Search Neutrality debate: arguments and mathematical modeling

Patrick Maillé, Bruno Tuffin

Institut Mines-Telecom/Telecom Bretagne, Inria
Rennes, France

Peyresq summer school - June 2013
Search engines

- Major role of search engines in the Internet economy
Search engines

- Major role of search engines in the Internet economy
 - most used way to reach webpages
 - about 20 billion requests treated per month from the US home and work desktops only
Search engines

- Major role of search engines in the Internet economy
 - most used way to reach webpages
 - about 20 billion requests treated per month from the US home and work desktops only
- Search engines return a ranked list of links—the *organic results*—from a (set of) keyword(s)
Search engines

- Major role of search engines in the Internet economy
 - most used way to reach webpages
 - about 20 billion requests treated per month from the US home and work desktops only
- Search engines return a ranked list of links—the organic results—from a (set of) keyword(s)

organic results are supposed to be based on relevance
Search engines

• Major role of search engines in the Internet economy
 ▶ most used way to reach webpages
 ▶ about 20 billion requests treated per month from the US home and work desktops only

• Search engines return a ranked list of links—the organic results— from a (set of) keyword(s)

organic results are supposed to be based on relevance

Search engines are more and more suspected to tamper with the ranking
Search engines

- Used Cars
 - MortizChevrolet.com/Used_Cars
 - Low Prices On Used Cars - Get A Free Internet Quote!

- New & Used Cars for Sale, Auto Dealers, Car Reviews and Car ...
 - [Traduire cette page]

 Search 2.6 million new & used car listings, price a new car, get a dealer quote, read expert reviews, or sell your car at thousands over trade-in.
 - Advanced Search - Buy a Car - How Much Is Your Car Worth - SUVs
 - www.cars.com/ - États-Unis - En cache - Pages similaires

- Used Cars for Sale, New Cars, & Auto Buying Guide at AutoMallUsa.net
 - [Traduire cette page]

 View used cars for sale, read car reviews, or research new cars at AutoMallUsa.net, your auto buying guide online.
 - Used Cars - Cars for Sale - Toyota - Nissan
 - www.automallusa.net/ - En cache - Pages similaires

- New Cars, Used Cars - Find Cars at AutoTrader.com
 - [Traduire cette page]

 Find used cars for sale at AutoTrader.com. With over 3.5 million cars, finding your ... I want to stay and look for cars on AutoTrader.com in the U.S.A. ...
 - www.autotrader.com/ - États-Unis - En cache - Pages similaires

- en stock aux États-Unis et au Canada - DENKER US CARS | Import New ...
 - Sale New US Cars, Used US-Cars, Import Vehicles from USA, SUV, Offroad, 4x4, ... Collector Car - oldtimer. S'il faut remplir le ZIP Code, remplissez-le pour ...
 - french.denker.cz/outre-mer/ - En cache - Pages similaires
Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company).

Google admitted penalizing Foundem and other specialized search services “to protect users from spam.”

But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...).

Search neutrality is a term close to net neutrality: limitations on users’ access to all relevant services on the Internet.

Search neutrality would impose that all contents have the same chances of being displayed.

⇒ a ranking based on relevance (to be defined objectively).
Search Neutrality

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services “to protect users from spam”
Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)

Google admitted penalizing Foundem and other specialized search services “to protect users from spam”

But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...)

Search Neutrality

Term close to net neutrality: limitations on users’ access to all relevant services on the Internet

Search neutrality would impose that all contents have the same chances of being displayed ⇒ a ranking based on relevance (to be defined objectively)
Search Neutrality

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services “to protect users from spam”
- But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...)

Term close to *net neutrality*: limitations on users’ access to all relevant services on the Internet
Search Neutrality

- Term coined in 2009 by Adam Raff, co-founder of Foundem (a price-comparison company)
- Google admitted penalizing Foundem and other specialized search services “to protect users from spam”
- But this can also be seen as hindering competition: Google offers similar services (Maps, Shopping, Images, videos...)

