
CORRIGENDUM TO OUR PAPER:
HOW EXPRESSIONS CAN CODE FOR AUTOMATA

Sylvain Lombardy
1

and Jacques Sakarovitch
2

Abstract. We correct a mistake made in a previous paper in the
construction of an automaton from a rational expression. We used
there the definition of derivation of expression given by Antimirov, and
this definition has to be further adapted for our purpose.

1991 Mathematics Subject Classification. 68Q45, 68Q70.

A disturbing example

In [7], we were considering the following problem: Is it possible to build an
algorithm Ω such that for any rational expression E computed from an automaton A
— i.e. E = Φ(A) where Φ is the state elimination method for instance — the
following holds: A = Ω(E) ? We did not solve the problem completely, but we have
identified two constructions that are good candidates to be the core components of
such an algorithm Ω. The first one is the construction of an automaton ∆(E) from
an expression E, the second one is the computation of the minimal co-quotient
Υ(B) of an automaton B. There is no problem with the minimal co-quotient but
the definition we gave for ∆(E) was faulty. This can be observed for instance on
the following example.

Let A1 be the automaton of Figure 1 (a), and let E1 = (a + b + 1) [a(a + b)]∗

be the expression computed from A1, which we write E1 = (a + b + 1)F1 with
F1 = [a(a + b)]∗ ; Figure 1 (b) shows ∆(E1), whose co-quotient is not isomorphic
to A1.

As we shall see, it is not difficult to recover correct definitions and a true
statement (Theorem 1.6) for the key result (Theorem 3.5) in the original paper.

Keywords and phrases: finite automata, regular expression, derivation of expressions, quotient
of automata.

1 IGM-LabInfo (UMR 8049), Université Paris-Est Marne-la-Vallée, 77454 Marne-la-Vallée
Cedex 2, France; e-mail: lombardy@univ-mlv.fr.
2 LTCI (UMR 5141), CNRS / ENST, 46 rue Barrault, 75634 Paris Cedex 13, France;
e-mail: sakarovitch@enst.fr.

2

What proves to be more difficult, or at least much longer, is the complete and
detailled proof, hopefully correct now, of Theorem 1.6.

a + b

a

(a) A1

aF1

bF1

F1 (a + b)F1

a

a + b

a

b

(b) ∆(Φ(A1))

Figure 1. A counter-example to the statement in [7]

1. The corrected definitions and statement

In order to make this corrigendum as self-contained as possible, let us first recall
the notion of derivation as defined by Antimirov. If E is a rational expression
on A, we write |||E||| for the language of A∗ denoted by E and c(E) for the Boolean
whose value is 1 if |||E||| contains the empty word and 0 otherwise; c(E) is effectively
computed by induction on the depth of E.

Definition 1.1 (Antimirov [2]). Let E be a rational expression on A and let a

be a letter in A. The B-derivative1 of E with respect to a, denoted
∂

∂a
E, is a set

of rational expressions on A, recursively defined by

∂

∂a
0 =

∂

∂a
1 = ∅ ,

∀a, b ∈ A
∂

∂a
b =

{ {1} if b = a ,
∅ otherwise,

∂

∂a
(E+F) =

∂

∂a
E ∪ ∂

∂a
F , (1)

∂

∂a
(E · F) =

[
∂

∂a
E

]
· F ∪ c(E)

∂

∂a
F , (2)

∂

∂a
(E∗) =

[
∂

∂a
E

]
· E∗ . (3)

The induction implied by (1 – 3) should be interpreted while distributing deriva-
tion and product over union:

∂

∂a

[⋃
i∈I

Ei

]
=

⋃
i∈I

∂

∂a
Ei ,

[⋃
i∈I

Ei

]
· F =

⋃
i∈I

(Ei · F) .

1We call it “B-derivative” and not simply “derivative” for two reasons. First in order to avoid
confusion with the derivation defined by Brzozowski [3], and second because the formulae depend
on the semiring of multiplicities and can be defined for other semirings (cf. [6]).

3

Definition 1.2. Let E be a rational expression on A and g a non empty word of A∗,

i.e. g = f a with a in A. The B-derivative of E with respect to g, denoted
∂

∂g
E ,

is the set of rational expressions over A, recursively defined by formulae (1) – (3)
and by

∀f ∈ A+ , ∀a ∈ A
∂

∂fa
E =

∂

∂a

(
∂

∂f
E

)
. (4)

We call true derived term of E any rational expression which belongs to a set
∂

∂g
E

for some g in A+ and derived term the expression E itself, or any true derived
term; we write D(E) for the set of derived terms of E.

