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Abstract. This survey paper reviews the means that allow to go from
one representation of the languages to the other and how, and to what ex-
tend, one can keep them small. Some emphasis is put on the comparison
between the expressions that can be computed from a given automaton
and on the construction of the derived term automaton of an expression.

1 A Plato’s caverna

Formal language theory, especially that part which consists in the study of the
so-called regular or recognisable languages, is a model instance of Plato’s myth
of the cavern. The real objects are the languages – or the power series – po-
tentially infinite and what we, poor computer scientists bound to manipulate
finite objects, can only see are the expressions that denote, or the automata that
recognize them. Hopefully, these expressions and automata are fairly faithful de-
scriptions of the languages (or of the series) they stand for and all the more
effective that one can take advantage of this double light.
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Fig. 1. The Φ and Ψ algorithms

It is the idea I have tried to illustrate with Figure 1 in the case of Kleene’s
Theorem. Kleene’s Theorem states the equality of two classes of languages: the
class of recognisable languages, that is those languages recognised by a finite
automaton, and the class of regular languages, that is those languages denoted
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by a regular expression. A closer look at the proof allows to argue that Kleene’s
Theorem is indeed the combination of two classes of algorithms: one that trans-
form an automaton into an expression and one that build an automaton from an
expression. In this setting, the real languages — or series — almost disappear:
only exist their symbolic (and finitary) representations.

In this talk, mostly a survey, I review the means that allow to go from one
representation of the languages to the other and how, and to what extend, one
can keep them small.

The first section presents the classical methods of computing an expression
from an automaton and of computing an automaton from an expression. We
discuss the relationships between the different expressions obtained from a given
automaton and the ways of reaching a compact one. In the second section, I
classify the methods that build an automaton from an expression and describe
with more details the one which is probably the lesser known: Antimirov’s con-
struction of derived term automaton.

As a conclusion, I mention the problem of finding an algorithm that is inverse
to those which compute an expression from an automaton, hence taming the
combinatorial explosion induced by the latter ones, and sketch a first attempt
to solve it.

2 The Φ algorithms

We use mostly classical notation ([1, 2]). In particular we denote an automaton
as A = 〈Q, A, E, I, T 〉 where I and T are subsets of the set Q of states, and E
is the set of transitions labeled by letters of the alphabet A, or equivalently as
A = 〈 I, E, T 〉 where E is the square matrix of dimension Q whose entry (p, q)
is the set of letters that label the transitions from p to q, and where I and T
are Boolean vectors of dimension Q. The language accepted by A is denoted by
L(A) and with the latter notation, L(A) = I · E∗ · T .

A “Φ algorithms”, computes an expression for L(A) and thus amounts to
compute expressions for the entries of the star of the matrix E. We shall consider
this problem both from a theoretical and from an experimental point of view.

2.1 A theoretical point of view

There are (at least) four methods or algorithms for computing a regular expres-
sion that denotes L(A):

1. Iterative computation of E∗: known as McNaughton–Yamada algorithm after
their seminal paper ([3]) and probably the most popular among textbooks
on automata theory. Called algorithm MNY here.

2. Direct computation of the entries of E∗: the so-called state elimination
method ([4, 5]) looks more elementary and is indeed the easiest for hand
computation as well as for computer implementation (cf. Figure 2).

3. Computation of E∗ · T as a solution of a system of linear equations. Based
on Arden’s Lemma, it also allows to consider E∗ · T as a fixed point.
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4. Recursive computation of E∗: based on Arden’s Lemma as well, this algo-
rithm appeared first in Conway’s book ([6]) conjugates mathematical ele-
gance and computational inefficiency.
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Fig. 2. One step in the state elimination method

The first three algorithms rely on a total order ω on Q, the fourth on a recur-
sive division τ of the same set Q. All these algorithms, and for each algorithm
all orders on Q will give by definition equivalent, but likely distinct, expressions.
It is thus a natural problem that to compare these expressions; but this raise
the question: ‘what does it mean to compare expressions’? A possible answer —
the one we choose here — consists in the characterisation of which of the basic
identities are necessary to transform one into another. We thus first begin with
a presentation of those identities which roughly follows that that Krob ([7]) gave
of Conway’s system ([6]).