Term close to net neutrality: limitations on users’ access to all relevant services on the Internet

Search neutrality would impose that all contents have the same chances of being displayed
⇒ a ranking based on relevance (to be defined objectively)
Search Neutrality: the debate

Arguments in favor:

Arguments against:
Search Neutrality: the debate

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results

Arguments against:
Search Neutrality: the debate

Arguments in favor:
- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality

Arguments against:

⇒ new businesses can emerge more easily

⇒ worse results for users

Imposing transparency of the ranking algorithms facilitates the job of spammers

Competition is just one click away...
Search Neutrality: the debate

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services
 \[\Rightarrow\] new businesses can emerge more easily

Arguments against:
Search Neutrality: the debate

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services
 ⇒ new businesses can emerge more easily

Arguments against:

- Users are interested in the differences among search engines ("Google users tend to prefer Google products")
Search Neutrality: the debate

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to
 the best-performing actors/services
 \(\Rightarrow\) new businesses can emerge more easily

Arguments against:

- Users are interested in the differences among search engines ("Google
 users tend to prefer Google products")
- Search engines would not be able to manipulate rankings to prevent
 spam \(\Rightarrow\) worse results for users
Search Neutrality: the debate

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services
 \[\Rightarrow\] new businesses can emerge more easily

Arguments against:

- Users are interested in the differences among search engines ("Google users tend to prefer Google products")
- Search engines would not be able to manipulate rankings to prevent spam \[\Rightarrow\] worse results for users
- Imposing transparency of the ranking algorithms facilitates the job of spammers
Search Neutrality: the debate

Arguments in favor:

- Neutrality benefits to users, who get the most relevant results
- Neutrality elicits efforts from websites to improve their content quality
- Neutrality benefits to the global economy by facilitating the access to the best-performing actors/services
 ⇒ new businesses can emerge more easily

Arguments against:

- Users are interested in the differences among search engines (“Google users tend to prefer Google products”)
- Search engines would not be able to manipulate rankings to prevent spam ⇒ worse results for users
- Imposing transparency of the ranking algorithms facilitates the job of spammers
- Competition is just one click away...
Do search engines return biased results?
Do search engines return biased results?

They do
Do search engines return biased results?

Percentage of Google or Bing search results with own content not ranked similarly by any rival search engine (Wright, 2012).

Percentage

Google Microsoft (Bing)

Top 1 97.9 94.4
Top 3 99.2 95.1
Top 5 98.4 95.3
First page 97.5 93.4
Do search engines return biased results?

Comparison between Google, Bing, and Blekko (Wright, 2012):

- Microsoft content is 26 times more likely to be displayed on the first page of Bing than on any of the two other search engines
- Google content appears 17 times more often on the first page of a Google search than on the other search engines

Search engines do favor their own content
Regulatory intervention

- The European Commission, is progressing toward an antitrust settlement deal with Google

 Google must be even-handed. It must hold all services, including its own, to exactly the same standards, using exactly the same crawling, indexing, ranking, display, and penalty algorithms.

- The European Commission is running a market testing (started in April 2013) to estimate the extent to which the Google ranking algorithm respects these guidelines (Google may face a fine as large as $5 billion)
Building a mathematical model

For a given keyword, each webpage i is characterized by
Building a mathematical model

For a given keyword, each webpage i is characterized by

- its relevance r_i
Building a mathematical model

For a given keyword, each webpage i is characterized by
- its relevance r_i
- the gain g_i to the search engine if the link is clicked
Building a mathematical model

For a given keyword, each webpage i is characterized by

- its relevance r_i
- the gain g_i to the search engine if the link is clicked

Then users click on links depending on their position in the ranking clicking probabilities $\theta_1 > \theta_2 > ...$
Building a mathematical model

For a given keyword, each webpage i is characterized by
- its relevance r_i
- the gain g_i to the search engine if the link is clicked

Then users click on links depending on their position in the ranking clicking probabilities $\theta_1 > \theta_2 > ...$

Relevance of the ranking π ($\pi_i =$position of webpage i):

$$r = \sum_{i} \theta_{\pi_i} r_i.$$
Building a mathematical model

For a given keyword, each webpage i is characterized by

- its relevance r_i
- the gain g_i to the search engine if the link is clicked

Then users click on links depending on their *position* in the ranking clicking probabilities $\theta_1 > \theta_2 > ...$

Relevance of the ranking π (π_i = position of webpage i):

$$r = \sum_i \theta_{\pi_i} r_i.$$

Expected gain per search:

$$g = \beta + \sum_i \theta_{\pi_i} g_i$$

from ads
Trade-off relevance *versus* revenue

Favoring revenue-yielding webpages increases the revenue per search. But users are interested in relevance: they may switch to another search engine.

