E, I, T 〉 be an NFA that recognizes a
language L. The number of states of the trim universal automaton of L is
bounded by D(card(Q)) − 2.

490 S. Lombardy, J. Sakarovitch

Proof. Actually, if a state corresponds to the empty upset, it has an empty
past and it is therefore not accessible. Likewise, if a state corresponds to
the upset {∅}, it has an empty future and it is therefore not co-accessible.

q.e.d.

The first part of Theorem 5.1 is thus established.

(a)

0 1

b
a

a

(b)

01 1 0 ∅

a

b

b
a

a

b

a, b

(c)

0, 1, 01 1, 01 0, 01 ∅

a b a, b

b
a

a

b

(d)

0 1

01

0, 1

∅

{∅}

a

b

a

a a, b
a, b

a

a

a

a, ba, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

Figure 10. The construction of the universal automaton from Z2

Example 5.7. We give here an example for the construction of the uni-
versal automaton. Let Z2 be the automaton of Figure 10(a). Let D2 be the
determinized automaton of Z2, drawn on Figure 10(b). Each of its states
is a subset of the set of states of Z2. We denote this set by a word whose
letters are the elements of the state: the word 01 stands for the set {0, 1}.
The states of the universal automaton (Figure 10(c)) are upsets of the power
set of states of Z2. We denote an upset by the setr of its minimal elements.
For instance 0, 1 means {{1}, {2}, {0, 1}}. Notice that ∅ is the empty upset,
whereas {∅} is the upset with ∅ as minimal element, i.e. the power set
itself. The non accessible part of the universal automaton is drawn in gray.
The automaton Z2 is an example of the worst case in the construction of
the universal automaton. Indeed, D(2) = 6.

Likewise, D(3) = 20 and we give a three-state automaton which rec-
ognizes a language whose universal automaton has twenty states: the au-
tomaton Z3 shown on Figure 11(a). As the number of transitions of the
universal automaton is to high to allow to draw them all, the more compact
representation given by the écorché is drawn on Figure 11(c).

The Universal Automaton 491

a)

0

1

2

b

b

a

a

a

b)

012

12

02 01

0

2 1

∅

a

bb

a

a

a

b b

a

a

a

b

b

ba, b

c)

0, 1 1, 2

0, 2

0

1 2

01

1202

0, 12

1, 02 2, 01

01, 02, 12

012

02, 12

01, 02

01, 12

0, 1, 2

∅

{∅}

a

a

a

a

a

a

a

a

a

a

b

a

a

a

a

aa

b

b b

b

a

a

a, b

a, b

Figure 11. The construction of the universal automaton from Z3

In the following section, we generalise this example to show that, for
every n, there exists a n-state NFA that accepts a language whose universal
automaton has D(n) states.

5.2 Reaching the bounds of the universal automata

As announced, we introduce first a notation for the dual action induced by
an automaton.

Definition 5.8. Let A = 〈Q,A,E, I, T 〉 be an automaton. The set of
predecessors of a state p of A by a letter a is a ⊳

A
p = {q ∈ Q | (q, a, p) ∈ E},

denoted a ⊳ p if there is no ambiguity. This defines a left action of A∗

on P (Q): for every letter a, every word w, and every subset X of Q, we

492 S. Lombardy, J. Sakarovitch

have:

a ⊳
A
X =

⋃

p∈X

a ⊳
A
p , 1A∗ ⊳

A
X = X , aw ⊳

A
X = a ⊳

A
(w ⊳

A
X).

Obviously, q is in p ⊲
A
w if and only if p is in w ⊳

A
q. In the sequel, for every

positive integer n, Zn = 〈Q,A,E, I, T 〉 is the automaton defined by:

Q = Z/nZ; A ={a, b}; I = T = Q;

E = {(p, a, p+ 1) | p ∈Q} ∪ {(p, b, p) | p ∈ Qr{0}}.
(1.12)

In the sequel, if X is a subset of Q, i.e. a subset of Z/nZ, for every
integer k, we denote X + k = {x+ k | x ∈ X}.

Lemma 5.9. Let n be a positive integer. The determinisation of Zn is
Dn = 〈P (Q) , A, F, {Q},P (Q)r{∅}〉, with:

F = {(X, a,X + 1), (X, b,Xr{0}) | X ⊆ Q}. (1.13)

Proof. As every state of A is initial, the initial state of D is Q. As every
state of A is terminal, every state of D different from ∅ is terminal.
If X is a subset of Q, X ⊲

A
a =

⋃

p∈X p ⊲
A
a =

⋃

p∈X p+ 1 = X + 1; likewise,

X ⊲
A
b =

⋃

p∈X,p6=0 p = Xr{0}. This gives the set of transitions F of D.

We show that every element of P (Q) is an accessible state by induction
on the number of elements. The set Q itself is the initial state of D. Let
assume that X is an accessible state. Let x be an element of X , we show
that Xr{x} is accessible. Actually, X ⊲ an−xbax = (X − x) ⊲ bax = ((X −

x)r{0}) ⊲ ax = ((X − x)r{0}) + x = Xr{x}. Therefore, every element of

P (Q) is accessible. q.e.d.

For every subset X of Q, we denote X = {Y | Y ⊆ X}, and (X)
c

=
P (Q)rX; we can notice that (X)

c
is an upset of P (Q).

Lemma 5.10. Let n be a positive integer. The co-determinisation of Dn

is Cn = 〈S,A,G,K, V 〉, with:

S = {(X)
c
| X ∈ P (Q)}; K =Sr{∅}; V = {(∅)

c
}

G = {(X)
c
, a, (Y)

c
| (X, a, Y) ∈ F}∪{

(

X ∪ {0}
)c

, b, (X)
c
| X ⊆ Q}.

(1.14)

Proof. As any state X of Dn different from ∅ is final, the state t = (∅)c

is the final state of Dn. First, we show by induction on the word w that

The Universal Automaton 493

any state P = w ⊳ t is in S. This is obviously true if w is the empty word:

P = t. If P = (X)c is in S, so its predecessors are:

a ⊳
C

(X)
c

={a ⊳
D
Y | Y 6⊆ X} = {Y | Y 6⊆ a ⊳

D
X} =

(

a ⊳
D
X

)c

= (X − 1)c ;

(1.15)

b ⊳
C

(X)
c

={b ⊳
D
Y | Y 6⊆ X}

={Y | Y 6⊆ X, 0 6∈ Y } ∪ {Y ∪ {0} | Y 6⊆ X, 0 6∈ Y }

={Y | Y 6⊆ X ∪ {0}, 0 6∈ Y } ∪ {Y ′ | Y ′ 6⊆ X ∪ {0}, 0 ∈ Y ′}

={Y | Y 6⊆ X ∪ {0}} =
(

X ∪ {0}
)c

.