Trivial and natural identities

E + 0 ≡ 0 + E ≡ E , E · 0 ≡ 0 · E ≡ 0 , E · 1 ≡ 1 · E ≡ E (T)
(E + F) + G ≡ E + (F + G) , (E · F) · G ≡ E · (F · G) (A)
E · (F + G) ≡ E · F + E · G , (E + F) · G ≡ E · G + F · G (D)

E + F ≡ F + E (C)

Aperiodic identities.

E∗ ≡ 1 + E · E∗ , E∗ ≡ 1 + E∗ · E (U)
(E + F)∗ ≡ E∗ · (F · E∗)∗ , (E + F)∗ ≡ (E∗ · F)∗ · E∗ (S)

(E · F)∗ ≡ 1 + E · (F · E)∗ · F (P)

Cyclic identities.

E∗ ≡ E<n · (En)∗ (Z)n

Idempotency identities.

E + E ≡ E (I) (E∗)∗ ≡ E∗ (J)
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The state elimination and equation solution methods

Proposition 1 ([8]). The state elimination method and the solution (by Gaus-
sian elimination) of a system of linear equations taken from an automaton give
the same regular expression (assuming that the same order in elimination is used
in both cases).

Proof. For p and q in Q, the set of words which are the label of a computation
which goes from p to a final state of A is written: Lp = {f

∣∣ ∃t ∈ T p
f−−→
A

t}
and we write Ep,q for the set of labels of transitions which go from p to q and
the symbol δp,R for a subset R of Q, which is 1A∗ if p is in R and ∅ if not. The
system of equations associated with A is written:

L(A) =
∑
p∈I

Lp =
∑
p∈Q

δp,I Lp (1)

∀p ∈ Q Lp =
∑
q∈Q

Ep,q Lq + δp,T (2)

After the elimination of a certain number of unknowns Lp – we write Q′ for the
set of indices of those which have not been eliminated – we obtain a system of
the form:

L(A) =
∑
p∈Q′

Gp Lp + H (3)

∀p ∈ Q′ Lp =
∑
q∈Q′

Fp,q Lq + Kp (4)

We can make a generalised automaton B′ corresponding to such a system, whose
set of states is Q′∪{i, t}, where i and t do not belong to Q′, and such that, for all p
and q in Q′: (i) the transition from p to q is labelled Fp,q; (ii) the transition
from p to t is labelled Kp; (iii) the transition from i to p is labelled Gp; and
(iv) the transition from i to t is labelled H .
Note that this definition applied to the system (1)–(2) characterises the automa-
ton constructed in the first phase of the state elimination method applied to A.

The elimination in the system (3)–(4) of the unknown Lp by substitutions
and the application of Arden’s Lemma give the system:

L(A) =
∑

r∈Q′\p

[
Gr + Gp F ∗

p,pFp,r

]
Lr +

[
H + Gp F ∗

p,pKp

]
(5)

∀r ∈ Q′ \ p Lr =
∑

q∈Q′\p

[
Fr,q + Fr,p F ∗

p,pFr,q

]
Lq +

[
Kr + Fr,p F ∗

p,pKp

]
(6)

whose coefficients are exactly the transition labels of the generalised automaton
obtained by removing the state p from B′.

Thus, since the starting points correspond and since each step maintains
the correspondence, the expression obtained for L(A) by the state elimination



The Language, the Expression, and the (small) Automaton 5

method is the same as that obtained by the solution of the system (1)–(2).
More precisely, we can say that the state elimination method reproduces in the
automaton A the computations corresponding to the solution of the system.

The state elimination and MNY algorithms, identical orders

The order ω fixes the operation of the state elimination method whose result
is a rational expression over A∗, written1 EB MC(A, ω). For greater precision,
we write the result of this algorithm EB MC(A, ω, (p, q)) when we take p as the
initial state and q as the final state.

