
Cadence® Synthesis Rapid Adoption Kit

Product Version 5.0.10
May 2003

 2002-2003 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in this
document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks,
contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission statement,
this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted, or
distributed in any way, without prior written permission from Cadence. This statement grants you permission to
print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s customer
in accordance with, a written agreement between Cadence and its customer. Except as may be explicitly set
forth in such agreement, Cadence does not make, and expressly disclaims, any representations or warranties
as to the completeness, accuracy or usefulness of the information contained in this document. Cadence does
not warrant that use of such information will not infringe any third party rights, nor does Cadence assume any
liability for damages or costs of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Cadence Synthesis Rapid Adoption Kit

Contents
Preface . 7

About This Manual . 7
Other Information Sources . 7
Documentation Conventions . 8

Text Command Syntax . 8
Using Menus . 9
Using Forms . 9

1
Before You Begin . 11

Invoking BuildGates Synthesis or BuildGates Extreme Synthesis 11
Command Language Interface . 12
Getting Started . 12

Set up your UNIX Environment . 12
Download the Tutorial Data . 12
Install the Libraries . 13
Regarding the Results . 13

2
Getting Started with BuildGates Synthesis . 15

Introduction to BuildGates Synthesis . 16
Objectives . 16
Example Design . 16
Setting Up to Run the Tutorial . 18

Required License . 18
Required Files . 18

Basic BuildGates Flow . 19
Setting Up Your Design Environment . 20
Setting Global Variables . 20
Reading the Technology Library . 21
May 2003 1 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Reading the HDL Models for the Design . 23
Creating a Generic Gate-Level Netlist . 24
Setting Test Synthesis Assertions . 26
Setting Constraints . 30
Checking Constraints . 39
Setting Path Groups . 42
Optimizing the Design . 43
Generating Reports . 45
Writing Netlist and Database Files . 51
Setting Scan Chain Assertions . 52
Incremental Timing Optimization . 55

Interfacing with Physical Design Tools . 59
Using BuildGates Synthesis Graphical User Interface . 61
Migrating to BuildGates from Design Compiler . 66

Constraint Translation Example . 67
Distributed Synthesis . 71
Summary . 72
Where to Go from Here . 72

3
Getting Started with Design For Test. 73

Introduction to BuildGates Test Synthesis . 74
Objectives . 75
Example Design . 75
Setting Up to Run the Tutorial . 77

Required License . 77
Required Files . 77

BuildGates Top-Down Test Synthesis Configuration Flow . 78
Setting up the Design Environment . 80
Read Libraries and the HDL Models for the Design . 81
Setting Test Synthesis Assertions . 82
Checking DFT Assertions and Rule Violations . 84
Fixing DFT Rule Violations . 87
Setting Constraints . 89
Optimizing the Design . 89
May 2003 2 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Setting Scan Chain Assertions . 90
Connecting the Scan Chains . 92
Checking the Timing of the Design . 94
Viewing the Scan Chains . 95
Writing Netlist and Database Files . 96

Writing Interface Files to Third Party ATPG Tools . 97
Summary . 98

4
Getting Started with Datapath. 99

Introduction to BGX Datapath . 100
Objectives . 101
Example Design . 101
Setting Up to Run the Tutorial . 102

Required License . 102
Required Files . 102

Traditional Synthesis Run . 103
BGX Datapath Flow . 104

Setting up the Design Environment . 105
Setting up Global Variables . 105
Reading the Synthesis Technology Libraries . 106
Reading the HDL Models for the Design . 106
Creating a Generic Gate-Level Netlist . 106
Setting Constraints . 107
Operator Merging . 108
Optimizing the Design . 111
Generating Reports . 111
Writing Netlist, Database Files and Report File . 114

Examining Traditional Synthesis Results . 115
Comparing BGX and Traditional Results . 115
Summary . 116

5
Getting Started with Low Power Synthesis 117

Introduction . 118
May 2003 3 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Objectives . 118
Example Design . 119
Setting Up for This Module . 119

Required License . 119
Ensure Access to a Verilog Simulator . 120
Link to the Simulation Library . 120
Required Files . 120

Regular BGX Flow with Power Estimation . 122
BGX LPS Flow . 123

Setting up Design Environment . 124
Reading the Synthesis Technology Libraries . 124
Reading the HDL Models for the Design . 125
Creating Generic Gate-level Netlist and Exploring Sleep-mode Options at the RTL Level

 . 125
Setting Constraints . 130
Setting Sleep-Mode and Clock-Gating Options . 130
Optimizing the Design . 132
Simulating and Reading the Toggle Count File . 135
Optimizing the Power . 137
Analyzing the Results and Generating Reports . 137
Power Analysis in BuildGates Extreme . 141
Generating Reports . 148
Writing Netlist and Database Files . 148

Gate-Level Only Flow . 149
Sample Script Starting from a Gate-Level Netlist . 149
Sample Script Starting from a Timing-Optimized Netlist . 149

LPS-DFT flow . 149
Summary . 151

A
More about BuildGates Synthesis . 153

More about Optimizing the Design . 154
Top-Down Optimization . 154
Bottom-Up Optimization . 154
More on do_optimize . 154
May 2003 4 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Timing Reports . 156

B
More about Datapath. 157

More about Operator Merging . 158
More about Automatic Architecture Selection . 161
More about the AmbitWare Library . 163

Inference Verses Instantiation . 165
More about Extended Languages . 166

C
More about Low Power Synthesis . 169

More about LPS Clock Gating Technique . 170
More about TCF Files . 173
More about Gate-Level Power Optimization . 174

Gate Sizing . 174
Pin Swapping . 176
Buffer Removal . 176
Gate Merging . 177
Slew Optimization . 178
Logic Restructuring . 179
May 2003 5 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
May 2003 6 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Preface

This preface contains the following sections:

■ About This Manual on page 7

■ Other Information Sources on page 7

■ Documentation Conventions on page 8

About This Manual

This manual describes how to use the BuildGates® Synthesis tool and the BuildGates®
Extreme Synthesis tool.

Other Information Sources

For more information about BuildGates Extreme and other related products, you can consult
the sources listed here.

■ BuildGates Synthesis User Guide

■ Command Reference for BuildGates® Synthesis and Cadence® PKS

■ Datapath for BuildGates Synthesis and Cadence PKS

■ Design for Test (DFT) Using BuildGates Synthesis and Cadence PKS

■ Distributed Processing of BuildGates® Synthesis

■ HDL Modeling for BuildGates® Synthesis

■ Low Power for BuildGates® Synthesis and Cadence® PKS

■ SDC Constraints Support Guide

■ Common Timing Engine (CTE) User Guide.
May 2003 7 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Preface
The following books are helpful references.

■ IEEE 1364 Verilog HDL LRM

■ Tcl Reference, Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley Publishing
Company

Documentation Conventions

Text Command Syntax

The list below describes the syntax conventions used for the BuildGates Synthesis text
interface commands.

literal Non-italic words indicate keywords that you must enter literally.
These keywords represent command or option names.

argument Words in italics indicate user-defined arguments or information
for which you must substitute a name or a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument.

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices from which you can choose one.

{ } Braces are used to indicate that a choice is required from the list
of arguments separated by OR-bars. You must choose one from
the list.

{ argument1 | argument2 | argument3 }

... Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,
[argument]...), you can specify zero or more arguments. If
the three dots are used without brackets (argument...), you
must specify at least one argument, but can specify more.

The pound sign precedes comments in command files.
May 2003 8 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Preface
Using Menus

GUI commands can take one of three forms.

CommandName A command name with no dots or arrow executes immediately.

CommandName… A command name with three dots displays a form for choosing
options.

CommandName -> A command name with a right arrow displays an additional menu
with more commands. Multiple layers of menus and commands
are presented in what are called command sequences, for
example: File – Import – LEF. In this example, you go to the File
menu, then the Import submenu, and, finally, the LEF command.

Using Forms

… A menu button that contains only three dots provides browsing
capability. When you select the browse button, a list of choices
appears.

OK The OK button executes the command and closes the form.

Cancel The Cancel button cancels the command and closes the form.

Apply The Apply button executes the command but does not close the
form.
May 2003 9 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Preface
May 2003 10 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
1
Before You Begin

This Rapid Adoption Kit (RAK) consists of the following modules:

■ Getting Started with BuildGates Synthesis

■ Getting Started with Design For Test

■ Getting Started with Datapath

■ Getting Started with Low Power Synthesis

Each module highlights a specific feature for BuildGates® Synthesis.

Invoking BuildGates Synthesis or BuildGates Extreme
Synthesis

For the first two modules you can use BuildGates® Synthesis. For the remaining modules you
need to use BuildGates® Extreme Synthesis.

➤ To invoke BuildGates Synthesis in a text-based, Tcl shell, enter the following command
at the UNIX prompt:

bg_shell

➤ To invoke BuildGates Synthesis in graphical user interface (GUI) mode, enter the
following command at the UNIX prompt:

bg_shell -gui

Note: To invoke BuildGates® Extreme Synthesis, replace bg_shell with bgx_shell.

For help with your BuildGates Synthesis installation, see the BuildGates Synthesis User
Guide.
May 2003 11 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Before You Begin
Command Language Interface

BuildGates Synthesis is one of the first EDA tools to use Tcl as its command language. Tcl
was developed for EDA tools at UC Berkeley and has quickly become a command interface
standard for EDA tools. Tcl is a simple language with very few rules, so it is easy to learn. For
more details on the Tcl language, see either of these references:

■ Tcl and Tk Toolkit, John Ousterhout, Addison-Wesley Publishing Company

■ Practical Programming in Tcl and Tk, Brent B. Welch

Interactive commands entered into bg_shell (or bgx_shell) are saved in a command file
called ac_shell.cmd. Commands and console messages are saved in a file
ac_shell.log. You can use ac_shell.cmd input to bg_shell using the source
command to recreate the previous execution of bg_shell. A setup file is saved in your
directory under .ambit/ambit.state which saves your GUI color settings, default
variables, and so on.

Getting Started

Set up your UNIX Environment

Make sure that your .cshrc file specifies the path to the directory in which the software is
installed.

Download the Tutorial Data

1. Download the tutorial data to a new directory of your choice. For example,

cp -rf your_install_path/doc/syntut/RAK/RAK.tar.gz
my_tutorial/.

2. Extract the data from the tar file:

cd my_tutorial

gzip -dc RAK.tar.gz|tar -xvf -

This command creates the RAK directory in the current directory.
May 2003 12 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Before You Begin
Install the Libraries

All modules share the same Artisan libraries.

To install the library, do the following:

1. Change directory to the RAK directory.

2. Enter the following command at the UNIX prompt:

INSTALL_LIB

The library installation process starts and you are asked whether or not you accept the
Artisan license agreement.

Important

Read the agreement on terms of use. The agreement is also available in
LIB_LICENSE.TXT (in the my_tutorial/RAK directory) for your review. By
installing and using the library with this tutorial, you are agreeing to the terms of the
agreement. If you do not agree to the terms as specified, we advise that you do not
proceed with this tutorial.

Note: If you do not have perl installed on your system, you can unzip the library.zip
file manually. Doing so indicates acceptance of the Artisan library license agreement as
described in LIB_LICENSE.TXT file. For more information, read the FAQ.txt file.

Regarding the Results

Important

Your results might differ from the results shown in the different modules due to the
difference in runs and release versions.
May 2003 13 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Before You Begin
May 2003 14 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
2
Getting Started with BuildGates
Synthesis

■ Introduction to BuildGates Synthesis on page 16

■ Objectives on page 16

■ Example Design on page 16

■ Setting Up to Run the Tutorial on page 18

■ Basic BuildGates Flow on page 19

❑ Setting Up Your Design Environment on page 20

❑ Setting Global Variables on page 20

❑ Reading the Technology Library on page 21

❑ Reading the HDL Models for the Design on page 23

❑ Creating a Generic Gate-Level Netlist on page 24

❑ Setting Test Synthesis Assertions on page 26

❑ Setting Constraints on page 30

❑ Checking Constraints on page 39

❑ Setting Path Groups on page 42

❑ Optimizing the Design on page 43

❑ Generating Reports on page 45

❑ Writing Netlist and Database Files on page 51

❑ Setting Scan Chain Assertions on page 52

❑ Incremental Timing Optimization on page 55

■ Interfacing with Physical Design Tools on page 59

■ Using BuildGates Synthesis Graphical User Interface on page 61

■ Migrating to BuildGates from Design Compiler on page 66
May 2003 15 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
■ Distributed Synthesis on page 71

■ Summary on page 72

Introduction to BuildGates Synthesis

BuildGates® Synthesis is a high-capacity and high-performance chip-level synthesis tool with
built in signoff-quality, fast, full-chip timing engine. Fast and flexible, BuildGates Synthesis
supports a wide variety of design styles such as multiple clocks, including both edge triggered
and level sensitive with cycle stealing.

BuildGates Synthesis has a high capacity database that allows you to synthesize more of the
design at once. Its fast runtime assures rapid turnaround, making chip-level synthesis
practical. In addition, high-capacity enables productivity gains by eliminating the need for
excessive resources and time required for elaborate bottom-up script development.

BuildGates Synthesis also offers automatic time budgeting, integration with physical design
tools, VHDL and Verilog support, support of both reads and writes of netlist EDIF 2.0, Tcl
command line interface for shell level control, transforms for performing focused
optimizations, schematic and textual report capabilities, and integrated DFT analysis and
scan insertion.

Capable of running in both command line mode and in graphical user interface (GUI) mode,
the BuildGates Synthesis tool delivers dramatic performance and productivity benefits over
conventional synthesis tools.

Objectives

In this brief self-teaching tutorial, you will become familiar with the BuildGates synthesis flow
by running the tool on the test design. At the end of this module, you will have an
understanding of BuildGates Synthesis methods, timing analysis, optimization methods, and
test support.

Note: This module takes about an hour to run.

Example Design

The example design provided with this module is a Verilog description of a Dual Tone
Multi-Frequency (DTMF) receiver. In a telephone network, DTMF is a common in-band
signaling technique used for transmitting information between network entities. DTMF signals
are commonly generated by touch-tone telephones.

Figure 2-1 on page 17 shows a block diagram of the DTMF receiver.
May 2003 16 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Figure 2-1 DTMF Block Diagram

SPI ULAW_CONVERTER

DATA SAMPLE

DATA SAMPLE RAM

DMA CONTROLLER

BUS ARBITER

SCRATCH

TDSPTDSP_CS_DS

ROM
ASCII DIGIT

RCC

REGISTER

TDSP MUX

MUX

DATA RAM

Note: This is a high-level diagram.spi_clk

spi_fs

spi_data

dout(7:0)

clk reset

dflag read

upcm(7:0)

lpcm(15:0)

dout[15:0]

t_data[15:0]

t_data_in[15:0]

clk reset

bus_grant

top_buf_flag

reset

t_write_rcc

bus_request_out

bus_grant_in

Scan flops previously added
(block attributed with

Not all connections are shown.

set_dont_modify property).
May 2003 17 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Setting Up to Run the Tutorial
Note: We assume that you already copied the data. If not, see Getting Started on page 12.

Required License

You need a BuildGates (BG) license to run this module.

Required Files

You need the following files to run this tutorial:

■ Synthesis library

■ Verilog or VHDL netlist, preferably at RTL level.

■ Constraints

The your_install_path/doc/syntut/RAK/tutorial_buildgates directory
contains the files needed to run this module. It has the following directory structure:

tutorial_buildgates Root directory

tcl Scripts to run this module

rtl Verilog and VHDL design modules

lib Synthesis libraries

rpt Timing, area, hierarchy and other report files

adb Database files

run_dir Running directory
May 2003 18 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Basic BuildGates Flow

Set Constraints

Generate Reports

Optimize Design

Check Constraints

Do Incremental Timing Optimization

Set Scan Chain Assertions

Read Libraries

Write Netlist and Database Files

Read HLD Model for Design

Set Test Synthesis Assertions

Create Generic Gate-Level Netlist

Set Path Groups

Modify Constraints

Backannotate Parasitics from
 Place and Route
May 2003 19 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Setting Up Your Design Environment

1. Change to the run_dir directory in the tutorial_buildgates directory.

2. For this tutorial, invoke BuildGates Synthesis in shell mode:

unix_shell> bg_shell

Note: You will explore the graphical user interface later on.

3. Set up your design environment by running the following script in bg_shell:

bg_shell> source ../tcl/setup.tcl

The setup.tcl file defines Tcl variables for the rtl, library, report, database, and Tcl
directories. This file contains the following commands:

set rak_dir ..
set tcl_dir $rak_dir/tcl
set rtl_dir $rak_dir/rtl
set lib_dir $rak_dir/lib
set rep_dir $rak_dir/rpt
set adb_dir $rak_dir/adb

The variable rak_dir is set to the parent directory and other variables are set to their
respective directories under the current directory.

Setting Global Variables

BuildGates Synthesis provides many global variables to control the overall run procedure and
policies independent of the design. All global variables have default values when you start
bg_shell. For more information on global variables, see the Global Commands for
BuildGates Synthesis and Cadence PKS.

You can set the value of any global variable by issuing the following command:

bg_shell> set_global var_name value

You can obtain the value of any global variable by issuing the following command:

bg_shell> get_global var_name

➤ Set some globals by running the following script:

bg_shell>source $tcl_dir/set_globals.tcl

The set_globals.tcl script sets three variables:

set_global message_verbosity_level 8
set_global echo_commands true
set_global report_precision 5
set_global fix_multiport_nets true
set_global sdc_write_unambiguous_names false
set_global line_length 1000
May 2003 20 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
■ The message_verbosity_level variable controls the level of verbosity of the
messages generated by bg_shell in reporting information, warnings, and errors.

■ The echo_commands variable causes each command to be echoed in the standard
output prior to its execution.

■ The report_precision variable controls the number of digits appearing after the
decimal point in timing reports, report_timing and
report_cell_instance_timing. The default is 2.

■ The fix_multiport_nets variable is considered during the do_optimize
stage.When set to true, the do_xform_fix_multiport_nets command is run
automatically and any output signal driving multiple output ports is split into different nets
by inserting buffers in the paths.

■ The sdc_write_unambiguous_names variable suppresses the output of
unambiguous hierarchical names in sdc constraint.

■ The line_length variable controls the line length in the console window.

Reading the Technology Library

A technology library containing timing and power models is required for successful mapping
of RTL operations into technology-specific cells. In this tutorial, you will use the “Artisan
TSMC 0.18u” libraries to optimize the design.

1. Read in the synthesis technology libraries by running the following script:

bg_shell> source $tcl_dir/read_lib.tcl

The read_lib.tcl script contains the following commands:

read_tlf $lib_dir/slow_4.3.tlf
read_tlf $lib_dir/pllclk_slow_4.3.tlf
read_tlf $lib_dir/ram_128x16A_slow_4.3.tlf
read_tlf $lib_dir/ram_256x16A_slow_4.3.tlf
read_tlf $lib_dir/rom_512x16A_slow_4.3.tlf
read_library_update $lib_dir/tpz973gwc-lite_4.3.tlf

set_global target_technology slow

❑ The first five commands read in .tlf libraries. Although BuildGates currently
supports TLF version 4.4, version 4.3 is used for this design.

You can load multiple .alf, and .tlf libraries in BuildGates with separate
read_alf and read_tlf commands for each library.

❍ Files with the .tlf extension are in Cadence Timing Library Format.

❍ Files with the .alf extension are in Ambit Library Format.
May 2003 21 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Both .alf and .tlf formats are compatible with the Synopsys .lib format.
Usually the ASIC or library vendors provide libraries in .alf and/or .tlf format.