It will be useful to distinguish the set of derived terms that are obtained as the

result of a derivation by a word w: Dw(E) = {K | ∃u ∈ A∗ K ∈ ∂

∂uw
E} .

Definition 1.3. The derived term automaton of a rational expression E is the finite
automaton A(E) whose set of states is D(E) and whose transitions are defined by:
(i) if K and K′ are derived terms of E and if a is a letter of A, (K, a, K′) is a
transition if and only if K′ belongs to ∂

∂a K;
(ii) the initial state is E;
(iii) a derived term K is final if and only if c(K) = 1.

The essence of the derivation (by a letter), as defined by Antimirov and repeated
here, is to “break” the expression into pieces when the operator at the upper
level of the expression is “+”. The modification of the derivation we consider
now consists in supposing that this breaking happens spontaneously, as if it were
a derivation with respect to the empty word, before the first derivation by a
letter, and after every such derivation. To that end, we define a new operation on
rational expressions which we denote by d() and which, roughly speaking, consists
of decomposing an expression into a set of expressions whose left factor is not a
sum.

Here lie the correction we make to our original paper. The definition of the
derivation we apply to the expressions is modified in two ways: first, the breaking
d() is more ‘complete’ as it ‘goes through’ sets of expressions which contain 1;
second, we replace the derivation by the breaking derivation (in the original paper,
the breaking d() was applied only once before any derivation).

The definition of d() requires two further notations. If X is a set of expressions,
then [X]p is the same set possibly without the expression 1: [X]p = X \{1} , and
δX is the Boolean that takes the value 1 if the expression 1 belongs to X and 0
otherwise. For instance, δ[X]p = 0 for any set X . If E is an expression, d(E) is a
set of expressions inductively defined by:

d(0) = {0} , d(1) = {1} , ∀a ∈ A d(a) = {a},
d(E + F) = d(E) ∪ d(F) , d(E · F) = [d(E)]p · F ∪ δd(E) d(F) , d(E∗) = {E∗} ,

and d(E) is called the set of initial broken (derived) terms of E.

4

Definition 1.4. The breaking derivation of an expression E with respect to a
letter a is defined as:

∂b

∂a
E = d

([
∂

∂a
E

])
.

This breaking derivation is then extended to words by composition as in (4) and
we call true broken derived term of E any rational expression which belongs to a

set
∂b

∂g
E for some non empty word g in A+:

TBD(E) = {L | ∃g ∈ A+ L ∈ ∂b

∂g
E} .

We call broken derived term of E any element of the union of d(E) and TBD(E):

BD(E) = d(E) ∪ TBD(E) .

It is easy to check that

∀f ∈ A∗ ∂b

∂f
E = d

([
∂

∂f
E

])
,

which amounts to say that the broken derived terms are obtained by “breaking”
the derived terms:

BD(E) =
⋃

K∈D(E)

d(K) . (5)

The broken derived term automaton ∆′ (E) is then defined as was the derived
term automaton by Antimirov. Its set of states is BD(E), the set of initial states is
d(E), a state K is final if and only if c(K) = 1 and for a in A, and K, K′ in BD(E),

(K, a, K′) is a transition if and only if K′ belongs to
∂b

∂a
K .

The automaton ∆′ (E) recognizes the language denoted by E (cf. [6, Th. 9]).2

More precisely, it holds

Property 1.5. For every K in BD(E), the future of K in ∆′ (E) is equal to |||K|||.
The corrected version for Theorem 3.5 of [7] is then obtained by replacing

derived term by broken derived term.

Theorem 1.6. Let A be a co-deterministic automaton and E = Φ(A) a rational
expression computed from A by the state elimination method. Then, the broken
derived term automaton ∆′ (E) of E is co-deterministic.

Figure 2 shows ∆′ (E1) , a co-deterministic automaton as expected, and whose
minimal co-quotient is A1, as desired.

2We use that notation ∆′ () here, in this corrigendum, in order to have a different notation
from the one used in [7]; it might be the case that in further publications, we shall use A() which
is more natural.

5

aF1

bF1

F1

a

a

a

b

Figure 2. ∆′ (E1)

In [7], we have given a number of examples where the mapping Υ ◦ ∆′ applied
to an expression that is computed from a co-minimal automaton A yields A itself.
But the only case where we have been able to prove the property is when A is
co-deterministic. Moreover, this result gives the possibility of dealing with the
general case by means of tagging. This is the reason why we consider Theorem 1.6
as the key statement of [7].