(1.16)

We show that every element P = (X)c of S is co-accessible from t.If X = ∅,

then P = t. If P = (X)
c

is co-accessible, for any x in Q, P ′ =
(

X ∪ {x}
)c

is co-accessible too:

an−xbax ⊳
C
P = an−xb ⊳

C
(X − x)

c
= an−x ⊳

C

(

(X − x) ∪ {0}
)c

=
(

X ∪ {x}
)c

.

(1.17)
Therefore the set of states of Cn is exactly S. q.e.d.

Lemma 5.11. Let Q be a finite set. The intersection closure of {(X)
c
|

X ∈ P (Q)} is exactly the set of upsets of P (Q).

Proof. Let U be an upset of P (Q). For every Y in U , for every X not in
U , Y 6⊆ X . Hence, Y is in (X)

c
and U is a subset of (X)

c
. Thus, as X is

not in (X)
c
, it comes U =

⋂

X 6∈U (X)
c
. q.e.d.

With this last lemma, the proof of Theorem 5.1 is now complete.
In the case of a one-letter alphabet, the determinisation algorithm is

known not to be exponential. Indeed, if A is a one-letter NFA with n
states, the determinisation of A (and the minimal automaton of the accepted
language) has at most G(n) states (cf. [Chr86]), where G(n) is the Landau
function of n, that is, the maximal least common multiple of a set of integers
with sum equal to n. We show that in this case, the obvious upper bound
2G(n) for the size of the universal automaton is tight.

Proposition 5.12. For every integer n, there exist automata with n states
over a one-letter alphabet such that, if L is the accepted language:

(i) UL has 2G(n) states;

(ii) the trim part of UL has 2G(n) − 2 states.

494 S. Lombardy, J. Sakarovitch

Proof. There exist an integer r and r numbers k1, .., kr such that k1+..+kr =
n and lcm(k1, k2, ..., kr) = G(n). Let Q be the disjoint union of all the
(Qi = Z/kiZ) for i in [1; r] and let Yn = 〈Q, {a}, E, I, T〉 be the automaton
defined by:

I = {0 ∈ Qi | i ∈ [1; r]}, T = QrI, E = {(p, a, p+ 1) | ∃i, p ∈ Qi}.

The determinisation of Yn is the automaton Dn = 〈R, {a}, F, J, U〉, with
R = Z/G(n)Z, J = {0}, U = RrJ and F = {(p, a, p+ 1) | p ∈ R}.

The states of the co-determinisation of Dn are all the subset of R with
card(R)−1 elements. The intersection closure of this set of states is equal to
P (R). Hence, the universal automaton of the language recognized by Yn has
2G(n) states and the trim universal automaton has 2G(n) − 2 states. q.e.d.

a)

0

1

2

3

a a

aa

b)

0

1

2

3

a a

aa

01

12

23

03

a a

aa

012

123

023

013

a a

aa

02 1302 13
a

a

∅

a

0123

a

Figure 12. The automaton Y4 and its universal automaton

Remark 5.13. Starting from a one-letter DFA with n states (n > 1), it is
not possible to obtain a trim universal automaton with 2n − 1 states. The
state corresponding to the empty set in the construction of Theorem 4.1
cannot be accessible. If the full set corresponds to a co-accessible state,
it means that every state of the DFA is final, thus every word is accepted
and the universal automaton has one state, or, if the DFA is not complete,

The Universal Automaton 495

the language is a finite prefix language and the universal automaton has n
states. Therefore, the trim universal automaton has at most 2n − 2 states.

Example 5.14. Let Y4 be the automaton of Figure 12 a). It is equal to
D4 (actually, G(4) = 4). The universal automaton, drawn on Figure 12 b),
has 24 = 16 states, including a non accessible state and a non co-accessible
state.

6 Equations in the universal automaton

John H. Conway who gave, in his own language and terminology [Con71],
another definition of the universal automaton, was not at all interested in
the computation of small NFA’s for a regular language. He used the factor
matrix of a language to solve two dual classes of problems. First, in the
approximation problem, are given on one hand a language L in A∗ and on
the other hand a family K = {K1, . . . ,Kn}, all in A∗. The latter determines
a substitution σ from X∗ into A∗, with X = {x1, . . . , xn} and σ(xi) = Ki.
The construction of the universal automaton of L allows us to show that
the set W of words w in X∗ such that σ(w) is contained in L is regular
when L is regular (and without any hypohesis on the Ki’s).

The dual problem is the one of (in)equations. The regular languages L
in A∗ and K in X∗ being given, the universal automaton of L allows the
effective computation of all maximal n-tuples of languages {H1, . . . , Hn}
such that σ(K) is contained in L.

6.1 The approximation problem

The construction of the automaton UL can be seen as a special case of an
approximation problem: the reasoning that proves that UL accepts L can
be generalised to other families of subsets than the generating set of A∗,
with remarkable results.

Let L be a language of A∗ and K = {K1, . . . ,Kn} a family of n languages
of A∗. We set X = {x1, x2, . . . , xn} an n-letter alphabet and σ : B∗ → A∗

the substitution defined by

∀i ∈ [1;n] σ(xi) = Ki.

The sole consideration of the syntactic morphism allows us to show that the
language W over B∗,

W = {f ∈ B∗ | σ(f) ⊆ L} ,

is recognisable if L is recognisable and without any assumption on the Ki’s
— a corollary of a result in [Reu79], see [Sak03]. But here we prove the result
and give it a more precise interpretation using the universal automaton.

496 S. Lombardy, J. Sakarovitch

To simplify the statements, with Ki and hence σ being fixed, we write
σ̆ for the map from P (A∗) to P (B∗) defined by

∀L ∈ P (A∗) σ̆(L) = {f ∈ B∗ | σ(f) ⊆ L} , (1.18)

that is, σ̆(L) is equal to the language W defined above. The map σ̆ acts
as the inverse of the substitution σ but retains only those words whose
image under σ is contained in L. In other words, σ(σ̆(L)) is the best possi-
ble approximation (by default) to L as a sum of products of languages Ki

and σ̆(L) describes how this approximation is constructed.
Let L be a language of A∗, UL its universal automaton and FL its factor

matrix. We write SK

L for the automaton over X∗ obtained from UL by
replacing each label EL

X,Y ′ by the set of letters in X whose image under σ
is contained in FL

X,Y ′ :

∀(X,Y), (X ′, Y ′) ∈ FL (X,Y)
x

−−→
SK

L

(X ′, Y ′) ⇐⇒ σ(x) ⊆ FL

X,Y ′ .