Model: a number of searches per time unit $\lambda(r)$, increasing with the relevance $r \Rightarrow$ expected revenue per time unit $= \lambda(r) \times g$.

P. Maillé, B. Tuffin (IMT - Inria)

Search Neutrality

June 2013
Favoring revenue-yielding webpages increases the revenue per search
Trade-off relevance *versus* revenue

- Favoring revenue-yielding webpages increases the revenue per search
- But users are interested in relevance: they may switch to another search engine

Model: a number of searches per time unit $\lambda(r)$, increasing with the relevance r. Expected revenue per time unit $= \lambda(r) \times g$.

P. Maillé, B. Tuffin (IMT - Inria)
Trade-off relevance versus revenue

- Favoring revenue-yielding webpages increases the revenue per search.
- But users are interested in relevance: they may switch to another search engine.

Model: a number of searches per time unit $\lambda(r)$, increasing with the relevance r.

\begin{align*}
\text{expected revenue per time unit} &= \lambda(r) \times g \nonumber
\end{align*}
Trade-off relevance *versus* revenue

- Favoring revenue-yielding webpages increases the revenue per search
- But users are interested in relevance: they may switch to another search engine

Model: a number of searches per time unit $\lambda(r)$, increasing with the relevance r

$$\Rightarrow \text{expected revenue per time unit} = \lambda(r) \times g$$
Neutral and non-neutral rankings

Neutral ranking: based on relevance \(r_i \) ⇒ maximizes the average relevance, and thus the number of requests

Non-neutral ranking: aimed at maximizing the revenue \(\lambda(r) \)

Maximization over the set of permutations

Say with \(m \) candidate pages and \(\lambda(r) = r_{\text{max}} \) permutations

\[\sum_{i=1}^{m} \theta_{\pi(i)} r_i \cdot (\beta + m \sum_{i=1}^{m} \theta_{\pi(i)} g_i) \]

not an easy task...
Neutral and non-neutral rankings

- Neutral ranking: based on relevance \((r_i)_i\)
Neutral and non-neutral rankings

- Neutral ranking: based on relevance \((r_i)_i\)
 \[\Rightarrow \text{maximizes the average relevance, and thus the number of requests}\]
Neutral and non-neutral rankings

- **Neutral ranking:** based on relevance \((r_i)_i\)
 \[\Rightarrow\text{maximizes the average relevance, and thus the number of requests}\]

- **Non-neutral ranking:** aimed at maximizing the revenue \(\lambda(r) \times g\)
Neutral and non-neutral rankings

- Neutral ranking: based on relevance \((r_i)_i\)
 \(\Rightarrow\) maximizes the average relevance, and thus the number of requests

- Non-neutral ranking: aimed at maximizing the revenue \(\lambda(r) \times g\)

Maximization over the set of permutations
Neutral and non-neutral rankings

- **Neutral ranking**: based on relevance \((r_i)_i\)
 \[\Rightarrow\] maximizes the average relevance, and thus the number of requests

- **Non-neutral ranking**: aimed at maximizing the revenue \(\lambda(r) \times g\)

Maximization over the set of permutations

Say with \(m\) candidate pages and \(\lambda(r) = r\)

\[
\max_{\text{permutations } \pi} \left(\sum_{i=1}^{m} \theta_{\pi_i} r_i \right) \cdot \left(\beta + \sum_{i=1}^{m} \theta_{\pi_i} g_i \right)
\]
Neutral and non-neutral rankings

