Automata and expressions

Jacques Sakarovitch
CNRS / Université Paris-Diderot and Telecom ParisTech
Lecture given at Tokyo Institute of Technology 28 February 2018

Based on

ELEMENTS OF
 AUTOMATA
 THEORY

JACQUES SAKAROVITCH

Chapter I
J.E. Pin, W. Thomas, Eds.

Handbook
 OF
 Automata Theory

?

Chapter 2
... much inspired by joint works with

Sylvain Lombardy (Univ. Bordeaux)

- How expressions can code for automata?, RAIRO-TIA 2005, Corr. 2010
- The validity of weighted automata, CIAA 2012 \& IJAC 2013
and especially by the work on
- Awali (formerly Vaucanson, Vaucanson2), a plateform for computing with weighted automata

Chapter I

A Platonic view of Kleene Theorem

Notation

- A alphabet, i.e. a finite set of letters

Notation

- A alphabet, i.e. a finite set of letters
- A^{*} set of words

Notation

- A alphabet, i.e. a finite set of letters
- A^{*} set of words
- $L \subseteq A^{*} \quad$ language
- A alphabet, i.e. a finite set of letters
- A^{*} set of words
- $L \subseteq A^{*}$ language
- RegE $A^{*} \quad$ set of regular expressions over A^{*} $\operatorname{Reg} A^{*} \quad$ set of regular languages over A^{*}

Notation

- A alphabet, i.e. a finite set of letters
- A^{*} set of words
- $L \subseteq A^{*} \quad$ language
- RegE $A^{*} \quad$ set of regular expressions over A^{*} $\operatorname{Reg} A^{*} \quad$ set of regular languages over A^{*}
- Aut A^{*} set of finite automata over A^{*} $\operatorname{Rec} A^{*}$ set of recognizable languages over A^{*}

RegE A*

RegE A*

RegE A*

Chapter II

From automata to expressions

The Γ algorithms

Computing an expression from an automaton

The 「 algorithms

Computing an expression from an automaton

- Problem seen from a theoretical point of view
- Problem seen from an experimental point of view

The 「 algorithms

Computing an expression from an automaton

- Problem seen from a theoretical point of view
- Problem seen from an experimental point of view

The 「 algorithms

Computing an expression from an automaton

- Problem seen from a theoretical point of view
- Problem seen from an experimental point of view

The 「 algorithms

Computing an expression from an automaton

- Problem seen from a theoretical point of view
- Problem seen from an experimental point of view

$$
\begin{aligned}
& \left\langle\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
a & b & 0 \\
b & 0 & a \\
0 & a & b
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle \\
& L(\mathcal{A})=I \cdot X^{*} \cdot T
\end{aligned}
$$

The 「 algorithms

Computing an expression from an automaton

- Problem seen from a theoretical point of view
- Problem seen from an experimental point of view

$$
\begin{aligned}
& \left\langle\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
a & b & 0 \\
b & 0 & a \\
0 & a & b
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle \\
& L(\mathcal{A})=I \cdot X^{*} \cdot T
\end{aligned}
$$

Computing the star of a matrix with entries in $\mathfrak{P}\left(A^{*}\right)$

The 「 algorithms

Computing an expression from an automaton

- Problem seen from a theoretical point of view
- Problem seen from an experimental point of view

$$
\begin{aligned}
& \left\langle\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right),\left(\begin{array}{lll}
a & b & 0 \\
b & 0 & a \\
0 & a & b
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle \\
& L(\mathcal{A})=I \cdot X^{*} \cdot T
\end{aligned}
$$

Computing the star of a matrix with entries in $\mathfrak{P}\left(A^{*}\right)$
Computing the quasi-inverse of a matrix with entries in $\mathfrak{P}\left(A^{*}\right)$

The Γ algorithms

Theoretical point of view : methods of computations

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
2. Computation of $X^{*} \cdot T$ as a fixed point:
3. Iterative computation of X^{*} :
4. Recursive computation of X^{*} :

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)
2. Computation of $X^{*} \cdot T$ as a fixed point:
solution of a system of linear equations
3. Iterative computation of X^{*} :

McNaughton-Yamada algorithm
4. Recursive computation of X^{*} :

Conway(?) algorithm

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)
(3)

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*} :
state elimination method (Brzozowski-McCluskey)
(i) $\left(a+b\left(a b^{*} a\right)^{*} b\right)^{*}$

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*}
2. Computation of $X^{*} \cdot T$ as a fixed point
3. Iterative computation of X^{*}
4. Recursive computation of X^{*}

