The validity of weighted automata

Jacques Sakarovitch
CNRS / Université Denis-Diderot and Telecom ParisTech

Joint work with

Sylvain Lombardy

LaBRI, CNRS / Université de Bordeaux / Institut Polytechnique de Bordeaux

CIAA, 31 July 2018, Charlottetown, PEI

Dedicated to the memory of Zoltan Ésik

First version presented at CIAA 2012 under the title:
The removal of weighted ε-transitions, in: Proc. CIAA 2012, Lect. Notes in Comput. Sci. n 7381.

Published in
International Journal of Algebra and Computation 23 (2013) DOI: 10.1142/S0218196713400146

Supported by ANR Project 10-INTB-0203 VAUCANSON 2.

The automaton model

The automaton model

The weighted automaton model

The weighted automaton model

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} p \stackrel{\frac{1}{2} a}{ } p \stackrel{\frac{1}{2} b}{\longrightarrow} q \xrightarrow{1} \\
& \xrightarrow{1} p \stackrel{\frac{1}{2} b}{\longrightarrow} q \xrightarrow{a} q \xrightarrow{b} q \xrightarrow{1}
\end{aligned}
$$

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w
$b a b \quad \longmapsto \quad \frac{1}{2}+\frac{1}{8}=\frac{5}{8}$

The weighted automaton model

$$
\begin{aligned}
& \mathcal{C}_{1} \rightarrow \text { (P) } \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} p \xrightarrow{\frac{1}{2} a} p \xrightarrow{\frac{1}{2} b} q \xrightarrow{1} \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} b} q \xrightarrow{a} q \xrightarrow{b} q \xrightarrow{1}
\end{aligned}
$$

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w
$b a b \longmapsto \frac{1}{2}+\frac{1}{8}=\frac{5}{8} \quad=\langle 0.101\rangle_{2}$

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w
$b a b \quad \longmapsto \quad \frac{1}{2}+\frac{1}{8}=\frac{5}{8}$

$$
\left|\mathcal{C}_{1}\right|: A^{*} \longrightarrow \mathbb{Q}
$$

The weighted automaton model

- Weight of a path c : product of the weights of transitions in c
- Weight of a word w : sum of the weights of paths with label w

$$
\left|\mathcal{C}_{1}\right|=\frac{1}{2} b+\frac{1}{4} a b+\frac{1}{2} b a+\frac{3}{4} b b+\frac{1}{8} a a b+\frac{1}{4} a b a+\frac{3}{8} a b b+\frac{1}{2} b a a+\ldots
$$

The weighted automaton model

$$
\mathcal{C}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle
$$

The weighted automaton model

$$
\begin{gathered}
\mathcal{A}=\langle I, \underline{E}, T\rangle \quad \underline{E}=\text { adjacency matrix } \\
\underline{E}_{p, q}=\sum\{\mathbf{w l}(e) \mid e \quad \text { transition from } p \text { to } q\} \\
=\quad \begin{array}{l}
\text { linear combination of letters in } A
\end{array} \\
\underline{E}_{p, q}^{n}=\sum\{\mathbf{w l}(c) \mid c \quad \text { computation from } p \text { to } q \text { of length } n\} \\
\underline{E}^{*}=\sum_{n \in \mathbb{N}} \underline{E}^{n}
\end{gathered}
$$

Since \underline{E} is proper, \underline{E}^{*} is well-defined

$$
\underline{E}_{p, q}^{*}=\sum\{\mathbf{w l}(c) \mid c \quad \text { computation from } p \text { to } q\}
$$

The weighted automaton model

$$
\begin{gathered}
\mathcal{C}_{1}=\left\langle l_{1}, \underline{\underline{E}_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle \\
\left|\mathcal{C}_{1}\right|=I_{1} \cdot \underline{\underline{E}_{1}}{ }^{*} \cdot T_{1}
\end{gathered}
$$

The weighted automaton model

$$
\mathcal{C}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
\frac{1}{2} a+\frac{1}{2} b & \frac{1}{2} b \\
0 & a+b
\end{array}\right),\binom{0}{1}\right\rangle
$$

$$
\left|\mathcal{C}_{1}\right|=I_{1} \cdot{\underline{E_{1}}}^{*} \cdot T_{1}
$$

Every \mathbb{K}-automaton defines a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ whose coefficients are effectively computable

The weighted automaton model

Every \mathbb{K}-automaton defines a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ whose coefficients are effectively computable

Where is the problem ?