The introduction of the breaking operation is necessary to deal with automata
with several initial states. Nevertheles, the core of the proof of Theorem 1.6 is
Proposition 3.5 which establishes that the derived term automaton of an expression
computed from a normalized co-deterministic automaton is co-deterministic, that
is, a property of Antimirov derivation. A remarkable feature of this result is that
its proof goes by induction on the number of states of the normalized automaton we
start from. The main ingredients of this proof are first Lemma 2.1 that describes
how the (Antimirov) derivation translates under a continuous rational substitution
and then on Proposition 2.8 which states that every (broken) derived term is
contained in the future of some state of the automaton on which the expression has
been computed. The transfer from the hypothesis of Proposition 3.5 (normalized
co-deterministic automata) to the one of Theorem 1.6 (co-deterministic automata)
is made possible by Lemma 2.7.

2. Preliminary to the proof

We first establish two properties of derivation that will be used in the sequel
and whose scope is wider than the statement alone. For the ease of the proof, we
also rather work with normalized automata. We then show, in two steps, that we
can make this assumption without loss of generality.

2.1. A substitution lemma

We call rational substitution a map ϕ : B → RatEA∗ which is extended to
ϕ : RatEB∗ → RatEA∗ by replacing every atom of a rational expression over B∗

by its image under ϕ. Substitutions are consistent with rational operations in the
sense that for every E, F ∈ RatEB∗ it holds:

ϕ(E + F) = ϕ(E) + ϕ(F) , ϕ(E · F) = ϕ(E) · ϕ(F) and (ϕ(E))∗ = ϕ ((E)∗) .

6

Naturally, ϕ also induces a substitution from B∗ into A∗ and it holds
|||ϕ(E)||| = ϕ (|||E|||) . A substitution ϕ is continuous if c(ϕ(b)) is null for every b
in B. If ϕ is continuous, it holds:

∀E ∈ RatEB∗ c(ϕ(E)) = c(E) . (6)

Lemma 2.1. Let ϕ : RatEB∗ → RatEA∗ be a continuous rational substitution.
Then

∀a ∈ A
∂

∂a
ϕ(E) =

⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
E

)
. (7)

Proof. By induction on the depth of E. If E = 0 or 1, both sides of (7) are zero; if

E = b, the right handside of (7) reduces to
∂

∂a
ϕ(b) which is the left handside, and

the base of the induction is established. The following three sequences of equalities
give the three possible induction steps.

∂

∂a
ϕ(F + G) =

∂

∂a
[ϕ(F) + ϕ(G)] =

∂

∂a
ϕ(F) ∪ ∂

∂a
ϕ(G)

=
⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
F

)
∪∪∪

⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
G

)
=

⋃
b∈B

[
∂

∂a
ϕ(b)

] [
ϕ

(
∂

∂b
F

)
∪ ϕ

(
∂

∂b
G

)]
=

⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
(F + G)

)

∂

∂a
ϕ(F · G) =

∂

∂a
[ϕ(F) · ϕ(G)] =

[
∂

∂a
ϕ(F)

]
ϕ(G) ∪ c(ϕ(F))

∂

∂a
ϕ(G)

=

[⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
F

)]
· ϕ(G)∪∪∪ c(F)

⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
G

)
=

⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
(F · G)

)

∂

∂a
ϕ (F∗) =

∂

∂a
(ϕ(F))∗ =

[
∂

∂a
ϕ(F)

]
· (ϕ(F))∗

=

[⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
F

)]
· (ϕ(F))∗

=
⋃
b∈B

[
∂

∂a
ϕ(b)

] [
ϕ

(
∂

∂b
F

)
· (ϕ(F))∗

]
=

⋃
b∈B

[
∂

∂a
ϕ(b)

]
ϕ

(
∂

∂b
F∗

)
�

7

Note that Lemma 2.1 refers to the derivation and not to the breaking derivation;
it turns out that we shall make use of the two notions in parallel.

2.2. Normalized automata

If A is an automaton over A, we write |||A||| for the language of A∗ denoted by A.

Definition 2.2. An automaton is standard if it has exactly one initial state with
no incoming transition.

To any automaton A = 〈Q, A, E, I, T 〉 we associate the standard automaton
A$ = 〈Q ∪ {i}, A ∪ {$}, F, {i}, T 〉, with

F = E ∪ {(i, $, p) | p ∈ I}

and where $ is not in A and i does not belong to Q. Note that A is co-deterministic
if, and only if, so is A$. Clearly |||A$||| = $|||A||| . This equality indeed generalizes to
the broken derived terms in the following way.