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*}
2. Computation of $X^{*} \cdot T$ as a fixed point
3. Iterative computation of X^{*}
4. Recursive computation of X^{*}

Problem 1

Comparison between the expressions obtained with each method

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*}
2. Computation of $X^{*} \cdot T$ as a fixed point
3. Iterative computation of X^{*}
4. Recursive computation of X^{*}

Problem 1

Comparison between the expressions obtained with each method
For each method, the actual computation
depends on an order on the set of states

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*}
2. Computation of $X^{*} \cdot T$ as a fixed point
3. Iterative computation of X^{*}
4. Recursive computation of X^{*}

Problem 1

Comparison between the expressions obtained with each method
For each method, the actual computation depends on an order on the set of states
Problem 2
Comparison between the expressions obtained in each method with distinct orders

The 「 algorithms

Theoretical point of view : methods of computations

1. Direct computation of the entries of X^{*}
2. Computation of $X^{*} \cdot T$ as a fixed point
3. Iterative computation of X^{*}
4. Recursive computation of X^{*}

Problem 1

Comparison between the expressions obtained with each method
For each method, the actual computation depends on an order on the set of states
Problem 2
Comparison between the expressions obtained in each method with distinct orders

Axiomatisation of regular expressions

Axiomatisation of regular expressions

Trivial and natural identities

$$
\begin{gather*}
E+0 \equiv 0+E \equiv E, \quad E \cdot 0 \equiv 0 \cdot E \equiv 0, \quad E \cdot 1 \equiv 1 \cdot E \equiv E \tag{T}\\
(E+F)+G \equiv E+(F+G), \quad(E \cdot F) \cdot G \equiv E \cdot(F \cdot G) \tag{A}\\
E \cdot(F+G) \equiv E \cdot F+E \cdot G, \quad(E+F) \cdot G \equiv E \cdot G+F \cdot G \tag{D}\\
E+F \equiv F+E \tag{C}
\end{gather*}
$$

Axiomatisation of regular expressions

Trivial and natural identities

$$
\begin{gather*}
E+0 \equiv 0+E \equiv E, \quad E \cdot 0 \equiv 0 \cdot E \equiv 0, \quad E \cdot 1 \equiv 1 \cdot E \equiv E \tag{T}\\
(E+F)+G \equiv E+(F+G), \quad(E \cdot F) \cdot G \equiv E \cdot(F \cdot G) \tag{A}\\
E \cdot(F+G) \equiv E \cdot F+E \cdot G, \quad(E+F) \cdot G \equiv E \cdot G+F \cdot G \tag{D}\\
E+F \equiv F+E \tag{C}
\end{gather*}
$$

Aperiodic identities.

$$
\begin{gather*}
\mathrm{E}^{*} \equiv 1+\mathrm{E} \cdot \mathrm{E}^{*}, \quad \mathrm{E}^{*} \equiv 1+\mathrm{E}^{*} \cdot \mathrm{E} \tag{U}\\
(\mathrm{E}+\mathrm{F})^{*} \equiv \mathrm{E}^{*} \cdot\left(\mathrm{~F} \cdot \mathrm{E}^{*}\right)^{*}, \quad(\mathrm{E}+\mathrm{F})^{*} \equiv\left(\mathrm{E}^{*} \cdot \mathrm{~F}\right)^{*} \cdot \mathrm{E}^{*} \tag{S}\\
(\mathrm{E} \cdot \mathrm{~F})^{*} \equiv 1+\mathrm{E} \cdot(\mathrm{~F} \cdot \mathrm{E})^{*} \cdot \mathrm{~F} \tag{P}
\end{gather*}
$$

Axiomatisation of regular expressions

Trivial and natural identities

$$
\begin{gather*}
E+0 \equiv 0+E \equiv E, \quad E \cdot 0 \equiv 0 \cdot E \equiv 0, \quad E \cdot 1 \equiv 1 \cdot E \equiv E \tag{T}\\
(E+F)+G \equiv E+(F+G), \quad(E \cdot F) \cdot G \equiv E \cdot(F \cdot G) \tag{A}\\
E \cdot(F+G) \equiv E \cdot F+E \cdot G, \quad(E+F) \cdot G \equiv E \cdot G+F \cdot G \tag{D}\\
E+F \equiv F+E \tag{C}
\end{gather*}
$$

Aperiodic identities.