The weighted automaton model

Every \mathbb{K}-automaton defines a series in $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ whose coefficients are effectively computable

Where is the problem ?

We want to be able to deal with weighted automata where transitions might be labelled by the empty word

The need for a richer model: eg, the concatenation product

The need for a richer model: eg, the concatenation product

The need for a richer model: eg, the concatenation product

The need for a richer model: eg, the concatenation product

The need for a richer model: eg, the concatenation product

A basic result in (classical) automata theory

Theorem (Folk-Lore)
Every $\varepsilon-N F A$ is equivalent to an NFA

A basic result in (classical) automata theory

Theorem (Folk-Lore) Every ε-NFA is equivalent to an NFA

Usefulness of ε-transitions:
Preliminary step for many constructions on NFA's:

- Product and star of position (Glushkov, standard) automata
- Thompson construction
- Construction of the universal automaton
- Computation of the image of a transducer
- ...

May correspond to the structure of the computations

A basic result in (classical) automata theory

Theorem (Folk-Lore)
Every ε-NFA is equivalent to an NFA

Usefulness of ε-transitions:
Preliminary step for many constructions on NFA's:

- Product and star of position (Glushkov, standard) automata
- Thompson construction
- Construction of the universal automaton
- Computation of the image of a transducer
- ...

May correspond to the structure of the computations
Removal of ε-transitions is implemented in all automata software

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

A basic result in (classical) automata theory

Theorem (Folk-Lore)
Every $\varepsilon-N F A$ is equivalent to an NFA

A proof

$$
\begin{gathered}
\mathcal{A}=\langle I, \underline{E}, T\rangle \\
\text { Entries of } \underline{E}=\text { subsets of } A \cup\{\varepsilon\} \\
L(\mathcal{A})=I \cdot \underline{E}^{*} \cdot T \\
\underline{E}=\underline{E}_{0}+\underline{E}_{\mathrm{p}} \\
L(\mathcal{A})=I \cdot\left(\underline{E}_{0}+\underline{E}_{\mathrm{p}}\right)^{*} \cdot T=I \cdot\left(\underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}\right)^{*} \cdot \underline{E}_{0}^{*} \cdot T \\
\mathcal{A}=\langle I, \underline{E}, T\rangle \text { equivalent to } \mathcal{B}=\left\langle I, \underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}, \underline{E}_{0}^{*} \cdot T\right\rangle
\end{gathered}
$$

A basic result in (classical) automata theory

Theorem (Folk-Lore)
Every $\varepsilon-N F A$ is equivalent to an NFA

A proof

$$
\begin{gathered}
\mathcal{A}=\langle I, \underline{E}, T\rangle \\
\text { Entries of } \underline{E}=\text { subsets of } A \cup\{\varepsilon\} \\
L(\mathcal{A})=I \cdot \underline{E}^{*} \cdot T \\
\underline{E}=\underline{E}_{0}+\underline{E}_{\mathrm{p}} \\
L(\mathcal{A})=I \cdot\left(\underline{E}_{0}+\underline{E}_{\mathrm{p}}\right)^{*} \cdot T=I \cdot\left(\underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}\right)^{*} \cdot \underline{E}_{0}^{*} \cdot T \\
\mathcal{A}=\langle I, \underline{E}, T\rangle \text { equivalent to } \mathcal{B}=\left\langle I, \underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}, \underline{E}_{0}^{*} \cdot T\right\rangle
\end{gathered}
$$

One proof $=$ several algorithms for computing \underline{E}_{0}^{*} or $\underline{E}_{0}^{*} \cdot \underline{E}_{\mathrm{p}}$

Automata and expressions

$$
\mathrm{E}_{2}=\left(a^{*}+b^{*}\right)^{*}
$$

Automata and expressions

The Thompson automaton of E_{2}

Automata and expressions

The Thompson automaton of E_{2}

Theorem (Folk-Lore ?)
The closure of the Thompson automaton of E yields the position automaton of E

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every ε-WFA is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every ε-WFA is equivalent to a WFA?

$$
\xrightarrow{1} p \xrightarrow{a} r \xrightarrow{1} \quad, \quad \xrightarrow{1} p \xrightarrow{2 \varepsilon} p \xrightarrow{a} r \xrightarrow{1},
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$a \longmapsto 1+2+4+\cdots \quad$ undefined

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$a \longmapsto 1+1+1+\cdots \quad$ undefined

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} p \stackrel{a}{\longrightarrow} r \xrightarrow{1}, \quad \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \quad \ldots
\end{aligned}
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
a \quad \longmapsto \quad 1+\frac{1}{2}+\frac{1}{4}+\cdots
$$

undefined?