Lemma 2.3. Let A be an automaton over A, A$ the standard automaton defined
as above, E = Φω(A) and E$ = Φω (A$) the expressions obtained by the state
elimination method (with respect to the same order ω on the states of A). It then
holds:

d(E) =
∂b

∂$
E$ and BD(E) = TBD(E$) .

Definition 2.4. An automaton is co-standard if it has exactly one final with no
outgoing transition, that is, if its transposition is standard.

To any automaton A = 〈Q, A, E, I, T 〉 we associate the co-standard automa-
ton A£ = 〈Q ∪ {t}, A ∪ {£}, F, I, {t} 〉 , with

F = E ∪ {(p,£, t) | p ∈ T }

and where £ is not in A and t does not belong to Q. Note that A is co-deterministic
if, and only if, so is A£. Clearly |||A£||| = |||A|||£ . This equality indeed generalizes
to the broken derived terms in the following way.

Lemma 2.5. Let A be an automaton over A, A£ the co-standard automaton
defined as above, E = Φω(A) and E£ = Φω (A£) . The projection π : (A ∪
{£})∗ −→ A∗ induces a bijection between BD(E£) \ {1} and BD(E) and in
particular between d(E£) and d(E).

Proof. Let F£ be the family of expressions in RatE (A ∪ £) that denote rational
subsets of A∗ followed by £:

F£ = {E ∈ RatE (A ∪ £) | |||E||| = L£, L ∈ RatA∗} .

Since any word in the language denoted by an element of F£ does not contain the
symbol £ but at the end, any element of F£ is of one of the following forms: £,
E£ + F£, or GF£, where E£ and F£ are in F£ and G is in RatEA.

8

As the algorithm Φ acts symbolically on the labels of the transitions, π(E£) = E.
By induction on the depth of the expression, we first show that π(d(E£)) =

d(π(E£)) = d(E) . The interesting case is when E£ = GF£:

π(d(GF£)) = π(d(G) F£) ∪ δd(G) π(d(F£)) = d(G) F ∪ δd(G) d(F)) = d(GF) .

In the same way, for any H£ in F£, and for any letter a in A, it holds:

π(
∂b

∂a
H£) =

∂b

∂a
π(H£) . (8)

The statement is then shown by induction on the length of the derivation. Every
(broken) derived term of E£ different from 1 is in F£. Let K£ be a derived term in
BD(E£) and K its projection, in BD(E) by induction hypothesis. The derivation
of K£ with respect to £ gives either 1, or the empty set. The derivation of K£

with respect to any letter a in A is, by (8), in bijection with the derivation of K
with respect to a. �

Putting the standardisation and co-standardisation together, we get the follow-
ing definition and statement.

Definition 2.6. An automaton is normalized if and only if it has exactly one
initial state and one final state such that there is no incoming transition on the
initial state and no outgoing transition from the final state.

To any automaton A = 〈Q, A, E, I, T 〉 we associate the normalized automaton
An = 〈Q ∪ {i, t}, A ∪ {$,£}, F, {i}, {t} 〉 , with

F = E ∪ {(i, $, p) | p ∈ I} ∪ {(p,£, t) | p ∈ T }

and where $ and £ are not in A and i and t do not belong to Q. Note that A is
co-deterministic if, and only if, so is An. Clearly |||An||| = $|||A|||£ . This equality
indeed generalizes to the broken derived terms in the following way.

Lemma 2.7. Let A be an automaton over A, An the normalized automaton defined
as above, E = Φω(A) and En = Φω (An) . The projection π : (A ∪ {£})∗ −→ A∗

induces a bijection between
∂b

∂$
En and d(E) on one hand and between TBD(En) \

{1} and BD(E) on the other hand. �

2.3. Future of states and derived terms

Let A = 〈Q, A, E, I, T 〉 be an automaton over A∗. For each state q of A, the
past of q (in A) is the set of labels of computation which go from an initial state
of A to q, and we write it PastA(q); the future of q (in A) is the set of labels of
computations that go from q to a final state of A and we write it FutA(q):

PastA(q) = {w ∈ A∗ | ∃i ∈ I i
w−−→
A

q}, FutA(q) = {w ∈ A∗ | ∃t ∈ T q
w−−→
A

t}.

9

An automaton A is deterministic if, and only if, the pasts of states are pairwise
disjoint, and dually, A is co-deterministic if, and only if, the futures of states are
pairwise disjoint.

Proposition 2.8. Let A be a standard automaton with set of states Q and
E = Φ(A) . For every derived term K of E there exists a state q in Q such
that |||K||| is included in the future of q.

Proof. We first transform A = 〈Q, A, E, I, T 〉 into an automaton
Â =

〈
Q, A×Q, Ê, I, T

〉
by relabelling every transition (p, a, q) in E as (p, aq, q).