$$
\begin{gather*}
\mathrm{E}^{*} \equiv 1+\mathrm{E} \cdot \mathrm{E}^{*}, \quad \mathrm{E}^{*} \equiv 1+\mathrm{E}^{*} \cdot \mathrm{E} \tag{U}\\
(\mathrm{E}+\mathrm{F})^{*} \equiv \mathrm{E}^{*} \cdot\left(\mathrm{~F} \cdot \mathrm{E}^{*}\right)^{*}, \quad(\mathrm{E}+\mathrm{F})^{*} \equiv\left(\mathrm{E}^{*} \cdot \mathrm{~F}\right)^{*} \cdot \mathrm{E}^{*} \tag{S}\\
(\mathrm{E} \cdot \mathrm{~F})^{*} \equiv 1+\mathrm{E} \cdot(\mathrm{~F} \cdot \mathrm{E})^{*} \cdot \mathrm{~F} \tag{P}
\end{gather*}
$$

Cyclic identities.

$$
\begin{equation*}
\mathrm{E}^{*} \equiv \mathrm{E}^{<\mathrm{n}} \cdot\left(\mathrm{E}^{\mathrm{n}}\right)^{*} \tag{n}
\end{equation*}
$$

Axiomatisation of regular expressions

Trivial and natural identities

$$
\begin{gather*}
E+0 \equiv 0+E \equiv E, \quad E \cdot 0 \equiv 0 \cdot E \equiv 0, \quad E \cdot 1 \equiv 1 \cdot E \equiv E \tag{T}\\
(E+F)+G \equiv E+(F+G), \quad(E \cdot F) \cdot G \equiv E \cdot(F \cdot G) \tag{A}\\
E \cdot(F+G) \equiv E \cdot F+E \cdot G, \quad(E+F) \cdot G \equiv E \cdot G+F \cdot G \tag{D}\\
E+F \equiv F+E \tag{C}
\end{gather*}
$$

Aperiodic identities.

$$
\begin{gather*}
\mathrm{E}^{*} \equiv 1+\mathrm{E} \cdot \mathrm{E}^{*}, \quad \mathrm{E}^{*} \equiv 1+\mathrm{E}^{*} \cdot \mathrm{E} \tag{U}\\
(\mathrm{E}+\mathrm{F})^{*} \equiv \mathrm{E}^{*} \cdot\left(\mathrm{~F} \cdot \mathrm{E}^{*}\right)^{*}, \quad(\mathrm{E}+\mathrm{F})^{*} \equiv\left(\mathrm{E}^{*} \cdot \mathrm{~F}\right)^{*} \cdot \mathrm{E}^{*} \tag{S}\\
(\mathrm{E} \cdot \mathrm{~F})^{*} \equiv 1+\mathrm{E} \cdot(\mathrm{~F} \cdot \mathrm{E})^{*} \cdot \mathrm{~F} \tag{P}
\end{gather*}
$$

Cyclic identities.

$$
\begin{equation*}
\mathrm{E}^{*} \equiv \mathrm{E}^{<\mathrm{n}} \cdot\left(\mathrm{E}^{\mathrm{n}}\right)^{*} \tag{n}
\end{equation*}
$$

Idempotency identities.

$$
\begin{align*}
\mathrm{E}+\mathrm{E} & \equiv \mathrm{E} \tag{I}\\
\left(\mathrm{E}^{*}\right)^{*} & \equiv \mathrm{E}^{*} \tag{J}
\end{align*}
$$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X, I, T\rangle
$$

1. State elimination method
$\mathrm{E}_{\mathcal{A}}$
2. Solution of a system of linear equations
$S_{\mathcal{A}}$
3. McNaughton-Yamada algorithm
$M_{\mathcal{A}}$
4. Recursive computation of X^{*}
$C_{\mathcal{A}}$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X, I, T\rangle
$$

ω ordering on Q

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}
$\mathrm{E}(\omega)$
S(ω)
M(ω)
$C(\omega)$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}
$\mathrm{E}(\omega, p, q)$
$[S(\omega, q)]_{p}$
$[\mathrm{M}(\omega)]_{p, q}$
$[\mathrm{C}(\omega)]_{p, q}$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}
$\mathrm{E}(\omega, p, q)$
$[S(\omega, q)]_{p}$
$[\mathrm{M}(\omega)]_{p, q}$
$[C(\omega)]_{p, q}$