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{a} r \stackrel{1}{\longrightarrow}, \quad \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a}, \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \quad \ldots
\end{aligned}
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{a} r \xrightarrow{1}, \quad \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \quad \ldots
\end{aligned}
$$

$a \longmapsto 1+\frac{1}{2}+\frac{1}{4}+\cdots$
undefined?
defined?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{a} r \xrightarrow{1}, \quad \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \quad \ldots
\end{aligned}
$$

$a \longmapsto 1+\frac{1}{2}+\frac{1}{4}+\cdots$
undefined?
defined?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\begin{aligned}
& \xrightarrow{1} p \xrightarrow{a} r \xrightarrow{1}, \quad \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \\
& \xrightarrow{1} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{\frac{1}{2} \varepsilon} p \xrightarrow{a} r \xrightarrow{1}, \quad \ldots
\end{aligned}
$$

$a \longmapsto 1+\frac{1}{2}+\frac{1}{4}+\cdots$
undefined?
defined?

A basic question in weighted automata theory

Question
Is every ε-WFA is equivalent to a WFA?

$a \quad \longmapsto \quad 1+\frac{1}{2}+\frac{1}{4}+\cdots$
undefined?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

$$
\text { if } k^{*}=\sum_{n=0}^{\infty} k^{n} \text { is defined in } \mathbb{K}
$$

A basic question in weighted automata theory

Question
Is every $\varepsilon-W F A$ is equivalent to a WFA?

certainly not !

Question

$$
\text { Is every } \varepsilon-W F A \text { is equivalent to a WFA? }
$$

certainly not !

New questions

Which ε-WFAs have a well-defined behaviour?

Question

$$
\text { Is every } \varepsilon-W F A \text { is equivalent to a WFA? }
$$

certainly not !

New questions

Which ε-WFAs have a well-defined behaviour?
How to compute the behaviour of an ε-WFA (when it is well-defined)?

Question

$$
\text { Is every } \varepsilon-W F A \text { is equivalent to a WFA? }
$$

certainly not !

New questions

$$
\text { Which } \varepsilon \text {-WFAs have a well-defined behaviour? }
$$

How to compute the behaviour of an ε-WFA (when it is well-defined)?
How to decide if the behaviour of an ε-WFA is well-defined?

Behaviour of weighted automata

Behaviour of weighted automata

$$
\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle
$$

possibly with ε-transitions

Behaviour of weighted automata

$$
\begin{aligned}
& \mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle \\
& u \in A^{*}
\end{aligned}
$$

possibly with ε-transitions

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A} $\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!
$|\mathcal{A}|$ is defined if $\langle | \mathcal{A}|, u\rangle$ is defined $\forall u \in A^{*}$

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!
$|\mathcal{A}|$ is defined if $\langle | \mathcal{A}|, u\rangle$ is defined $\forall u \in A^{*}$

Trivial case

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!
$|\mathcal{A}|$ is defined if $\langle | \mathcal{A}|, u\rangle$ is defined $\forall u \in A^{*}$

Trivial case
Every u in A^{*} is the label of a finite number of paths

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!
$|\mathcal{A}|$ is defined if $\langle | \mathcal{A}|, u\rangle$ is defined $\forall u \in A^{*}$

Trivial case
Every u in A^{*} is the label of a finite number of paths

no ε-transitions in \mathcal{A}

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!
$|\mathcal{A}|$ is defined if $\langle | \mathcal{A}|, u\rangle$ is defined $\forall u \in A^{*}$

Trivial case
Every u in A^{*} is the label of a finite number of paths

$$
\Uparrow
$$

no circuits of ε-transitions in \mathcal{A}

Behaviour of weighted automata

$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
possibly with ε-transitions
$u \in A^{*} \quad$ possibly infinitely many paths labelled by u in \mathcal{A}
$\langle | \mathcal{A}|, u\rangle \quad$ sum of weights of computations labelled by u in \mathcal{A}
if it is defined!
$|\mathcal{A}|$ is defined if $\langle | \mathcal{A}|, u\rangle$ is defined $\forall u \in A^{*}$