If the vendor only provides a .lib file, you can compile the .lib file into a .tlf
file using the syn2tlf utility (installed in the your_install_dir/
tools.platform/tlfUtil/bin directory):

unix_prompt> syn2tlf my_cells.lib my_cells.tlf

In addition to the .lib, .alf, and .tlf formats, BuildGates Synthesis also
supports Synopsys Stamp Models, IEEE 1481 Delay and Power Calculation system
(DCL) libraries, Open Library API (OLA) libraries, and the GrayBox model for
reusable megacells or IP cores.

For more information on supported library formats (and the syn2tlf utility), see the
Using Timing Libraries chapter of the Common Timing Engine (CTE) User
Guide..

❑ The read_library_update command merges pad cells from the
tpz973gwc-lite_4.3.tlf pad library into the target technology library,
slow.alf.

You can set the target technology with the set_global target_technology
command. By default, the first library you read becomes the target technology. In
addition to merging cells from another library, the read_library_update
command can also be used for merging wireload models and operating conditions
into the target library.

The previous example shows a complex use of the read_library command.
However, in most cases, you can read the library with a single line:

read_tlf my.tlf

❑ The set_global target_technology slow command is used to specify the
target library slow.alf. During optimization, BuildGates Synthesis maps a generic
netlist to the cells from the target library slow.alf. You can set multiple target
libraries by providing a list of libraries with the set_global command.

2. View the contents of the slow technology library by entering the following command:

bg_shell>report_library

The report_library command reports on the cells in the library, the wireload models,
and the operating conditions.
May 2003 22 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Reading the HDL Models for the Design

BuildGates Synthesis supports Verilog, VHDL, and EDIF hardware description language
(HDL) models. You can describe your design in the Verilog, VHDL, or EDIF language.

BuildGates Synthesis is compatible with the Synopsys synthesis tool. You can read the same
RTL that you enter into the Synopsys tool into BuildGates Synthesis without making any
changes. BuildGates even supports most of the Synopsys pragmas, such as
translate_off, translate_on, and synthesis directives such as full_case,
parallel_case, infer_mux. For more details on supported pragmas and synthesis
directives, see Supported Synopsys Directives in the HDL Modeling for BuildGates
Synthesis.

➤ Read in the HDL model for the design by entering the following command:

bg_shell>source $tcl_dir/read_rtl.tcl

The read_rtl.tcl script contains the following commands:

set_global hdl_verilog_vpp_arg -I$rtl_dir

read_verilog $rtl_dir/accum_stat.v
read_verilog $rtl_dir/alu_32.v
read_verilog $rtl_dir/arb.v
read_verilog $rtl_dir/data_bus_mach.v
read_verilog $rtl_dir/data_sample_mux.v
read_verilog $rtl_dir/decode_i.v
read_verilog $rtl_dir/digit_reg.v
read_verilog $rtl_dir/dma.v
read_verilog $rtl_dir/dtmf_recvr_core.v
read_verilog $rtl_dir/execute_i.v
read_verilog $rtl_dir/mult_32_dp.v
read_verilog $rtl_dir/m16x16.v
read_verilog $rtl_dir/port_bus_mach.v
read_verilog $rtl_dir/prog_bus_mach.v
read_verilog $rtl_dir/ram_128x16_test.v
read_verilog $rtl_dir/ram_256x16_test.v
read_verilog $rtl_dir/results_conv.v
read_verilog $rtl_dir/spi.v
read_verilog $rtl_dir/tdsp_core.v
read_verilog $rtl_dir/tdsp_core_glue.v
read_verilog $rtl_dir/tdsp_core_mach.v
read_verilog $rtl_dir/tdsp_data_mux.v
read_verilog $rtl_dir/tdsp_ds_cs.v
read_verilog $rtl_dir/test_control.v
read_verilog $rtl_dir/ulaw_lin_conv.v
read_verilog $rtl_dir/iopads.v
read_verilog $rtl_dir/dtmf_chip.v

The set_global hdl_verilog_vpp_arg -I$rtl_dir command enables the Verilog
pre-processor to search Verilog files in the $rtl_dir directory.

You can see that you can read multiple Verilog files using the read_verilog command for
each file. The read_verilog $rtl_dir/accum_stat.v command reads the
accum_stat.v file from the rtl_dir directory.
May 2003 23 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
To read a VHDL file, you can use the read_vhdl command. You can use the
set_vhdl_library logical_library_name directory command to associate
the logical library with a physical directory. You can set the hdl_vhdl_environment
variable to synopsys to select the arithmetic package supported by the Synopsys VHDL
compiler. By default, this variable is set to standard which is the IEEE standard package.

While parsing the design modules, the read_verilog and read_vhdl commands will
report syntax errors, warnings, and other problems. For example, one of the warnings you see
while parsing the accum_stat.v file is:

--> WARNING: ’delay’ statement is not supported for synthesizable modules (File
 ./rtl/accum_stat.v, Line 68) <VLOGPT-035>.

assign #1 acc_v = accum[‘S_ACC] ;

#1 specifies a one-unit delay in Verilog. The # construct is typically used for simulation, but it
is not a synthesizable construct. You can turn off the above warning message by using the
command, set_message_verbosity VLOGPT-035 off.

Creating a Generic Gate-Level Netlist

➤ Transform the design into a hierarchical, gate-level netlist by entering the following
command:

bg_shell>do_build_generic

The do_build_generic command transforms the design into a hierarchical, gate-level
netlist consisting of technology-independent logic gates using:

■ Components from the Ambit Synthesis Technology Library (ATL)

■ Arithmetic and logical operators from the AmbitWare Components Library (AWACL)

The command performs constant propagation, loop unrolling, lifetime analysis, register
inferences, and logic mapping. You must execute this command before any optimization
commands (such as do_optimize or do_xform_*) can be applied.

Note: If you are reading a gate-level netlist mapped to cells from the library, you still need to
run the do_build_generic command.

For more information about the generic synthesis step, see the BuildGates Synthesis User
Guide. By default, the do_build_generic command uses timing sensitive implementation
for all the operators. BuildGates Synthesis also provides an architecture selection directive to
select different types of architectures for arithmetic operators. In BuildGates Extreme
Synthesis, architectures are automatically selected based on timing and context. For more
information, see Chapter 4, “Getting Started with Datapath.”
May 2003 24 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The following is one of the messages generated by the do_build_generic command:

Info: Processing design ’spi’ <CDFG-303>.
Statistics for case statements in module ’spi’ (File ./rtl/spi.v)
<CDFG-800>.
+--+
Case Statistics Table
Line
---------+---------+---------+----------
97
+--+

This message provides information on a case statement at line 97 in the spi module. The
case statement type can be case, casex, or casez. It tells you whether the case statement
can be implemented with the full case (priority encoding logic) or parallel case (parallel
encoding logic) synthesis directive. With the AUTO option, the tool will decide to implement
the case statement using either full case or parallel case depending on the constraints. If the
synthesis directives in the RTL include either full or parallel, the Full and Parallel
options in the case statistics table will be set to YES. If the full case synthesis directive is
incorrectly used, the do_build_generic command generates warnings for possible RTL
and gate-level simulation mismatches.

Each sequential device that is inferred by the do_build_generic command is reported in
a sequential element table as shown below.
+--+
Sequential Elements
Module
+------------+--------------------+------+-------------+------+-------+----+---+----+----+
tdsp_ds_cs
tdsp_ds_cs
+--+

Finished processing module: ’tdsp_ds_cs’ <MODGEN-110>.

The first line of data in this table indicates that line 128 in the tdsp_ds_cs.v file infers a
register named t_sel_7_reg. It is of type D_FF and has 1 bit width. This register has no (N)
asynch set control (AS), synch set control (SS), synch reset control (SR), but does have (Y)
asynch reset control (AR).

For more information on case statements and RTL coding styles for synthesis, see the HDL
Modeling for BuildGates Synthesis.

Checking the Netlist

After you create a generic netlist using the do_build_generic command, Cadence
recommends that you check the structural connectivity of the netlist.

1. To check the structural connectivity of the netlist, enter the following command:

bg_shell>check_netlist
May 2003 25 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The check_netlist command performs a number of checks on the structural
connectivity of the netlist, including checks for recursively defined modules,
combinational feedback, undriven nets and pins, multiply driven nets and pins, and
undriven ports. You can run the check_netlist command on a mapped netlist as well.

The check_netlist command generates the following report:

Current module: dtmf_chip
The number of recursively defined modules(at least): 0
The number of combinational feedbacks: 0
The total number of undriven nets/pins: 1
The total number of multiply driven nets: 0
The total number of potential multiply driven nets: 0
The total number of undriven ports: 0
The total number of common inputs between data and enable: 0

You should justify all warnings before proceeding further.

2. To see the details of the undriven nets and pins, use the -verbose option:

bg_shell>check_netlist -verbose

This command displays warnings like this:

--> WARNING: Undriven instance pin ’DTMF_INST/int’ found in module ’dtmf_chip’
<FNP-533>.

In this example, you can ignore the warning because the int pin in instance DTMF_INST
is not used.

Setting Test Synthesis Assertions

As ASICs become more complex, it has become a standard practice to use test synthesis
during logic synthesis to integrate design-for-test (DFT) logic into designs. The foundry's
tester uses these DFT logic structures to check the chip for manufacturing defects. The logic
structures produced by test synthesis do not affect the function of the chip.

The test synthesis capabilities of BuildGates Synthesis perform a single-pass, automatic,
full-scan insertion prior to and during logic optimization. The test synthesis capability allows
you to trade off timing and area during optimization. Currently, it does not perform automatic
test pattern generation (ATPG), boundary scan/JTAG, and BIST. BuildGates Synthesis is
designed to work well with the FastScan® tool from Mentor Graphics and the Turboscan® tool
from Syntest, and it is compatible with most other vendors as well. For more information about
BuildGates test features, refer to Chapter 3, “Getting Started with Design For Test.”

Finding Objects

To set assertions and constraints, you must be able to find various objects such as ports, net
names, instance names and module names in your design database.
May 2003 26 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The find command finds design objects and prepares a list for other bg_shell commands.
Unless you specify the -regexp option, BuildGates uses glob-style pattern matching to find
design objects in the design database. Multiple wildcard matching in a name is permitted.

BuildGates Synthesis assigns a unique identifier (ID) to each object type (cell, component,
module, instance, net, pin, port, and so on). The find command returns the object ID, which
is an integer number. To get more information on an object, use the get_info command.

Typically, the output of the find command (a list of objects found by this command) is an
argument to another command that accepts a list of objects and performs some task.

For example, the following command sets all input ports of a module to the same input delay:

set_input_delay 0.2 [find -ports -input *] -clock master_ck

Setting Assertions

1. Set assertions for test modes and connection preferences by running the following script:

bg_shell>source $tcl_dir/scan_assert.tcl

The scan_assert.tcl script contains the following commands:

issue_message -type info "Mapping test_control module"

set_current_module test_control
do_xform_map
set_dont_modify [find -hier -module test_control]
set_current_module [find -module dtmf_chip]

issue_message -type info "Setting up for scan synthesis in tieback mode"

set_scan_style muxscan
set_global dft_scan_path_connect tieback
set_global dft_scan_avoid_control_buffering true
set_scan_mode IOPADS_INST/Pscanenip/C 1

check_dft_rules

The script contains two sections.

2. Examine the commands in the first section of the scan_assert.tcl file.

This section applies to the test_control module only. This module consists of a scan
clock muxed with all the clocks used in the dtmf_chip module and is controlled by the
test_mode signal. For this tutorial, you do not want to optimize this module.

❑ The set_current_module command sets test_control as the design context
for DFT, then sets the context back to the DTMF design for optimization. You will look
at this command in more detail in Setting Constraints on page 30.
May 2003 27 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
❑ The do_xform_map transform maps the test_control module to target
technology slow. In this case, all you are doing is mapping the test control logic to
the target technology, and then telling the tool not to modify it. Since this is test
control logic, it is not speed sensitive. Optimizing the Design on page 43 describes
the transform commands in more detail.

❑ The set_dont_modify command keeps the instances, nets, or submodules in the
test_control module from being modified by the optimization tool.

❑ The second set_current_module command sets the timing and optimization
context to the dtmf_chip module for optimization.

3. Examine the commands in the second section of the scan_assert.tcl file.

❑ The set_scan_style command sets the scan style to muxscan (muxed-D scan
flops) for the current module and all child modules. BuildGates also supports scan
flops of type clocked_scan, clocked_lssd, and aux_clocked_lssd.

❑ The set_global dft_scan_path_connect tieback variable sets the scan
mode to tieback for later connection. The tiebackmode connects the scan-data
output pin of the scan cell back to its own scan-data input pin. Cadence
recommends that you set the scan mode to tieback before optimization. After the
scan chain is created and connected, you can set the value of this global variable to
chain.

❑ The set_global dft_scan_avoid_control_buffering true command is
optional. It prevents buffering of the high fanout scan mode control signal after it is
inserted. By default, high fanout signals are buffered by timing optimization and
design rule fixing. This command overrides the default behavior for the scan mode
signal only.

❑ The set_scan_mode IOPADS_INST_Pscanenip/C 1 command specifies that
input port IOPADS_INST_Pscanenip/C activates shifting of scan data through the
scan chain when the port is active high (1). When you use the set_scan_mode
command to define the input port of a scan chain, you must specify whether the scan
chain is active-high (1) or active-low (0). There is no default for this argument. If you
do not use the set_scan_mode command, the test synthesis tool creates an active
high top-level port with the default name BG_scan_enable.

❑ The check_dft_rules command checks your design for selected DFT rule
violations such as uncontrollable clocks and uncontrollable asynchronous signals.

The tool does not insert scannable elements where DFT violations occur. It displays
a message if it detects any violations. You should fix all reported problems either by
modifying your RTL or by using the auto-DFT fix capabilities described in Improving
Testability of Your Design in Design For Test (DFT) Using BuildGates Synthesis
and Cadence PKS. Otherwise, your fault coverage is reduced.
May 2003 28 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The following error message is one of the messages reported by
check_dft_rules:

==> ERROR: DFT Violation 6: Internally driven Clock net ’DTMF_INST/
m_digit_clk’ in module ’dtmf_recvr_core’ (File ./rtl/dtmf_recvr_core.v, Line
79) <DFT-316>.
 Traced its effective fanin cone to:
 :test_mode
 scan_clk
 DTMF_INST/RESULTS_CONV_INSTdigit_clk_reg:Q

In the DTMF design, all clocks are derived from the primary clock refclk using a
Phase Lock Loop (PLL), which causes a DFT violation. In muxed scan style, all
clocks must be controllable from a primary input to allow the tester to control the
registers during the test process. Figure 2-2 shows some examples of DFT
violations.

Figure 2-2 Examples of DFT Violations

Fixing DFT Violations

You can fix DFT violations by fixing the RTL or using the auto-fix DFT capabilities in the tool.
Additionally, if test mode activated logic has been added to the RTL, DFT violations specific
to this test mode logic, can be safely bypassed by using the set_test_mode_setup
assertion. You can fix the previous DFT violation by using the test_mode signal to bypass
the clock gating logic or internal clocks during test mode.

➤ Fix the violations by running the following script:

bg_shell>source $tcl_dir/fix_dft_rules.tcl

The fix_dft_rules.tcl script contains the following commands:

set_test_mode_setup test_mode 1
set_test_mode_setup reset 0
check_dft_rules

clock

DFT Violation: Gated Clock

DFT Violation: Derived Clock

derived
clock

int_clk
May 2003 29 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
■ The set_test_mode_setup test_mode 1 command sets the test_mode input port
to 1 during the entire test session. The second set_test_mode_setup command sets
the reset port to 0 for the entire test session.

■ The check_dft_rules command displays a summary of the DFT clock domains, any
internal clock domain points (specified using the set_dft_internal_clock_domain
assertion), and the number of registers associated with those domains that have passed
the DFT rules checks:

Info: Partitioning registers for scan based on clock domain. <DFT-325>.
Clock Domain 0 from pin ’scan_clk’ (Neg Edge) <Internal Pin: ’None’> has 129 f/f
Clock Domain 1 from pin ’scan_clk’ (Pos Edge) <Internal Pin: ’None’> has 411 f/f
Total Clock domains: 2 for 540 f/f

Info: Total Scannable register count: 540 <DFT-340>.

In addition to uncontrollable clocks, internally generated clocks, and uncontrollable
asynchronous signals, you can check your design for combinational loops and flip-flops with
potential race-conditions between the data and clock signals by setting the following variables
before you run check_dft_rules.

set_global dft_enable_combinational_loop_check true
set_global dft_enable_race_condition_check true

If you set dft_enable_race_condition_check for the DTMF design you will get the
following warning message when you run check_dft_rules:

 Info: Checking for registers with clock/data race condition. <DFT-326>.
--> WARNING: Input ’test_mode’ fans out to both data and enable pins of
 sequential element ’DTMF_INST/SPI_INST/dflag_reg’ of module ’spi.’
 This may create potential race conditions. Try ’-flatten on’ on
 this module <FNP-543>.

For more information about BuildGates Synthesis test features, such as ATPG, boundary
scan, and scan chain re-ordering refer to Chapter 3, “Getting Started with Design For Test.”

Setting Constraints

In addition to libraries and a functional RTL model of the design, the logic synthesis process
requires a set of constraints on the design. By default, BuildGates Synthesis meets your
timing constraints first, then tries to achieve the smallest area. For more information on
changing the area and timing priority or making area a priority, see the Common Timing
Engine (CTE) User Guide.

The performance generally refers to the maximum clock frequency at which the design
implementation (netlist) can operate. You do not need to specify any area constraints for the
design because BuildGates always strives for the smallest possible design area for the given
timing and physical constraints.
May 2003 30 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Important

BuildGates Synthesis always tries to meet the specified timing constraints. Do not
synthesize your design without basic I/O and clock constraints because BuildGates
is a performance, timing-driven synthesis engine. Do not over-constrain the design
to meet the desired timing constraints. For example, you do not need to set an 8 ns
clock to meet a 10 ns clock constraint, which is a common practice in other synthesis
tools. Do not set your I/O arrival times at 95% of the clock period, as is common in
other synthesis tools. If you over constrain the design, you will likely experience very
long run times while the tool works very hard to meet these constraints.

Note: If you already have Synopsys Design Compiler (DC) or Prime Time (PT) timing
constraints, use the BuildGates Synthesis Constraint Translator to translate these constraints
to a BuildGates Synthesis constraints file. For more information, refer to Migrating to
BuildGates from Design Compiler on page 66.

➤ Set the commonly used constraints by running the following script:

bg_shell>source $tcl_dir/constraints.tcl

The following sections discuss the different sections of the constraint file in detail:

■ Setting Up Hierarchical and Timing Context on page 31

■ Setting Clock Constraints on page 32

■ Setting Constraints on Primary I/O Ports on page 36

■ Setting Multicycle and False Paths on page 37

■ Setting Design Rule Constraints on page 37

■ Setting Wire Load Models on page 38

Setting Up Hierarchical and Timing Context

The Setting up Hierarchical and Timing Context section of the constraints.tcl file
contains the following commands:

Setting up Hierarchical and Timing Context"
issue_message -type info "--> Setting up Hierarchical and Timing Context ..."

set_current_module dtmf_chip
set_top_timing_module dtmf_chip

■ The first command issues the message “Setting up Hierarchical and Timing Context.”
This message is written in the log file.
May 2003 31 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
■ The set_current_module command makes dtmf_chip the current module. Design
objects such as nets and ports, referenced by subsequent commands, must be specified
relative to this module. All searches for design objects start in the dtmf_chip module.
Hierarchical design objects are referenced with dtmf_chip as the root (top) of the
hierarchy.

Note: If a module has multiple instances and each instance requires a separate set of
constraints, you can use the set_current_instance command.

■ The set_top_timing_module command identifies the module to be used by
subsequent commands as a context for setting timing constraints. All constraints are set
with reference to the dtmf_chip module. The optimization commands will operate on
the dtmf_chip module and its hierarchy.