Proposition

$$
[\mathrm{S}(\omega, q)]_{p}=\mathrm{E}(\omega, p, q)
$$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations

$$
\mathrm{E}(\omega, p, q)
$$

3. McNaughton-Yamada algorithm
$[\mathrm{M}(\omega)]_{p, q}$
4. Recursive computation of X^{*} $[C(\omega)]_{p, q}$

Proposition (S. 03)
$\mathbf{U} \vdash \quad[\mathrm{M}(\omega)]_{p, q} \quad \equiv \mathrm{E}(\omega, p, q)$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}
$\mathrm{E}(\omega, p, q)$
$[S(\omega, q)]_{p}$
$[\mathrm{M}(\omega)]_{p, q}$
$[\mathrm{C}(\omega)]_{p, q}$

Theorem (Conway 71, Krob 92, S.03)
For any two orderings ω and ω^{\prime} on Q

$$
\mathbf{S} \wedge \mathbf{P} \longmapsto \mathrm{E}(\omega, p, q) \equiv \mathrm{E}\left(\omega^{\prime}, p, q\right)
$$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}

$$
\mathrm{E}(\omega, p, q)
$$

$$
[S(\omega, q)]_{p}
$$

$$
[\mathrm{M}(\omega)]_{p, q}
$$

$[C(\omega)]_{p, q}$

Conjecture
For any ordering ω on Q there exists an ordering ω^{\prime} such that

$$
\mathbf{U} \vdash \quad[C(\omega)]_{p, q} \quad \equiv E\left(\omega^{\prime}, p, q\right)
$$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}

$$
\mathrm{E}(\omega, p, q)
$$

$$
[S(\omega, q)]_{p}
$$

$$
[\mathrm{M}(\omega)]_{p, q}
$$

$[C(\omega)]_{p, q}$

Conjecture
For any recursive division τ of Q
there exists an ordering ω^{\prime} such that

$$
\mathbf{U} \vdash \quad[\mathrm{C}(\tau)]_{p, q} \quad \equiv \mathrm{E}\left(\omega^{\prime}, p, q\right)
$$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}

$$
\mathrm{E}(\omega, p, q)
$$

$$
[\mathrm{S}(\omega, q)]_{p}
$$

$$
[\mathrm{M}(\omega)]_{p, q}
$$

$[\mathrm{C}(\omega)]_{p, q}$

Conjecture
For any recursive division τ of Q
there exists an ordering ω^{\prime} such that
$\mathbf{S} \wedge \mathbf{P} \quad[\mathrm{C}(\tau)]_{p, q} \equiv \mathrm{E}\left(\omega^{\prime}, p, q\right)$

The 「 algorithms

$$
\mathcal{A}=\langle Q, A, X,\{p\},\{q\}\rangle \quad \omega \text { ordering on } Q
$$

1. State elimination method
2. Solution of a system of linear equations
3. McNaughton-Yamada algorithm
4. Recursive computation of X^{*}
$\mathrm{E}(\omega, p, q)$
$[S(\omega, q)]_{p}$
$[\mathrm{M}(\omega)]_{p, q}$
$[\mathrm{C}(\omega)]_{p, q}$

Conclusion

Several algorithms, essentially ONE result (from a theoretical point of view)

The Γ algorithms: an experimental point of view

The Γ algorithms: an experimental point of view

The size of E computed from \mathcal{A} may be exponential in the number of states of \mathcal{A}

The Γ algorithms: an experimental point of view

The size of E computed from \mathcal{A} may be exponential in the number of states of \mathcal{A}

The size of E computed from \mathcal{A} may vary dramatically with the order put on the states of \mathcal{A}

The \ulcorner algorithms: an experimental point of view
The size of E computed from \mathcal{A} may be exponential in the number of states of \mathcal{A}

The size of E computed from \mathcal{A} may vary dramatically with the order put on the states of \mathcal{A}

The \ulcorner algorithms: an experimental point of view
The size of E computed from \mathcal{A} may be exponential in the number of states of \mathcal{A}

The size of E computed from \mathcal{A} may vary dramatically with the order put on the states of \mathcal{A}

$$
\mathrm{E}_{2}=\left(a+b\left(a b^{*} a\right)^{*} b\right)^{*}
$$

The \ulcorner algorithms: an experimental point of view
The size of E computed from \mathcal{A} may be exponential in the number of states of \mathcal{A}

The size of E computed from \mathcal{A} may vary dramatically with the order put on the states of \mathcal{A}

$$
\mathrm{E}_{2}=\left(a+b\left(a b^{*} a\right)^{*} b\right)^{*}
$$

$\mathrm{E}_{1}=a^{*}+a^{*} b\left(b a^{*} b\right)^{*} b a^{*}+a^{*} b\left(b a^{*} b\right)^{*} a\left(b+a\left(b a^{*} b\right)^{*} a\right)^{*} a\left(b a^{*} b\right)^{*} b a^{*}$

The 「 algorithms: an experimental point of view

Heuristics for the ordering of states proves to be (very) useful.