Trivial case
Every u in A^{*} is the label of a finite number of paths

$$
\Uparrow
$$

no circuits of ε-transitions in \mathcal{A}
acyclic \mathbb{K}-automata

Behaviour of weighted automata

First solution
behaviour well-defined $\quad \Longleftrightarrow \quad$ acyclic

Behaviour of weighted automata

First solution

Legitimate, as far as the behaviours of the automata are concerned (Kuich-Salomaa 86, Berstel-Reutenauer 84-88; 11)

Behaviour of weighted automata

First solution behaviour well-defined $\quad \Longleftrightarrow \quad$ acyclic

Legitimate, as far as the behaviours of the automata are concerned (Kuich-Salomaa 86, Berstel-Reutenauer 84-88;11)

not valid

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Second family of solutions
Accepting the idea of infinite sums

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Second family of solutions

Accepting the idea of infinite sums

First point of view (algebraico-logic)

- Definition of a new operator for infinite sums \sum_{1}
- Setting axioms on \sum_{l}
such that the star of a matrix be meaningful

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Second family of solutions

Accepting the idea of infinite sums

First point of view (algebraico-logic)

- Definition of a new operator for infinite sums \sum_{I}
- Setting axioms on \sum_{l} such that the star of a matrix be meaningful

Less a definition on automata than conditions on \mathbb{K} for all \mathbb{K}-automata have well-defined behaviour

Behaviour of weighted automata

\mathcal{A} not acyclic \Rightarrow weight of u in \mathcal{A} may be an infinite sum.

Second family of solutions

Accepting the idea of infinite sums

First point of view (algebraico-logic)

- Definition of a new operator for infinite sums \sum_{1}
- Setting axioms on \sum_{l} such that the star of a matrix be meaningful

Less a definition on automata than conditions on \mathbb{K} for all \mathbb{K}-automata have well-defined behaviour
Works of Bloom, Ésik, Kuich (90's -)
based on the axiomatisation described by Conway (72)

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology allows to define summable families in \mathbb{K}

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
Third solution (Lombardy, S. 03 -)

$$
\begin{array}{lr}
\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle & \text { possibly with } \varepsilon \text {-transitions } \\
\mathrm{P}_{\mathcal{A}} & \text { set of all paths in } \mathcal{A}
\end{array}
$$

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
Third solution (Lombardy, S. 03 -)
$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$
$\mathrm{P}_{\mathcal{A}}$
$|\mathcal{A}|$ well-defined
possibly with ε-transitions
set of all paths in \mathcal{A}
$\mathrm{WL}\left(\mathrm{P}_{\mathcal{A}}\right)$ summable

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
Third solution (Lombardy, S. 03 -)
\(\left.\begin{array}{c}\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle \quad possibly with \varepsilon -transitions

\quad set of all paths in \mathcal{A}\end{array}\right]\)| $\mathrm{P}_{\mathcal{A}}$ |
| :--- |
| $\|\mathcal{A}\|$ well-defined $\Longleftrightarrow \forall p, q \in Q \quad \mathrm{WL}\left(\mathrm{P}_{\mathcal{A}}(p, q)\right)$ summable |

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
Third solution (Lombardy, S. 03 -)
\(\left.\begin{array}{c}\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle \quad possibly with \varepsilon -transitions

\quad set of all paths in \mathcal{A}\end{array}\right]\)| $\mathrm{P}_{\mathcal{A}}$ |
| :--- |
| $\|\mathcal{A}\|$ well-defined $\Longleftrightarrow \forall p, q \in Q \quad \mathrm{WL}\left(\mathrm{P}_{\mathcal{A}}(p, q)\right)$ summable |

- Yields a consistent theory

Behaviour of weighted automata

Second point of view (more analytical)
Infinite sums are given a meaning via a topology on \mathbb{K}
Topology on \mathbb{K} defines a topology on $\mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$
Third solution (Lombardy, S. 03 -)
$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle \quad$ possibly with ε-transitions
\quad set of all paths in \mathcal{A}
$\mathrm{P}_{\mathcal{A}}$
$|\mathcal{A}|$ well-defined $\Longleftrightarrow \forall p, q \in Q \quad \mathrm{WL}\left(\mathrm{P}_{\mathcal{A}}(p, q)\right)$ summable

- Yields a consistent theory
- Two pitfalls for effectivity
- effective computation of a summable family may not be possible
- effective computation may give values to non summable families