Theorem 6.1 (Conway [Con71]). σ̆(L) = |SK

L |.

Proof. The proof goes by induction on the length of f and amounts to
establish that, for all (X,Y), (X ′, Y ′) in FL, and all f in B∗, it holds:

(X,Y)
f

−−→
SK

L

(X ′, Y ′) ⇐⇒ σ(f) ⊆ FL

X,Y ′ .

For |f | = 1, this is exactly the definition of SK

L .

Suppose then that we have (X,Y)
xf

−−−→
SK

L

(X ′, Y ′); then there exists

(X ′′, Y ′′) in FL such that (X,Y)
x

−−→
SK

L

(X ′′, Y ′′) and (X ′′, Y ′′)
f

−−→
SK

L

(X ′, Y ′).

We thus have σ(x) ⊆ FL

X,Y ′′ by definition of SK

L and σ(f) ⊆ FL

X′′,Y ′ by
induction hypothesis. Then, by Equation (1.8),

σ(xf) ⊆ FL

X,Y ′′FL

X′′,Y ′ ⊆ FL

X,Y ′ .

Conversely, suppose that σ(xf) = σ(x)σ(f) ⊆ FL

X,Y ′ . By Lemma 3.4,
there exists (X ′′, Y ′′) in FL such that σ(x) ⊆ FL

X,Y ′′ and σ(f) ⊆ FL

X′′,Y ′ .
This, in turn, by definition of SK

L and by induction hypothesis, implies

(X,Y)
xf

−−−→
SK

L

(X ′, Y ′). q.e.d.

As announced, a mere consequence of Theorem 6.1 is that if L is regular,
UL has a finite number of states and σ̆(L) is regular. The definition of SK

L is
itself a procedure for computing the ‘best approximation’ to L, on condition
that we know how to compute effectively the factors of L and the inclusion
of Ki in these factors. These conditions are fulfilled in particular when
considering the rational sets of a free monoid. We then deduce:

The Universal Automaton 497

Corollary 6.2. Given a regular language L and a finite family K of regular
languages over A∗, we can decide whether L belongs to RatK, the rational
closure of K.

Proof. We compute the best approximation to L by the n languages of the
family K and then decide whether this approximation is equal to L. q.e.d.

The elegance of this proof, and the efficiency of the computations it
entails is to be compared with those of the proofs given subsequently for
the same result (e.g. [Has83]).

6.2 Solutions of pure language equations

The problem of approximation is susceptible to a ‘dual’ approach.6 The
(recognisable) subset L of A∗ having been fixed, instead of choosing the
subsets Ki, that is the substitution σ : B∗ → A∗, and trying to compute the
language σ̆(L) over B∗, we can choose a language W (not even necessarily
regular) over a free monoid B∗ and seek a substitution σ : B∗ → A∗ such
that σ(W) ⊆ L, which will be called a sub-solution of the problem (L,W).
The sub-solutions are naturally (and partially) ordered by inclusion of the
images of the letters of B, and the interesting sub-solutions are the maximal
ones.

Theorem 6.3 (Conway, [Con71]). Let L be a subset of A∗, W a language
of B∗ and σ : B∗ → A∗ a maximal sub-solution of the problem (L,W).
Then for each x in B, σ(x) is an intersection of factors of L.

Proof. Let f = x1x2 . . . xn be a word of W . If σ is a solution of (L,W),
σ(x1)σ(x2) . . . σ(xn) ⊆ L. By Lemma 3.4, and an induction argument, there
exist (X0, Y0), (X1, Y1), . . . , (Xn, Yn) in FL such that

σ(xi) ⊆ FL

Xi−1,Yi

for each i in [1;n]. As these inclusions are verified for each f inW , each σ(xi)
is contained in an intersection of factors and such an intersection is a max-
imal component in a sub-solution of the problem. q.e.d.

Corollary 6.4 (Conway, [Con71]). If L is regular, the maximal sub-solutions
of the problem (L,W) are k-tuples (k = Card(B)) of regular subsets of A∗.
If in addition W is regular, we can effectively compute all the maximal
sub-solutions of the problem (L,W).

Proof. If L is regular, there is only a finite number of factors that are all
regular and their intersections are finite in number and regular. There is
only a finite number of k-tuples of intersections among which all the maximal

6 This is not the left-right duality of automata, but rather a vector–linear form duality.

498 S. Lombardy, J. Sakarovitch

sub-solutions are found. If W is regular we can effectively find all the k-
tuples which are sub-solutions and keep only the maximal ones. q.e.d.

Example 6.5. A regular language L of A∗ being chosen, let us find all the
subsets U such that U2 ⊆ L and U is maximal for this property (i.e. find
the maximal sub-solutions of the problem (L, x2)). If U2 ⊆ L, (U,U) is a
subfactorisation of L, it is dominated by (at least) one factorisation (X,Y),
and U ⊆ X ∩ Y . The maximal sub-solutions are thus among the X ∩ Y
when (X,Y) varies over FL.

7 Stars in the universal automaton

Last but not least, the universal automaton contains informations on the
star height of the language if it is a regular one, may be not always but
certainly for some subfamilies of regular languages — and this was what
motivated first the interest of the authors in this construction.

The computation of the star height problem is a hard question that
was stated by Eggan [Egg63] in 1963. It was positively solved in 1988 by
Hashiguchi [Has88] and Kirsten gave more recently a particulary elegant
proof for its decidability [Kir05]. The results we present here do not give
the solution of the star height problem for any regular language, but in the
cases where they can be applied, they give more precise informations on the
form of the result than the other works.

7.1 Star height and loop complexity

The star height of a regular expression E, denoted by h(E), is defined recur-
sively by:

if E = 0, E = 1 or E = a ∈ A, h(E) = 0 ,

if E = E
′ + E

′′ or E = E
′ · E′′, h(E) = max(h(E′), h(E′′)) ,

if E = F
∗, h(E) = 1 + h(F) .

Example 7.1. The expressions (a+ 1)(a2 + b)∗a+ 1 and (b∗a+ 1)(ab∗a)∗

have star height 1 and 2 respectively. As they both denote the same lan-
guage accepted by the automaton A2 shown at Figure 13, two equivalent
expressions may have different star heights.

Definition 7.2. The star height of a regular language L of A∗, which we
note as h(L), is the minimum of the star height of the expressions that
denote the language L:

h(L) = min{h(E) | E ∈ RatEA∗ |E| = L} .