This is a unique and very powerful feature of BuildGates Synthesis. If you set a new top
timing module, you change the context for the subsequent timing constraints and the
optimization steps. The constraints applied to the previous top timing module are
preserved but do not affect the steps carried out in the new top timing module.

Setting Clock Constraints

The DTMF design has a primary clock port, refclk, which goes through a phase locked loop
circuit and internally generates a clock, clk, with a 6 ns period and several divided clocks
rcc_clk, spi_clk, dsram_clk, ram_clk, and digit_clk, each with 12 ns periods. All
these clocks are muxed with the scan clock in the test_control module. You will set the
clock definition for these internal clocks at the output of the test_control module.

BuildGates uses the concept of ideal and applied clocks. An ideal clock is a perfect
representation of the clock, while the applied clock is a clock applied to the system. For
example, on a lab bench the ideal clock is the clock source (for example, waveform generator)
and the applied clock is the connection to the chip under test. The advantage of using an ideal
clock and applied clocks is that a common ideal clock can drive any number of applied clocks,
all with different insertion delays while still maintaining the fundamental timing relationship.
The split between ideal and applied makes it simple to construct complicated interrelated
clock systems.

Clock constraints are required to set the timing constraints on combinational logic between
registers.

1. Examine the commands defined in the Setting Ideal Clocks section of the
constraints.tcl file.

issue_message -type info "--> Setting Ideal Clocks ..."
set_clock vclk1 -period 6.0 -waveform { 0 3.0 }
set_clock vclk2 -period 12.0 -waveform { 0 6.0 }
May 2003 32 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
❑ The first set_clock command defines the ideal clock vclk1with period 6, leading
transition at 0, and trailing transition at 3: Since the leading transition is a rising edge,
vclk1 is treated as a positive clock.

❑ The second command defines another positive ideal clock, vclk2, with period 12,
leading transition at 0, and trailing transition at 6:

These two ideal clocks will be used as a global reference signal for all the data signals
in the DTMF design. In a single clock design, you will need only one ideal clock. However,
in a multi-phase clock design, you will need several ideal clocks.

Once the ideal clocks are defined, you can define actual clock signals arriving at input/
internal ports of the DTMF design.

2. Examine the commands defined in the Setting Primary Clocks section.

issue_message -type info "--> Setting Primary Clocks ..."
set_clock_root -clock vclk1 [find -port refclk]

The set_clock_root command assigns positive polarity to ideal clock vclk1 and
associates primary input pin refclk (system clock) with ideal clock vclk1.

3. Examine the commands defined in the Setting Internally Generated Clocks section.

issue_message -type info "--> Setting Internal Clocks ..."

set_generated_clock -name vclk1_int1 -from \
DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST/clk \
-divide_by 2 DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST/write_reg/Q
set_generated_clock -name vclk1_int2 -from DTMF_INST/DMA_INST/clk \
-divide_by 2 DTMF_INST/DMA_INST/write_reg/Q

The set_generated_clock commands create two generated clocks vclk1_int1
and vclk1_int2, which are derived from the clock source vclk1. This command
creates a new clock signal from the clock waveform of a given pin in the design, or an
existing virtual (ideal) clock signal, and binds it with the targeted pins (listed at the end
of the command). Whenever the source clock changes, the derived clock(s) change
automatically. You can generate the new clock waveform by

❑ Multiplying the frequency of the source clock

❑ Dividing the frequency of the source clock

❑ Selecting the edges of the source clock to be mapped on to the edges of the new
clock

For examples about assertions on generated clocks, see Specifying Generated Clocks
in the Common Timing Engine (CTE) User Guide..

4. Examine the commands defined in the Setting Muxed Clocks section.

issue_message -type info "--> Setting Muxed Clocks ..."
set clock_pin [find -hier -pin DTMF_INST/TEST_CONTROL_INST/m_clk]
May 2003 33 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
set drive_pin [get_drive_pin -hier [get_info $clock_pin net]]
set_clock_info_change -clock vclk1 -pos $drive_pin
set_clock_insertion_delay -pin $drive_pin 2.0

foreach clock {m_rcc_clk m_spi_clk m_dsram_clk m_ram_clk m_digit_clk} {
 set clock_pin [find -hier -pin DTMF_INST/TEST_CONTROL_INST/$clock]
 set drive_pin [get_drive_pin -hier [get_info $clock_pin net]]
 set_clock_info_change -clock vclk2 -pos $drive_pin
set_clock_insertion_delay -pin $drive_pin 2.0

}

set_clock_uncertainty 0.25

❑ The set clock_pin command defines the clock_pin Tcl variable and assigns
it a value of DTMF_INST/TEST_CONTROL_INST/m_clk, which is a clock pin.

❑ The set drive_pin command defines the drive_pin Tcl variable and assigns
it a value of the pin driving the DTMF_INST/TEST_CONTROL_INST/m_clk net.

❑ The set_clock_info_change command assigns the positive polarity (-pos,
which is the default) to ideal clock vclk1 and associates the instance pin driving the
DTMF_INST/TEST_CONTROL_INST/m_clk net (actual clock) with the ideal clock.

As you can see, you can associate pins with more than one ideal clock.

You can use set_clock_info_change to change the clock to data, data to clock,
and clock to clock for paths going through the specified pins for the downstream
logic. This command is useful for modeling frequency dividers and clock-shaping
circuits.

Note: In version 5.0 and beyond, BuildGates Synthesis automatically changes a
clock network to a data network, so you do not need to use the
set_clock_info_change command to change a clock signal to a data signal, but
you still need to use it if you want to change a data signal to a clock signal.

❑ The set_clock_insertion_delay command inserts a 2-unit delay as clock
network latency. This means it will take a 2-unit delay for the clock signal to
propagate from the clock definition point (instance pin driving DTMF_INST/
TEST_CONTROL_INST/m_clk net) to the clock pin of a register. “Clock network
latency delay” is commonly referred to as “clock tree delay.”

The set_clock_insertion_delay command can also be used to add clock
source latency, the time a clock signal takes to propagate from its ideal waveform
origin point to the clock definition point (clock port) in the design. You need to use
the -source option to add clock source latency. In this design, you could use the
set_clock_insertion_delay -source command to model the delay through
a PLL circuit.

You can specify clock network latency and clock source latency on the clock
waveform as well as the clock port or clock pin. Clock tree delay is used during ideal
May 2003 34 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
clock propagation mode, which is a default mode. Clock tree delays set by the
set_clock_insertion_delay command are ignored during clock propagation
mode. Actual clock tree delays are used during propagated mode. The
set_clock_propagation command tells the timing analyzer to treat all the clock
signals associated with the current timing top module as either ideal or propagated.

❑ The foreach Tcl loop associates clock pins m_rcc_clk, m_spi_clk,
m_dsram_clk, m_ram_clk and m_digit_clk on DTMF_INST/
TEST_CONTROL_INST instance with ideal clock, vclk2. For this tutorial, you will
not assign clock_insertion_delay for these clocks.

Clock pins, m_rcc_clk, m_dsram_clk, and m_ram_clk are internally derived
from frequency divider logic implemented inside the DTMF_INST/
TDSP_CORE_INST/DATA_BUS_MACH_INST and DTMF_INST/DMA_INST
modules. These clock signals are connected to Q pin write_reg registers. Hence,
they will be treated as data signals. The two set_clock_info_change
commands in the Setting Internally Generated Clocks section, are used to change
data signals to clock signals for the paths going through the write_reg/Q pin for
the downstream logic.

❑ The set_clock_uncertainty command specifies a 0.25 unit delay as a clock
skew for the vclk1 and vclk2 clock domains. It can also be used to specify
inter-clock skew for different clock domains. Clock uncertainty can also be used as
a general method to add pessimism and/or optimism. A positive uncertainty
contributes to pessimism. A negative uncertainty has no meaning physically, but it
makes all slack numbers optimistic. Negative uncertainty can be used to adjust
conservative constraints into more realistic ones. Figure 2-3 shows the skew
between the clocks, clk1 and clk2.

Figure 2-3 Clock Skew

For more information on clock commands or methods, refer to the Common Timing Engine
(CTE) User Guide..
May 2003 35 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Setting Constraints on Primary I/O Ports

You need to constrain the signal changes arriving at primary input ports of the DTMF design.
These signal changes are controlled by an external block driving the DTMF block. To
constrain the output ports, you need to consider the timing requirement of downstream
modules to which output ports of the DTMF block are connected.

➤ Examine the commands defined in the Setting Input/Output ports constraints section of
the constraints.tcl file.

issue_message -type info "--> Setting Input/Output ports constraints..."
set_input_delay -clock vclk1 0.5 [get_names [find -inputs -no_clocks]]
set_external_delay -clock vclk1 0.5 [get_names [find -outputs port*]]
set_external_delay -clock vclk1 0.5 [get_names [find -outputs tdigit*]]

■ The set_input_delay command (see Figure 2-4) sets a 0.5 unit delay for the signals
to arrive at all input ports of the DTMF block.

The rising and falling edge transitions of data signals arrive at all input ports at a 0.5 unit
delay after the leading edge of the vclk1 clock. Since you have not set the -early or
-late option, the input delay is applied for both late (max) and early (min) signals.

■ The set_external_delay commands (see Figure 2-4) set external delays of 0.5 units
on output ports whose names begin with port and tdigit. These ports are driven by
registers clocked by vclk1.

The required time at the output port is computed as if the output port is driving a register
external to the design. The data signal must arrive at the input of the external register
(including setup time) before the arrival of the clock. In other words, the required time for
the data signal at the output port of your design is calculated by subtracting the
propagation delay through the logic from the clock arrival time at the register of the
downstream block.

Figure 2-4 Input and External Delays

set_input_delay set_external_delay

DTMF
Module
May 2003 36 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Setting Multicycle and False Paths

By default, all paths in a design are considered to be single-cycle paths. However, in the
DTMF design, signal propagation for paths going through multipliers spans over multiple
cycles. You need to relax the timing constraints on these paths.

➤ Examine the commands in the Setting Multicycle and False Paths section of the
constraints.tcl file:

issue_message -type info "--> Setting Multicycle and False Paths ..."
set_cycle_addition -to DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/acc_reg* 1
set_cycle_addition -to DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/p_reg* 1
set_cycle_addition -to DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/ov_flag_reg* 1

set_false_path -from reset

set_constant_for_timing 0 test_mode
set_constant_for_timing 0 scan_en

■ The set_cycle_addition commands indicate that all paths ending in pins
acc_reg*, p_reg* and ov_flag_reg* registers in the DTMF_INST/
TDSP_CORE_INST/EXECUTE_INST hierarchy should be treated as two-cycle paths—
one cycle addition to the clock driving these registers.

The corresponding Synopsys command is set_multicycle_path 2. One of the most
powerful and unique features of the set_cycle_addition command is that the cycle
addition number can be a real number. For example, you could use the command,
set_cycle_addition -0.2, to constrain paths for 80% of the clock period.

■ The set_false_path command sets paths starting from the reset pin as false path.
The timing analyzer ignores these paths, and the paths are optimized for area and not
timing.

■ The set_constant_for_timing commands set the value of the primary ports
test_mode and scan_en to 0.

Logic 0 will be propagated through corresponding combinational logic cones and disable
sections of the logic for timing analysis.

Setting Design Rule Constraints

In order for a circuit to function correctly, it needs to meet design rule constraints as well. You
can set all the necessary design rule constraints such as fanout, port capacitance, slew time,
wire loads, and operating conditions in BuildGates Synthesis.

➤ Examine the commands in the Setting Design Rules section of the constraints.tcl
file.

issue_message -type info "--> Setting Desgin Rules ..."
set_slew_time_limit 2.3 [find -ports -noclocks *]
May 2003 37 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
set_global fanout_load_limit 15

set_drive_cell -cell PDO04CDG [find -input -noclocks *]
set_port_capacitance [expr [get_cell_pin_load -cell PDIDGZ -pin PAD]*2.0]\

[find -output *]

■ The set_slew_time_limit command specifies the limit for slew time (transition time)
at the input and output ports of the DTMF module.

You can also set global values for the slew time using the global variables
max_slew_time_limit and min_slew_time_limit, and you can use the
set_slew_time_limit command to override these global values.

■ The set_global fanout_load_limit command specifies the maximum value for
fanout load limit (number of transistors to be connected) on the ports of a cell and is used
to enforce design rule checks.

■ The set_drive_cell command models the drive strength of external drivers
connected to input ports of the DTMF block.

This command identifies output pin PAD of the PDO04CDG library cell driving input ports
of the DTMF block. You can also use the set_drive_resistance command to set the
drive resistance.

■ The set_port_capacitance command sets output loads by specifying the output
port capacitance external to the DTMF block.

Setting Wire Load Models

For deep sub-micron designs, using wire load models for synthesizing is becoming less
attractive because the margin of error in these designs is disappearing. Thus, wire load based
design, or “design by guard band” is becoming less and less valid with each new technology
generation. Designers are using tools like BuildGates Physically Knowledgeable Synthesis
(PKS) to accurately predict interconnect RCs rather than to use wire load models. This next
generation of tools does “design by accuracy.”

However, you can use BuildGates Synthesis to synthesize designs using wire load models.

➤ Examine the commands in the Setting wire load models section of the
constraints.tcl file.

set_wire_load TSMC18_Conservative
set_wire_load_mode enclosed
set_wire_load_selection_table WireAreaCon

■ The set_wire_load command sets the wire load model for the current module, DTMF.
If you run the report_library -wireload command, you see
TSMC8k_Conservative as the default. The set_wire_load command overrides this
default.
May 2003 38 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
■ The set_wire_load_mode command specifies that the wire load model must be
selected using an area lookup table for the module at the lowest level in the design
hierarchy that contains the entire wire (net). If topmode is specified, the wire load model
is selected using the area lookup table of the top-level module, which is the default.

■ The set_wire_load_selection_table selects wire load models based on the wire
load model selection table WireAreaConwhich is defined in the tpz973gwc_4.3.tlf
library.

Checking Constraints

Cadence recommends that you check all constraints before you execute the do_optimize
command or any timing analysis commands, such as report_timing. This helps you verify
that the timing environment is complete and self-consistent.

1. Check the constraints by entering the following command:

bg_shell>check_timing

The check_timing command performs a variety of consistency and completeness
checks on the timing constraints specified for a design. Running this command can save
you a lot of wasted time. This command can be used on generic and mapped netlists.

The check_timing command displays the report shown in Figure 2-5.

Figure 2-5 check_timing Report
+--------------------------------+
| Report | check_timing |
|---------+----------------------|
| Options | |
+---------+----------------------+
Date	20030522.105735
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+--------------------------------+	
+---+	
TIMING CHECK SUMMARY	
--	
Warning	Warning Description
--------------+---+----------	
clock_but_data	Clock signal found where data is expected
clock_clipping_freq	Clock clipping possible due to incompatible clock signal & data
	signal frequencies
data_gating_clock	Data gating clock
multiple_signal	Multiple signals arriving at end point
no_drive	No drive assertion
no_ext	No external delay or required time assertion
+---+

1. Use the –verbose option with the check_timing command to look at the details of
the warnings:

bg_shell>check_timing -verbose
May 2003 39 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The -verbose option displays a detailed report in addition to the report shown in
Figure 2-5 on page 39. An extract of the detailed report is shown in Figure 2-6 on
page 40.

The TIMING CHECK SUMMARY shown in Figure 2-5 on page 39 includes a summary of
warnings, a brief description, and the number of warnings.

The TIMING CHECK DETAIL shown in Figure 2-6 on page 40 gives the hierarchical pin
names and a description of the warnings.

Figure 2-6 Extract of the Detailed Warning Information

Tip

You can use the set_table_style command to change the column widths of the
table. For example, to change the column widths of the TIMING CHECK DETAIL
table use:

 set_table_style -name report_timing_prologue -max_widths 40

 TIMING CHECK DETAIL

Pin Warning

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I1 Clock signal (vclk1_int1 neg) found where data is expected

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I1 Multiple signals (vclk1_int1 pos vclk1_int1 neg) arriving

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/O0 Clock clipping possible due to incompatible clock signal

’DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I0’ and data signals

’DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/S’ frequencies

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/O0 Clock clipping possible due to incompatible clock signal

’DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I1’ and data signals

’DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/S’ frequencies

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/O0 Clock clipping possible due to incompatible clock signal

’DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I1’ and data signals

’DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/S’ frequencies

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/O0 Data gating clock

DTMF_INST/RAM_256x16_TEST_INST/
RAM_256x16_INST/A[7]

Multiple signals (vclk1_int1 lead vclk1 lead) arriving

DTMF_INST/RESULTS_CONV_INST/
clear_flag_reg/D

Multiple signals (vclk1 lead vclk2 trail) arriving

DTMF_INST/RESULTS_CONV_INST/gt_reg/D Multiple signals (vclk1 lead vclk2 trail) arriving

.... ...
May 2003 40 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
All the warnings should be checked, and each warning should be justified or fixed by adding
new constraints or modifying existing constraints.

■ The following warning indicates that a clock signal is being gated (MUX), where the
expected input signal on the combinational gate is data, rather than a clock:

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I1 ---- Clock signal (vclk1_int1 neg)
found where data is expected

Since clock gating logic is present in the design, you can ignore this warning.

■ The following warning indicates that the data signal at pin I1 of the instance
DTMF_INST/DATA_SAMPLE_MUX_INST/i_5 is triggered by the positive edge and
negative edge clocks of vclk1_int1:

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/I1 ---- Multiple signals (vclk1_int1 pos
vclk1_int1 neg) arriving

■ The following message indicates that the logic value of the clock input before the active
clock transition may not be controlling theDTMF_INST/DATA_SAMPLE_MUX_INST/i_5
gate, resulting in clock clipping:

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/O0 ---- Clock clipping possible due to
incompatible clock signal 'DTMF_INST/DATA_SAMPLE_ MUX_INST/i_5/I0' and data
signals 'DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/S' frequencies

If the clock input is not dominant or controlling before and after it makes its transitions,
then the output signal could be distorted by the data input. This distortion is called
clipping or shaping.

■ The following warning message indicates that a single data signal at pin D of instance
DTMF_INST/RESULTS_CONV_INST/high_mag_reg_0/D is triggered by the vclk1
and vclk2 clocks:

DTMF_INST/RESULTS_CONV_INST/high_mag_reg_0/D ---- Multiple signals (vclk1 lead
vclk2 trail) arriving

■ The following warning indicates that the clock signal at DTMF_INST/
DATA_SAMPLE_MUX_INST/i_5/00 is being gated:

DTMF_INST/DATA_SAMPLE_MUX_INST/i_5/O0 --- Data gating clock

Important

As a general strategy, you should either fix or understand and dismiss all
check_timing errors before moving on to optimization.

Note: check_timing -old will give you <TA-XXX> warnings.
May 2003 41 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Setting Path Groups

You can use path groups to group paths for the purpose of timing optimization or timing
analysis. When you have overconstrained paths or when I/Os are overconstrained because
of uncertainties, each group can be optimized separately. This enables the tool to work on
other paths that have more realistic constraints when attempts to find improvements on the
overconstrained paths fail. You can also group the timing paths which have some violations,
to do incremental timing optimization.

➤ Set the path groups for this design, by running the following script:

bg_shell> source $tcl_dir/path_groups.tcl

The path_groups.tcl script contains the following commands

set_path_group -name IN -from [find -input -noclocks *]
set_path_group_options IN -target_slack 0.2 -all_end_points

set_path_group -name OUT -to [find -output *]
set_path_group_options OUT -target_slack 0.5 -all_end_points

set_path_group -name vclk2_group -clock_from vclk2
set_path_group_options vclk2_group -target_slack 0.0 -all_end_points

set_path_group -name vclk1_group -clock_from vclk1
set_path_group_options vclk1_group -target_slack -1.0 -all_end_points

The set_path_group command groups the critical paths in the design to be optimized.
You can use this command in conjunction with the set_path_group_options
command to potentially specify a different set of optimizations for the grouped paths. All
grouped and ungrouped paths are optimized according to the options specified in the
do_optimize command, unless the grouped paths have different optimization options
specified using the set_path_group_options command.