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

$$
\begin{gathered}
\mathcal{A}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{ll}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right),\binom{1}{0}\right\rangle \\
\left|\mathcal{A}_{1}\right|=I_{1} \cdot \underline{E}^{*} \cdot T_{1} \\
{\underline{E_{1}}}^{2}=0 \Longrightarrow \underline{E_{1}}{ }^{*}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \Longrightarrow\left|\mathcal{A}_{1}\right|=2
\end{gathered}
$$

Problems in computing the behaviour of a weighted automaton

$$
\begin{gathered}
\mathcal{A}_{1}=\left\langle I_{1}, \underline{E_{1}}, T_{1}\right\rangle=\left\langle\left(\begin{array}{cc}
1 & 0
\end{array}\right),\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right),\binom{1}{0}\right\rangle \\
\left|\mathcal{A}_{1}\right|=I_{1} \cdot \underline{E}_{1}^{*} \cdot T_{1} \\
\underline{E}_{1}^{2}=0 \quad \Longrightarrow \quad \underline{E}_{1}^{*}=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right) \Longrightarrow\left|\mathcal{A}_{1}\right|=2
\end{gathered}
$$

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

$$
\mathcal{A}_{2} \rightarrow \bigcap_{\gamma_{\frac{2}{3}}}^{\frac{1}{9} \ldots \%}<\quad\left(\frac{1}{9}\right)^{*}=\frac{9}{8}
$$

Problems in computing the behaviour of a weighted automaton

$$
\begin{aligned}
& \mathcal{A}_{2} \rightarrow \bigcap_{\frac{3}{4}} \\
& \left.\mathcal{A}_{2}=\left\langle 1_{2}, \underline{E_{2}}, T_{2}\right\rangle=\left\langle\begin{array}{ll}
(1 & 0
\end{array}\right),\left(\begin{array}{cc}
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2}
\end{array}\right),\binom{1}{0}\right\rangle \\
& \left|\mathcal{A}_{2}\right|=1_{2} \cdot \underline{E_{2}}{ }^{*} \cdot T_{2}
\end{aligned}
$$

$$
{\underline{E_{2}}}=\underline{\underline{E}_{2}} \Longrightarrow \underline{E}_{2}{ }^{*} \text { undefined } \Longrightarrow\left|\mathcal{A}_{2}\right| \text { undefined }
$$

Problems in computing the behaviour of a weighted automaton

Problems in computing the behaviour of a weighted automaton

$(1)^{*}=$ undefined
natural integers
$\left|\mathcal{A}_{3}\right|$ not defined

Problems in computing the behaviour of a weighted automaton

$$
(1)^{*}=+\infty
$$

natural integers
$\mathcal{N} \quad \mathbb{N} \cup+\infty$ compact topology
$\left|\mathcal{A}_{3}\right|$ not defined
$\left|\mathcal{A}_{3}\right| \quad$ defined

Problems in computing the behaviour of a weighted automaton

\mathbb{N}		natural integers	$\left\|\mathcal{A}_{3}\right\|$	not defined
\mathcal{N}	$\mathbb{N} \cup+\infty$	compact topology	$\left\|\mathcal{A}_{3}\right\|$	defined

Problems in computing the behaviour of a weighted automaton

$(1)^{*}=$ undefined
natural integers
$\mathcal{N} \quad \mathbb{N} \cup+\infty$ compact topology
$\mathbb{N}_{\infty} \mathbb{N} \cup+\infty$ discrete topology
$\left|\mathcal{A}_{3}\right|$ not defined
$\left|\mathcal{A}_{3}\right| \quad$ defined
$\left|\mathcal{A}_{3}\right|$ not defined

Problems in computing the behaviour of a weighted automaton

$\mathcal{N} \quad \mathbb{N} \cup+\infty$ compact topology $\quad\left|\mathcal{A}_{4}\right| \quad$ defined

Problems in computing the behaviour of a weighted automaton

$\begin{array}{lllll}\mathcal{N} & \mathbb{N} \cup+\infty & \text { compact topology } & \left|\mathcal{A}_{4}\right| & \text { defined } \\ \mathbb{N}_{\infty} & \mathbb{N} \cup+\infty & \text { discrete topology } & \left|\mathcal{A}_{4}\right| & \text { defined }\end{array}$

Problems in computing the behaviour of a weighted automaton

$\begin{array}{lllll}\mathcal{N} & \mathbb{N} \cup+\infty & \text { compact topology } & \left|\mathcal{A}_{4}\right| & \text { defined } \\ \mathbb{N}_{\infty} & \mathbb{N} \cup+\infty & \text { discrete topology } & \left|\mathcal{A}_{4}\right| & \text { defined }\end{array}$

Problems in computing the behaviour of a weighted automaton

$(1)^{*}=$ undefined

\mathcal{N}	$\mathbb{N} \cup+\infty$	compact topology	$\left\|\mathcal{A}_{4}\right\|$	defined
\mathbb{N}_{∞}	$\mathbb{N} \cup+\infty$	discrete topology	$\left\|\mathcal{A}_{4}\right\|$	defined

A chicken and egg problem

automaton

algorithm

A chicken and egg problem

automaton

valid?
algorithm

success ?