On the other hand, we will write MMN Y (A, ω) for the matrix of rational
expressions obtained when we apply the McNaughton–Yamada algorithm to the
automaton A whose states are ordered by ω. It then follows that:

Proposition 2 ([8]). Let A = 〈Q, A, E, I, T 〉 an automaton over A∗. For every
(total) order ω on Q and all p and q in Q, we have:

(U) [MMN Y (A, ω)]p,q ≡ EB MC(A, ω, (p, q)) .

Proof. To prove this result we will show a correspondence between the operations
performed by the two algorithms. The difficulty, if it can be called that, is that
we have to compare two objects whose form and mode of construction are rather
different: on one hand a Q×Q matrix obtained by successive transformations,
from which we choose one entry, and on the other an expression obtained by
repeated modification of an automaton, hence of a matrix, but one whose size
decreases at each step.

In the following, A and ω are fixed and remain implicit. The automaton A
has n states, identified with the integers from 1 to n; the two algorithms per-
form n steps starting in a situation called ‘step 0’, the kth step of the state elim-
ination method consisting of the removal of state k, and that of algorithm MNY
consisting of calculating the labels of paths that do not include nodes (strictly)
greater than k. We write:

E(k)(r, s)

for the label of the transition from r to s in the automaton obtained from A
(and ω) at the kth step of the state elimination method; necessarily, in this
notation, k + 1 � r and k + 1 � s (abbreviated to k + 1 � r, s ). We write:

M(k)
r,s

for the entry r, s of the n×n matrix computed by the kth step of algorithm MNY.
At step 0, the automaton A has not been modified and we have:

∀r, s , 1 � r, s � n M(0)
r,s = E(0)(r, s) , (7)

1 A reminder that this algorithm is due to J. Brzozowski and E. McCluskey ([9]).
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which will be the base case of the inductions to come. Algorithm MNY is written:

∀k , 0 < k � n , ∀r, s , 1 � r, s � n

M(k)
r,s = M(k−1)

r,s + M
(k−1)
r,k · [M(k−1)

k,k ]∗ · M(k−1)
k,s . (8)

The state elimination algorithm is written:

∀k , 0 < k � n , ∀r, s , k < r, s � n

E(k)(r, s) = E(k−1)(r, s) + E(k−1)(r, k) · [E(k−1)(k, k)]∗ · E(k−1)(k, s) (9)

Hence we conclude, for given r and s and by induction on k:

∀r, s , 1 � r, s � n , ∀k , 0 � k < min(r, s) M(k)
r,s = E(k)(r, s) (10)

We see in fact (as there is even so something to see) that if k < min(r, s) then
all integer triples (l, u, v) such that M

(l)
u,v occurs in the computation of M

(k)
r,s by

the (recursive) use of (8), are such that l < min(u, v).
Suppose now that we have p and q, also fixed, such that 1 � p < q � n (the

other cases are dealt with similarly). We call the initial and final states added
to A in the first phase of the state elimination method i and t respectively;
i and t are not integers between 1 and n. The transition from i to p and that
from q to t are labelled 1A∗ . Now let us consider step p of each algorithm. For
every state s, p < s, M

(p)
p,s is given by (8):

M(p)
p,s = M(p−1)

p,s + M(p−1)
p,p · [M(p−1)

p,p ]∗ · M(p−1)
p,s

and E(p)(i, s) by:

E(p)(i, s) = [E(p−1)(p, p)]∗ · E(p−1)(p, s)

and hence, by (10):

∀s , p < s � n (U) M(p)
p,s ≡ E(p)(i, s) . (11)

Next we consider the steps following p (and row p of the matrices M(k)). For
all k, p < k, and all s, k < s � n, M

(k)
p,s is always computed by (8) and E(k)(i, s)

by:

E(k)(i, s) = E(k−1)(i, s) + E(k−1)(i, k) · [E(k−1)(k, k)]∗ · E(k−1)(k, s) . (12)

From (11), and based on an observation analogous to the previous one, we con-
clude from the term-by-term correspondence of (8) and (12) that:

∀k , p < k , ∀s , p < s � n (U) M(k)
p,s ≡ E(k)(i, s) . (13)

The analysis of step q gives a similar, and symmetric, result to that which we
have just obtained from the analysis of step p: for all r, q < r, we have:

M(q)
r,q = M(q−1)

r,q + M(q−1)
r,q · [M(q−1)

q,q ]∗ · M(q−1)
q,q

and E(q)(r, t) = E(q−1)(r, q) · [E(q−1)(q, q)]∗
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and hence

∀r , q < r � n (U) M(q)
r,q ≡ E(q)(r, t) . (14)

The steps following q give rise to an equation symmetric to (13) (for column q
of the matrices M(k)):

∀k , q < k , ∀r , q < r � n (U) M(k)
r,q ≡ E(k)(r, t) . (15)

Finally, from:

M(k)
p,q = M(k−1)

p,q + M
(k−1)
p,k · [M(k−1)

k,k ]∗ · M(k−1)
k,q

and E(k)(i, t) = E(k−1)(i, t) + E(k−1)(i, k) · [E(k−1)(k, k)]∗ · E(k−1)(k, t)

Equations (10), (13) and (15) together allow us to conclude, by induction on k,
that:

∀k , q � k � n (U) M(k)
p,q ≡ E(k)(i, t) . (16)

When we reach k = n in this equation we obtain the identity we want.

The state elimination and MNY algorithms, distinct orders

Having compared the state elimination and MNYalgorithms under the same
order, that is the same execution conditions, we can compare the results of these
algorithms for different execution conditions.

Theorem 1 (Conway [6], Krob [7]). Let A = 〈Q, A, E, I, T 〉 be an automa-
ton over A∗. The expressions denoting L(A) computed by the McNaughton–
Yamada algorithm, like those computed by the state elimination method or the
solution of a system of equations, are all equivalent modulo (S) and (P), i.e.,
for all orders ω and ω′ on Q and all p and q in Q:

(S) ∧ (P) [MMN Y (A, ω)]p,q ≡ [MMN Y (A, ω′)]p,q ,

(S) ∧ (P) EB MC(A, ω, (p, q)) ≡ EB MC(A, ω′, (p, q)) .

Proof. The previous proposition allows us to show the property for expressions
computed by the state elimination method, which is easier to deal with (remem-
bering that (P) ‘contains’ (U)). Furthermore, we can go from an order ω to any
other order ω′, a permutation of Q, by a series of transpositions.

We therefore arrive at the situation illustrated in Figure 3 (left) and need
to show that the expressions obtained by the state elimination method when
we first remove the state r and then r′ are equivalent to those obtained from
removing first r′ and then r, modulo (S) ∧ (P).

The removal of state r gives the expressions in Figure 3 (right). The removal
of state r′ gives the expression:

E = K L∗H + (K L∗G + K ′) [G′ L∗G + L′]∗ (G′ L∗H + H ′) ,
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which using (S) (and the natural identities) becomes:

E ≡ K L∗H + K L∗G
[
L′∗G′ L∗G

]∗
L′∗G′ L∗H

+ K ′ [
L′∗G′ L∗G

]∗
L′∗G′ L∗H + K L∗G

[
L′∗G′ L∗G

]∗
L′∗H ′

+ K ′ [
L′∗G′ L∗G

]∗
L′∗H ′ .

We write:

K ′ [
L′∗G′ L∗G

]∗
L′∗H ′ ≡ K ′L′∗H ′ + K ′L′∗G′ L∗ [

GL′∗G′ L∗]∗ GL′∗H ′

by using (P) then, by ‘switching the brackets’ (using the identity (XY)∗X ≡
X(YX)∗ which is also a consequence of (P)), we obtain:

E ≡ K L∗H

+ K L∗G
[
L′∗G′ L∗G

]∗
L′∗G′ L∗H + K ′L′∗G′ [

L∗GL′∗G′]∗ L∗H

+ K L∗G
[
L′∗G′ L∗G

]∗
L′∗H ′ + K ′L′∗G′ [

L∗GL′∗G′]∗ L∗GL′∗H ′

+ K ′L′∗H ′

an expression that is perfectly symmetric in the letters with and without ticks,
which shows that we would have obtained the same result if we had started by
removing r′ then r.