In this design you use the set_path_group command to create four path groups: IN,
OUT, vclk2_group, and vclk1_group. Each group has its own optimization
requirements which are specified with the set_path_group_options command. The
target slack for the vclk1_group group is set to –1.0 to show some negative slack after
optimization.

Initially, there is only the default group. You cannot create any other groups with that
name. Each group created with set_path_group is separated from the default
group.
May 2003 42 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Optimizing the Design

Logic optimization plays a key role in the synthesis process and consists of several
processes, including: Boolean transformations, flattening, structuring,
technology-independent and technology-dependent mapping, hierarchical optimization, and
context derivation. Depending on the design size, the two most commonly used optimization
techniques are top-down and bottom-up optimization.

➤ Optimize the DTMF design using the top-down synthesis methodology by entering the
following command:

bg_shell>do_optimize

Note: Depending on the performance of your machine, the optimization runs for about 30
minutes. You can take this time to read more about the difference between top-down and
bottom-up optimization in More about Optimizing the Design on page 154.

do_optimize Info Messages

The do_optimize command displays several informational messages. Examples of these
messages are explained below.

■ Message 605 indicates that AmbitWare components (ACL and AWL cells) created as
hierarchical instances during the do_build_generic step are dissolved in the parent
module.

Info: Dissolving AmbitWare instance ’i_5377’ (cellref ’AWMUX_2_2’) in module
’arb’ ... <TCLNL-605>.

■ The following message indicates that the optimizer is creating a unique instance i_3282
for the multiple instantiated module AWACL_SUB_UNS_162. This allows the optimizer to
optimize one instance module differently from another by placing different constraints on
them. The transform to uniquely instantiate multiple instances is
do_uniquely_instantiate.

Info: Duplicated module ’AWMUX_8_3’ as ’AWMUX_8_3_1’ and bound to instance
’i_3094’ in module ’spi’ <FNP-700>.

■ The following message indicates that the optimizer is applying Boolean and algebraic
algorithms and transformations to achieve logic optimization and logic structuring. You
will get this message for all the modules in the DTMF design. The transform to perform
structuring is do_xform_structure.

Info: Structuring module 'spi' ... <TCLNL-500>.

■ The following message indicates that the optimizer is propagating logic levels (0 or 1)
throughout the design crossing hierarchical boundaries. The transform to perform
propagation of constants is do_xform_propagate_constants.

Info: Propagating constants ... <TCLNL-505>.
May 2003 43 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
■ The following message indicates that the optimizer is removing redundancies from the
netlist. The transform to remove redundancy is do_xform_remove_redundancy.

Info: Removing redundancies ... <TCLNL-504>.

■ The following message indicates that the optimizer is mapping a generic netlist for the
spi module to the target technology library. You will get similar messages for all the
modules in the DTMF design. The transform to perform mapping is do_xform_map.

Info: Mapping module 'spi' ... <TCLNL-501>.

■ The following report is the Path Group Options report generated during the optimization
process. It shows five path groups with their respective effort level, target slack, critical
endpoints and worst slack. Incremental reports will be generated as the optimization
process continues.
+---+
Path Group Options Report
PathGroup
-------------+--------+-----+----------+-----------+----------+------------
default
IN
OUT
vclk1_group
vclk2_group
+---+

Stopping and Restarting Optimization

BuildGates Synthesis provides several features that allow you to stop and restart
optimization.

During optimization, you can always issue the control-c command to stop the optimization
run.

Use the -checkpoint option with the do_optimize command to periodically save the
entire database (checkpoint.adb). In the event of a network crash, you can resume
bg_shell by loading the checkpoint.db file.

Use the command, dump_adb bg_shell_process_id, with the process ID of a
bg_shell process, to dump the.adb (Ambit Synthesis Database) file at the next most
suitable time that will allow the process to be restarted.
May 2003 44 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Generating Reports

At this point, the synthesis process has transformed your design from RTL to a final
technology-mapped netlist that meets all the constraints. Now, you need to capture the
information and analyze the reports to see if the synthesis goals are met. You need to run
various timing reports to determine:

■ Whether the design has any problems

■ Whether the design passes or fails timing analysis and where the violations are

■ The constraints and exceptions for timing analysis

■ How the delays are calculated

BuildGates Synthesis provides a number of report categories such as timing, area, hierarchy,
library, design rule violations, end point slack and path histograms, fanin and fanout, finite
state machine to analyze various steps in synthesis process.

In this module, you will only use a subset of all the possible report options.

Note: One of the key advantages of BuildGates Synthesis is that it has a built-in, full-chip,
sign-off quality, static timing analysis capability. You do not need to use a separate standalone
STA tool to perform timing analysis. This makes BuildGates more efficient and accurate and
eliminates the need to buy another tool to signoff your design.

Generating Summary and Detailed Reports

1. Generate a summary report for all timing checks.

bg_shell>report_analysis_coverage > $rep_dir/report_analysis_coverage.rpt

Figure 2-7 on page 46 shows an excerpt of the generated report.

❑ TIMING CHECK COVERAGE SUMMARY has a summary of all timing checks. For
each timing check, the report indicates whether the timing condition was met,
violated, or untested.

❑ TIMING CHECK COVERAGE DETAILS gives details of each pin and reference pin.
The report shows that untested setup checks are due to “No data signal” on the scan
pins. You can ignore these checks, since scan pins are in tieback mode at this stage.

The Pin and Reference Pin columns represent hierarchical pins DTMF_INST/
ARB_INST/dma_grant_reg/*, and DTMF_INST/ARB_INST/
dma_grant_reg/*, respectively. The report_analysis_coverage.rpt file
has the complete pin names.
May 2003 45 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Figure 2-7 Excerpt of the Summary Report

The report_analysis_coverage command allows you to generate detailed reports
for any type of checks shown above.

+---+
| Report | report_analysis_coverage |
|---------+---------------------------------------|
| Options | > ../rpt/report_analysis_coverage.rpt |
+---------+---------------------------------------+
Date	20030522.115114
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+---+
 +--+
 | TIMING CHECK COVERAGE SUMMARY |
 |--|
 | Check Type | No. of | Met | Violated | Untested |
 | | Checks | | | |
 |-----------------------+--------+------------+-----------+------------|
 | ClockGatingHold | 24 | 0 (0%) | 24 (100%) | 0 (0%) |
 | ClockGatingSetup | 24 | 24 (100%) | 0 (0%) | 0 (0%) |
 | ClockPeriod | 6 | 6 (100%) | 0 (0%) | 0 (0%) |
 | ExternalDelay (Early) | 50 | 50 (100%) | 0 (0%) | 0 (0%) |
 | ExternalDelay (Late) | 50 | 50 (100%) | 0 (0%) | 0 (0%) |
 | Hold | 3632 | 1442 (39%) | 18 (0%) | 2172 (59%) |
 | PulseWidth | 1618 | 1092 (67%) | 0 (0%) | 526 (32%) |
 | Recovery | 269 | 6 (2%) | 0 (0%) | 263 (97%) |
 | Setup | 3632 | 1318 (36%) | 142 (3%) | 2172 (59%) |
 +--+

 TIMING CHECK COVERAGE DETAILS

Pin Reference Pin Check Type Slack Reason

dma_grant_reg/CK ^ dma_grant_reg/CK v PulseWidth 2.36

dma_grant_reg/CK v dma_grant_reg/CK ^ PulseWidth 2.11

dma_grant_reg/D ^ dma_grant_reg/CK ^ Setup 0.35

dma_grant_reg/D ^ dma_grant_reg/CK ^ Hold 1.23

dma_grant_reg/D v dma_grant_reg/CK ^ Setup -0.00

dma_grant_reg/D v dma_grant_reg/CK ^ Hold 1.38

dma_grant_reg/RN dma_grant_reg/RN PulseWidth UNTESTED No reference signal

dma_grant_reg/RN ^ dma_grant_reg/CK ^ Recovery UNTESTED No data signal

dma_grant_reg/SE dma_grant_reg/CK ^ Hold UNTESTED No data signal

dma_grant_reg/SE dma_grant_reg/CK ^ Setup UNTESTED No data signal

dma_grant_reg/SI dma_grant_reg/CK ^ Setup UNTESTED No data signal

...
May 2003 46 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
2. Generate a detailed report on the setup timing check:

bg_shell>report_analysis_coverage -check_type setup -sort slack \
> $rep_dir/setup.rpt

An excerpt of the detailed report on the setup timing check is shown in Figure 2-8.

Figure 2-8 Summary of Setup Timing Check
+--+
| Report | report_analysis_coverage |
|---------+--|
| Options | -check_type setup -sort slack > ../rpt/setup.rpt |
+---------+--+
Date	20030522.123427
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+--+

 +---+
 | TIMING CHECK COVERAGE SUMMARY |
 |---|
 | Check | No. of | Met | Violated | Untested |
 | Type | Checks | | | |
 |-------+--------+------------+----------+------------|
 | Setup | 3632 | 1318 (36%) | 142 (3%) | 2172 (59%) |

+---+

Note: The Pin and Reference Pin columns represent hierarchical pins DTMF_INST/
RESULTS_CONV_INST.

The last table shows that the report sorted all the setup checks in increasing order by slack.
At this time, the design has some setup violations.

 TIMING CHECK COVERAGE DETAILS

Pin Reference Pin Check Type Slack Reason

... ...

r1200_reg_10/D v r1200_reg_10/CKN v Setup -0.02

r1477_reg_10/D v r1477_reg_10/CKN v Setup -0.02

r697_reg_10/D v r697_reg_10/CKN v Setup -0.02

r770_reg_1/D v r770_reg_1/CKN v Setup -0.02

r770_reg_11/D ^ r770_reg_11/CKN v Setup -0.02

r770_reg_9/D v r770_reg_9/CKN v Setup -0.02

...
May 2003 47 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Checking Setup Violations

➤ Generate a timing report to find out if the design works at the specified frequency or to
see the worst timing path in the design:

bg_shell>report_timing > $rep_dir/setup_timing.rpt

The timing report contains the start and end nodes of the path and the delay through the
entire path. The report_timing command has a number of options, such as -from,
-through, and -to, to specify the begin, through, and end points (respectively) of the path,
-max_points, and max_slacks nworst.

Figure 2-9 on page 49 shows a typical timing report:.

■ The first section lists the options used with report_timing, tool version, process,
voltage, temperature, operating conditions, top timing module (DTMF_chip), and so on.

■ The second section describes the beginning and ending points of the path, launching
and capturing edge of the clock, whether timing on the path is met or violated. For
detailed cell-to-cell delays, see the setup_timing.rpt file.

Note: As mentioned before, your results might differ from what is shown here due to
difference in runs and release versions.

For setup check calculation, the tool uses the worst case delays of the library cells. By
default, report_timing without any options checks the setup using worst case delays.

■ The third section of the timing report is a table describing all the instances on the path—
timing arc, cell name, delay through timing-arc, the signal required times, and the actual
signal arrival times at the output of each instance.
May 2003 48 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Figure 2-9 Excerpt of the Setup Time Report
+---+
| Report | report_timing |
|---------------------+---------------------------|
| Options | > ../rpt/setup_timing.rpt |
+---------------------+---------------------------+
Date	20030522.125015
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+---------------------+---------------------------+	
Module	dtmf_chip
Timing	LATE
Slew Propagation	WORST
Operating Condition	slow
PVT Mode	max
Tree Type	balanced
Process	1.00000
Voltage	1.62000
Temperature	125.00000
time unit	1.00000 ns
capacitance unit	1.00000 pF
resistance unit	1.00000 kOhm
+---+
Path 1: VIOLATED Setup Check with Pin DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST
data_out_reg_0/CK
Endpoint: DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST/data_out_reg_0/D (v)
checked with leading edge of ’vclk1’
Beginpoint: DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/arp_reg/Q (^)
triggered by leading edge of ’vclk1’
Path Groups: {vclk1_group}
Other End Arrival Time 0.00000
- Setup 0.69730
+ Phase Shift 6.00000
- Uncertainty 0.25000
= Required Time 5.05270
- Arrival Time 5.75437
= Slack Time -0.70167
 Clock Rise Edge 0.00000
 = Beginpoint Arrival Time 0.00000

You can use the -format option to customize the reports to your needs by requesting the
exact fields in which you have an interest. Using a combination of the -format and

Instance Arc Cell Delay Arrival
Time

Required
Time

refclk ^ 0.00000 -0.70167

IOPADS_INST refclk ^ iopads 0.00000 -0.70167

IOPADS_INST/Prefclkip PAD ^ -> C ^ PDIDGZ 0.00000 0.00000 -0.70167

IOPADS_INST refclkI ^ iopads 0.00000 -0.70167

...
May 2003 49 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
-tcl_list options lets you integrate the timing reports into your Tcl scripts. You can write
the report to a file by specifying the filename. You can also set the global variable
report_timing_format to specify the format for the report_timing command.

BuildGates Synthesis comes with a host of sign-off quality, full-chip, static-timing-analysis
features such as:

■ Clock reconvergence pessimism removal

■ Pulse width and recovery and removal checks

■ Full path and end point histograms

■ Simultaneous bc/wc analysis

■ Full support for all major back annotation formats (sdf, dspf, spef, rspf)

■ Path group capability

■ Support for common exceptions such as false_path, multicycle_path, and so on

■ STAMP modeling and so on.

See the Common Timing Engine (CTE) User Guide. for more information.

Generating Area Reports

➤ Generate an area report.

bg_shell>report_area > $rep_dir/area.rpt

The area report will look similar to:

+--------------------------------+
| Report | report_area |
|---------+----------------------|
| Options | > ../rpt/area.rpt |
+---------+----------------------+
Date	20030522.125511
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+---------+----------------------+	
Module	dtmf_chip
+--------------------------------+

Summary Area Report
Source of Area : Timing Library

May 2003 50 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The table shows that the total area of the top module (dtmf_chip) is 1.393.684 square
microns, as shown in the first row of the table.

The area report table contains all the modules in the design—the wireload model name
based on wire load section table, the total cell area, the net area and the total area for each
module. You can use the -cells option to get more details on cell names and counts used
in the current module, area for each cell, and total cell area.

Writing Netlist and Database Files

At this stage, optimization is complete and you find the report results satisfactory. Next, you
need to save the technology-dependent, optimized netlist and BuildGates Synthesis
database file.

1. Save the optimized netlist.

bg_shell>write_verilog -hierarchical $adb_dir/dtmf_chip_opt.vs

The write_verilog command writes out a hierarchical, mapped netlist
(dtmf_chip.v) that is stored in the database in Verilog format. If you write a netlist after
the do_build_generic command, it saves a generic-level netlist which contains
instances of ATL and XATL cells.

Note: You can use the write_vhdl command to write out a netlist in VHDL format and
the write_edif command to write out a netlist in edif format. If you get assign
statements in the Verilog netlist, you can use the transform,
do_xform_fix_multiport_nets, or the global variable, set_global
fix_multiport_nets, to avoid assign statements.

2. Save the database file.

bg_shell>write_adb $adb_dir/dtmf_chip_opt.adb

Module Wireload Cell Area Net Area Total Area

dtmf_chip TSMC18_Conservative 1392217.23010 0.00 1392217.23010

dtmf_recvr_core TSMC64K_Conservative 579117.23010 0.00 579117.23010

iopads TSMC64K_Conservative 813100.00000 0.00 813100.00000

arb TSMC8K_Conservative 671.93282 0.00 671.93282

data_sample_mux TSMC8K_Conservative 678.58561 0.00 678.58561

digit_reg TSMC8K_Conservative 725.15523 0.00 725.15523

dma TSMC8K_Conservative 2022.45128 0.00 2022.45128

ram_128x16_test TSMC8K_Conservative 100791.69418 0.00 100791.69418

ram_256x16_test TSMC16K_Conservative 113656.55447 0.00 113656.55447

results_conv TSMC16K_Conservative 42464.82314 0.00 42464.82314

spi TSMC8K_Conservative 2461.53600 0.00 2461.53600

...
May 2003 51 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The write_adb command writes the design data for the dtmf_chip design in
BuildGates Synthesis database (ADB) file format. By default, the ADB netlist is a
hierarchical netlist of the current module and all instances inside it.

You can use the read_adb command to quickly load design data in bg_shell for further
analysis or synthesis. The write_adb command has several useful options such as the
-no_assertions option to write out the database without timing constraints, the -no_rc
option to write out the database without any wire resistances or capacitances, and so on.

Setting Scan Chain Assertions

So far, you ran test-synthesis in tieback mode. In this mode, the test synthesis tool
connects the scan-data output pin of the scan register to its own scan-data input pin. The
tieback mode speeds up synthesis due to the fact that chain path connections are not being
considered. Hence, Cadence recommends that you perform your initial synthesis in tieback
mode using BuildGates Synthesis. Now that optimization is completed, you can set scan
chain assertions and connect the scan chain.

To connect the scan chain, you need to set the following assertions:

■ The number of scan chains and/or the maximum length of the scan chains

■ The compatible clock domains for data lockup latch analysis and/or insertion

■ The scan-data input/output pairs

1. Set the scan chain assertions using the following script:

bg_shell>source $tcl_dir/connect_scan_chain.tcl

The connect_scan_chain.tcl script contains the following commands:

set_number_of_scan_chains 3

set_scan_data {IOPADS_INST/Ptdspip00/C} {IOPADS_INST/Ptdspop00/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip01/C} {IOPADS_INST/Ptdspop01/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip02/C} {IOPADS_INST/Ptdspop02/I} -shared_out

set_dft_compatible_clock_domain -same_clock
set_global dft_scan_path_connect chain

do_xform_connect_scan

❑ The set_number_of_scan_chains command specifies the number of scan
chains (3) to create for the current module (DTMF). Use the
set_max_scan_chain_length assertion to specify a maximum scan chain
length. Meeting the specified number of scan chains takes priority over meeting a
specified maximum chain length, unless the later assertion is specified with the
-priority option. By default, the tool creates one chain for each clock domain.
May 2003 52 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
❑ Each scan chain needs its own input and output port. The set_scan_data
assertion specifies the names for the input (IOPADS_INST/ptdspip0*/I) and
output (IOPADS_INST/ptdspip0*/C) scan data ports. In addition, the -clock
option associates the input and output names with a specific DFT clock domain. The
-shared_out option enables the scan data output port to be shared with a
functional port using a MUX.

❑ By default, the test synthesis tool creates one scan chain for each DFT clock
domain. The set_dft_compatible_clock_domain assertion specifies domain
and phase compatibility between the DFT clock domains. You must specify this
command prior to running the scan connection engine in chain mode. It instructs the
scan connection engine to create a scan chain in which a data lockup element (latch
or flip-flop) can be optionally inserted between the scan chain segments belonging
to the different DFT clock domains. The -same_clock option specifies that both
edges of each clock are compatible.

❑ The set_global dft_scan_path_connect assertion sets the connection
mode. Before optimization, you set this global variable to tiebackmode.) In chain
mode, the test synthesis tool connects the scan-data output pin from one register to
the scan-data input pin of the next register, thus creating the top-level scan chains.

❑ The do_xform_connect_scan command configures and connects scan flip-flops
into scan chains. The command applies to the current module and all lower
hierarchies referred to in the current module. The design must be mapped before
connecting scan chains in a design. All flip-flops that pass DFT rule check (through
the check_dft_rules command) are converted to scan flip-flops and are
connected into scan chains. The flip-flops that do not pass DFT rule checks are
automatically excluded from scan chains. The flip-flops in the lower module
hierarchies are also automatically reconfigured and connected, unless the lower
module is tagged with dont_modify or dont_touch_scan.