The \ulcorner algorithms: an experimental point of view

Heuristics for the ordering of states proves to be (very) useful.

The 「 algorithms: an experimental point of view

Heuristics for the ordering of states proves to be (very) useful.

- The naive heuristic

The 「 algorithms: an experimental point of view

Heuristics for the ordering of states proves to be (very) useful.

- The naive heuristic
- The Delgado-Morais heuristic (CIAA 04)

The 「 algorithms: an experimental point of view

Heuristics for the ordering of states proves to be (very) useful.

- The naive heuristic
- The Delgado-Morais heuristic (CIAA 04)

The proof of the heuristic is in the computing.

Chapter III

From expressions to automata

The Δ algorithms

Computing an automaton from an expression

The Δ algorithms

The Δ algorithms

- Standard automaton of E
- Derived term automaton of E

The Δ algorithms

- Standard automaton of E position, Glushkov
- Derived term automaton of E

The Δ algorithms

- Standard automaton of E

Thompson + closure

- Derived term automaton of E

The Δ algorithms

- Standard automaton of E
- Derived term automaton of E
position, Glushkov
Brzozowski-Antimirov

The Δ algorithms

- Standard automaton of E
- Derived term automaton of E
position, Glushkov
Brzozowski-Antimirov

The standard automaton of an expression

Definition of a standard automaton

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B} \quad \mathcal{A} \cdot \mathcal{B}
$$

\mathcal{A}^{*}

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\begin{gathered}
\mathcal{A}+\mathcal{B} \\
\mathcal{A} \cdot \mathcal{B} \\
\mathcal{A}+\mathcal{B}=\left\langle(1 \square 0 \square \square),\left(\begin{array}{l|l|l|}
\hline 0 & J & \boxed{A} \\
\hline 0 & F & 0 \\
\hline 0 & 0 & G \\
\hline & 0 & G \\
\hline v
\end{array}\right),\left(\begin{array}{c}
c+d \\
\hline u \\
\hline
\end{array}\right)\right\rangle
\end{gathered}
$$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\begin{aligned}
& \mathcal{A}+\mathcal{B} \quad \mathcal{A} \cdot \mathcal{B} \quad \mathcal{A}^{*} \\
& \mathcal{A} \cdot \mathcal{B}=\left\langle\left(1 \begin{array}{l}
\square \\
\hline
\end{array}\right),\left(\begin{array}{c|c|c|}
\hline 0 & J & c K \\
\hline 0 & F & U \cdot K \\
\hline 0 & 0 & G \\
\hline & 0 & \\
\hline
\end{array}\right),\left(\begin{array}{c}
c d \\
\hline U d \\
\hline v \\
\hline
\end{array}\right)\right\rangle
\end{aligned}
$$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\begin{gathered}
\mathcal{A}+\mathcal{B}
\end{gathered} \mathcal{A} \cdot \mathcal{B} \quad \mathcal{A}^{*} \quad\left(\begin{array}{c}
0 \\
\mathcal{A}^{*}=\left\langle(1 \boxed{\square}),\left(\begin{array}{c}
1 \\
0 \\
0 \\
\hline
\end{array}\right)\right\rangle \quad \text { with } \quad H=U \cdot J+F
\end{array}\right.
$$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

$$
\mathcal{A}^{*}
$$

Definition of Δ_{d}
Recursive application of the operations

$$
\Delta_{\mathrm{d}}(\mathrm{E})=\mathcal{S}_{\mathrm{E}}
$$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

$$
\mathcal{A}^{*}
$$

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$\mathcal{A} \cdot \mathcal{B}$
\mathcal{A}^{*}
Example $\mathrm{E}_{1}=a$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$\mathcal{A} \cdot \mathcal{B}$
\mathcal{A}^{*}
Example $\mathrm{E}_{1}=a^{*}$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$\mathcal{A} \cdot \mathcal{B}$
\mathcal{A}^{*}
Example $\mathrm{E}_{1}=a^{*} b$

The standard automaton of an expression

Definition of a standard automaton

$$
\mathcal{A}=\left\langle(1 \boxed{\square}),\left(\begin{array}{c|c}
0 & J \\
\hline 0 & F \\
\hline
\end{array}\right),\binom{c}{\vdots}\right\rangle
$$