p q

r r′

K′ H

G

G′K H ′

L L′

p q

r′
K L∗G + K′

K L∗H

G′ L∗H + H ′

G′ L∗G + L′

Fig. 3. First step of two in the state elimination method

Remark 1. It is known that the Φ-algorithms described above are valid for au-
tomata with multiplicity. It is thus not surprising that the idempotency identities
are not used to pass from an expression to another one. On the other hand, it
is also known ([6]) that an infinite number of identities (among which the cyclic
identities (Z)n for all prime numbers n) are necessary to derive all possible
equivalence among epressions. Taking this into account, the above results show
that all expressions computed from a given automaton can be considered as
‘close’ since only the two identities (S) and (P) are necessary to derive one from
another.

The state elimination and the recursive methods Finally, it remains
to compare the matrices obtained by the algorithm MNY and the recursive
algorithm. A simple two state automaton is sufficient for observing that there
is no hope for a global comparison of the entries of the two matrices. We can
however state the following conjecture.
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Conjecture 1. For every recursive division τ of Q and for every pair (p, q) of
states, there exists an ordering ω′ of Q such that

(U) [C(τ)]p,q ≡ E(ω′, p, q) .

2.2 An experimental point of view

It is easily seen that the size of a regular expression E computed from an au-
tomaton A may be exponential in the number of states of A. A complete graph
shows that this combinatorial explosion is unavoidable.

But most of the interesting automata are not complete graph. Basic examples
show how different the size of expressions computed from a same automaton can
be: in Figure 4, E1 is obtained by eliminating the states in the order 1–2–3
whereas E2 is obtained with the reverse order 3–2–1.

1 2 3
b

b

a

a

a b

E1 = a∗ + a∗b(ba∗b)∗ba∗ + a∗b(ba∗b)∗a(b + a(ba∗b)∗a)∗a(ba∗b)∗ba∗

E2 = (a + b(ab∗a)∗b)∗

Fig. 4. Two results of the state elimination method

Finding the ordering of states that yields the shortest expression for a given
automaton is probably a hard combinatorial problem. On the other hand, it is
not too difficult to design heuristics which do not imply heavy computations and
prove to be pretty efficient.

In order to create as few transitions as possible at a given step (cf. Figure 2),
one associates to every state q an index which is the product of the in-degree of
q by its out-degree (once the possible loop on q is discarded); one then choose to
eliminate among those states with smallest index a state without loop, if any;
the index is then recomputed at each step.

This rather naive heuristic had been implemented in vaucanson ([10]). Del-
gado and Morais ([11]) have proposed a heuristic which is based on the same
principle, but in which the length of the expressions that label the transitions
is also taken into account in the computation of the index. This other heuristic
has also been implemented in the newer version of vaucanson ([12]). First ex-
periments show that it might be better (on a first set of “random” automata,
it outperforms the naive one in 55% of the cases). More experiments on much
larger sets of automata need certainly to be done: the proof of a heuristic is in
the computing.
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3 The Ψ algorithms

We call “Ψ algorithm” an algorithm that is given a regular expression E and
computes an automaton which accepts the language denoted by E. As for the Φ
algorithms, there is no much mystery left in this question. But not all aspects
are equally well-known.

3.1 A theoretical point of view

Although there are numerous ways to present them, there are two main distinct
constructions of an automaton from a regular expression: the standard automa-
ton and the derived term automaton. Automata are compared via morphisms.

The standard automaton We say that an automaton is standard if it has
only one initial state and if this initial state is not the end of any transition (and
if the automaton is accessible). We call standard automaton of an expression
E the automaton SE build by induction on the depth of E, starting from the
(unique possible) standard automata for 0, 1, and every letter a in A, and with
the “natural” constructions for the union, product and star: cf. Figures 5 and 6.
Of course, any standard automaton is not, in general, the standard automaton
of an expression.

Let us denote by �(E) the literal length of the expression E — that is the
number of occurrences of letters in E.

Proposition 3 (Glushkov [13]). The standard automaton SE of the expres-
sion E has �(E) + 1 states.