The Universal Automaton 499

21
a

ab

Figure 13. The automaton A2

The star height induces a hierarchy on regular languages. We shall give
examples for the fact (see Corollary 7.12):

Fact 7.3. There exist regular languages of arbitrary large star height.

The star height of an expression reflects also a structural property of
an automaton which corresponds to that expression (more precisely, of the
underlying graph of an automaton). In order to state it, we first define
the notion of a ball of a graph: a ball in a graph is a strongly connected
component that contains at least one arc.

Definition 7.4. The loop complexity7 of a graph G is the integer lc(G)
recursively defined by:

lc(G) = 0 if G contains no ball (in particular, if G is empty);

lc(G) = max{lc(P) | P ball of G} if G is not a ball itself;

lc(G) = 1 + min{lc(Gr{s}) | s vertex of G} if G is a ball.

As Eggan showed, star height and loop complexity are the two faces of
the same notion:

Theorem 7.5 (Eggan [Egg63]). The star height of a language L is equal
to the minimal loop complexity of an automaton that accepts L.

More precisely, from every automaton with loop complexity n, an ex-
pression with star height n can be computed, and vice-versa. Theorem 7.5
allows to deal with automata instead of expressions, and to look for au-
tomata of minimal loop complexity instead of expressions of minimal star
height. A reason why star height, or loop complexity is not an easy param-
eter to compute is given by the following fact, for which we give an example
below (see Example 7.13).

Fact 7.6. The minimal automaton is not always of minimal loop complexity
(for the language it recognises).

7 Eggan [Egg63] as well as Cohen [Coh70] and Hashiguchi [HH79] call it ‘cycle rank’,
Büchi calls it ‘feedback complexity’. McNaughton [McN67] calls loop complexity of
a language the minimum cycle rank of an automaton that accepts the language. We
have taken this terminology and made it parallel to star height, for ‘rank’ is a word of
already many different meanings.

500 S. Lombardy, J. Sakarovitch

The following structural result gives a criterium to bound the loop com-
plexity of an automaton.

Definition 7.7. Let A and B be two automata and let ϕ be a surjective
morphism from A onto B. The morphism ϕ is conformal if every path in B
is the image of a path in A.

Theorem 7.8 (McNaughton, [McN67]). If ϕ : B → A is a conformal mor-
phism, the loop complexity of B is larger than or equal to that of A: that
is, lc(B) > lc(A).

We first show a lemma:

Lemma 7.9. Let ϕ : B → A be a conformal morphism. For every ball P
in A, there exists a ball Q in B such that the restriction of ϕ to Q is a
conformal morphism from Q to P .

Proof. This lemma (like the theorem) is in fact a proposition about graphs,
but we shall use automata-theoretic notions to simplify the proof. We as-
sume, possibly by changing them all, that each transition of A bears a
distinct label, and that each state of A is both initial and final; this may
change the language accepted by A but has no effect on its loop complexity.
The words of the language recognised by A (resp. by a subautomaton P
of A) describe paths in the graph A (resp. in the sub-graph P). The tran-
sitions of B are labeled in such a way that ϕ is an automata morphism and
each state of B is both initial and final.

Let P be a ball in A and R = Pϕ−1. Set n = ‖R‖ and m = ‖P‖ to be
the number of states of R and P respectively and consider a circuit (hence
a word) w which visits all the paths in P of length less than 2n+m. The
circuit wn is a path in P which can be lifted to a path in R (since ϕ is
conformal). By the proof of the block star lemma, a factor wk is the label
of a circuit in R; let Q be the ball in R, and hence in B, that contains this
circuit. By construction, Q recognises all words of length less than 2n+m

of the language recognised by P , hence Q is equivalent to P , hence all the
paths in P become paths in Q: thus, ϕ is conformal from Q to P . q.e.d.

Proof of Theorem 7.8. Suppose that the property is false, and proceed by
reductio ad absurdum. Among the automata which are sent by a conformal
morphism to an automaton of strictly greater complexity, let B be an au-
tomaton of minimal loop complexity d, and let A, of complexity c, be the
image of B under a conformal morphism: thus, c > d.

If d = 0, the length of the paths in B is bounded and it is impossible
for ϕ to be conformal, hence d > 0.

By definition, there is a ball P in A of complexity c and, by Lemma 7.9,
a ball Q in B whose image under ϕ is P . This ball is of complexity at most d

The Universal Automaton 501

but also, by the minimality of d, at least d. There exists a state q in Q such
that

lc(Qr{q}) = d− 1. (1.19)

Let p = qϕ, P ′ = Pr{p} and Q′ = Qr{pϕ−1}; we have lc(Q′) 6 lc(Qr{q}) =
d− 1 and lc(P ′) > c− 1 > d− 1.

Every path in P ′ is a path in P which does not visit p, hence the image
of a path in Q which does not go through any of the vertices of pϕ−1; that
is, the image of a path in Q′: thus, ϕ is a conformal morphism from Q′

to P ′, which contradicts the assumed minimality of d. q.e.d.

7.2 Star height of group languages

The star height of a group language can be computed within the universal
automaton. The simplest instance of this fact is the following statement
which provides a new, easier, and clearer presentation of McNaughton’s
proof of computability of the star height of pure group languages.

Theorem 7.10 (Lombardy-Sakarovitch, [LS03]). The universal automaton
of a regular group language L contains a subautomaton of minimal loop
complexity that recognises L.

Since the universal automaton of a regular language is finite, we can
enumerate its subautomata, keeping those that recognise the language, and
from among them find those of minimal loop complexity. We therefore have:

Corollary 7.11 (McNaughton, [McN67]). The star height of a regular
group language is computable.

Furthermore, the same theorem allows us to establish directly, a result
whose original proof relied on a highly subtle combinatorial method. Let Wq

be the language defined by:

Wq = {w ∈ {a, b}∗ | |w|a ≡ |w|b mod 2q}.

Corollary 7.12 (Dejean-Schützenberger, [DS66]). lc(Wq) = q.

In this case indeed the universal automaton is isomorphic to the minimal
automaton, which has thus the minimal loop complexity (see below).

Example 7.13. Let H2 and H3 be the languages over A∗ = {a, b}∗ consist-
ing of words whose number of a’s is congruent to the number of b’s plus 1
modulo 2 and 3 respectively and H6 their union:

H2 = {f | |f |a − |f |b ≡ 1 mod 2} , H3 = {f | |f |a − |f |b ≡ 1 mod 3}

and H6 = {f | |f |a − |f |b ≡ 1, 3, 4 or 5 mod 6}.