2. Examine the messages you get while running this script.

❑ By specifying the set_dft_compatible_clock_domains -same_clock
assertion, domains can be merged for this design. When the top-level scan chains
are created, the negative edge-triggered flops, belonging the DFT clock domain 0,
will proceed the positive edge-triggered flops, belonging to DFT clock domain 1.
Test synthesis will not insert a data lockup element between the domain transitions
of the chain segments triggered by the alternative phases of scan_clk when
constructing the top level chain.

For scan flops belonging to different root clock domains, if domain merging was
specified, test synthesis would insert a data lockup element between the domain
transitions of the scan flops belonging to the different DFT domains or between
gated-clock branches of the same top-level logical clock source, refclk. In this
situation, the following Info message would be reported:
May 2003 53 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Info: Inserting lockup latch (f/f) instance ’<path_to lockup_element>’
to connect scan flip-flops ’<path_to_flip_flop>’ and ’<path_to_flip_flop>’
in a single chain <DFT-344>.

Insertion of data lockup elements is only supported for the multiplexed scan
(muxscan) style of test insertion. Insertion of data lockup elements allows you to
reduce the number of scan chains configured in a multi-clock domain design.
Additionally, insertion of data lockup elements between different gated-clock
branches, derived from the same logical clock source, can prevent capture problems
during the scan-shift cycle of the test mode due to clock skew variances between
the different gated-clock branches. Without this capability, test synthesis creates a
single scan chain for each DFT clock domain.

❑ The following message indicates that the test synthesis tool created a flat scan
report file called dtmf_chip.scan.flat.

DFT - creating flat scan order file 'dtmf_chip.scan.flat'

The flat scan chain report file is organized by scan chain, listing all the bits on each
scan chain in the order of connection.

Note: You can also create a hierarchical scan report file using the
write_scan_order_file command with the -hier option.

DFT - creating hierarchical scan order file 'dtmf_chip.scan'

The hierarchical scan chain report file is organized by module, listing the chain
connections visible at each level of hierarchy.

At this stage the scan chain is hooked-up.

3. Report the timing to check the impact of the scan insertion.

bg_shell>report_timing -late > $rep_dir/setup_scan_timing.rpt

You will notice that, after hooking up scan, the timing becomes worse, which is due to the
scan chain order. By default, the test synthesis tool orders the scan chain alphabetically,
which is not optimal.

Path 1: VIOLATED Setup Check with Pin DTMF_INST/TDSP_CORE_INST/
DATA_BUS_MACH_INST/data_out_reg_0/CK
Endpoint: DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST/data_out_reg_0/D (v)
checked with leading edge of ’vclk1’
Beginpoint: DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/arp_reg/Q (^)
triggered by leading edge of ’vclk1’
Path Groups: {vclk1_group}
Other End Arrival Time 0.00000
- Setup 0.69730
+ Phase Shift 6.00000
- Uncertainty 0.25000
= Required Time 5.05270
- Arrival Time 5.80546
= Slack Time -0.75276
 Clock Rise Edge 0.00000
 = Beginpoint Arrival Time 0.00000
May 2003 54 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Incremental Timing Optimization

Before doing an incremental timing optimization to fix the negative slack, change the target
slack of the path group, vclk1_group to 0.0 from –1.0 set earlier.

1. Change the target slack.

bg_shell>set_path_group_options vclk1_group -target_slack 0.0 -all_end_points

2. Do an incremental optimization of the slack.

bg_shell> do_optimize -incremental -dont_reclaim_area

The -incremental option indicates that the design is already well-optimized and that
the design rule violations have been fixed. The optimizer works incrementally on the
paths which have timing violations.

The -dont_reclaim_area option prevents downsizing and the removal of buffers or
clone instances to reduce area. By default, area reclamation is done when slack fixing
ceases to find improvement. This option is useful when you want prevent area
reclamation in parts of the design that are not timing critical.

For more information on scan, see Design for Test (DFT) Using BuildGates
Synthesis and Cadence PKS.

3. Check the timing again.
bg_shell> report_timing -late -nworst 5 > \
$rep_dir/setup_scan_incr_opt_timing.rpt

This command generates five worst timing paths between the flip flops in the design.

The report is shown in Figure 2-10 on page 56.

As you can see, the timing constraints are now met.

4. Find out if there are any hold violations in the design.

bg_shell> report_timing -early > $rep_dir/time_hold.rpt

For hold time calculation you specify the –early option to ensure that the tool uses the
best case delays of the library cells.

Figure 2-11 on page 57 shows a typical timing report.
May 2003 55 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Figure 2-10 Timing Report after Reoptimization

+--+
| Report | report_timing |
|---------------------+---
| Options | -late -nworst 5 > ../rpt/setup_scan_incr_opt_timing.rpt |
+---------------------+--+
Date	20030522.132637
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+---------------------+--+	
Module	dtmf_chip
Timing	LATE
Slew Propagation	WORST
Operating Condition	slow
PVT Mode	max
Tree Type	balanced
Process	1.00000
Voltage	1.62000
Temperature	125.00000
time unit	1.00000 ns
capacitance unit	1.00000 pF
resistance unit	1.00000 kOhm
+---
Path 1: MET Setup Check with Pin DTMF_INST/TDSP_CORE_INST/EXECUTE_INST
sel_op_a_reg_2/CK
Endpoint: DTMF_INST/TDSP_CORE_INST/EXECUTE_INST/sel_op_a_reg_2/E (^) checked
with leading edge of ’vclk1’
Beginpoint: DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_15/Q (v) triggered
by leading edge of ’vclk1’
Path Groups: {vclk1_group}
Other End Arrival Time 0.00000
- Setup 1.03155
+ Phase Shift 6.00000
- Uncertainty 0.25000
= Required Time 4.71845
- Arrival Time 4.71031
= Slack Time 0.00814
 Clock Rise Edge 0.00000
 = Beginpoint Arrival Time 0.00000

Instance Arc Cell Delay Arrival
Time

Required
Time

refclk ^ 0.00000 0.00814

IOPADS_INST refclk ^ iopads 0.00000 0.00814

IOPADS_INST/Prefclkip PAD ^ -> C ^ PDIDGZ 0.00000 0.00000 0.00814

IOPADS_INST refclkI ^ iopads 0.00000 0.00814

DTMF_INST refclk ^ dtmf_recvr_core 0.00000 0.00814

DTMF_INST/PLLCLK_INST refclk ^ -> clk2x ^ pllclk 0.00000 0.00000 0.00814

...
May 2003 56 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Figure 2-11 Excerpt of the Hold Time Report
+---+
| Report | report_timing |
|---------------------+---------------------------------|
| Options | -early > ../rpt/hold_timing.rpt |
+---------------------+---------------------------------+
Date	20030522.133440
Tool	bg_shell
Release	v5.10-s058
Version	May 20 2003 13:14:56
+---------------------+---------------------------------+	
Module	dtmf_chip
Timing	EARLY
Slew Propagation	WORST
Operating Condition	slow
PVT Mode	max
Tree Type	balanced
Process	1.00000
Voltage	1.62000
Temperature	125.00000
time unit	1.00000 ns
capacitance unit	1.00000 pF
resistance unit	1.00000 kOhm
+---+

Path 1: VIOLATED Clock Gating Hold Check with Pin DTMF_INST/TDSP_DS_CS_INST/i_10/D
Endpoint: DTMF_INST/TDSP_DS_CS_INST/i_10/AN (v) checked with
trailing edge of ’vclk1_int1’
Beginpoint: DTMF_INST/TDSP_CORE_INST/PORT_BUS_MACH_INST/as_reg/Q (v) triggered by
leading edge of ’vclk1’
Path Groups: {vclk1_group}
Other End Arrival Time 6.00000
+ Clock Gating Hold 0.00000
+ Phase Shift 0.00000
+ Uncertainty 0.25000
= Required Time 6.25000
 Arrival Time 0.37220
 Slack Time -5.87780
 Clock Rise Edge 0.00000
 = Beginpoint Arrival Time 0.00000

Instance Arc Cell Delay Arrival
Time

Required
Time

refclk ^ 0.00000 5.87780

IOPADS_INST refclk ^ iopads 0.00000 5.87780

IOPADS_INST/Prefclkip PAD ^ -> C ^ PDIDGZ 0.00000 0.00000 5.87780

IOPADS_INST refclkI ^ iopads 0.00000 5.87780

DTMF_INST refclk ^ dtmf_recvr_core 0.00000 5.87780

DTMF_INST/PLLCLK_INST refclk ^ -> clk2x ^ pllclk 0.00000 0.00000 5.87780

DTMF_INST/
TEST_CONTROL_INST

clk ^ test_control 0.00000 5.87780

DTMF_INST/
TEST_CONTROL_INST/i_198

A ^ -> Y ^ MX2X1 0.00000 0.00000 5.87780

DTMF_INST/
TEST_CONTROL_INST

m_clk ^ test_control 0.00000 5.87780

...
May 2003 57 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The report shows that the design has some hold violations between the clock domains
vclk1 and vclk2. You can fix these hold violations with the do_xform_fix_hold
transform.

You can read More about Timing Reports on page 156.

5. Write out the Verilog netlist.

bg_shell> write_verilog -hierarchical $adb_dir/dtmf_chip_scan.vs

6. Save the database file to use when you try the graphical interface (Using BuildGates
Synthesis Graphical User Interface on page 61).

bg_shell>write_adb $adb_dir/dtmf_chip_scan.adb

7. End this BuildGates session.

bg_shell>exit
May 2003 58 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Interfacing with Physical Design Tools

So far, you have been optimizing your design using wire-loads provided with the libraries. For
deep sub-micron designs, wireloads are a source of timing closure issues. Addressing timing
closure issues requires a coordinated effort in synthesis and place-and-route. BuildGates
Synthesis provides all the standard interfaces to floorplanning and place and route tools.
Supported interfaces are SDF (2.0 or 3.0 format), PDEF (2.0 IEEE version), Cadence
General Constraint Format (GCF, version 1.3 or 1.4), and wire resistance and capacitance
files (SPEF, RSPF and DSPF).

Figure 2-12 on page 60 shows the physical design tool interfaces. Because of the high
capacity of BuildGates Synthesis, you can perform in-place and post-layout optimization at
chip-level for multi-million gate designs. The transform to perform in-place optimization is
do_xform_ipo. Important options for this command are -change_limit to limit the
number of changes and -change_file to write out all the changes in a file. To find out more
information on interfacing with physical design tools, refer to Optimization With
Backannotation in the BuildGates Synthesis User Guide.

Figure 2-12 shows that with the traditional timing closure flow, you have to go through several
iterations between synthesis and place-route tools. To solve this problem, you can use the
Cadence Physically Knowledgeable Synthesis (PKS) tool. It produces perfect timing
correlation between the synthesis and place-and-route domains by providing concurrent
logical, physical, and timing optimization, thus eliminating iterations between synthesis and
place-and-route. PKS provides optimization, placement, global routing, and clock-tree
synthesis, all using the same sign-off quality static timing analysis engine.
May 2003 59 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Figure 2-12 Physical Design Tool Interfaces
May 2003 60 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Using BuildGates Synthesis Graphical User Interface

BuildGates Synthesis has an integrated, easy-to-use, graphical user interface (GUI) oriented
towards design analysis. Unlike traditional GUIs oriented towards menu-driven tool control,
this GUI uniquely combines linked graphical and textual views to speed access to design
information, making for more productive design analysis. This GUI also contains constraint
specification menus, schematic generation, a slack and area histogram; and linked graphical,
schematic, and textual reports.

1. Invoke BuildGates Synthesis in graphical mode.

bg_shell -gui &

The BuildGates Synthesis window is displayed as shown below:

The GUI has three basic panes.

❑ The browser window is used to browse the logical hierarchy of your design or
variables set in your synthesis run.

❑ The design area window is primarily used to view schematics and highlighting timing

Browser
window

Design
area
window

Console
May 2003 61 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
paths. You can also use it to edit Tcl, hdl, constraints, and so on.

❑ The console is the command line interface that you have been working with. All
commands that you can click on are echoed in this pane to make it easier to learn
the tool.

Any pane can be selected by clicking in the pane, and <CTRL-M> can be used to
maximize or minimize the selected pane.

2. Enter the following commands in the console:

source ../tcl/setup.tcl
source $tcl_dir/set_globals.tcl
source $tcl_dir/read_lib.tcl
read_adb $adb_dir/dtmf_chip_scan.adb

The following appears in your Logical browser:

3. Click left on dtmf_chip to select it.

4. Click right in the browser window to bring up the popup menu.
May 2003 62 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
5. Select Open Schematic – Main Window.

The schematic of the DTMF chip is displayed in the Schematic window.

The colored paths correspond to the three scan chains that you configured earlier.

With the left mouse you can zoom out, go up in the hierarchy, zoom in, or zoom to fit. A
double click will dig deeper in the hierarchy. The middle mouse button is used to pan
May 2003 63 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
around the schematic. The right mouse button is used to first select what is under the
mouse (general schematic, net, port, pin, or module), then to provide special functions
for that item.

For more information on the GUI, see GUI Guide for BuildGates Synthesis and
Cadence PKS

6. To generate the end point slack histogram for the100 worst paths, select Reports – End
Point Histogram. The End Point Slack Histogram window shown in Figure 2-13
appears.

Figure 2-13 End Point Slack Histogram

a. Keep Late mode selected.

b. Select the Compute Histogram icon shown in Figure 2-13 on page 64.

Compute histogram icon
May 2003 64 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The generated End Point Slack Histogram shows100 paths falling in different slack
windows.You will see something similar to:

You can also write the results into a file.

c. Click on the Close window icon (red x) to close the histogram window.

1. To generate the End Point histogram for 100 the best/early paths, select Reports – End
Point Histogram and select Early mode on the window. The results can also be written
to a file.

Similarly, you can generate Path Histogram Reports. For a complete description of Path
histograms, refer to GUI Guide for BuildGates Synthesis and Cadence PKS.

2. To end the session, select File – Exit or type exit in the console.
May 2003 65 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Migrating to BuildGates from Design Compiler

You are now ready to try out BuildGates Synthesis on your own design following these steps.
If you already have Synopsys Design Compiler (DC) or Prime Time (PT) timing constraints,
you can use the BuildGates Synthesis Constraint Translator to translate DC or PT output to
a BuildGates Synthesis constraints file.

1. Locate your library in .alf or .tlf format. If you do not have a .alf library, ask your
vendor or convert a .lib to .alf or .tlf. For more information, see the Using Timing
Libraries chapter of the Common Timing Engine (CTE) User Guide..

2. Determine which product you need:

a. BuildGates Synthesis is suitable for most synthesis needs

b. BuildGates Synthesis Extreme includes everything that BuildGates Synthesis has,
as well as advanced engines for Low Power and Datapath optimization. Datapath
includes the basic arithmetic functions (+,-,*) as well as the comparison functions
(==, <=, and so on).

c. PKS is an advanced physically knowledgeable synthesis tool that can be used if you
cannot meet timing with traditional tools.

3. Convert your Synopsys Design Compiler (DC) constraints to BuildGates synthesis
constraints.

a. BuildGates Synthesis only needs top-level constraints, so you can remove most of
your lower, block-level I/O constraints. You will need to retain any other lower level
constraints, such as false_path and multi_cycle_paths.

b. Use the write_script command in DC or PT to create an output file (in dcsh or
Tcl format).

c. Use the read_dc_script in BuildGates Synthesis to read your constraints.

Note: You can only run the read_dc_script command after the
do_build_generic step.

See Constraint Translation Example on page 67 for an example.

Most designs can be easily constrained with only a few commands which set up the
clocks, I/O constraints, and special path settings.

The following table shows Synopsys DC Compiler commands and the corresponding
BuildGatesBuildGates Synthesis constraint commands. A complete mapping of
May 2003 66 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Synopsys commands to BuildGates Synthesis commands is available in SDC
Constraints Support Guide

4. Check your HDL for any Synopsys proprietary DesignWare elements. In most cases, you
can replace these with inferences. For example, DW01_add can be replaced with a+b.

There are more tips for converting to BuildGates Synthesis in SDC Constraints
Support Guide

Constraint Translation Example

In this section, you will translate Synopsys constraints to BuildGates constraints. Although we
have no Synopsys constraints for this design that are generated with write_script, they
can be generated using the write_sdc command in BuildGates.

Using the read_dc_script command, you can read in these Synopsys constraints into the
BuildGates environment.

The BuildGates Synthesis read_dc_script command is capable of translating output from
DC or PT write_script (in dcsh and Tcl formats) or write_sdc (available from
Synopsys in Tcl format) into a BuildGates Synthesis format constraints file.

Synopsys Command BuildGates Synthesis Command

Create_clock Set_clock
Set_clock_root

Set_input_delay Set_input_delay

Set_output_delay Set_external_delay

Set_multicycle_path Set_cycle_addition

Set_false_path Set_false_path

Set_propogated_clock Set_clock_propagation

Max_transition Slew_time_limit

Max_capacitance Port_capacitance_limit

Max_fanout Fanout_load_limit

Set_don’t_touch Set_don’t_modify

Set_clock_uncertainity Set_clock_uncertainity

Set_don’t_touch_network Set_don’t_modify -network

Set_don’t_use Set_cell_property –don’t_use true

Set_disable_timing Set_disable_timing

Set_clock_latency Set_clock_insertion_delay
May 2003 67 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
The read_dc_script command automatically detects the format of the original constraints
file (dcsh or Tcl) and issues detailed error and warning messages if problems are
encountered during translation.

Figure 2-14 shows the translation flow.

Figure 2-14 Synopsys-to-BuildGates Synthesis Translation Flow

1. Write the constraints in Synopsys format:

bg_shell > write_sdc sdc_out.tcl

The write_sdc command writes the constraints in Synopsys constraints format, for use
by First Encounter, PrimeTime, and so on. Part of the sdc_out.tcl file is shown below.

set sdc_version 1.4
current_design dtmf_chip
create_clock [get_ports {refclk}] -name vclk1 -period 6 -waveform {0 3}
create_clock -name vclk2 -period 12 -waveform {0 6}

create_generated_clock -name vclk1_int1 -from [get_pins
{DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST/clk}] -divide_by 2 \
[get_pins {DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INST/write_reg/Q}]

Design Compiler

PrimeTime

(Tcl)
cmd file

BuildGates Synthesis

BuildGates
constraints

read_dc_script

DC

file
script

write_script
-format dctcl

write_script
-format dcsh write_sdc

PrimeTime

write_script
-format dcsh

write_script
-format ptsh write_sdc
May 2003 68 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
create_generated_clock -name vclk1_int2 -from [get_pins \
{DTMF_INST/DMA_INST/clk}] -divide_by 2 \
[get_pins {DTMF_INST/DMA_INST/write_reg/Q}]

set_driving_cell -lib_cell PDO04CDG -library slow -no_design_rule -pin PAD\
 -from_pin I [get_ports {ibias}]

set_driving_cell -lib_cell PDO04CDG -library slow -no_design_rule -pin PAD\
 -from_pin I [get_ports {port_pad_data_in[5]}]

set_driving_cell -lib_cell PDO04CDG -library slow -no_design_rule -pin PAD\
 -from_pin I [get_ports {port_pad_data_in[10]}]

set_driving_cell -lib_cell PDO04CDG -library slow -no_design_rule -pin PAD\
 -from_pin I [get_ports {reset}]
...

Since you do not get any warning or error messages, you can assume that all constraints
are translated properly.