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$\mathcal{A} \cdot \mathcal{B}$
\mathcal{A}^{*}
Example $\mathrm{E}_{1}=a^{*} b \quad b$

The standard automaton of an expression

Definition of a standard automaton

$$
\mathcal{A}=\left\langle(1 \boxed{\square}),\left(\begin{array}{c|c}
0 & J \\
\hline 0 & F \\
\hline
\end{array}\right),\binom{c}{\vdots}\right\rangle
$$

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

$$
\mathcal{A}^{*}
$$

Example $\mathrm{E}_{1}=a^{*} b b^{*}$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

$$
\mathcal{A}^{*}
$$

Example $\mathrm{E}_{1}=a^{*} b \quad b b^{*}$

The standard automaton of an expression

Definition of a standard automaton

$$
\mathcal{A}=\left\langle(1 \boxed{\square}),\left(\begin{array}{c|c}
0 & J \\
\hline 0 & F \\
\hline
\end{array}\right),\binom{c}{\vdots}\right\rangle
$$

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

\mathcal{A}^{*}
Example $\mathrm{E}_{1}=a^{*} b \quad b b^{*} a$

The standard automaton of an expression

Definition of a standard automaton

$$
\mathcal{A}=\left\langle(1 \boxed{\square}),\left(\begin{array}{c|c}
0 & J \\
\hline 0 & F \\
\hline
\end{array}\right),\binom{c}{\vdots}\right\rangle
$$

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

$$
\mathcal{A}^{*}
$$

Example $\mathrm{E}_{1}=a^{*} b+b b^{*} a$

The standard automaton of an expression

Definition of a standard automaton

Operations on standard automata

$$
\mathcal{A}+\mathcal{B}
$$

$$
\mathcal{A} \cdot \mathcal{B}
$$

$$
\mathcal{A}^{*}
$$

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

The standard automaton of an expression

Definition of a standard automaton

$$
\mathcal{A}=\left\langle(1 \square),\left(\begin{array}{c|c}
0 & J \\
\hline 0 & F \\
\hline
\end{array}\right),\binom{c}{\vdots}\right\rangle
$$

Operations on standard automata

$$
\mathcal{A}+\mathcal{B} \quad \mathcal{A} \cdot \mathcal{B}
$$

\mathcal{A}^{*}

Proposition
Size of \mathcal{S}_{E} is $\ell(\mathrm{E})+1$
Proposition
The complexity of Δ_{d} is cubic

The standard automaton of an expression

Definition (Brüggemann-Klein 92)
E is in star-normal form (SNF) if and only if for any F such that F^{*} is a subexpression of $E, c(F)=0$

The standard automaton of an expression

Definition (Brüggemann-Klein 92)
E is in star-normal form (SNF) if and only if for any F such that F^{*} is a subexpression of $E, c(F)=0$

Theorem (B-K 92)
For any E, an E^{\bullet} can be computed in linear time, s.t.
(i) E^{\bullet} is in star-normal form
(ii) $\mathcal{S}_{\mathrm{E} \cdot}=\mathcal{S}_{\mathrm{E}}$

The standard automaton of an expression

Definition (Brüggemann-Klein 92)
E is in star-normal form (SNF) if and only if for any F such that F^{*} is a subexpression of $E, c(F)=0$

Theorem (B-K 92)
For any E , an E^{\bullet} can be computed in linear time, s.t.
(i) E^{\bullet} is in star-normal form
(ii) $\mathcal{S}_{\mathrm{E} \cdot}=\mathcal{S}_{\mathrm{E}}$

Theorem (B-K 92)
Computation of E^{\bullet} is quadratic

The derived term automaton of an expression

- Standard automaton of E
- Derived term automaton of E
position, Glushkov
Brzozowski-Antimirov

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

Preliminary
Construction of \mathcal{A}_{L}, the minimal (deterministic) automaton of L by means of the quotients of L

The Brzozowski derivatives

The Brzozowski derivatives

RegE A*

The Brzozowski derivatives

RegE A*

The Brzozowski derivatives

The Brzozowski derivation

Definition (Brzozowski 64)
$\mathrm{E} \in \operatorname{Reg} \mathrm{E} A^{*} \quad \frac{\partial}{\partial a} \mathrm{E}$ is defined by induction.