The projection π maps A×Q onto A and is extended to a map from RatE (A×Q)
onto RatEA.

As π is a continuous (rational) substitution, with the property that for any a,

b in A, (and any q in Q),
∂

∂a
π(bq) is equal to 1 or 0 according to whether a is

equal to b or not, Lemma 2.1 implies that for any a in A and for any expression F
in RatE (A×Q) it holds

∂

∂a
π(F) =

⋃
q∈Q

[
π

(
∂

∂aq
F

)]
. (9)

Let Ê = Φ(Â) . As the algorithm Φ acts symbolically on the labels of the
transitions to build the expression, it holds: π(Ê) = E . Then, by iteration of (9),
for any K in D(E) there exists K′ in D(Ê) such that K = π(K′) . Thus, there

exists w in (A×Q)∗ such that K′ is in
∂

∂w
Ê and then

|||K′||| ⊆ ||| ∂

∂w
Ê||| = w−1|||Â||| .

If K′ = Ê, then K = E and |||K′||| is (in) the future of the (unique) initial state.
Otherwise, w is a non empty word; let aq is the last letter of w, w−1|||Â||| is contained
in Fut bA(q). The projection by π gives

FutA(q) = π
(
Fut bA(q)

)
and thus |||K||| ⊆ FutA(q) .

�

The same property holds then for broken derived terms.

Corollary 2.9. Let A be an automaton with set of states Q and E = Φω(A) .
For every broken derived term K of E there exists a state q in Q such that |||K||| is
included in the future of q.

Proof. Let A$ be the standard automaton associated with A as in Section 2.2 and
let E$ = Φω(A$) . For every K$ in BD(E$) there exists H$ in D(E$) such that K$

is in d(H$). Moreover, there exists, by Proposition 2.8, a state q in Q such that

10

|||H$||| ⊆ FutA$
(q) hence |||K$||| ⊆ FutA$

(q) . By Lemma 2.3, TBD(E$) = BD(E) ,
therefore |||K||| ⊆ FutA(q) . �

As the futures of states are pairwise disjoint in a co-deterministic automaton,
we then can state the following.

Corollary 2.10. Let A be a co-deterministic normalized automaton with set of
states Q and E = Φ(A) . For every K of D(E), there exists a unique q in Q such
that |||K||| ⊆ FutA(q) ; for every L of BD(E), there exists a unique q in Q such that
|||L||| ⊆ FutA(q) . �

3. Proof of Theorem 1.6

The proof goes by induction on the number of states of the automaton A as
sketched in Figure 3.

p
q

r

A

Fp Hr

G

p r

B

Fp G∗Hr

p r

B′

cp,r

E E′

A(E) A(E′)

ϕ

ϕ
Φω Φω Φω

A A

Figure 3. Diagram for an induction step in the proof of Theorem 1.6

Let E = Φω(A) the rational expression computed by the state elimination
method following the order ω on the states of A and let q be the smallest state
with respect to ω. For every predecessor p of q, let Fp be the set of letters a such
that (p, a, q) is a transition of A and Fp the expression ‘sum of letters in Fp’. Let R
be the set of successors of q in A; for every r in R, let Hr be the set of letters a
such that (q, a, r) is a transition of A and Hr the expression ‘sum of letters in Hr’.
Let G be the set of letters a such that (q, a, q) is a transition of A and G the
expression ‘sum of letters in G’ (G may be empty and G null).

Let B be the generalized automaton obtained from A by elimination of q —
by the state elimination method. For every p and every r as above, a transition

11

from p to r labelled by FpG
∗Hr (resp. FpHr if G is null) is thus created.3 Let B′

be the (normalized) automaton obtained from B by replacing every label of the
form FpG

∗Hr (or FpHr) by a fresh letter cp,r. Let C be the alphabet of these fresh
letters and A′ = A ∪ C. Let ϕ be the (continuous) substitution from RatEA′∗ to
RatEA∗ which maps every letter of A onto itself and every letter cp,r onto FpG

∗Hr

(or FpHr if G is null).
Since the construction of B is the first step of Φω(), then E = Φω(B) and

let E′ = Φω(B′) . As the algorithm Φω acts symbolically on the labels of the
transitions, ϕ(E′) = E.

If A is co-deterministic, so is B′ and ∆′ (E′) is co-deterministic by induction
hypothesis. The proof amounts to transfer the properties from ∆′ (E′) to ∆′ (E)
via the substitution ϕ.