502 S. Lombardy, J. Sakarovitch

a

a

a

b
b b

a+ b

a+ b

a

a

a

a

a

a

b

b
b

b

b
b

Figure 14. An automaton of minimal loop complexity (left) which is not
the minimal automaton (right) for H6

The minimal automaton of H6 is the ‘double ring’ of length 6 whose loop
complexity is 3. The minimal automata of H2 and H3 have complexity 1
and 2, hence the star height of H6 is at most 2 (cf. Figure 14).

Figure 15 shows the écorché of the universal automaton of H6. We see,
all the better for its grey background, a subautomaton of this universal
automaton which recognises H6, with a minimal complexity. This subau-
tomaton is equal to the union of the minimal automata of H2 and H3 seen
above, and this is not a coincidence.

Let B be an automaton of minimal loop complexity which recognises L
and ϕ : B → UL a morphism from B to the universal automaton of L. If ϕ is
a conformal morphism from B to its image ϕ(B) in UL, this subautomaton
of UL is of lesser or equal complexity to that of B by Theorem 7.8 and
the property is proved. However, in the general case ϕ is not conformal.
The proof comes down to showing that nonetheless ϕ is conformal on some
subautomata of B (on some balls) which are crucial for the complexity. We
start by proving some properties of the structure of the universal automaton
of a group language.

7.2.1 The universal automaton of a group language

In what follows, L ⊆ A∗ is a group language, α : A∗ → G is the syntactic
morphism, P = α(L) and AL = 〈G,A, δ, 1G, P 〉 is a complete accessible
deterministic automaton that recognises L. For w in A∗ and g in G we
therefore write g ⊲ w for gα(w), multiplication in G.

As we have seen (Subsection 3.2), the universal automaton UL of L, is
obtained by considering the factorisations (X,Y) of P in G and that if

(X1, Y1)
a

−−→
UL

(X2, Y2)

is a transition of UL, then X1(aα)Y2 ⊆ P and hence

X1 ⊲ a ⊆ X2 and α(a)−1Y2 ⊆ Y1.

The Universal Automaton 503

0

1
2 3

4

5

0,1

1,2

2,3 3,4

4,5

0,5

0,3

1,4

2,5

0,2,4 1,3,5

0,1,2,4

1,2,3,5

0,2,3,4 1,3,4,5

0,2,4,5

0,1,3,5

Figure 15. The écorché of the universal automaton of H6 (without the sink

and co-sink states). The bold arrows represent a double transition, one labeled a

in the direction of the arrow and one labeled b in the opposite direction; the dotted

arrows represent the spontaneous transitions.

Lemma 7.14. The balls of UL are deterministic and complete.

Proof. Let (X1, Y1) and (X2, Y2) be two states of UL belonging to the same
ball. There exists u and v in A∗ such thatX1⊲u ⊆ X2 andX2⊲v ⊆ X1. As G

is a group, the action of every element is injective and ‖X1‖ 6 ‖X2‖ 6 ‖X1‖
hence ‖X1‖ = ‖X2‖ and X1 ⊲ u = X2. That is, X2 is uniquely determined

by X1 and u: the ball is deterministic.
Furthermore, if (X,Y) is a factorisation of P , then (X(uα), (uα)−1Y)

is also a factorisation of P , for all u in A∗, and there exists a transition
labeled u from the first to the second. For all u, there exists v such that
(uv)α = 1G, and hence a transition labeled v from (X(uα), (uα)−1Y) to
(X,Y). Thus, (X(uα), (uα)−1Y) belongs to the same ball as (X,Y) and
the ball is complete. q.e.d.

A direct consequence of Lemma 7.14 is the following.

Corollary 7.15. Let L be a group language whose image in its syntactic
monoid is reduced to one element. Then UL is isomorphic with the minimal

504 S. Lombardy, J. Sakarovitch

automaton of L whose loop complexity is thus minimal.

7.2.2 Proof of Theorem 7.10

Lemma 7.16. For every integer k, there exists a word wk in A∗ whose
image in G is 1G and such that every computation of length k of every
ball C in UL is contained in every computation of C labeled wk.

Proof. Every word whose image in G is 1G labels a circuit in every ball
of UL and for every source vertex. For each ball, and each vertex of this
ball, we construct a circuit which visits every computation of length k of
this ball. The product of the labels of all these circuits is a word wk that
answers the question. q.e.d.

We now turn to the proof of the theorem itself.

Proof of Theorem 7.10. The automaton B, an automaton of minimal loop
complexity which recognises L, has n states. Let g be in P , a final state
of AL, and ug be a word in A∗ that is sent to g by α. For every integer k, the
word (wk)nug is in L and is hence accepted by B. The Block Star Lemma,
applied to the factors wk, ensures that there exists a state pk of B such that
there exists a circuit with source pk labeled by a certain power (wl

k). Let Dk

be the ball in B which contains pk, and hence this circuit. We thus obtain
an infinite sequence of balls Dk in which at least one ball D in B appears
infinitely often.

Let C be the ball in UL which contains the image of D under the mor-
phism ϕ : B → UL. For every path c in C, there exists a k greater than
the length of c, an integer l and a state p of D such that there exists a
loop in D with source p labeled (wk)l. This same word (wk)l labels a loop
in C which contains all the computations of length less than or equal to k;
it thus contains c in particular. That is, c is the image of a computation
of D, hence on one hand, C is the image of D under ϕ and on the other, the
restriction of ϕ to D is conformal. By Theorem 7.8, lc(D) > lc(C).

Let (X,Y) be the factorisation, which is the image of p under ϕ (the
state p that was defined just above). Since (wk)l′ is in PastB(p), 1G is
in PastUL((X,Y)) and hence 1G is in X ; that is, (X,Y) is an initial state
of UL. Likewise, (wk)l′′ug is in FutB(p) and g is in Y . Every word u
of A∗ such that uα = g labels a computation of C with source (X,Y) and
destination (Xg, g−1Y), a final state of UL, since 1G ∈ g−1Y . Hence u is
accepted by C.

We can repeat this construction for each g in P and finally obtain a set
of balls of UL that recognise all of L and each of which has complexity less
than or equal to at least one ball in B. The complexity of the set is at most
equal to that of B, which was assumed to be minimal. q.e.d.

The Universal Automaton 505

7.3 Star height of reversible languages

The method of the proof of Theorem 7.10 can be both deepened and gen-
eralised in order to settle the question of star height for a larger class of
languages.

Definition 7.17. An automaton A is reversible if the letters induce partial
bijections on the set of states, that is, if for every state p and every letter a,
card(p ⊲ a) 6 1 and card(a ⊳ p) 6 1.