$$
\begin{aligned}
& \frac{\partial}{\partial a} 0=\frac{\partial}{\partial a} 1=\emptyset, \quad \frac{\partial}{\partial a} b= \begin{cases}\{1\} & \text { if } \quad b=a \\
\emptyset & \text { otherwise }\end{cases} \\
& \frac{\partial}{\partial a}(E+F)=\frac{\partial}{\partial a} E+\frac{\partial}{\partial a} F \\
& \frac{\partial}{\partial a}(E \cdot F)=\left[\frac{\partial}{\partial a} E\right] \cdot F+c(E) \frac{\partial}{\partial a} F \\
& \frac{\partial}{\partial a}\left(E^{*}\right)=\left[\frac{\partial}{\partial a} E\right] \cdot E^{*}
\end{aligned}
$$

The Brzozowski derivation

Definition (Brzozowski 64)
$\mathrm{E} \in \operatorname{Reg} \mathrm{E} A^{*} \quad \frac{\partial}{\partial a} \mathrm{E}$ is defined by induction.

$$
\begin{aligned}
& \frac{\partial}{\partial a} 0=\frac{\partial}{\partial a} 1=\emptyset, \quad \frac{\partial}{\partial a} b= \begin{cases}\{1\} & \text { if } \\
\emptyset & b=a \\
\text { otherwise }\end{cases} \\
& \frac{\partial}{\partial a}(E+F)=\frac{\partial}{\partial a} E+\frac{\partial}{\partial a} F \\
& \frac{\partial}{\partial a}(E \cdot F)=\left[\frac{\partial}{\partial a} E\right] \cdot F+c(E) \frac{\partial}{\partial a} F \\
& \frac{\partial}{\partial a}\left(E^{*}\right)=\left[\frac{\partial}{\partial a} E\right] \cdot E^{*}
\end{aligned}
$$

Theorem (Brzozowski 64)
For every E , there is a finite number of derivatives modulo A, C , and I

The Brzozowski-Antimirov derivation

RegE A*

The Brzozowski-Antimirov derivation

RegE A*

The Brzozowski-Antimirov derivation

The Brzozowski-Antimirov derivation

Definition (Brzozowski 64 - Antimirov 96)
$\mathrm{E} \in \operatorname{Reg} E A^{*} \quad \frac{\partial}{\partial a} \mathrm{E}$ is defined by induction.

$$
\begin{aligned}
& \frac{\partial}{\partial a} 0=\frac{\partial}{\partial a} 1=\emptyset, \quad \frac{\partial}{\partial a} b= \begin{cases}\{1\} & \text { if } \quad b=a \\
\emptyset & \text { otherwise }\end{cases} \\
& \frac{\partial}{\partial a}(E+F)=\frac{\partial}{\partial a} E \cup \frac{\partial}{\partial a} F \\
& \frac{\partial}{\partial a}(E \cdot F)=\left[\frac{\partial}{\partial a} E\right] \cdot F \cup c(E) \frac{\partial}{\partial a} F \\
& \frac{\partial}{\partial a}\left(E^{*}\right)=\left[\frac{\partial}{\partial a} E\right] \cdot E^{*}
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Definition (Brzozowski 64 - Antimirov 96)
$\mathrm{E} \in \operatorname{Reg} E A^{*} \quad \frac{\partial}{\partial a} \mathrm{E}$ is defined by induction.