A i Bj A Bk

Ai Bj
a

b

1A∗

1A∗

1A∗

Ai Bj
a

b

a

b

a

b

b

a

a

b

Fig. 5. Construction of the standard automaton for the union and the product

The ‘standard automaton of an expression’ is usually attributed to Glushkov
[13] and hence often called Glushkov’s automaton. It is also called position au-
tomaton of E as the original method of construction somehow starts from the
occurrences of letters in E, taken as states, and then computes the transitions
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Ai
a

b

1A∗

1A∗

Ai
a

b

a

b

b

a

Fig. 6. Construction of the standard automaton for the star

— also by induction on the depth of E. A characteristic feature of SE is that it is
small in terms of the ‘input’ E: linear for the states, quadratic for the transitions
and it is so because it is non deterministic. In [3], McNaughton and Yamada al-
ready had the idea of using the positions of letters in the expression in order to
define an automaton but they computed directly2 its determinised version and
thus lost any property on the size of the result. The mode of construction given
here is adapted from [14]; it is well suited to the generalisation to automata with
multiplicity ([14, 8, 15]).

Another method for building an automaton from an expression was given by
Thompson ([16]). It amounts to recursive connection via spontaneous transitions
(i.e. ε-moves) of ‘atomic’ automata that recognise letters and it was designed
for a direct array implementation. It is folklore that the backward closure (i.e.
suppression of spontaneous transitions by following first the spontaneous transi-
tions and then a transition labeled with a letter) in the Thompson’s automaton
of E yields the standard automaton of E. Hence the former can be seen as an
‘extended version’ of the latter and falls in the same category.

The derived term automaton A second class of algorithms is based on the
definition of the derivation of an expression. First introduced by Brzozowski [17],
the definition of derivation has been slightly, but smartly, modified by Antimirov
[18] and yields a non deterministic automaton AE which we propose to call the
derived term automaton of the expression E. This automaton AE is smaller than
or equal to the standard automaton SE. The automaton of derived expressions
computed in [17] is the determinised automaton of AE.

An algebraic characterization of regular languages is that every regular lan-
guage has a finite number of left quotients. The purpose of “Brozozowski” deriva-
tives was to lift that characterization at the level of expressions [17]. Antimirov
“partial derivatives” achieve the same lifting in an indirect but more efficient
way. To an expression E that denotes a language L is associated a finite set T
of expressions — which we call derived terms of E — such that any left quotient
of L is a union of some of the languages denoted by the expressions in T [18].

The notion of derived terms is indeed better understood when expressed in
the larger framework of power series — languages being series with coefficients in
the Boolean semiring — and of expressions with multiplicity (cf. [15]). A series s
is rational — i.e. denoted by a regular expression E — iff it is contained in a
finitely generated module (of series) U which is closed under left quotient. The

2 Probably because in those early times, an automaton had to be deterministic.
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derived terms of E are then expressions that denote a set of generators of U .
The following definitions give a procedure for computing the derived terms of
an expression.

Definition 1 (Brozozowski–Antimirov [18]). Let E be a regular expression
on A and let a be a letter in A. The B-derivative3 of E with respect to a, de-
noted ∂

∂a E, is a set of regular expressions on A, recursively defined by:

∂

∂a
0 =

∂

∂a
1 = ∅ ,

∀a, b ∈ A
∂

∂a
b =

{
{1} if b = a
∅ otherwise

∂

∂a
(E+F) =

∂

∂a
E ∪ ∂

∂a
F (17)

∂

∂a
(E · F) =

[
∂

∂a
E

]
· F ∪ c(E)

∂

∂a
F (18)

∂

∂a
(E∗) =

[
∂

∂a
E

]
· E∗ (19)

The induction implied by (17 – 19) should be interpreted by distributing
derivation and product over union:

∂

∂a

[⋃
i∈I

Ei

]
=

⋃
i∈I

∂

∂a
Ei ,

[⋃
i∈I

Ei

]
· F =

⋃
i∈I

(Ei · F) .