A language is reversible if it is recognised by a reversible automaton.

Remark 7.18. A reversible automaton may be not deterministic, nor co-
deterministic, for the definition puts no restriction on the number of initial
or final sates.

The minimal automaton of a reversible language may be not reversible.
Nevertheless, given an automaton, it can be decided (in polynomial time)

whether the language it accepts is reversible or not (see [Pin92]). It is to be
stressed that this decision procedure does not yield a reversible automaton
for a regular language that is determined to be reversible but only the
information that such a reversible automaton exists.

Theorem 7.19 (Lombardy-Sakarovitch, [LS02]). The universal automaton
of a reversible language contains an equivalent subautomaton of minimal
loop complexity.

The subautomaton quoted in this result is not necessarily reversible, but
it is ‘not far’ of being so. We then introduce a weaker notion for automata,
that will not change the class of accepted languages and that will be useful
for both the statement and the proof of the result.

Definition 7.20. An automaton A is quasi-reversible if for every state p
and every letter a the following holds:

(i) if card(p ⊲ a) > 1, none of the states in p ⊲ a is in the same ball as p;

(ii) if card(a ⊳ p) > 1, none of the states is a ⊳ p is in the same ball as p.

Quasi-reversible automata will be analysed by means of the following
decomposition.

Definition 7.21. Let A be an automaton. A subautomaton B of A is a
A-constituent if the following holds:

(i) any ball of A is either contained in, or disjoint from, B;

(ii) there is at most one incoming transition to, and one outgoing transi-
tion from, every ball of B;

506 S. Lombardy, J. Sakarovitch

(iii) B has one initial state and one final state.

It follows from the definition that every finite automaton A has a finite
(but exponential) number of A-constituents and that any A-constituent of
a quasi-reversible automaton A is a reversible automaton. It then holds:

Proposition 7.22. The language accepted by a quasi-reversible automaton
is reversible.

We can now give the main result of this section its true form.

Theorem 7.23 (Lombardy, [Lom01]). The universal automaton of a re-
versible language contains an equivalent quasi-reversible subautomaton of
minimal loop complexity.

The overall scheme of the proof is illustrated by the figure below.

A

reversible

B

lc-minimal

AL

minimal automaton

ϕ

decomposition

UL

universal automaton
of L

construction

A-constituants

reversible(Dk)Unknown

Known

Figure 16. The construction underlying the proof of Theorem 7.23

Let L be a reversible language. We know that there exists an unknown
automaton A that recognizes this language and there exists an unknown
automaton B that recognizes this language with a minimal loop complexity.
On the other side, we can build the minimal automaton AL of the language
and the universal automaton UL. We know that there exists a morphism ϕ
from B into UL. Notice that the image of B by ϕ may have a loop complexity
greater than the loop complexity of B.

Thanks to the reversible automaton A, we decompose L into a union
of sub-languages, and we prove that the images of the computations in B
labeled by these sub-languages give a subautomaton of UL which is both
quasi-reversible and with minimal loop complexity.

The Universal Automaton 507

To prove the theorem, we must give first a more precise description of
the structure of the universal automaton.

7.3.1 The universal automaton of a reversible language

To handle the particular structure of the universal automaton of a reversible
language, we consider the construction of the universal automaton from a
reversible automaton A with set of states Q. From Proposition 5.4, every
state of the universal automaton is an upset of P (Q).

Every upset is characterized by the anti-chain of its minimal elements.
The shape of an upset R of P (Q) is a |Q| + 1-uplet s(R) of integers such
that, for every k ∈ [0; |Q|], s(R)k is the number of subsets of Q with cardinal
k among minimal elements of R. We define a lexicographic order on shapes:

s(R) < s(R′) ⇐⇒

∃k ∈ [0; |Q|] , ∀l ∈ [0; k − 1] s(R)l = s(R′)l and s(R)k < s(R′)k.

Proposition 7.24. If there is a path in the universal automaton from a
state with index R to a state with index R′, then s(R) 6 s(R′)

Proof. Let w be the label of the path. The state R′ contains {X ⊲ w | X ∈

R}. For every minimal element X in R, either X ⊲w has the same cardinal

as X , or it has a smaller cardinal.

If there is some X such that |X ⊲ w| < |X |, thanks to the reversibility

of A there is no X ′ such that X ′ ⊲ w = X ⊲ w and |X ′| = |X ′ ⊲ w|, hence,

s(R) 6 s(R′). Otherwise, let M be the set of minimal elements of R; the
set {X ⊲ w | X ∈ M} is a subset of the set of minimal elements of R′ and

s(R) 6 s(R′). q.e.d.

Proposition 7.25. The balls of the universal automaton of a reversible
language are reversible.

Proof. Let R and R′ be two such states. Let u be a word that labels a
path from R to R′ and let v be a word that labels a path from R′ to R.
By Proposition 7.24, two states that belong to the same ball have the same
shape. In this case, if M the set of minimal elements of R, for every X
in M , Y = X ⊲ u is a minimal element of R′ and |Y | = |X |. Thanks to

the reversibility, the mapping from M into the minimal elements M ′ of
R′ is injective. Likewise, there is an injective mapping from M ′ into M .
Therefore, the word u induces a bijection between M and M ′; as these
minimal elements characterize states, the balls are reversible. q.e.d.

508 S. Lombardy, J. Sakarovitch

Corollary 7.26 (Cohen, [Coh70]). If L is a reversible language recognised
by a reversible minimal automaton with only one final state, then the min-
imal automaton has a minimal loop complexity.

Actually, in this case, the universal automaton is the minimal automaton
itself and the only subautomaton that accepts the langugae is the complete
universal automaton.

7.3.2 Proof of Theorem 7.23

We begin with a series of definitions and notation that allow us to describe
a decomposition of a language according to an automaton that accepts it
and to state a property of the constituents of that decomposition. This is
indeed an adaptation of a method devised by Hashiguchi in [HH79].

Definition 7.27. Let A be a reversible automaton that accepts L.

(i) We say that a word w is an idempotent for A if, for every state p,
p ⊲ w = p or p ⊲ w = ∅.

(ii) Let C be a trim A-constituent with m balls. The marker sequence of
C is the 2m-uple (p1, q1, . . . , pm, qm) such that pi (resp. qi) is the first
(resp. last) state of the i-th ball crossed by any computation.

(iii) A A-constituent with marker sequence (p1, q1, . . . , pm, qm) accepts the
language v0H1v1H2 . . . vm−1Hmvm, where Hi is the language of labels
of paths from pi to qi.