- Neutral ranking: based on relevance \((r_i)_i\)
 \(\Rightarrow\) maximizes the average relevance, and thus the number of requests

- Non-neutral ranking: aimed at maximizing the revenue \(\lambda(r) \times g\)
 Maximization over the set of permutations
 Say with \(m\) candidate pages and \(\lambda(r) = r\)

\[
\max_{\text{permutations } \pi} \left(\sum_{i=1}^{m} \theta_{\pi_i} r_i \right) \cdot \left(\beta + \sum_{i=1}^{m} \theta_{\pi_i} g_i \right)
\]

not an easy task...
An example

One keyword, three pages, click probabilities $\theta_i = \frac{1}{2^i}$, $\lambda(r) = r$

<table>
<thead>
<tr>
<th>i</th>
<th>Relevance r_i</th>
<th>Gain g_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ranking</th>
<th>Relevance (r)</th>
<th>Engine revenue per time unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1; 2; 3</td>
<td>2.125</td>
<td>$2.125 (\beta + \frac{1}{4})$</td>
</tr>
<tr>
<td>1; 3; 2</td>
<td>2</td>
<td>$2 (\beta + \frac{1}{2})$</td>
</tr>
<tr>
<td>3; 1; 2</td>
<td>1.5</td>
<td>$1.5 (\beta + 1)$</td>
</tr>
</tbody>
</table>

Depending on the revenues from ads (value of β), each of these three can be the best one.
The case of a general set of keywords

Users do not change search engines for each keyword: they build a “reputation” of the search engines (average relevance of their results)
The case of a general set of keywords

Users do not change search engines for each keyword: they build a “reputation” of the search engines (average relevance of their results)

Model:

- keywords treated as random: for each search we have
 - a (random) vector of relevances R
 - a (random) vector of revenues G

 \Rightarrow one ranking $\pi(R, G)$ to perform for each search
The case of a general set of keywords

Users do not change search engines for each keyword: they build a “reputation” of the search engines (average relevance of their results)

Model:
- keywords treated as random: for each search we have
 - a (random) vector of relevances R
 - a (random) vector of revenues G
 - one ranking $\pi(R, G)$ to perform for each search
- but the ranking chosen affects the reputation of the search engine
The case of a general set of keywords

Users do not change search engines for each keyword: they build a “reputation” of the search engines (average relevance of their results)

Model:

- keywords treated as random: for each search we have
 - a (random) vector of relevances R
 - a (random) vector of revenues G

 ⇒ one ranking $\pi(R, G)$ to perform for each search

- but the ranking chosen affects the reputation of the search engine

\[
\text{Revenue} = \lambda \left(\mathbb{E} \left[\sum_{i=1}^{m} \theta_{\pi_i} R_i \right] \right) \cdot \left(\beta + \mathbb{E} \left[\sum_{i=1}^{m} \theta_{\pi_i} G_i \right] \right)
\]

We have a few results regarding that problem
What we want to do

- Analyze the non-neutral ranking
- Compare the performance of neutral and non-neutral policies

- Cost of non-neutrality: loss of relevance for users
- Cost of neutrality (for search engines): loss of revenue for search engines

Discuss the need for regulation
What we want to do

- Analyze the non-neutral ranking
What we want to do

- Analyze the non-neutral ranking
- Compare the performance and neutral and non-neutral policies
What we want to do

- Analyze the non-neutral ranking

- Compare the performance and neutral and non-neutral policies
 - Cost of non-neutrality: loss of relevance for users
What we want to do

- Analyze the non-neutral ranking
- Compare the performance and neutral and non-neutral policies
 - Cost of non-neutrality: loss of relevance for users
 - Cost of neutrality (for search engines): loss of revenue for search engines
What we want to do

- Analyze the non-neutral ranking

- Compare the performance and neutral and non-neutral policies
 - Cost of non-neutrality: loss of relevance for users
 - Cost of neutrality (for search engines): loss of revenue for search engines

- Discuss the need for regulation
This topic (and many others), in a book to appear:

TELECOMMUNICATION NETWORK ECONOMICS: From Theory to Practice

Patrick Maillé and Bruno Tuffin