3.1. Preparation for the induction

From now on — and until after Corollary 3.6 — A, and thus B and B′, are
normalized automaton. The state elimination method doest not eliminate neither
the initial nor the final state and thus every state is treated in the same way. With
the above notation, it first holds:

Property 3.1. For every state s, s �= q, FutA(s) = ϕ (FutB′(s)) . �
The remainder of this subsection is devoted to the description of the image of

the broken derived terms under ϕ. From Lemma 2.1, for every K′ in RatEA′∗, and
every letter a in A, it holds

∂

∂a
ϕ(K′) = ϕ

(
∂

∂a
K′

)
∪

⋃
c∈C

[
∂

∂a
ϕ(c)

]
ϕ

(
∂

∂c
K′

)
.

For every c in C, there exists p and r such that ϕ(c) = FpG
∗Hr (resp. FpHr). Hence,

either a does not belong to any Fp and
∂

∂a
ϕ(K′) = ϕ

(
∂

∂a
K′

)
or it belongs to

Fp for a unique p and (recall that R is the set of successors of q in A):

∂

∂a
ϕ(K′) =


ϕ

(
∂

∂a
K′

)
∪

⋃
r∈R

G∗Hr ϕ

(
∂

∂cp,r
K′

)
if G is not empty,

ϕ

(
∂

∂a
K′

)
∪

⋃
r∈R

Hr ϕ

(
∂

∂cp,r
K′

)
otherwise.

(10)

As G and Hr are sums of letters, for every c in C the derivation of G∗Hr ϕ

(
∂

∂c
K′

)
(resp. Hr ϕ

(
∂

∂c
K′

)
) with respect to any letter gives ∅, G∗Hr ϕ

(
∂

∂c
K′

)
or

3The automaton B is labelled by rational expressions, which is the reason why it is called
‘generalized’.

12

ϕ

(
∂

∂c
K′

)
. Hence, by a straightforward induction, it holds :

D(E) = ϕ (D(E′)) ∪
⋃

cp,r∈C

 ⋃
a∈Fp

∂

∂a
ϕ(cp,r)

 ϕ(Dcp,r (E′)) . (11)

By applying d() to (10), it comes
∂b

∂a
ϕ(K′) = ϕ

(
∂b

∂a
K′

)
in the former case,

and in the latter:

∂b

∂a
ϕ(K′) =


ϕ

(
∂b

∂a
K′

)
∪

⋃
r∈R

G∗Hr ϕ

(
∂

∂cp,r
K′

)
if G is not empty,

ϕ

(
∂b

∂a
K′

)
∪

⋃
r∈R

⋃
b∈Hr

bϕ

(
∂

∂cp,r
K′

)
otherwise.

(12)

As above, and for every c in C the breaking derivation of G∗Hr ϕ

(
∂

∂c
K′

)
(resp.

bϕ

(
∂

∂c
K′

)
) with respect to any letter gives ∅, G∗Hr ϕ

(
∂
∂c K′) or ϕ

(
∂b

∂c
K′

)
.

Hence, by a straightforward induction, it holds :

BD(E) = ϕ (BD(E′)) ∪
⋃

cp,r∈C

 ⋃
a∈Fp

∂b

∂a
ϕ(cp,r)

 ϕ(Dcp,r (E′)) . (13)

3.2. Proof of Theorem 1.6

The comparison between (11) and (13) is quite instructive. The presence in
the right handside of both equations of a non breaking derivation makes it un-
derstandable that an induction proof will run more smoothly on the derived term
automata. This is done with Proposition 3.5. On the other hand, when it comes
to compare the derived terms of an expression obtained from an automaton A and
those obtained from its normalization A$, the broken derived terms are to be used
(Lemma 2.7). Corollary 3.6 will fill the gap and Theorem 1.6 will follow.

We keep the notation of the preceeding subsection and we suppose from now on
that A is (normalized) co-deterministic. This implies that B′ is co-deterministic
and moreover that for every p, G and Fp are disjoint; likewise, if p and p′ are two
distinct predecessors of q, Fp and Fp′ are disjoint. For every successor r of q, let
Ir be the set of labels of incoming transitions of r that does not come from q; then
Ir and Hr are disjoint. For every state s of B′ (therefore different from q), let Js

be the set of labels of incoming transitions of s. It then holds:

Property 3.2. For every state s in B′, ϕ(Js) is a suffix code in A∗ and the images
of the elements of Js by ϕ are pairwise disjoint.

13

Lemma 3.3. For every state s in A, s �= q, and for every u in FutA(s) there
exists a unique v in FutB′(s) such that u ∈ ϕ(v) .