A chicken and egg problem

automaton

valid ?
success ?
valid

A chicken and egg problem

automaton

valid ?
valid

success

A chicken and egg problem

automaton

valid ?
valid

success
success

A chicken and egg problem

automaton

valid ?
valid
valid

success
success

A new definition of validity for weighted automata

$$
\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle
$$

$$
E^{*}
$$

$\mathrm{P}_{\mathcal{A}}$ set of paths in \mathcal{A} (local) rational subset of E^{*}

A new definition of validity for weighted automata

$$
\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle
$$

$$
E^{*}
$$

$$
\mathrm{P}_{\mathcal{A}} \quad \text { set of paths in } \mathcal{A} \quad \text { (local) rational subset of } E^{*}
$$

Definition
R rational family of paths of $\mathcal{A} \quad R \in \operatorname{Rat} E^{*} \wedge R \subseteq P_{\mathcal{A}}$

A new definition of validity for weighted automata
$\mathcal{A}=\langle\mathbb{K}, A, Q, I, E, T\rangle$ E^{*}
$\mathrm{P}_{\mathcal{A}} \quad$ set of paths in $\mathcal{A} \quad$ (local) rational subset of E^{*}

Definition
R rational family of paths of $\mathcal{A} \quad R \in \operatorname{Rat} E^{*} \wedge R \subseteq \mathrm{P}_{\mathcal{A}}$

Definition
\mathcal{A} is valid iff
$\forall R$ rational family of paths of $\mathcal{A}, \mathbf{W L}(R)$ is summable

A new definition of validity for weighted automata

Validity implies the well-definition of behaviour

A new definition of validity for weighted automata

Validity implies the well-definition of behaviour
The notion of validity settles the previous examples

A new definition of validity for weighted automata

Validity implies the well-definition of behaviour
The notion of validity settles the previous examples

Remark

If every subfamily of a summable family in \mathbb{K} is summable, then validity is equivalent to the well-definition of behaviour

Eg. \mathbb{R}, \mathbb{C} (and $\mathbb{N}, \mathbb{Z}, \mathcal{N})$.

If every rational subfamily of a summable family in \mathbb{K} is summable, then validity is equivalent to the well-definition of behaviour
Eg. \mathbb{Q}.

A new definition of validity for weighted automata

Theorem
\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined

A new definition of validity for weighted automata

Theorem
\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined

Theorem
If \mathcal{A} is valid, then 'every' removal algorithm on \mathcal{A} is successful

A new definition of validity for weighted automata

Theorem
\mathcal{A} is valid iff the behaviour of every covering of \mathcal{A} is well-defined

Theorem
If \mathcal{A} is valid, then 'every' removal algorithm on \mathcal{A} is successful

Nota Bene
We do not know yet how to decide whether
a \mathbb{Q} - or an \mathbb{R}-automaton is valid.

Deciding validity

Straightforward cases

- Non starable semirings (eg. \mathbb{N}, \mathbb{Z})
\mathcal{A} valid $\quad \Longleftrightarrow \quad \mathcal{A}$ acyclic
- Complete topological semirings (eg. \mathcal{N}) every \mathcal{A} valid
- Rationally additive semirings (eg. Rat A^{*}) every \mathcal{A} valid
- Locally closed commutative semirings every \mathcal{A} valid

Deciding validity

Definition
\mathbb{K} topological, ordered, positive, star-domain downward closed (TOP SDDC)

Deciding validity

Definition
\mathbb{K} topological, ordered, positive, star-domain downward closed (TOP SDDC)
$\mathbb{N}, \mathcal{N}, \mathbb{Q}_{+}, \mathbb{R}_{+}, \mathbb{Z}$ min, Rat A^{*}, \ldots
\mathbb{N}_{∞}, (binary) positive decimals, \ldots
are TOP SDDC are not TOP SDDC