(iv) We denote by Wi the set of idempotents for A that label a circuit
around pi.

i p1 q1 p2 q2 qm−1 pm qm t
v0 u1 v1 u2 vm−1 um vm

Figure 17. A marker sequence

Lemma 7.28. Let A be a reversible automaton and C a trim A-constituent
with m balls. Let B be any automaton equivalent to A.

Then, there exist m states r1, r2,. . . ,rm in B such that, with the above
notation, the following holds:

v0Wp1
∩ PastB(r1) 6= ∅, Hm vm ∩ FutB(rm) 6= ∅,

and, ∀i ∈ [1;m− 1] (Hi vi Wpi) ∩ TransB(ri, ri + 1) 6= ∅.

The Universal Automaton 509

For every i in [1;m], for every circuit around pi labeled by a word v, there
exists a circuit around ri, labeled by a word u v w, where u is in Wpi and w
in A∗.

Proof. There exists an integer k such that, for every word v ∈ A∗, the image
of vk is an idempotent for A. Let n be the number of states of B. Let l
be an integer that will silently index the sets we define now. For every
i ∈ [1;m], let Ci be the set of words of length smaller than l that label a
circuit around pi in A. Let wi be the product of all k-th power of words
in Ci:

wi =
∏

v∈Ci

vk .

For every v0u1v1 · · · vm in the A-constituent,

w = v0(w1)
nu1v1(w2)

nu2...(wm)numvm

is in the A-constituent as well. Hence, there is a successful computation
labeled by w in B. As B has only n states, this path contains, for every i,
a loop labeled by a power of wi around a state ri of B. The m-tuple
r(l) = (r1, r2, . . . , rm) verifies i) and ii) for y shorter than l. If we consider the
infinite sequence r(1), r(2), . . ., we can find an m-tuple that occurs infinitly
often and that verifies the lemma. q.e.d.

r1 r2 rm
wi1

1 wj1
1 u1v1w

i2
2 wjm

m um

wn−i1−j1
1 wn−i2−j2

2 wn−ik−jk
m

Figure 18. A witness word for a A-constituent.

We can now proceed to the proof of Theorem 7.23. We consider a set
C of A-constituents such that every element of C accepts at least one word
that is not accepted by the other elements of C and such that the union of
elements of C is equivalent to A.

Let D be an element of C and let p1, q1, p2, . . . , qm be the marker se-
quence of D and let u = v0u1v1 . . . vk be a word accepted only by D in
C, with vi labelling a path from qi−1 to pi and ui a path from pi to qi.
Let r1, r2, . . . , rm be the states of B defined in Lemma 7.28 w.r.t the A-
constituent D and w1, . . . , wm be the idempotents defined in the proof of
the lemma. Let ϕ be a morphism from B into the universal automaton.

510 S. Lombardy, J. Sakarovitch

We deal with the strongly connected component of ri, for i ∈ [1;m].
Let si = ϕ(ri) and Pi be the ball of UL containing si. There exist integers
h1, . . . , hm (resp. l1, . . . , lm) such that the word x = v0w

h1+l1
1 u1v1 . . . w

hi

i

(resp. y = wli
i uivi . . . w

hk+lk
k vkuk) is in the past (resp. the future) of ri and

thus of si.

(i) The morphism ϕ is conformal on Pi. Let C be a path of Pi. We
can assume, up to make it longer, that this is a circuit around si and, up
to take it several times, that it is labeled by an idempotent for A : z. The
word xzy is in L; every A-constituent that accepts this word accepts also
xy, therefore xzy is accepted only by D in C. As D is reversible, x labels
a path from the initial state to pi, y a path from pi to the final state and
z a circuit around pi. Therefore, from Lemma 7.28, there exist a word w
idempotent for A and a word v such that wzv labels a circuit around ri.
The image of this circuit is a circuit around si. As w is an idempotent for A,
it is an idempotent in the syntactic monoid; hence for every k, wkzv labels
a circuit, if k is large enough, this circuit contains a sub-circuit labeled by
a power of w, as the ball is reversible, this power labels a circuit around si,
and as w is an idempotent, it labels itself a circuit around si. As balls are
deterministic, the circuit C around si is the image of the part of the circuit
around ri labeled by z. Thus the morphism ϕ is conformal onto Pi which
have a loop complexity not greater than the loop complexity of B.

(ii) The images of the words linking balls in B contain no cir-

cuit. The word wli
i uiviw

hi+1

i+1 is in TransB(ri, ri+1) thus in TransUL(si, si+1).
Let si = (Xi, Yi) and let ti = (X ′

i, Y
′
i) be the state in Pi such that ui is in

TransUL(si, ti). By definition of the universal automaton:

Xiw
li
i uiviw

hi+1

i+1 Yi+1 ⊆ L.

The words wi and wi+1 are idempotents and L is reversible, therefore it
holds XiuiviYi+1 ⊆ L, and X ′

i is the smallest left factor that contains Xiui,
hence X ′

iviYi+1 ⊆ L Thus there exists a path labeld by vi from ti to si+1.
This holds for every i in [1; k−1]. We prove the same way, that there exists
a path from an initial state to s1 labeled by v0 and a path from sm to a
final state labeled by vm.

If one of the intern states of one of these paths labeled by vi belongs to a
ball, the word vi can be factorised into xiyi and there exists an idempotent w
for A such that

v0u1v1 . . . uixiwyiui+1vi+1 . . . ukvk ∈ L.

It can only be accepted by D, which would imply the existence of a circuit
between qi and pi+1.

The Universal Automaton 511

(iii) The subautomaton obtained in UL accepts every word ac-
cepted by D. Such a word can be factorised into v0u

′
1v1su

′
kvk, with pi ⊲

u′i = qi. There exists a word wi such that u′iwi is an idempotent and both
uiwi and u′iwi label circuits around pi. As above, these words label circuits
around si and, as the ball is co-deterministic, the path from si labeled by
u′i ends in the same state as the one labeled by ui, i.e. ti.

(iv) This subautomaton is reversible. The balls of the universal au-
tomaton are reversible. Between every ball, there is only one path in the
automaton, by construction. If there exists a letter a that labels two in-
coming transitions of si, this letter is the last one in vi and there exists a
circuit around pi with a as last letter, which is a constradiction with the
reversibility of D. Hence, this subautomaton is co-deterministic; likewise,
it is deterministic.

(v) Conclusion of the proof. For every constituent of A, we prove that
there exists a subautomaton of the universal automaton, with a loop com-
plexity not greater than the star height of the language, and that accepts
every word accepted by the constituent. The superposition of all these sub-
automata of the universal automaton gives a subautomaton of the universal
automaton that recoginzes the language. More, every ball intersected by
one of these subautomata is entirely included in the subautomaton, hence,
the loop complexity of the superposition is not greater than the maximal
loop complexity of the superposed automata. Therefore the superposition
is a subautomaton of the universal automaton that have a minimal loop
complexity for the language.