Proof. Suppose by way of contradiction that there exist v and v′ in FutB′(s) such
that u ∈ ϕ(v) ∩ ϕ(v′) . We write v = xn . . . x2x1 and v′ = x′

m . . . x′
2x

′
1 . There

exist wi ∈ ϕ(xi) and w′
i ∈ ϕ(x′

i) such that u = wn . . . w2w1 = w′
m . . . w′

2w
′
1 .

Let j be the smallest index such that either wj �= w′
j or xj �= x′

j . Let r be the
unique state of B′ such that xj−1 . . . x1 ∈ FutB′(r) . By Property 3.2, ϕ(Jr) is a
suffix code and then wj = w′

j , and ϕ(xj) ∩ ϕ(x′
j) �= ∅ implies xj = x′

j . �

Let K be a derived term in D(E). As A is co-deterministic, and by Proposi-
tion 2.8 either there exists a unique state s �= q in A such that |||K||| ⊆ FutA(s) —
Case 1 — or |||K||| ⊆ FutA(q) — Case 2.

Lemma 3.4. Let K in D(E). There exists K′ in D(E′) such that either:
Case 1 there exists s �= q such that |||K′||| ⊆ FutB′(s) and K = ϕ(K′) , or
Case 2 there exists a successor r of q such that |||K′||| ⊆ FutB′(r) and
K = G∗Hrϕ(K′) or K = Hrϕ(K′) (if G is null).

Proof. From (11), K is either (Case 1) in ϕ (D(E′)) or (Case 2) in

⋃
cp,r∈C

 ⋃
a∈Fp

∂

∂a
ϕ(cp,r)

 ϕ(Dcp,r (E′)) .

In Case 1, there exists K′ such that K = ϕ(K′) , by Proposition 2.8 there exists s
in B′ such that |||K′||| ⊆ FutB′(s) and by Property 3.1 |||K||| ⊆ FutA(s) .

In Case 2, there exist cp,r ∈ C, a ∈ A and K′ ∈ Dcp,r(E′) such that

K =
[

∂

∂a
ϕ(cp,r)

]
ϕ(K′) = G∗Hrϕ(K′) .

As K′ ∈ Dcp,r(E′) , |||K′||| ⊆ FutB′(r) . By Property 3.1 ϕ (|||K′|||) ⊆ FutA(r) and
thus, by definition of G and Hr, |||K||| ⊆ FutA(q) . �

Proposition 3.5. Let A be a normalized co-deterministic automaton, and E =
Φ(A) . Then, the derived term automaton ∆(E) of E is co-deterministic.

Proof. A normalized automaton has at least two states. If A has only two states,
Φ(A) is reduced to a sum of letters and ∆(Φ(A)) is clearly co-deterministic.

By induction, ∆(E′) is co-deterministic, which means, by Property 1.5, that the
interpretations of the derived terms of E′ are pairwise disjoint. We prove now that
the interpretations of elements of D(E) are disjoint, which implies that ∆(E) is
co-deterministic.

Let K1 and K2 be two distinct derived terms of D(E) and assume that there
exists u in |||K1||| ∩ |||K2|||. By (11) and Lemma 3.4, there exist K′

1 and K′
2 in D(E′)

such that one of the following three cases holds:
Case 1 K1 = ϕ(K′

1) and K2 = ϕ(K′
2).

14

Case 2.1 K1 = ϕ(K′
1) and K2 = G∗Hrϕ(K′

2).
Case 2.2 K1 = G∗Hr1ϕ(K′

1) and K2 = G∗Hr2ϕ(K′
2).

Case 1 From Lemma 3.4 there exist states s1 and s2 such that |||K′
1||| ⊆ FutB′(s1)

and |||K′
2||| ⊆ FutB′(s2) , and |||K1||| ⊆ FutA(s1) and |||K2||| ⊆ FutA(s2) . As A is

co-deterministic, s1 = s2 = s �= q and by Lemma 3.3, there exists a unique v
in FutB′(s) such that u ∈ ϕ(v) . Hence v ∈ |||K′

1||| ∩ |||K′
2||| . The induction hypothesis

implies K′
1 = K′

2 and thus K1 = K2 .

Case 2.1 From Lemma 3.4 there exist states s1 �= q such that |||K1||| ⊆ FutA(s1)
and |||K2||| ⊆ FutA(q) . As A is co-deterministic, |||K1||| ∩ |||K2||| = ∅ .

Case 2.2 From Lemma 3.4, there exist successors of q, r1 and r2 such that
|||K′

1||| ⊆ FutB′(r1) and |||K′
2||| ⊆ FutB′(r2) , and |||K1||| ⊆ FutA(q) and |||K2||| ⊆ FutA(q) .