$$
\begin{aligned}
\frac{\partial}{\partial a} 0=\frac{\partial}{\partial a} 1 & =\emptyset, \quad \frac{\partial}{\partial a} b= \begin{cases}\{1\} & \text { if } \begin{array}{l}
b=a \\
\text { otherwise }
\end{array} \\
\frac{\partial}{\partial a}(E+F)=\frac{\partial}{\partial a} E \cup \frac{\partial}{\partial a} F \\
\frac{\partial}{\partial a}(E \cdot F)=\left[\frac{\partial}{\partial a} E\right] \cdot F \cup c(E) \frac{\partial}{\partial a} F \\
\frac{\partial}{\partial a}\left(E^{*}\right)=\left[\frac{\partial}{\partial a} E\right] \cdot E^{*} \\
\frac{\partial}{\partial a}\left[\bigcup_{i \in I} E_{i}\right]=\bigcup_{i \in I} \frac{\partial}{\partial a} E_{i}, \quad\left[\bigcup_{i \in I} E_{i}\right] \cdot F=\bigcup_{i \in I}\left(E_{i} \cdot F\right) . \\
\frac{\partial}{\partial f a} E=\frac{\partial}{\partial a}\left(\frac{\partial}{\partial f} E\right)\end{cases}
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{aligned}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1} & =\left\{\mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{b^{*} a \mathrm{E}_{1}\right\} .
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} E_{1}=\left\{a^{*} b E_{1}\right\}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} E_{1}=\left\{a^{*} b E_{1}\right\}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} E_{1}=\left\{a^{*} b E_{1}\right\}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} E_{1}=\left\{a^{*} b E_{1}\right\}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} \mathrm{E}_{1}=\left\{a^{*} b \mathrm{E}_{1}\right\}, \quad \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} \mathrm{E}_{1}=\left\{a^{*} b \mathrm{E}_{1}\right\}, \quad \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\},
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\frac{\partial}{\partial a} \mathrm{E}_{1}=\left\{a^{*} b \mathrm{E}_{1}\right\}, \quad \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\},
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{array}{rlr}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, &
\end{array}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{array}{rlr}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, &
\end{array}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{aligned}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1} & =\left\{\mathrm{E}_{1}\right\},
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{aligned}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1} & =\left\{\mathrm{E}_{1}\right\},
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{array}{rlrl}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1}=\left\{\mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}\right\}, & &
\end{array}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{array}{rlrl}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*}=\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1}=\left\{\mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}\right\}, & &
\end{array}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{aligned}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1} & =\left\{\mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{b^{*} a \mathrm{E}_{1}\right\} .
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{aligned}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1} & =\left\{\mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{b^{*} a \mathrm{E}_{1}\right\} .
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Example $\mathrm{E}_{1}=\left(a^{*} b+b b^{*} a\right)^{*}$

$$
\begin{aligned}
\frac{\partial}{\partial a} \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(\mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}, b^{*} a \mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a} a^{*} b \mathrm{E}_{1} & =\left\{a^{*} b \mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b} a^{*} b \mathrm{E}_{1} & =\left\{\mathrm{E}_{1}\right\}, \\
\frac{\partial}{\partial a}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{\mathrm{E}_{1}\right\}, & \frac{\partial}{\partial b}\left(b^{*} a \mathrm{E}_{1}\right)^{*} & =\left\{b^{*} a \mathrm{E}_{1}\right\} .
\end{aligned}
$$

The Brzozowski-Antimirov derivation

Theorem (Antimirov 96)
\mathcal{A}_{E} is an NFA which accepts $L(\mathrm{E})$
and has less than $\ell(\mathrm{E})+1$ states

The Brzozowski-Antimirov derivation

Theorem (Antimirov 96)
\mathcal{A}_{E} is an NFA which accepts $L(\mathrm{E})$
and has less than $\ell(\mathrm{E})+1$ states
$\mathcal{B}_{\mathrm{E}}=$ Determinization of \mathcal{A}_{E}

The Brzozowski-Antimirov derivation

Theorem (Antimirov 96)
\mathcal{A}_{E} is an NFA which accepts $L(\mathrm{E})$
and has less than $\ell(\mathrm{E})+1$ states
$\mathcal{B}_{\mathrm{E}}=$ Determinization of \mathcal{A}_{E}
almost true

The Brzozowski-Antimirov derivation

Theorem (Antimirov 96)
\mathcal{A}_{E} is an NFA which accepts $L(\mathrm{E})$

and has less than $\ell(\mathrm{E})+1$ states

Theorem (Champarnaud-Ziadi 02)
\mathcal{A}_{E} is a quotient of \mathcal{S}_{E}

The Brzozowski-Antimirov derivation

The Brzozowski-Antimirov derivation

The Brzozowski-Antimirov derivation

Theorem (Champarnaud-Ziadi 01)
Computation of \mathcal{A}_{E} is quadratic

The Brzozowski-Antimirov derivation

Theorem (Champarnaud-Ziadi 01)
Computation of \mathcal{A}_{E} is quadratic

Observation
Size of \mathcal{A}_{E} much smaller than size of \mathcal{S}_{E}

$$
\text { when } \mathrm{E}=\Gamma(\mathcal{A}), \text { for a certain } \mathcal{A}
$$

The Brzozowski-Antimirov derivation

Theorem (Champarnaud-Ziadi 01)
Computation of \mathcal{A}_{E} is quadratic

Observation
Size of \mathcal{A}_{E} much smaller than size of \mathcal{S}_{E}

$$
\text { when } \mathrm{E}=\Gamma(\mathcal{A}), \text { for a certain } \mathcal{A}
$$

Observation
Even for $\mathrm{E}=\Gamma(\mathcal{A})$,
computation of \mathcal{S}_{E} followed by a quotient more effective than computation of \mathcal{A}_{E}