Tip

The translator gives warning messages if any constraints are not translated properly.
You need to check all the warning messages, before using the constraints. Always
review the translated output file quickly. If a constraint is not translated properly, the
tool will print the original command with a comment.

2. Read the Synopsys constraints:

bg_shell > read_dc_script -ambit bg_constraints.tcl -write_only \
-tcl sdc_out.tcl

This command reads a Synopsys constraints file, sdc_out.tcl,and writes a file,
bg_constraints.tcl, in BuildGates constraints format. In this case, you write out the
constraints without applying them. You can also apply the constraints on the design
loaded in bg_shellwith the -apply_only option. In the latter case, the constraints are
not written.

From the log file below, you can see that all synopsys constraints are translated correctly
into BuildGates constraint format without any errors or warnings.

Below you find an extract from the log file:

 Info: Following commands are not supported and will be suppressed:
<S2A-404>.
 Info: set_local_link_library <S2A-405>.
 Info: converting sdc_out.tcl to tcl format ... <S2A-406>.
 Info: initializing pbc constraints ... <S2A-407>.
 Info: translating constraints ... <S2A-409>.

...
May 2003 69 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Below you find an extract from the bg_constraints.tcl file:

ac_shell version: v5.10-s058 (May 20 2003 13:32:50)
#WARNING: PLEASE DO NOT REMOVE/CHANGE THE FOLLOWING COMMAND - IT SETS THE TIMING
ENGINE IN PT COMPATIBLE MODE
#Removing/Changing this will lead to different interpretation of false path and
multicycle path constraints.
set_flow_compatible_mode on
set_current_module dtmf_chip
set_clock vclk1 -waveform {0 3} -period 6
set_clock_root -clock vclk1 -pos {refclk}
set_clock vclk2 -waveform {0 6} -period 12
...
set_drive_cell -cell {PDO04CDG} -library {slow} -pin {PAD} -from_pin {I}\
-no_design_rule ibias
....
set_constant_for_timing 0 scan_en
set_constant_for_timing 0 test_mode
set_wire_load_mode enclosed
set_wire_load -library slow -pvt max TSMC18_Conservative
...
set_port_capacitance 6.14228 vcop
set_port_capacitance 6.14228 {{port_pad_data_out[6]}}
...
set_slew_time_limit -max 2.3 {{port_pad_data_out[3]}}
set_slew_time_limit -max 2.3 {{port_pad_data_in[12]}}
...
set_input_delay -clock vclk1 -add_delay 0.5 {{port_pad_data_in[6]}}
set_input_delay -clock vclk1 -add_delay 0.5 {{port_pad_data_in[11]}}
...
set_external_delay -clock vclk1 -add_delay 0.5 {{port_pad_data_out[1]}}
set_external_delay -clock vclk1 -add_delay 0.5 {{port_pad_data_out[15]}}

...

3. To end the session, select File – Exit or type exit in the console.
May 2003 70 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Distributed Synthesis

Distributed Synthesis is a built-in automated parallel processing technology that lets you take
advantage of multiple processors working on a single synthesis design, thus achieving
significant speedups in run times. This highly automated system, requiring very little direction
from you, is a robust system with a built-in recovery mechanism for networking and computer
failure. Distributed synthesis also has built-in controls to work seamless in an environment
managed by the Platform Computing LSF batch management product.

For more information, refer to Distributed Processing for BuildGates Synthesis.
May 2003 71 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with BuildGates Synthesis
Summary

Congratulations, you have just finished the introductory module for BuildGates Extreme.

In this session, you learned:

■ How BuildGates Synthesis works including test synthesis, timing analysis, translation,
mapping and optimization.

■ Which commands to use to execute the basic steps in the BuildGates Synthesis flow.

■ To use BuildGates Synthesis in both text mode and graphical mode.

■ How to migrate from Design Compiler to BuildGates Synthesis.

Where to Go from Here

At this time, you may be interested in completing one of the following tutorials that go into
detail on some of the advanced features of BuildGates Extreme:

■ Getting Started with Design For Test

■ Getting Started with Datapath (advanced arithmetic)

■ Getting Started with Low Power Synthesis
May 2003 72 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
3
Getting Started with Design For Test

This tutorial contains the following sections:

■ Introduction to BuildGates Test Synthesis on page 74

■ Objectives on page 75

■ Example Design on page 75

■ Setting Up to Run the Tutorial on page 77

■ BuildGates Top-Down Test Synthesis Configuration Flow on page 78

❑ Setting up the Design Environment on page 80

❑ Read Libraries and the HDL Models for the Design on page 81

❑ Setting Test Synthesis Assertions on page 82

❑ Checking DFT Assertions and Rule Violations on page 84

❑ Fixing DFT Rule Violations on page 87

❑ Setting Constraints on page 89

❑ Optimizing the Design on page 89

❑ Setting Scan Chain Assertions on page 90

❑ Connecting the Scan Chains on page 92

❑ Checking the Timing of the Design on page 94

❑ Viewing the Scan Chains on page 95

❑ Writing Netlist and Database Files on page 96

■ Writing Interface Files to Third Party ATPG Tools on page 97
May 2003 73 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Introduction to BuildGates Test Synthesis

Design For Test (DFT) using BuildGates Test Synthesis refers to the set of capabilities of
BuildGates® Synthesis to perform test synthesis. Test synthesis consists of a set of
automated techniques used to integrate DFT logic into your design.

In BuildGates Synthesis this includes capabilities to automatically map all flip-flops that pass
DFT rule checks to their scan-equivalent flip-flops from the target technology library, and
configure those flip-flops into scan chains (scan chain configuration) given the presence of
clock domain information (output from check_dft_rules command). These functions can
be applied to designs at the RTL, gate, or mixed level.

Capabilities

■ Supports Verilog/VHDL (RTL and/or gate level netlists) formats

■ Multiplexed flip flop, clocked-scan, clocked-LSSD, aux-clocked LSSD scan insertion
styles

■ Module or instance specific set_dont_scan attributes

■ DFT Rule Checking

■ Multiple clock domains

■ Multiple balanced scan chains

■ Data lockup latch insertion and analysis between compatible clock domains

■ Data lockup flip-flop insertion between compatible clock domains

■ Configuration of data lockup latches or flops at the end of the scan chains

■ Auto-fix of DFT rule violations associated with async set/reset and internal clock nets

■ Full-scan test insertion

■ Top-down and bottom-up scan insertion

■ Test insertion to tieback, chain or floating modes

■ Scan chain inversion based on net loading

■ Fixed segment handling through set_dont_touch_scan attribute

■ Shared scan-data input and scan-data output signals

■ User-defined scan chain ordering through read_scan_order_file command

■ Automatic creation of top-level scan-data input and output, and scan mode ports
May 2003 74 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Objectives

This tutorial is an introduction to performing test synthesis of an RTL design in the top-down
flow (shown in Figure 3-2 on page 79) using BuildGates Synthesis.

Upon completion of this tutorial, you will have learned the following:

■ Full scan test insertion

■ Single-pass test synthesis

■ DFT rule checking

■ Top-down scan insertion

■ Test insertion to tieback and chain mode

■ Data lockup latch insertion and analysis between compatible clock domains

■ Using existing functional ports for scan-data signals

■ Writing ATPG interface files for third-party ATPG tools

■ Displaying module level scan chains

■ Using set_dont_modify and set_dont_touch_scan on precompiled lower level
modules

For further information on the BuildGates test synthesis features, see the Design for Test
(DFT) Using BuildGates Synthesis and Cadence PKS.

Note: This module assumes that you completed Chapter 2, “Getting Started with BuildGates
Synthesis” and that you are familiar with Design for Test (DFT).

Example Design

The design in this tutorial is a Verilog description of a Dual Tone Multi-Frequency (DTMF)
receiver. In a telephone network, DTMF is a common form of in-band signaling technique
used for transmitting information between network entities. DTMF signals are commonly
generated by touch tone telephones. Figure 3-1 on page 76 shows the block diagram of
DTMF receiver.

The DTMF controller is comprised of RTL modules with the exception of the DMA Controller.
This module has previously undergone test synthesis to scan flops. The logic in this module
will be preserved during optimization by attributing this block with a set_dont_modify
property. All other blocks, unless attributed with a set_dont_scan property, will undergo
test synthesis.
May 2003 75 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Figure 3-1 DTMF Block Diagram

SPI ULAW_CONVERTER

DATA SAMPLE

DATA SAMPLE RAM

DMA CONTROLLER

BUS ARBITER

SCRATCH

TDSPTDSP_CS_DS

ROM
ASCII DIGIT

RCC

REGISTER

TDSP MUX

MUX

DATA RAM

Note: This is a high-level diagram.spi_clk

spi_fs

spi_data

dout(7:0)

clk reset

dflag read

upcm(7:0)

lpcm(15:0)

dout[15:0]

t_data[15:0]

t_data_in[15:0]

clk reset

bus_grant

top_buf_flag

reset

t_write_rcc

bus_request_out

bus_grant_in

Scan flops previously added
(block attributed with

Not all connections are shown.

set_dont_modify property).
May 2003 76 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Setting Up to Run the Tutorial
Note: We assume that you already copied the data. If not, see Getting Started on page 12.

Required License

You need a BuildGates (BG) license to run this module.

Required Files

You need the following files to run this tutorial:

tutorial_dft Root directory

tcl Scripts to run this module

rtl Verilog design modules

lib Synthesis libraries

rpt Timing, area, hierarchy, dft registers (scan and non-scan), scan order
file

adb Design netlists and database files

run_dir Running directory
May 2003 77 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
BuildGates Top-Down Test Synthesis Configuration Flow

The top-down test synthesis configuration flow maps all flip-flops which pass the DFT rule
checks and which are not attributed with a set_dont_modify or set_dont_scan
property, to their scan equivalent flops and creates scan chains in a single optimization pass.

By default, the number of scan chains configured in the design is a single scan chain for each
DFT clock domain identified by the check_dft_rules command. You can also create
additional scan chains by specifying the set_number_of_scan_chains or
set_max_scan_chain_length assertions, or create merged scan chains using the
set_dft_compatible_clock_domain assertion.

The selection of test synthesis assertions and commands depends on whether you are
performing test synthesis in tieback mode or creating the scan chain configuration after
optimization.

The flow outlined in Figure 3-2 on page 79 is used to synthesize the DTMF controller to scan
flops and create the top-level scan chains. Figure 3-2 shows the order in which you specify
the test synthesis assertions and commands when the scan flops are being placed in
tieback mode (see Setting Test Synthesis Assertions on page 82). After optimization
completes, the top-level scan chains are configured by specifying the top-level chain
assertions and then running the scan connection engine in chain mode using the
do_xform_connect_scan command (see Connecting the Scan Chains on page 92).
May 2003 78 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Figure 3-2 DFT Top-Down Configuration Flow

Note: Colored steps are either DFT-specific or are affected by DFT.

Set Scan Chain Assertions

Check DFT Assertions and
DFT Rule Violations

report_dft_registers

do_xform_connect_scan

Design completely synthesized

Read Libraries, Design Data

Set Test Synthesis Assertions

Fix DFT Violations

set_global dft_scan_path_connect tieback

set_global dft_scan_avoid_control_buffering true

set_scan_style

set_scan_mode

set_test_mode_setup

report_dft_assertions

check_dft_rules

Set Constraints

Optimize Design

set_global dft_scan_path_connect chain

set_scan_data

set_number_of_scan_chains

set_dft_compatible_clock_domain

Connect Scan Chains

Fix Timing Violations

Write Netlist and Database
Files
May 2003 79 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Setting up the Design Environment

Start the Tool

1. Change to the run_dir directory in the tutorial_dft directory.

2. Invoke BuildGates in Graphical User Interface (GUI) mode.

bg_shell -gui &

3. Set up your design environment by running the following script in bg_shell:

bg_shell> source ../tcl/setup.tcl

The setup.tcl file defines Tcl variables for the rtl, library, report, database, and Tcl
directories. This file contains the following commands:

set run_dir ./
set rak_dir ../
set tcl_dir $rak_dir/tcl
set rtl_dir $rak_dir/rtl
set lib_dir $rak_dir/lib
set rep_dir $rak_dir/rpt
set adb_dir $rak_dir/adb

Set Global Variables

➤ Set some globals by running the following script:

bg_shell>source $tcl_dir/set_globals.tcl

The set_globals.tcl script sets two variables:

set_global message_verbosity_level 3
set_global echo_commands true

■ The message_verbosity_level variable controls the level of verbosity of the
messages generated by bg_shell in reporting information, warnings, and errors.

■ The echo_commands variable causes each command to be echoed in the standard
output prior to its execution.
May 2003 80 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Read Libraries and the HDL Models for the Design

1. Read in the synthesis technology libraries by running the following script:

bg_shell> source $tcl_dir/read_lib.tcl

The read_lib.tcl script contains the following statements:

read_tlf $lib_dir/slow_4.3.tlf
read_tlf $lib_dir/pllclk_slow_4.3.tlf
read_tlf $lib_dir/ram_128x16A_slow_4.3.tlf
read_tlf $lib_dir/ram_256x16A_slow_4.3.tlf
read_tlf $lib_dir/rom_512x16A_slow_4.3.tlf
read_library_update $lib_dir/tpz973gwc-lite_4.3.tlf

set_global target_technology slow

This script will set the technology libraries and wireload model for this design.

2. View the contents of the technology library with the following command:

bgx_shell>report_library

3. Read the RTL code for the design by running the following script:

bg_shell> source $tcl_dir/read_rtl.tcl

The read_rtl.tcl script contains the following statements:

set_global hdl_verilog_vpp_arg -I$rtl_dir

read_verilog $rtl_dir/accum_stat.v
read_verilog $rtl_dir/alu_32.v
read_verilog $rtl_dir/arb.v
read_verilog $rtl_dir/data_bus_mach.v
read_verilog $rtl_dir/data_sample_mux.v
read_verilog $rtl_dir/decode_i.v
read_verilog $rtl_dir/digit_reg.v
read_verilog $rtl_dir/dma.v
read_verilog $rtl_dir/dtmf_recvr_core.v
read_verilog $rtl_dir/execute_i.v
read_verilog $rtl_dir/mult_32_dp.v
read_verilog $rtl_dir/m16x16.v
read_verilog $rtl_dir/port_bus_mach.v
read_verilog $rtl_dir/prog_bus_mach.v
read_verilog $rtl_dir/ram_128x16_test.v
read_verilog $rtl_dir/ram_256x16_test.v
read_verilog $rtl_dir/results_conv.v
read_verilog $rtl_dir/spi.v
read_verilog $rtl_dir/tdsp_core.v
read_verilog $rtl_dir/tdsp_core_glue.v
read_verilog $rtl_dir/tdsp_core_mach.v
read_verilog $rtl_dir/tdsp_data_mux.v
read_verilog $rtl_dir/tdsp_ds_cs.v
read_verilog $rtl_dir/test_control.v
read_verilog $rtl_dir/ulaw_lin_conv.v
read_verilog $rtl_dir/iopads.v
read_verilog $rtl_dir/dtmf_chip.v
May 2003 81 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
4. Transform the design into a hierarchical, gate-level netlist by entering the following
command:

bg_shell> do_build_generic

The do_build_generic command transforms the design into a hierarchical, gate-level
netlist consisting of technology-independent logic gates. It also performs constant
propagation, loop unrolling, lifetime analysis, and register inferencing. You see the
following messages:

Info: Setting 'dtmf_chip' as the top of the design hierarchy <FNP-704>.
Info: Setting 'dtmf_chip' as the default top timing module <FNP-705>.

These messages indicate that the top module is set to dtmf_chip for logic optimization
and scan chain configuration. The top timing module is set to dtmf_chip for timing
assertions and DFT rule checking. These modules can also be specified by the
set_current_module and set_top_timing_module commands, respectively.

Setting Test Synthesis Assertions

Assertions can be thought of as requirements or guidelines that govern how test synthesis
will process the design. Assertions are used by test synthesis commands, such as
check_dft_rules, do_xform_connect_scan, and write_scan_order_file.

1. Set test synthesis assertions by running the following script:

bg_shell> source $tcl_dir/scan_assert.tcl

The script contains two sections.

2. Examine the commands in the first section of the scan_assert.tcl file.

The “Mapping test_control module” section of scan_assert.tcl file contains the
following commands:

set_current_module test_control
do_xform_map
set_dont_modify [find -hier -module test_control]
set_current_module [find -module dtmf_chip]

The test_control module consists of combinational gates which multiplex between
the functional clocks (system mode), and the test clock (test mode). The select enable
signal to the mux is controlled by the test_mode signal.

❑ The set_current_module command sets test_control as the design context.

❑ The do_xform_map transform maps the test_control module to target
technology slow.
May 2003 82 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
❑ The set_dont_modify command keeps the instances, nets, or submodules in the
test_control module from being modified by the optimization and test synthesis
tool.

❑ The second set_current_module sets the timing and optimization context to the
dtmf_chip module.

3. Examine the commands in the second section of the scan_assert.tcl file.

The “Setting Test Synthesis Assertions” section of the scan_assert.tcl file contains
the following commands:

set_scan_style muxscan
set_global dft_scan_path_connect tieback
set_global dft_scan_avoid_control_buffering true

set_scan_mode IOPADS_INST/Pscanenip/C 1

set_dont_modify [find -instance DTMF_INST/DMA_INST]
set_dont_touch_scan dma

❑ The set_scan_style command sets the scan style to muxscan. The multiplexed
scan style (muxscan) is the most commonly used scan style. Test synthesis
supports four scan styles: muxscan, clocked_scan, clocked_LSSD, and
aux_clocked_LSSD. When no style is selected, the default is muxscan.

❑ The set_global dft_scan_path_connect tieback command sets the scan
connection mode to tieback by test synthesis during optimization. The tieback
mode connects the scan flop's scan-data output pin to its own scan-data input pin.
Cadence recommends that you set this variable to tieback before optimization
and set the variable to chain after optimization, when the scan chain is created and
connected.

❑ The set_global dft_scan_avoid_control_buffering true command is
optional. It prevents buffering of the high fanout scan mode control signal after it is
globally routed by test synthesis during optimization. By default, high fanout signals
are buffered by timing optimization and design rule fixing. This command overrides
the default behavior for the scan mode signal only.

❑ In the muxscan style, the set_scan_mode IOPADS_INST_Pscanenip/C 1
command specifies an internal pin, IOPADS_INST/Pscanenip/C, and its active
value (1)which is the scan mode signal, used for shifting scan-data into scan flops.
If you do not specify this assertion, test synthesis will create a top-level input port
named BG_scan_enable, with an active high polarity. Additionally, you can specify
the dft_scan_port_name_prefix global to specify a different default naming
convention.

❑ The set_dont_modify [find -instance DTMF_INST/DMA_INST]
command keeps the instances, nets, or modules in DMA_INST module from being
modified by the optimization tool. The command is needed as the DMA_INST
May 2003 83 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
module is a precompiled module from a previous synthesis run. This attribute also
prevents the scan chains and scan chain order from being modified by the test
synthesis tool. If optimization were allowed in the module, but the scan chain
configuration was to be preserved, then use the set_dont_touch_scan assertion
instead. You should specify this assertion prior to creating the top-level scan chains.

Checking DFT Assertions and Rule Violations

The following procedure verifies the test synthesis assertions applied to the database and
checks the generic database for DFT rule violations.

1. Display the current test synthesis assertions (optional):

bg_shell> report_dft_assertions

The report_dft_assertions command displays the following test synthesis
assertions that are in effect.

Info: Scan mode for module 'dtmf_chip' set to 'IOPADS_INST./Pscanenip/C = 1'.
Info: Default Scan mode for module ’dtmf_chip’ set to ’IOPADS_INST/Pscanenip/
C = 1’.
Info: Scan style for module 'dtmf_chip' set to 'mux_scan'.
Info: module 'dma' set to DONT_TOUCH_SCAN mode.

