Learning algorithms for power and frequency allocation in clustered ad hoc networks

Luca ROSE, Christophe LE MARTRET, Mérouane DEBBAH

Ecole d’été du Gretsi – Peyresq
June 25, 2013
Overview: The problem

Cluster frequency « coloring »

Flat network

Clustering

Cluster Head

Ch #1

Ch #2

Ch #3

Ch #4
Overview: The problem

- **Optimization problem**
 - Select the cluster frequency channel
 - That minimizes the total transmit power (all the clusters)
 - Subject to per-link SINR constraints
 - In a fully distributed way

- **Several possible solutions**
 - Multi-channels
 - Iterative Water-Filling
 - Single channel
 - GADIA
 - Game Theory-based
 - Reinforcement Learning
 - Trial and Error
Overview: Literature

- **Iterative Water-filling**
 - Individually optimum
 - No proof of convergence
 - Several results show its inefficiency in densely populated networks (Tragedy of the Commons)

- **GADIA**
 - Channel selected to minimize the global interference level
 - Convergence proved
 - Not adapt to set power and channel, requires distanced clusters

- **Reinforcement Learning**
 - Convergence proved
 - Slow convergence
 - Different training and exploitation periods
Moods

- c: content
- d: discontent
- w: watchful
- h: hopeful

Trial and Error Learning

(H. Peyton Young, 2009)

Trial and Error: basic strategy

- Content
 - Experiments new actions with probability \(\varepsilon \)

- Discontent
 - Experiments new actions

- C -> H: no experiment, utility increases
 - H -> C: if utility increases or equal
 - H -> W: if utility decreases
- C -> W: no experiment, utility decreases
 - W -> H: if utility increases
 - W -> C: if utility equal
 - W -> D: if utility decreases
From original TE to ad hoc networks…

First step

To
Trial and Error: Utility function

- Proposed solution: Trial and Error algorithm
 - Players: CHs
 - Actions: powers/frequencies
 - Utility for CH \#k:

\[
u_k(p) := \frac{1}{1 + |L_k| \beta} \left(1 - \frac{p_k}{p_{\text{MAX}}} + \beta \sum_{\ell \in L_k} 1_{[\Gamma_\ell(p) > \Gamma_k]} \right)
\]

- Power minimization
- SINR constraints
Trial and Error: Theoretical Results

- **Theorem**
 - For a^*, if a^* is a solution of the optimization problem and a^* is a NE, then TE converges to a^*

- **Theorem**
 - For a^*, the TE converges to the NE where the largest set of nodes are simultaneously satisfied

- **Property**
 - TE selects among all the NE the one maximizing the Social Welfare
Issues

- Instability of the solution even if optimal
 - One parameter decides the experimentation frequency on both channels and power levels
 - Parameter fixed a priori
- Slow convergence
- Experimentation do not take “common sense” behavior
Solution: enhanced Trial and Error (ETE)

- Two different experimentation frequency
 - sets the experimentation frequency on the power levels
 - sets the experimentation frequency on the channels
 - is time-varying:

\[
\varepsilon_c(t) = \begin{cases}
\max\left(\frac{\varepsilon_c(t-1)}{2}, \varepsilon_{\min}\right) & \text{if } \sum_{\ell \in L_k}^{\mathbb{1}_{\Gamma_c(p)=\Gamma_k}} = |L_k| \\
\varepsilon_c(0) & \text{otherwise}
\end{cases}
\]

- “Small” makes the channel-cluster association scheme stable
Enhanced Trial and Error

Solution: enhanced Trial and Error (ETE)

Smart probability distribution for power experimentation

- Content and \(\sum_{\ell \in L_k} 1_{[\Gamma_\ell(p) > \Gamma_k]} = |L_k| \): experiment only levels below

- Content and \(\sum_{\ell \in L_k} 1_{[\Gamma_\ell(p) > \Gamma_k]} < |L_k| \): experiment all levels

Discontent: \(p_k = \begin{cases} p_{\text{MAX}} & \text{with prob. } \min\left(\frac{C}{K}, 1\right) \\ 0 & \text{with prob. } \max\left(1 - \frac{C}{K}, 0\right) \end{cases} \)
Numerical Simulations

- Static dense scenario
 - Nodes fixed in a square area
 - 16 “square” clusters
 - 4 links per cluster
 - Channel-range: 2-18
 - Block fading channels
 - Rayleigh fading channels
Simulation results

- Dense scenario

![Graph showing expected average satisfaction vs. channels available. The graph plots a curve that increases as the number of channels available increases.]
Mobility scenario

- 4 clusters fixed
- 1 moving cluster
- 2 frequency channels
Channels and power levels – Mobility scenario

- Standard TE
- Enhanced TE
Enhanced Trial and Error - Conclusions

- Sets efficiently channel and power levels
- Requires only intra-cluster information
- Quickly adapts to changes in the network topology
- Quickly adapts to fading

- Thus looks adapted from a theoretical point of view
- And validated by simulations

Using Matlab simulations!

- Next challenge: make it work into a real system
- Ongoing implementation in a HiFi network simulator…