Definition 2. Let E be a regular expression on A and g a non empty word of A∗,
i.e. g = f a with a in A. The B-derivative of E with respect to g, denoted ∂

∂g E, is
the set of regular expressions on A, recursively defined by formulae (17) – (19)
and by:

∀f ∈ A+ , ∀a ∈ A
∂

∂fa
E =

∂

∂a

(
∂

∂f
E

)
. (20)

We shall call derived term of E the expression E itself or any of the expressions
which belongs to a set ∂

∂g E for some g in A+.

Theorem 2 (Antimirov [18]). The number of derived terms of an expres-
sion E is finite and smaller than or equal to �(E) + 1.

Remark 2. Contrary to the derivation defined by Brzozowski [17], the result of
the B-derivation of an expression is not one expression but a set of expressions.
As a result, it overcomes another drawback of its predecessor. The number of
3 We call it “B-derivative” and not simply “derivative” for two reasons. First in order

to avoid confusion with the derivation defined by Brzozowski, and second because
the formulae depend on the semiring of multiplicities and can be defined for other
semirings (cf. [15]).
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Brzozowski derivatives of an expression is not finite directly but only modulo
the identities (A), (C) and (I) described above. The computation of the derived
terms does not involve any identity.

Definition 3. The derived term automaton of an expression E is the finite au-
tomaton AE whose states are the derived terms of E and whose transitions are
defined by:
(i) if K and K′ are derived terms of E and if a is a letter of A, (K, a, K′) is

a transition of AE if and only if K′ belongs to ∂
∂a K;

(ii) the initial state of AE is E;
(iii) a derived term K is a final state of AE if and only if c(K) = 1;

Figure 7 shows the derived terms of the expression E1 computed at Figure 4
and the corresponding derived term automaton.

We write E1 = a∗ + a∗bH1 + a∗bF1 G1 H1

with H1 = (b a∗b)∗b a∗ , F1 = (b a∗b)∗a ,
and G1 = (b + a (b a∗b)∗a)∗a .

The successive derivations of E1 with res-
pect to a and b give 7 derived terms:
E1 itself, a∗ , H1 , X1 = a∗b H1 ,
Y1 = a∗b F1 G1 H1 , Z1 = F1 G1 H1 ,
and T1 = G1 H1 .

E1

Y1 Z1 T1

X1 H1

a∗

a

a

a

b

b

a

a

b

b

a

b

a b

a

a

Fig. 7. The derived terms of E1 and its derived term automaton

The two classes of algorithms are not without relationships between them. A
first one was given by Berry–Sethi who showed that the Brzozowski derivation
applied on a “ linearized” version of an expression gives the standard automaton
of that expression [19, 20]. A more interesting one is established by means of
morphisms of automata that we should define first.

Morphisms of automata Let A = 〈Q, A, E, I, T 〉 and B = 〈R, A, F, J, U 〉
be two B-automata. A (surjective) map ϕ : Q −→ R induces (or is) a morphism
from A onto B if (p, a, q) ∈ E implies (ϕ(p), a, ϕ(q)) ∈ F and this morphism is
a (B)-quotient if moreover (r, a, s) ∈ F and p ∈ ϕ−1(r) implies that there exists
q in ϕ−1(s) such that (p, a, q) ∈ E . Every automaton has a unique minimal
quotient.

Theorem 3 (Champarnaud–Ziadi [21]). For any expression E, the derived
term automaton AE is a quotient of the standard automaton SE.

This result implies in particular the bound of Theorem 2 on the number of
derived terms. It is to be noted also that if the derived term automaton is a
quotient of the standard automaton, it is not its minimal quotient. Theorem 3
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has been generalised to expressions with multiplicity but this generalisation re-
quires special care in the definition of the derived terms in the case where the
multiplicity semiring is not a positive semiring ([15]).

3.2 An experimental point of view

The effective computation of the standard automaton of an expression has been
the subject of many works. If the actual efficiency of the computation depends
unpon the implementation, it is known that the construction of SE is of quadratic
complexity (with respect to �(E)) ([22]).

The determination of the complexity of the computation of the derived term
automaton if an expression E is more difficult. The key property, proven in [21],
is that every derived term of E is a product of subexpressions of E.