Note: Check for combinational loops and race conditions in your design (optional):

set_global dft_enable_combinational_loop_check true
set_global dft_enable_race_condition_check true

Setting the above global variables to true forces a subsequent execution of
check_dft_rules to check for and report any combinational feedback loops and any
flip-flops with potential race conditions between the data and clock signals.

2. Check for DFT rules violations.

bg_shell> check_dft_rules

The check_dft_rules command checks for DFT rules violations, such as
uncontrollable clocks and uncontrollable asynchronous signals. It also checks to make
sure clock pins to the flip-flops are directly controllable from a primary input, and that any
asynchronous control pins (set/reset) to the flip-flops can be held to their inactive state
during the scan shift-cycle of test mode.

The tool does not insert scannable flip-flops where DFT violations occur. Only those flops
which pass the DFT rule checks will be mapped onto their scan equivalent flop and
placed on the scan chain. The check_dft_rules command displays a message if it
detects any violations. You should fix all reported problems either by modifying your RTL
or by using the auto-DFT fix capabilities described in Improving Testability of Your Design
in Design For Test (DFT) Using BuildGates Synthesis and Cadence PKS.
Otherwise, your fault coverage is reduced.
May 2003 84 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
The check_dft_rules command lists the DFT clock domains, any internal clock
domains specified with the set_dft_internal_clock_domain assertion, the
number of flip-flops associated with those domains that have passed the DFT rules
checks, and the number of flip-flops which failed the DFT rule checks.
Part of the TDRC output is shown below.

...
Info: Checking for registers with uncontrollable clock ports. <DFT-315>.
==> ERROR: DFT Violation 1: Internally driven Clock net ’DTMF_INST/
TDSP_DS_CS_INST/m_sel_ds_address’ in module ’tdsp_ds_cs’ (File ../rtl/
tdsp_ds_cs.v, Line 125) <DFT-316>.

 Traced its effective fanin cone to:
:test_mode
DTMF_INST/TDSP_CORE_INST/DATA_BUS_MACH_INSTwrite_reg:Q
DTMF_INST/TDSP_CORE_INST/PORT_BUS_MACH_INST/as_reg:Q
DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_9:Q
DTMF_INST/TDSP_CORE_INST/DECODE_INST/ir_reg_10:Q
:scan_clk
refclk
ibias
pllrst

.
==> ERROR: DFT Violation 3: Internally driven Clock net ’DTMF_INST/m_clk’ in
module ’dtmf_recvr_core’ (File ../rtl/dtmf_recvr_core.v, Line 84) <DFT-316>.

 Traced its effective fanin cone to:
:test_mode
scan_clk
refclk
ibias
pllrst

.
Clock pins for dft_top_module dtmf_chip are:
Info: Checking for registers with uncontrollable Async. Set/Reset ports.
<DFT310>.
Info: Partitioning registers for scan based on clock domain. <DFT-325>.
Total Clock domains: 0 for 0 f/f
Info: Total Scannable register count: 0 <DFT-340>.
--> WARNING: Scan mapped register 'DTMF_INST/DMA_INST/breq_reg' in module
'netlist' has a TDRC violation:internal clock signal <DFT-334>.
--> WARNING: Scan mapped register 'DTMF_INST/DMA_INST/as_reg' in module
'netlist' has a TDRC violation: internal clock signal <DFT-334>.
.
.
--> WARNING: Scan mapped register 'DTMF_INST/DMA_INST/a_reg_1' in module
'netlist' has a TDRC violation: internal clock signal <DFT-334>.
--> WARNING: Scan mapped register 'DTMF_INST/DMA_INST/a_reg_0' in module
'netlist' has a TDRC violation: internal clock signal <DFT-334>.
Info: Checking for available scan cells in Library. <DFT-330>.
--> WARNING: Design has 6 TDRC violations <DFT-342>.

If a flip-flop fails the DFT rule checks, a fanin trace from the source of the violation to the
top-level ports will be automatically performed. The fanin trace attempts to identify all
top-level primary input ports associated with the cone of logic originating from the failure.

The goal is to identify a primary input port which when placed in test mode, will bypass
the DFT rule violation. Of course, this presumes that the bypass logic has already been
coded in the RTL.
May 2003 85 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Following is one of the errors reported by the check_dft_rules command.

==> ERROR: DFT Violation 6: Internally driven Clock net ’DTMF_INST/
m_digit_clk’ in module ’dtmf_recvr_core’ (File ../rtl/dtmf_recvr_core.v, Line
84) <DFT-316>.

Traced its effective fanin cone to:
:test_mode
scan_clk
DTMF_INST/RESULTS_CONV_INST/digit_clk_reg:Q

The above fanin trace indicates that the DFT rule violation maybe possibly bypassed by
setting the top-level signal, test mode, to an appropriate logic value using the
set_test_mode_setup assertion. The value of the assertion is propagated through
the circuit on the next invocation of check_dft_rules command.
May 2003 86 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Fixing DFT Rule Violations

1. Fix the DFT rule violations by running the following script:

bg_shell> source $tcl_dir/fix_dft_rules.tcl

The fix_dft_rules.tcl script has the following commands:

set_test_mode_setup test_mode 1
set_test_mode_setup spi_fs 0

These assertions set the test_mode signal to a logic 1, and set the asynchronous set
or reset signal spi_fs to a logic 0 for the duration of test mode session. When specified,
the following Info messages are displayed:

set_test_mode_setup test_mode 1

Info: Test mode for module ’dtmf_chip’ set to ’test_mode = 1’ during entire
test session.

set_test_mode_setup spi_fs 0

Info: Test mode for module ’dtmf_chip’ set to ’spi_fs = 0’ during entire test
session.

Additionally, if an asynchronous set or reset signal had been directly controllable from a
primary input port, such that this signal fanned out directly (or through buffers or
inverters) to the asynchronous set/reset pins of the flip-flops, the check_dft_rules
command would have automatically asserted the test mode setup for this signal. The
value asserted for the signal is specified to maximize the number of flip-flops which pass
the DFT rule checks. When the assertion is automatically specified, the
check_dft_rules command displays the following message:

TDRC identified the following PI ports as active set/reset control pins to be
held constant during scan-shift operation:

Set PI port reset to logic 0 during scan-shift

Note: This assertion can be manually specified as follows:

bg_shell> set_test_mode_setup reset 0 -scan_shift

2. Having specified the test mode setup signals, re-run the DFT rule checks to propagate
the logic values of these signals through the circuit.

bg_shell> check_dft_rules

The output from check_dft_rules, also known as DFT rule check data, is used by the
test synthesis tool to configure the scan chains during optimization. The final output from
the check_dft_rules command is shown below:

Info: Checking for registers with uncontrollable clock ports. <DFT-315>.
Clock pins for dft_top_module dtmf_chip are: scan_clk

Info: Checking for registers with uncontrollable Async. Set/Reset ports.
<DFT-310>.
...

Info: Partitioning registers for scan based on clock domain. <DFT-325>.
Clock Domain 0 from pin ’scan_clk’ (Neg Edge) <Internal Pin: ’None’> has 129 f/f
Clock Domain 1 from pin ’scan_clk’ (Pos Edge) <Internal Pin: ’None’> has 411 f/f
May 2003 87 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Total Clock domains: 2 for 540 f/f
Info: Total Scannable register count: 540 <DFT-340>.
Info: Checking for available scan cells in Library. <DFT-330>.
Info: Design has no TDRC violation <DFT-343>.

At this stage, there are no DFT rule check violations. The DFT rule check report indicates
the top-level clock pins, their DFT clock domains, and the number of flip-flops in each
domain which pass the DFT rule checks. You can see that both edges of the scan_clk
are used in the design for a total flip-flop count of 540.

In specific:

❑ DFT Clock domain 0 is associated with 129 flip-flops, which are negative edge
triggered.

❑ DFT Clock domain 1 is associated with 411 flip-flops, which are positive edge
triggered.

In the absence of specifying configuration assertions such as
set_number_of_scan_chains, set_max_scan_chain_length, or
set_dft_compatible_clock_domains, test synthesis would use the DFT rule
check data to create a default configuration. The default configuration creates a single
scan chain for each DFT Clock domain. In this design, test synthesis would create two
scan chains, one of length 411 comprising the positive edge-triggered flops and one of
length 129, comprising the negative edge-triggered flops.

3. Generate a report for the list of scannable flops.

bg_shell> report_dft_registers -scan > $rep_dir/dft_registers.scan

The report_dft_registers -scan command writes scan flops identified by
check_dft_rules to the file ../rpt/dft_registers.scan. The tool reports the
following message:

Info: Total Scannable register count: 540 <DFT-340>.

4. Generate a report for the list of non-scannable flops.

bg_shell> report_dft_registers -non_scan > $rep_dir/dft_registers.nonscan

The report_dft_registers -non_scan command writes nonscan flops identified
by check_dft_rules to the file ../rpt/dft_registers.nonscan. The tool
reports the following message:

Info: Total Non-Scannable register count: 0 <DFT-341>.

Flip-flops, which will be placed in the non-scan list, are those flip-flops that fail the DFT
rule checks, or are attributed with a user-specified set_dont_scan property.

Since there are no DFT rule check violations, you can now proceed with specifying the
timing assertions prior to performing test synthesis (mapping the flip-flops to their scan
equivalent flops) and optimization on the design.
May 2003 88 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Setting Constraints

➤ Set the constraints by running the following script:

bg_shell>source $tcl_dir/constraints.tcl

The constraints.tcl file sets up timing constraints for the dtmf_chip design. For
a detailed description of the constraints, see Setting Constraints on page 30.

Optimizing the Design

➤ Optimize the DTMF design using the top-down synthesis methodology by entering the
following command:

bg_shell>do_optimize

The do_optimize command does the following:

❑ Generic optimization

❑ Technology mapping to scan flops (for all flip-flops which pass the DFT rule checks)

❑ Globally routes the scan mode control signal, as per the
dft_scan_enable_connect global

❑ Connects the scan flops as per the dft_scan_path_connect global

❑ Logic optimization

Using the DFT rules check data, the test synthesis tool determines the scan status of
flip-flops and to which DFT clock domain the flip-flops belong. In addition, the tool adds
a scan mode port (tieback and chain mode), and it adds pairs of scan-data in and
scan-data out ports (chain mode only), if required.

The test synthesis tool maps the design's flip-flops to scan flops and connects the scan
chains as specified by the dft_scan_path_connect global variable. Because you set
dft_scan_path_connect to tieback, the tool connects the scan-data output pin of
each scan flop back to its own scan-data input pin.

Note: Depending on the performance of your machine, the optimization runs for a while.
May 2003 89 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Setting Scan Chain Assertions

The test synthesis tool was run in tieback mode, which connects the scan flop’s scan-data
output pin to its own scan-data input pin. Tieback mode speeds up synthesis because chain
path connections are not being considered during optimization.

➤ Now that optimization is completed, set the scan chain assertions and connect
(configure) the scan chain in the current module (dtmf_chip).

bg_shell> source $tcl_dir/scan_chain_assert.tcl

The scan_chain_assert.tcl script contains the following commands:

set_number_of_scan_chains 8
set_dft_compatible_clock_domain -same_clock

set_scan_data {IOPADS_INST/Ptdspip00/C} {IOPADS_INST/Ptdspop00/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip01/C} {IOPADS_INST/Ptdspop01/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip02/C} {IOPADS_INST/Ptdspop02/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip03/C} {IOPADS_INST/Ptdspop03/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip04/C} {IOPADS_INST/Ptdspop04/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip05/C} {IOPADS_INST/Ptdspop05/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip06/C} {IOPADS_INST/Ptdspop06/I} -shared_out
set_scan_data {IOPADS_INST/Ptdspip07/C} {IOPADS_INST/Ptdspop07/I} -shared_out

■ The set_number_of_scan_chains 8 assertion specifies the total number of
top-level scan chains which are to be configured across all DFT clock domains identified
by the check_dft_rules command. This assertion will create balanced scan chains.

Note: In addition to the above assertions, you can specify the scan chain length using
the set_max_scan_chain_length assertion. This assertion will pack the scan chains
up to the limit specified, with any residual scan flops placed on a new chain. Both the
set_number_of_scan_chains and set_max_scan_chain_length assertions
can be optionally specified with -clock (-rise and -fall options) which allows for
clock domain-specific and clock edge-specific configuration of the scan flops which pass
the DFT rule checks.

■ The set_dft_compatible_clock_domain assertion specifies the domain and
phase compatibility between the DFT clock domains. This assertion optionally instructs
test synthesis to insert a data lockup element between flip-flops belonging to the scan
chain segments from the different DFT clock domains.

The -same_clock option instructs test synthesis to combine alternate edges of the
same root clock in a single scan chain. If the DFT clock waveform is set to Return-to-Zero
(RTZ), the negative edge-triggered segments proceed the positive edge-triggered
segments in the same scan chain avoiding the need to insert a data lockup element
between the domain transitions. If however, the set_dft_clock_waveform is set to
Return-to-One (RT1), the positive edge-triggered segments proceed the negative
edge-triggered segments in the same scan chain avoiding the insertion of a data lockup
element between the domain transitions. The set_dft_clock_waveform assertion
May 2003 90 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
must be specified prior to running the check_dft_rules command. The default value
for this assertion is RTZ. For this example, the root clock domain is scan_clk. The
message from this assertion is excerpted below:

Info: Compatible clock mode set to ’DOMAINS THAT ARE PHASES OF SAME CLOCK CAN
BE MERGED’.

■ The set_scan_data assertion specifies the names for the scan-data input and
scan-data output signals which are used to shift data into and out of the scan chains,
respectively. The scan-data signals may be specified to top-level ports or hierarchical
pins. The scan-data input signal can be a dedicated port for scan in purposes only, or it
can be a shared functional input port. The scan-data output port can be a dedicated port
for scan out purposes only, or it can be a shared functional output port. Use the
-shared_out option if the scan-data output signal is also a shared output. This option
instructs test synthesis to insert a multiplexer to select between the internal scan-data
output (from the last scan flop in the scan chain), and the internal functional output
signal. The select control to the multiplexer is the scan mode signal, declared using the
set_scan_mode assertion.

For the eight sets of scan-data assertions above, the scan-data signals have been
specified to existing hierarchical pins. When the scan chains are configured in the
design, the connection engine uses these pins to create the connections from the
scan-data input signals to the scan-data input pin of the first scan flop in each scan chain,
and from the last scan flop output pin in each scan chain, multiplexed with the internal
functional output signal to the scan-data output signal. The multiplexer is inserted just
before the scan-data output signal, in the iopads module.

When specified, the following Info messages are displayed:

Info: Existing scan input port 'IOPADS_INST/Ptdspip00/C' will be used for scan
insertion.
Info: Existing scan output port 'IOPADS_INST/Ptdspop00/I' will be used for scan
insertion.
Info: Scan data I/O for module 'dtmf_chip' set to:
<no clock domain>: {IOPADS_INST/Ptdspip00/C IOPADS_INST/Ptdspop00/I }.

where

IOPADS_INST/Ptdspip00/C is the output pin of input pad, port_pad_data_in
IOPADS_INST/Ptdspop00/I is the input pin of the output pad, port_pad_data_out
May 2003 91 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Connecting the Scan Chains

Before optimization, the global variable dft_scan_path_connect was set to tieback
mode. You will now set this variable to chain mode to create the scan chains in the design.

1. Specify to connect the scan chain in chain mode:

bg_shell> set_global dft_scan_path_connect chain

When the scan chain connection engine is run, test synthesis creates the scan chain
configuration by connecting the scan-data output pin from one scan flop to the scan-data
input pin of the next scan flop in the scan chain.

In chain mode, the following two additional DFT globals control how the chains are
connected.

❑ dft_scan_output_pref controls whether to use normal or inverted output (Q or
Q-bar) of scan flip-flop for scan connection

The possible settings are:

❍ non_inv: use non-inverted (Q) output

❍ min_load: use the output with least load (DEFAULT)

❑ dft_allow_scan_path_inv controls if inverters should be inserted in scan path
to compensate for logic inversion when connecting from inverted output or to
inverted scan-input.

The possible settings are:

❍ on: inversion in scan path is allowed. (DEFAULT)

❍ off: inversion in scan path is not allowed. When connecting from inverted
output (Q-bar) or to inverted scan-input, an inverter will be inserted to
compensate for logic inversion in the scan data path.

2. Run the scan chain connection engine.

bg_shell> do_xform_connect_scan -scan_file dtmf_chip.scan.flat

The do_xform_connect_scan uses the clock domain information generated by the
check_dft_rules command (shown below) to connect the scan flops into scan chains
and creates a scan chain order file in flat format in the run directory, named
dtmf_chip.scan.flat.

Clock Domain 0 from pin ’scan_clk’ (Neg Edge) <Internal Pin: ’None’> has 129 f/f
Clock Domain 1 from pin ’scan_clk’ (Pos Edge) <Internal Pin: ’None’> has 411 f/f

If you do not specify a name for the scan chain order file, it will be named the same as
the top-level module (set_current_module) with an extension of.scan.flat.
May 2003 92 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Due to the setting of set_number_of_scan_chains in this design, eight scan chains
have been created for scan flops clocked by scan_clk. Test synthesis will create
balanced (equal length) scan chains as follows:

❑ One scan chain of length 68 is created in Clock Domain 0 for a total scan flop count
of 68.

❑ Six scan chains of length 68 are created in Clock Domain 1 for a total scan flop count
of 408.

Due to the setting of the set_dft_compatible_clock_domain to -same_clock,
one scan chain of length 64 is created between two scan chain segments clocked by the
scan_clk negedge and scan_clk posedge respectively. Using this order no data
lockup element is needed between the domain transitions. The scan chain segment in
the scan_clk negedge domain has three scan flops and the scan chain segment in the
scan_clk posedge domain has 61 scan flops.

Note: If a data lockup latch would be inserted, it would be denoted using llatch
notation in the scan chain order file.

When the connection engine is run, it first analyzes the lower level modules in order to
identify existing scan chain segments. These segments are then incorporated into the
top-level scan chains. Note that the scan chain analysis routine analyzed a 17-scan flop
scan chain segment in precompiled module dma. Since this module was attributed with
set_dont_modify and set_dont_touch_scan properties, the order of the scan
flops in the scan chain segment will remain intact when incorporated into the top-level
scan chains.

do_xform_connect_scan generates the following messages while running:

Collecting scan chains for module ram_128x16_test <DFT-501>.
Collecting scan chains for module spi <DFT-501>.
Collecting scan chains for module arb <DFT-501>.
Collecting scan chains for module dma <DFT-501>.
Analyzed chain # 1 (total 17 regs; BG_scan_in -> BG_scan_out)
connected in module 'dma'. <DFT-025>.

When the top-level scan chains are being created by the connection engine, it will also
generate an Info message to indicate the insertion of data lockup latches.

Top-level chain 1 (IOPADS_INST/Ptdspip00/C -> IOPADS_INST/Ptdspop00/I) has 68
registers. <DFT-024>.
Top-level chain 2 (IOPADS_INST/Ptdspip01/C -> IOPADS_INST/Ptdspop01/I) has 68
registers. <DFT-024>.
Top-level chain 3 (IOPADS_INST/Ptdspip02/C -> IOPADS_INST/Ptdspop02/I) has 68
registers. <DFT-024>.
Top-level chain 4 (IOPADS_INST/Ptdspip03/C -> IOPADS_INST/Ptdspop03/I) has 68
registers. <DFT-024>.
Top-level chain 5 (IOPADS_INST/Ptdspip04/C -> IOPADS_INST/Ptdspop04/I) has 68
registers. <DFT-024>.
Top-level chain 6 (IOPADS_INST/Ptdspip05/C -> IOPADS_INST/Ptdspop05/I) has 68
registers. <DFT-024>.
May 2003 93 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Top-level chain 7 (IOPADS_INST/Ptdspip06/C -> IOPADS_INST/Ptdspop06/I) has 68
registers. <DFT-024>.
Top-level chain 8 (IOPADS_INST/Ptdspip07/C -> IOPADS_INST/Ptdspop07/I) has 64
registers. <DFT-024>.