Deciding validity

Definition

\mathbb{K} topological, ordered, positive, star-domain downward closed (TOP SDDC)
$\mathbb{N}, \mathcal{N}, \mathbb{Q}_{+}, \mathbb{R}_{+}, \mathbb{Z}$ min, Rat A^{*}, \ldots
\mathbb{N}_{∞}, (binary) positive decimals, \ldots

are TOP SDDC are not TOP SDDC

Theorem
\mathbb{K} topological, ordered, positive, star-domain downward closed
$A \mathbb{K}$-automaton is valid if and only if
the ε-removal algorithm succeeds

Deciding validity

Definition

If \mathcal{A} is a \mathbb{Q} - or \mathbb{R}-automaton, then $\operatorname{abs}(\mathcal{A})$ is a \mathbb{Q}_{+}- or \mathbb{R}_{+}-automaton

Deciding validity

Definition

If \mathcal{A} is a \mathbb{Q} - or \mathbb{R}-automaton, then $\operatorname{abs}(\mathcal{A})$ is a \mathbb{Q}_{+}- or \mathbb{R}_{+}-automaton

Theorem
$A \mathbb{Q}$ - or \mathbb{R}-automaton \mathcal{A} is valid if and only if $\operatorname{abs}(\mathcal{A})$ is valid.

Automata and expressions validity

'Kleene' theorem
Automata
\mathcal{A}
Weighted automata
\Longleftrightarrow
Weighted expressions

Automata and expressions validity

'Kleene' theorem
Automata

Expressions
\mathcal{A}

E
Weighted automata

Weighted expressions

Validity of expressions
E valid
$c(E)$ well-defined
$c(E)$ computed by a bottom-up traversal of the syntactic tree of E

Automata and expressions validity

Valid \mathcal{A} yields valid E
Valid E yields valid \mathcal{A}
with Glushkov construction
Valid E may yield non valid \mathcal{A} with Thompson construction

Automata and expressions validity

Valid \mathcal{A} yields valid E
Valid E yields valid \mathcal{A} with Glushkov construction
Valid E may yield non valid \mathcal{A} with Thompson construction

The Thompson automaton of $\left(a^{*}+\{-1\} b^{*}\right)^{*}$

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich)
- References to previous work (on removal algorithms):

Conclusion

Conclusion

- Semiring structure is weak, topology does not help so much.

Conclusion

- Semiring structure is weak, topology does not help so much.
- This weakness imposes a restricted definition of validity, in order to guarantee success of validity algorithms.

Conclusion

- Semiring structure is weak, topology does not help so much.
- This weakness imposes a restricted definition of validity, in order to guarantee success of validity algorithms.
- Axiomatic approach does not allow
to deal wit most common numerical semirings: $\mathbb{Z} \mathrm{min}, \mathbb{Q}$

Conclusion

- Semiring structure is weak, topology does not help so much.
- This weakness imposes a restricted definition of validity, in order to guarantee success of validity algorithms.
- Axiomatic approach does not allow
to deal wit most common numerical semirings: $\mathbb{Z} m i n, \mathbb{Q}$
- On 'usual' semirings, the new definition of validity coincides with the former one.

Conclusion (2)

Conclusion (2)

- Apart the trivial cases, and the TOP SDDC case, decision of validity is never granted, and is to be established.

Conclusion (2)

- Apart the trivial cases, and the TOP SDDC case, decision of validity is never granted, and is to be established.
- On 'usual' semirings, validity is decidable.

Conclusion (2)

- Apart the trivial cases, and the TOP SDDC case, decision of validity is never granted, and is to be established.
- On 'usual' semirings, validity is decidable.
- The new definition of validity fills the 'effectivity gap' left open by the former one.

Conclusion (2)

- Apart the trivial cases, and the TOP SDDC case, decision of validity is never granted, and is to be established.
- On 'usual' semirings, validity is decidable.
- The new definition of validity fills the 'effectivity gap' left open by the former one.
- The algorithms implemented in Awali are given a theoretical framework.

Conclusion (2)

- Apart the trivial cases, and the TOP SDDC case, decision of validity is never granted, and is to be established.
- On 'usual' semirings, validity is decidable.
- The new definition of validity fills the 'effectivity gap' left open by the former one.
- The algorithms implemented in Awali are given a theoretical framework.

All's well, that ends well!