Moreover, as every superposed automaton is reversible, the superposi-
tion is a quasi-reversible automaton. That proves that, for every reversible
language, there exists a quasi-reversible automaton, with minimal loop com-
plexity, and that is a subautomaton of the universal automaton.

8 Conclusion

The aim of this paper is to show the soundness of the notion of universal au-
tomaton and its various applications. Its large size leads to algorithms with
poor complexity, but it is a good theoretical framework to state different
kinds of problems on regular languages.

We end this survey with an open question about star height. We have
said that, roughly speaking, the universal automaton of a language contains
every automaton that accepts this language. This is true up to morphic
image, but morphisms do not preserve loop complexity. This is the reason
why in the general case, we do not know how to prove the following extension
of Theorems 7.10 and 7.19. The universal automaton of a regular language
contains a subautomaton with a minimal loop complexity for this language.

512 S. Lombardy, J. Sakarovitch

The universal automaton has not revealed all its secrets.

References

[ADN92] André Arnold, Anne Dicky, and Maurice Nivat. A note about min-
imal non-deterministic automata. Bulletin of the EATCS, 47:166–
169, 1992.

[Car70] Christian Carrez. On the minimalization of non-deterministic au-
tomaton. Technical report, Computing Laboratory of the Science
Faculty of Lille University, 1970.

[Chr86] Marek Chrobak. Finite automata and unary languages. Theor.
Comput. Sci., 47(3):149–158, 1986.

[CNP91] Bruno Courcelle, Damian Niwiński, and Andreas Podelski. A ge-
ometrical view of the determinization and minimization of finite-
state automata. Mathematical Systems Theory, 24(2):117–146,
1991.

[Coh70] Rina S. Cohen. Star height of certain families of regular events.
J. Comput. Syst. Sci., 4(3):281–297, 1970.

[Con71] John H. Conway. Regular Algebra and Finite Machines. Chapman
and Hall, London, 1971.

[DS66] Françoise Dejean and Marcel Paul Schützenberger. On a question
of eggan. Information and Control, 9(1):23–25, 1966.

[Egg63] L. C. Eggan. Transition graphs and the star-height of regular
events. Michigan Math. J., 10:385–397, 1963.

[GKP06] Igor Grunsky, Oleksiy Kurganskyy, and Igor Potapov. On a max-
imal nfa without mergible states. In Dima Grigoriev, John Harri-
son, and Edward A. Hirsch, editors, CSR, volume 3967 of Lecture
Notes in Computer Science, pages 202–210. Springer, 2006.

[Has83] Kosaburo Hashiguchi. Representation theorems on regular lan-
guages. J. Comput. Syst. Sci., 27(1):101–115, 1983.

[Has88] Kosaburo Hashiguchi. Algorithms for determining relative star
height and star height. Inf. Comput., 78(2):124–169, 1988.

[HH79] Kosaburo Hashiguchi and Namio Honda. The star height of reset-
free events and strictly locally testable events. Information and
Control, 40(3):267–284, 1979.

The Universal Automaton 513

[JR93] Tao Jiang and Bala Ravikumar. Minimal nfa problems are hard.
SIAM J. Comput., 22(6):1117–1141, 1993.

[Kir05] Daniel Kirsten. Distance desert automata and the star height
problem. Theor. Inform. Appl., 39(3):455–509, 2005.

[Kor81] A. D. Korshunov. The number of monotone Boolean functions.
Problemy Kibernet., 38:5–108, 272, 1981.

[KW70] Tsunehiko Kameda and Peter Weiner. On the state minimization
of nondeterministic finite automata. IEEE Trans. Computers, C-
19(7):617–627, 1970.

[Lom01] Sylvain Lombardy. Approche structurelle de quelques problèmes
de la théorie des automates. PhD thesis, ENST, Paris, 2001.

[Lom02] Sylvain Lombardy. On the construction of reversible automata
for reversible languages. In Peter Widmayer, Francisco Triguero
Ruiz, Rafael Morales Bueno, Matthew Hennessy, Stephan Eiden-
benz, and Ricardo Conejo, editors, ICALP, volume 2380 of Lec-
ture Notes in Computer Science, pages 170–182. Springer, 2002.

[Lom07] Sylvain Lombardy. On the size of the universal automaton of a
regular language. In Wolfgang Thomas and Pascal Weil, editors,
STACS, volume 4393 of Lecture Notes in Computer Science, pages
85–96. Springer, 2007.

[LS02] Sylvain Lombardy and Jacques Sakarovitch. Star height of re-
versible languages and universal automata. In LATIN 2002: The-
oretical informatics (Cancun), volume 2286 of Lecture Notes in
Comput. Sci., pages 76–90, Berlin, 2002. Springer.

[LS03] Sylvain Lombardy and Jacques Sakarovitch. On the star height
of rational languages: a new presentation for two old results. In
Words, languages & combinatorics, III (Kyoto, 2000), pages 266–
285. World Sci. Publ., River Edge, NJ, 2003.

[McN67] Robert McNaughton. The loop complexity of pure-group events.
Information and Control, 11:167–176, 1967.

[MP95] O. Matz and A. Potthoff. Computing small finite nondeterministic
automata. In Proc. of the Workshop on Tools and Algorithms for
Construction and Analysis of Systems, BRICS Note Series, pages
74–88, Aarhus, 1995. BRICS.

514 S. Lombardy, J. Sakarovitch

[Pin92] Jean-Eric Pin. On reversible automata. In Imre Simon, editor,
LATIN, volume 583 of Lecture Notes in Computer Science, pages
401–416. Springer, 1992.

[Pol05] Libor Polák. Minimalizations of nfa using the universal automa-
ton. Int. J. Found. Comput. Sci., 16(5):999–1010, 2005.

[Reu79] Christophe Reutenauer. Sur les variétés de langages et de
monóıdes. In Klaus Weihrauch, editor, Theoretical Computer Sci-
ence, volume 67 of Lecture Notes in Computer Science, pages 260–
265. Springer, 1979.

[Sak03] Jacques Sakarovitch. Eléments de théorie des automates. Vuibert,
Paris, 2003. In French, English translation: Elements of Automata
Theory, Cambridge University Press, to appear.

[Wie91] Doug Wiedemann. A computation of the eighth Dedekind num-
ber. Order, 8(1):5–6, 1991.