Proposition 4 (Champarnaud–Ziadi [21]). For every expression E, the de-
rived term automaton AE can be computed with a quadratic complexity (with
respect to �(E)).

The Champarnaud–Ziadi algorithm has been transformed in order to be valid
for automata with multiplicity and it has been implemented in vaucanson (cf.
[12] in this volume).

It appears that AE is particularly ‘economical’ — sizewize and by comparison
with SE — when E is obtained by a Φ algorithm from a finite automaton. We
come back to his fact in the conclusion. However, it seems that, even in this
case, the computation of SE followed by a quotient is far more efficient than the
direct computation of AE. Other constructions have been proposed recently that
yield automata which are smaller than the standard automaton ([23–25]). Their
proper relationships with the derived term automaton, and the efficiency of their
computation are still to be worked out by extensive experimentations (cf. [26]).

4 Can expressions and automata code for each other?

We have seen that a Φ-algorithm is likely to generate, from an automaton A, an
expression with a literal length which is exponential in the number of states of
A and that a Ψ -algorithm is likely to build, from an expression E, an automaton
whose number of states is (rougly) equal to the literal length of E. These two
facts together imply that there is little hope to find algorithms which are inverse
of each other in these general families. However, the standard automaton of
an expression on one hand, and an expression computed, for instance, by the
state elimination method on the other hand, are of such particular form that the
problem is certainly to be tackled.

In [27], Caron and Ziadi have described an algorithm, say Θ, which decides
whether or not an automaton A is the standard automaton of an expression E;
and if the answer is positive, Θ moreover computes an expression which is al-
most E, namely the star normal form of E as defined by Brüggemann-Klein
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[22]. Even if Θ is not properly a Φ-type algorithm since it does not compute an
expression for every automaton, it holds:

For any star normal form regular expression E, Θ(Ψs(E)) = E .

The problem of finding an algorithm that is inverse of a Φ-algorithm has been
addressed in a recent joint paper of mine and Sylvain Lombardy ([28]). We give
there a partial solution to that problem in the following way.

There are two main ingredients in the construction of an algorithm Ω that
gives back an automaton A from an expression that has been computed from A.
The first one is a sligthly modified derivation which, roughly speaking, ‘breaks’
the sums at the upper level. As a result, in particular, the corresponding derived
term automaton may have more than one initial state. The second step is to take
the minimal co-quotient of this new derived term automaton. [The minimal co-
quotient is the transposed of the minimal quotient of the transposed automaton.]
This Ω is not an inverse of a Φ-algorithm as described above but of a Φ′-algorithm
which consists in performing first a partial linearisation Λ of the automaton A
and then a normal Φ-algorithm. We then have (cf. [28] for more details):

For any automaton A, Ω(Φ′(A)) = A .

Reducing the amount of information that one has to bring in with the lin-
earisation Λ is the subject of ongoing research work.

�
E

�B
AutA∗RegE A∗

Ψ

Θ

�
F

�

A

AutA∗RegE A∗

Φ

Ω

Fig. 8. The Θ and Ω algorithms
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22. Brügemann-Klein, A.: Regular expressions into finite automata. Theor. Comput.
Sci. 120 (1993) 197–213

23. Hagenah, C., Musholl, A.: Computing ε-free NFAs from regular expressions in
O(n log2(n)) time. Theoret. Inform. Appl. 34 (2000) 257–277

24. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small
ε-free nondeterministic finite automata. J. Comput. System Sci. 62 (2001) 565–588

25. Ilie, L., Yu, S.: Constructing NFAs by optimal use of positions in regular expres-
sions. In Apolostolico, A., Takeda, M., eds.: Proc. of CPM’02, Lecture Notes in
Computer Science 2373, Springer (2002) 279–288

26. Champarnaud, J.M., Nicart, F., Ziadi, D.: Computing the follow automaton of an
expression. In Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S., eds.: Proc. of
CIAA 04, Lecture Notes in Computer Science 3317, Springer (2004) 90–101

27. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theor. Comput. Sci.
233 (2000) 75–90

28. Lombardy, S., Sakarovitch, J.: How expressions can code for automata. Theoret.
Inform. App. 39 (2005) 217–237