Hidden parts

- The removal algorithm itself

Hidden parts

- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues

Hidden parts

- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues

Boolean ε-removal procedure does not terminate if newly created ε-transitions are stored in a stack

Hidden parts

- The removal algorithm itself:
- Termination issues (weighted versus Boolean cases)
- Complexity issues

(3)
weighted ε-removal procedure does not terminate if newly created ε-transitions are stored in a queue

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings

Definition
\mathbb{K} topological: \mathbb{K} regular Hausdorff \oplus, \otimes continuous

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings

Definition
\mathbb{K} topological: \mathbb{K} regular Hausdorff \oplus, \otimes continuous
Definition
$\left\{t_{i}\right\}_{i \in I}$ summable of sum t :
$\forall V \in \mathrm{~N}(t), \exists J_{V}$ finite, $J_{V} \subset I, \forall L$ finite,$J_{V} \subseteq L \subset I \quad \sum_{i \in L} t_{i} \in V$.

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings

Definition

\mathbb{K} topological: \mathbb{K} regular Hausdorff \oplus, \otimes continuous
Definition
$\left\{t_{i}\right\}_{i \in I}$ summable of sum t :
$\forall V \in \mathrm{~N}(t), \exists J_{V}$ finite, $J_{V} \subset I, \forall L$ finite, $J_{V} \subseteq L \subset I \quad \sum_{i \in L} t_{i} \in V$.
Lemma (Associativity)
$\left\{t_{i}\right\}_{i \in I}$ summable of sum t,
$I=\bigcup_{j \in J} K_{j} \quad \forall j \in J \quad\left\{t_{i}\right\}_{i \in K_{j}}$ summable of sum s_{j}, then $\left\{s_{j}\right\}_{j \in J}$ summable of sum t

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering

Validity of automata and covering

$$
\mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable $\quad x=y^{2} \quad x$ not starable

Validity of automata and covering

$$
\mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Validity of automata and covering

$$
\begin{aligned}
& \mathcal{A}_{5} \rightarrow \bigcap_{\infty} \\
& \mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Validity of automata and covering

$$
\begin{aligned}
& \mathcal{A}_{5} \rightarrow \bigodot_{i}^{y} \\
& \mathcal{B}_{5} \\
& \mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Validity of automata and covering

\mathcal{B}_{5}

$$
\mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Validity of automata and covering

\mathcal{B}_{5}

$$
\mathbb{S} \subset \mathbb{N}^{2 \times 2}, \quad x=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{\mathbb{S}}, \quad y=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad x+y=\infty_{\mathbb{S}}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

\mathbb{S} equipped with the discrete topology
$0_{\mathbb{S}}, y$, and $\infty_{\mathbb{S}}$ starable

$$
x=y^{2}
$$

x not starable

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a strong semiring
if the product of two summable families is a summable family

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a strong semiring
if the product of two summable families is a summable family
Theorem
\mathbb{K} strong semiring $\quad s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ starable iff $s_{0} \in \mathbb{K}$ starable

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a strong semiring
if the product of two summable families is a summable family
Theorem
\mathbb{K} strong semiring $\quad s \in \mathbb{K}\left\langle\left\langle A^{*}\right\rangle\right\rangle$ starable iff $s_{0} \in \mathbb{K}$ starable
Proposition (Madore 18)
There exist (semi)rings \mathbb{K} that are not strong

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a star-strong semiring if the star of a summable family, whose sum is starable, is summable

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a star-strong semiring if the star of a summable family, whose sum is starable, is summable

Proposition

A strong semiring \mathbb{K} is starable and star-strong iff every rational family of \mathbb{K} is summable

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings

Definition

A topological semiring is a star-strong semiring if the star of a summable family, whose sum is starable, is summable

Proposition

A strong semiring \mathbb{K} is starable and star-strong iff every rational family of \mathbb{K} is summable

Conjecture
A starable strong semiring star-strong

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich)

Hidden parts

- The removal algorithm itself:
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich):

Theorem
A starable star-strong semiring is an iteration semiring

Group identities

Hidden parts

- The removal algorithm itself
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich)
- References to previous work (on removal algorithms):

Hidden parts

- The removal algorithm itself:
- Details on the topology we put semirings
- Validity of automata and covering
- 'Infinitary' axioms : strong, star-strong semirings
- Links with the 'axiomatic' approach (Bloom-Ésik-Kuich):
- References to previous work (on removal algorithms):
- locally closed srgs (Ésik-Kuich), k-closed srgs (Mohri)
- links with other algorithms: shortest-distance algorithm (Mohri), state-elimination method (Hanneforth-Higueira)