Hence u = g1h1w1 = g2h2w2 , with g1, g2 ∈ G∗, h1 ∈ Hr1 , h2 ∈ Hr2 , w1 ∈ ϕ (|||K′
1|||)

and w2 ∈ ϕ (|||K′
2|||). As G∩Hr1 = G∩Hr2 = ∅, g1 = g2, h1 = h2, and thus w1 = w2.

Since A is co-deterministic, there is a unique state s, different from q, such that
w is in FutA(s). Hence, by Case 1, ϕ(K′

1) = ϕ(K′
2) and thus K1 = K2 . �

Corollary 3.6. Let A be a normalized co-deterministic automaton, and E = Φ(A).
Then, the broken derived term automaton ∆′(E) of E is co-deterministic.

Proof. As above, the corollary trivially holds if A has only two states.
By induction, ∆′(E′) is co-deterministic, which means, by Property 1.5, that the

interpretations of the broken derived terms of E′ are pairwise disjoint. We prove
now that the interpretations of elements of BD(E) are disjoint, which implies that
∆′(E) is co-deterministic.

By Equation (5), BD(E) = d(D(E)) and, by Proposition 3.5, the interpretations
of the derived terms of E are disjoint. If there exists a word u in the intersection
of the interpretation of two broken derived terms K1 and K2, then, there exists a
derived term L of E, such that both K1 and K2 are in d(L).

Case 1 There exists L′ in D(E′) such that L = ϕ(L′). Then, there exists K′
1 and K′

2

in d(L′) such that K1 = ϕ(K′
1) and K2 = ϕ(K′

2). By Lemma 3.4 and Lemma 3.3,
there exists a unique word v in |||L′||| such that ϕ(v) = u, hence, v is in |||K′

1||| ∩ |||K′
2|||.

By induction hypothesis, broken derived terms of E′ have disjoint interpretations,
thus K′

1 = K′
2 and K1 = K2.

Case 2 There exist L′ in D(E′), G and Hr, such that L = G∗Hrϕ(L′) or L = Hrϕ(L′)
(if G is null).

In the first subcase, d(L) = {L}, hence K1 = K2 = L; in the second subcase,
K1 = a1ϕ(L′) and K2 = a2ϕ(L′), a1 and a2 are both the first letter of u and are
therefore equal, hence K1 = K2. �

Theorem 1.6 is now established. Indeed, either A is normalized, and nothing is
to be added, or we apply Corollary 3.6 to A$ and as the interpretations of any two
broken derived terms of E$ are disjoint so are the corresponding broken derived
terms of E: the broken derived term automaton is co-deterministic. �

15

Conclusion

As we wanted to be complete, and not leave another flaw behind us, the proof
of the theorem is long, much longer than we expected, and somewhat laboured.
It goes by a repeated forth and back between the properties of the terms and of
their interpretation. It is also based on an interplay between the derived terms
and the broken ones, which let us think that the truth may be hidden somewhere
in between. . .

In any case, this proof brought under light these broken terms that we defined
in [6] in an exploratory way. They deserve to be further studied, a task that we
have already begun [1].

Acknowledgements The authors are pleased to thanks Florent Terrones, from the
Vaucanson Group, who pointed out an example which led to this correction and to
Pierre-Yves Angrand who drew our attention on a problem with the breaking operation
d() and gave the correct definition.

References

[1] P.-Y. Angrand, S. Lombardy and J. Sakarovitch, On the broken derived terms
of a rational expression. In preparation.

[2] V. Antimirov, Partial derivatives of regular expressions and finite automaton con-
structions. Theoret. Computer Sci. 155 (1996), 291–319.

[3] J. A. Brzozowski, Derivatives of regular expressions. J. Assoc. Comput. Mach. 11
(1964), 481–494.

[4] P. Caron and M. Flouret, Glushkov construction for series: the non commutative
case, Int. J. Comput. Math. 80 (2003), 457–472.

[5] V. Glushkov, The abstract theory of automata. Russian Mathematical Surveys 16
(1961), 1–53.

[6] S. Lombardy and J. Sakarovitch, Derivatives of rational expressions with multi-
plicity, Theoret. Computer Sci. 332 (2005), 141–177. (Journal version of Proc. MFCS
02, LNCS 2420 (2002), 471–482.)

[7] S. Lombardy and J. Sakarovitch, How expressions can code for automata,
RAIRO – Theoret. Informatics and Applications 39 (2005), 217–237. (Journal ver-
sion of Proc. of LATIN 2004 , LNCS 2976 (2004), 242–251.)

.