Finally, test synthesis will report the top-level scan chains which have been configured in
the design.

Collecting scan chains for module dtmf_chip <DFT-501>.
Analyzed chain # 1 (total 68 regs; IOPADS_INST/Ptdspip00/C ->
IOPADS_INST/Ptdspop00/I) connected in module 'dtmf_chip'.
<DFT-025>.
Analyzed chain # 2 (total 68 regs; IOPADS_INST/Ptdspip01/C ->
IOPADS_INST/Ptdspop01/I) connected in module 'dtmf_chip'.
<DFT-025>.
...
Analyzed chain # 7 (total 68 regs; IOPADS_INST/Ptdspip06/C -> IOPADS_INST/
Ptdspop06/I) connected in module ’dtmf_chip’. <DFT-025>.
Analyzed chain # 8 (total 64 regs; IOPADS_INST/Ptdspip07/C -> IOPADS_INST/
Ptdspop07/I) connected in module ’dtmf_chip’. <DFT-025>.
Finished scan connection <DFT-400>.

This report shows how the scan chains are evenly balanced with equal scan chain
lengths using BuildGates Synthesis.

Checking the Timing of the Design

➤ Check the timing.

bg_shell> report_timing > $rep_dir/time_scan.rpt

The time_scan.rpt shows that timing is met for this design.

Important

If there are any timing violations after scan chain connection, you need to perform
incremental timing optimization.
May 2003 94 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Viewing the Scan Chains

The design contains eight scan chains since the set_number_of_scan_chains assertion
is set to 8. You can examine the scan chains in a text file or in the schematic viewer.

1. Examine the flat scan chain report file.

more dtmf_chip.scan.flat

The flat scan chain report file is organized by scan chain, listing all the bits on each scan
chain in the order of connection.

A sample of the dtmf_chip.scan.flat file is shown below:

module dtmf_chip
begin_chain 1 port IOPADS_INST/Ptdspip00/C
bit 1 DTMF_INST/DIGIT_REG_INST/flag_out_reg/Q
bit 2 DTMF_INST/DIGIT_REG_INST/digit_out_reg_7/Q
bit 3 DTMF_INST/DIGIT_REG_INST/digit_out_reg_6/Q

.

.
bit 66 DTMF_INST/SPI_INST/bit_cnt_reg_2/Q
bit 67 DTMF_INST/SPI_INST/bit_cnt_reg_1/Q
bit 68 DTMF_INST/SPI_INST/bit_cnt_reg_0/Q
end_chain 1 port IOPADS_INST/Ptdspop00/I <shared_or_complex_out>

2. Display the scan chains with the schematic viewer.

a. Select Edit – Preferences – Schematic.

The Schematic Preferences form appears.

b. Enable Display scan chain.

c. Click OK.

d. Double-click on the top module.

The GUI highlights the scan chains in the design as shown in Figure 3-3 on page 96.

Note: You can also view the scan chains as follows:

e. Double-click on the top module to display the schematic in the Schematic window.

f. Display the scan chains for the top module:

display_scan_chains [get_names [get_current_module]]
May 2003 95 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Figure 3-3 Scan Chains Displayed in Schematic Viewer

Writing Netlist and Database Files

Optimization is complete and the scan chains are connected.

➤ Write the netlist and database:

bg_shell> write_verilog -hierarchical $adb_dir/dtmf_chip_scan.vs
bg_shell> write_adb $adb_dir/dtmf_chip_scan.adb
May 2003 96 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
Writing Interface Files to Third Party ATPG Tools

BuildGates generates interface files containing scan chain information in the IEEE Standard
Test Interface Language (STIL) format or in a format readable by third party ATPG tools like
Mentor FastScan®, Syntest Turboscan®, and LogicVision® ATPG tools.

1. Remove scan_mode and scan_dataDFT assertions, which are set on the internal pad
pins and set them with top-level ports.

bg_shell> source $tcl_dir/remove_dft_assertions.tcl

The remove_dft_assertions.tcl script contains the following commands:

remove_dft_assertions -scan_mode -scan_data_io

#set top level scan port assertions

set_scan_mode scan_en 1

set_scan_data {port_pad_data_in[7]} {port_pad_data_out[7]} -shared_out
set_scan_data {port_pad_data_in[6]} {port_pad_data_out[6]} -shared_out
set_scan_data {port_pad_data_in[5]} {port_pad_data_out[5]} -shared_out
set_scan_data {port_pad_data_in[4]} {port_pad_data_out[4]} -shared_out
set_scan_data {port_pad_data_in[3]} {port_pad_data_out[3]} -shared_out
set_scan_data {port_pad_data_in[2]} {port_pad_data_out[2]} -shared_out
set_scan_data {port_pad_data_in[1]} {port_pad_data_out[1]} -shared_out
set_scan_data {port_pad_data_in[0]} {port_pad_data_out[0]} -shared_out

The remove_dft_assertions command removes DFT assertions that were set using
set_scan_mode and set_scan_data assertions. Since the assertions were specified
to internal pins (pads), for ATPG purpose these are removed and re-specified using
top-level ports.

The eight set_scan_data commands are used to specify the top-level ports to be used
for generation of ATPG vectors. Now the platform is set for generation of ATPG interface
files for the third-party ATPG tools.

2. Write ATPG interface files.

❑ For FastScan, enter

bg_shell> write_atpg_info -mentor

This command writes dtmf_chip.dofile (command file) and
dtmf_chip.testproc (test procedure) files into the run directory.

❑ For Syntest, enter:

write_atpg_info -syntest

❑ For LogicVision, enter:

write_atpg_info -logicvision
May 2003 97 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Design For Test
❑ For an interface file in the IEEE Standard Test Interface Language (STIL) format,
enter:

write_atpg_info -stil

3. To end the session, select File – Exit or type exit in the console.

Summary

In this session, you

■ Became familiar with the DFT top-down flow which performs test synthesis of an RTL
design.

■ Learned that DFT automatically maps all flip-flops that pass DFT rule checks to their
scan-equivalent flip-flops from the target technology library, and configures those
flip-flops into scan chains given the presence of clock domain information

■ Learned how to display the scan chains

■ Learned how to write ATPG interface files for third-party ATPG tools
May 2003 98 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
4
Getting Started with Datapath

■ Introduction to BGX Datapath on page 100

■ Objectives on page 101

■ Example Design on page 101

■ Setting Up to Run the Tutorial on page 102

■ Traditional Synthesis Run on page 103

■ BGX Datapath Flow on page 104

❑ Setting up the Design Environment on page 105

❑ Setting up Global Variables on page 105

❑ Reading the Synthesis Technology Libraries on page 106

❑ Reading the HDL Models for the Design on page 106

❑ Creating a Generic Gate-Level Netlist on page 106

❑ Setting Constraints on page 107

❑ Operator Merging on page 108

❑ Optimizing the Design on page 111

❑ Generating Reports on page 111

❑ Writing Netlist, Database Files and Report File on page 114

■ Examining Traditional Synthesis Results on page 115

■ Comparing BGX and Traditional Results on page 115
May 2003 99 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Introduction to BGX Datapath

Datapaths are multi-bit bus structures consisting of arithmetic components such as adders,
multipliers, decoders, counters, Multiply-Accumulators (MAC), and so on. Traditionally,
computing and multimedia designs had some datapath contents, but recently with the
integration of computing devices and telecom devices, the usage of datapaths has increased.
Telecom designs implement filters with many datapath components. In addition, as a result
of the market convergence of consumer, communication, computing, and multimedia
applications. most IC designs have complex datapath contents.

Traditional logic synthesis tools optimize datapath contents by providing a library consisting
of commonly used datapath components. Very often designers have to overwrite these
instances by using pragmas or global variables to produce better results. If these components
end up on a critical path, each one must be individually optimized to improve timing. In
designs that have many datapath components, there are opportunities for improvement by
eliminating redundancies in multiply connected components. Many times designers handcraft
custom datapath components to eliminate these redundancies and to achieve the desired
performance.

Another approach designers use to synthesize high performance datapath designs involves
manually partitioning the datapath portion of the design, writing datapath description in non-
standard, proprietary language (such as MCL), and optimizing it in a specialized, standalone
tool. The following are some disadvantages to these techniques:

■ Handcrafted datapath components often require datapath expertise that is not available.

■ Specialized datapath solutions are difficult to implement and use.

■ Stand-alone datapath synthesis solutions require learning a new language to describe
the datapath logic, which results in a loss of portability across tools and limits your ability
to reuse designs.

■ Timing closure requires manual effort when you use point tools.

■ Designs must be manually partitioned.

■ You have to manually explore various implementations and choose the best one.

■ Quality of Results (QOR) leaves much to be desired.

BuildGates Extreme (BGX) addresses all of these issues. As you will see in this tutorial, BGX
delivers hand-crafted quality results. It automatically takes advantage of redundancies to
build optimal components and automatically selects architectures for you based on the
context of the component. (For more information on the library see More about the
AmbitWare Library on page 163). BGX eliminates the need for a separate point tool or
specialized datapath or language knowledge. For more information about BGX datapath
features see Datapath for BuildGates Synthesis and Cadence PKS.
May 2003 100 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Objectives

In this tutorial, you will work on a Finite Input Response (FIR) filter design using the datapath
feature of the BuildGates Extreme (BGX) flow, and compare the results to those from a
traditional flow.

■ Learn about BuildGates Extreme (BGX) datapath features.

■ Compare the quality of results from BuildGates Extreme with the results from traditional
synthesis.

Note: This tutorial assumes that you have already gone through the Getting Started with
BuildGates Synthesis (the basic module of the Rapid Adoption Kit) and are familiar with basic
synthesis.

Example Design

You will use an FIR filter (shown in Figure 4-1) with the following specifications:

32-TAP
16-bit coefficient
16-bit I/O data

Figure 4-1 FIR Filter Architecture

x(n)

16-tap Tapped Delay Line 16-tap Tapped Delay Line

+

x

+

+

+

x

+

+

x x

+

+ y(n)

Accumulator

Filter
Coefficients
May 2003 101 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Setting Up to Run the Tutorial

Note: We assume that you already copied the data. If not, see Getting Started on page 12.

Required License

You need a BuildGates Extreme (BGX) license to run this tutorial. The BGX adds Datapath
(DP) and Low Power Synthesis (LPS) capabilities to BuildGates Synthesis.

To save running time, you can run bg_shell in parallel with bgx_shell, one for the regular
flow and the other for DP flow. This requires either two BGX licenses (one for running
bg_shell) or one BG and one BGX license. Call your sales representative to get demo
licenses if needed.

Required Files

To run datapath you need the following:

■ Datapath content in your design. Specifically, you need to have some of the four basic
arithmetic functions (+, -, *, /) or some of the comparison operators (<, >, >=,
and so forth). The FIR filter that you will be working with has four multipliers and nine
adders.

■ Basic synthesis pre-requisites: a properly constrained design and a synthesis library.

■ Verilog or VHDL code for the design, preferably at the RTL level. Datapath must be either
inferred or instantiated. (Gate-level netlists offer little improvement opportunity). For
more information on the supported languages, see More about Extended Languages on
page 166.

The your_install_path/doc/syntut/RAK/tutorial_dp directory contains the
files needed to run this module and has the following directory structure:
:
tutorial_dp Root directory

tcl Scripts to run the RAK DP module

rtl Verilog design modules

lib Synthesis library

rpt Design outputs, including timing, area, hierarchy, and other report files

adb Design outputs, including netlist and database files

run_dir Run directory
May 2003 102 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Traditional Synthesis Run

For comparison purposes, you will try a traditional synthesis run of the FIR filter. On the
surface, the only difference between the traditional synthesis run and the BGX run is that you
invoke a different shell. The two runs use the same design and the same constraints.

The script for the baseline run is in the tcl directory and is called run_no_dp.tcl. The only
difference between this script and the equivalent datapath script is the output filenames. One
of the strengths of this solution is that you do not need to make any changes to your scripts
or code to take advantage of datapath.

1. Change to the run_dir directory in the tutorial_buildgates directory.

2. Start the traditional synthesis run by entering the following in a UNIX shell:

unix_shell>bg_shell -gui -f ../tcl/run_no_dp.tcl -logfile no_dp.log
-cmdfile no_dp.cmd &

Important

Make sure you run bg_shell and not bgx_shell at this stage. The goal is to see
a non-datapath run. This synthesis run will take a relatively long time to finish
depending on the speed of your machine.You can let it run in the background and
move on to the BGX run.
May 2003 103 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
BGX Datapath Flow

Note: Colored steps are affected by Datapath.

Read HLD Model for Design

Read Libraries

Create Generic Gate-Level Netlist

Set Constraints

Check Constraints

Optimize Design

Generate Reports

Write Netlist and Database Files
May 2003 104 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Setting up the Design Environment

1. In the run_dir directory of the tutorial_dp directory, start BuildGates Extreme by
entering the following:

unix_shell>bgx_shell -gui &

2. Set up the design environment by entering the following command in the console:

bgx_shell>source ../tcl/setup.tcl

The setup.tcl file defines all the path variables. If you prefer, you can enter these
commands manually in the console.

The content to of the setup.tcl file is as follows:

set rak_dir ..
set tcl_dir $rak_dir/tcl
set rtl_dir $rak_dir/rtl
set lib_dir $rak_dir/lib
set rep_dir $rak_dir/rpt
set adb_dir $rak_dir/adb

Setting up Global Variables

➤ Set up the design globals:

bgx_shell>source $tcl_dir/set_global.tcl

The set_global.tcl script has the following content:

set_global aware_adder_architecture ripple

This command sets the initial adder architecture to a ripple adder (see the Command
Reference for BuildGates Synthesis and Cadence PKS for details about this
global). Based on the design and timing constraints, the final adder architecture might be
different. Even for the same design, different initial adder selection may end up with
different final architecture. For this design, you will start with a slow but small adder for
demonstration purpose. By default BGX starts with FCLA (fast carry look-ahead adder).
May 2003 105 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Reading the Synthesis Technology Libraries

1. Read the synthesis technology libraries:

bgx_shell>source $tcl_dir/read_lib.tcl

This command sets the technology libraries and wireload model for this design.

2. View the contents of the library:

bgx_shell>report_library

The report_library command can report on the cells in the library, the wireload
models, the operating conditions, and more.

Reading the HDL Models for the Design
bgx_shell>source $tcl_dir/read_design.tcl

The content of the script is as follows:

read_verilog $rtl/filt4.v

Creating a Generic Gate-Level Netlist

➤ Generate the generic build of the netlist:

bgx_shell>do_build_generic

The do_build_generic command transforms the design into a hierarchical, gate-level
netlist. The Logical browser and console change as the tool builds the netlist.
May 2003 106 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Setting Constraints

1. Constrain the design:

bgx_shell>source $tcl_dir/constraints.tcl

This command sets up the ideal clock, binds the clock root to the clock pin, and sets input
and external delay for the primary input and output ports.

The constraints.tcl file contains the following commands:

set_current_module filt4
set_top_timing_module filt4

set cyc 10.00
set_clock CLK -period $cyc -waveform "0 [expr $cyc /2]"
set_clock_root -clock CLK [find -port SYS_CLK]
set_clock_insertion_delay 0.3 -pin {SYS_CLK}

proc all_inputs {} {find -port -inputs -no_clocks *}
proc all_outputs {} {find -port -outputs *}
set_input_delay -clock CLK 0.4 [all_inputs]
set_external_delay -clock CLK 0.5 [all_outputs]

set_drive_cell -cell DFFX4 -from_pin CP -pin Q [all_inputs]
set_drive_cell –cell CLKBUFX20 SYS_CLK
set_port_capacitance [expr [get_cell_pin_load -cell DFFX4 –pin D]*4.0] \
[all_outputs]

set_false_path -from [find -port -input reset]

See the Command Reference for BuildGates Synthesis and Cadence PKS for
more details on these commands.

The last command tells the tool not to spend time optimizing any timing path starting from
the input signal reset.

Note: The clock frequency is 10ns, which means that if timing is met, the design will run
at 100 MHz.

2. After applying the timing constraints, check the constraints:

bgx_shell>check_timing -verbose

The check_timing command performs a variety of consistency and completeness
checks on the timing constraints specified for a design. As you can see, there is no
warning.

3. At this point, check the netlist to make sure there are no problems:

bgx_shell>check_netlist -verbose

The check_netlist command performs a number of checks on the structural
connectivity of the netlist. All checks come up clean.
May 2003 107 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Operator Merging

One of the techniques that BGX uses to improve the speed and decrease the area of a design
is operator merging. For more details on this technique, see More about Operator Merging.
Figure 4-2 shows how operator merging is applied to the FIR design used in this tutorial.

Figure 4-2 Critical Path for FIR Filter

You can see eight adders and four multipliers in the diagram. There is also one more adder
(not shown) in the block right before the final output y(n). The critical path in this design goes
from the input through the datapath and to the input of the accumulator, including three
adders and one multiplier. The operator-merged result combines the four multipliers and
three downstream adders into one big component. You may wonder why all the four upstream
adders were not merged into that big component as well. Technically, it is feasible, but the tool
chooses not to do so because this would lead to a big area penalty with little timing benefit.

To see the pre-optimized merged component, follow these steps:

1. In the Logical browser, expand the logical hierarchy of module filt4 by clicking on the
+ icon left of filt4.

2. Double click on module AWDP_partition_2 using the left mouse button.

x(n)

16-tap Tapped Delay Line 16-tap Tapped Delay Line

+

x

+

+

+

x

+

+

x x

+

+ y(n)

Accumulator

Filter
Coefficients

Critical Path
May 2003 108 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
3. Highlight the worst path:

a. Bring up the pop-up menu by clicking the right mouse button in your Schematic
window.

b. Select Worst Path.

The result shown in Figure 4-3 on page 109 shows the pre-optimized version of the
merged operators. It contains four multipliers and three adders in one module.

Note: If you cannot reproduce this figure, select Edit – Preferences – Schematic, then
click the Paging tab and set Page Size to None. Then double click on module
AWDP_partition_2 (in the Logical browser) to refresh the schematics. Then reselect
Worst Path.

Figure 4-3 Pre-optimized Critical Path in Merged Component
May 2003 109 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
To see which architectures are embedded in this merged operator:

1. Doubleclick the filt4 module in the Logical browser (this will set filt4 as the current
module).

2. Report the datapath resources in the design with the report_resources command:

bgx_shell> report_resources -hier

Your report will be similar to the report shown in Figure 4-4 on page 110.

Figure 4-4 Resource Report

This report shows the architectures, the bit widths of the datapath functions, the name of the
partition they are in, the magnitude of the component, and whether it is signed or unsigned.

+---+
| Arithmetic Resources |
|---+
| Module | File | C | Arch | Op | Line | Out | In |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_EQ_1 | ..//rtl/filt4.v | 1 | cla | == | 10 | 1u | 1ux1u |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_EQ_0 | ..//rtl/filt4.v | 1 | cla | == | 16 | 1u | 1ux1u |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_EQ_10 | ..//rtl/filt4.v | 1 | cla | == | 31 | 1u | 1ux1u |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_EQ_00 | ..//rtl/filt4.v | 1 | cla | == | 37 | 1u | 1ux1u |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_ADD_0 | ..//rtl/filt4.v | 1 | ripple | + | 55 | 16u | 16ux1u |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_ADD_3 | ..//rtl/filt4.v | 1 | ripple | + | 191 | 17s | 16sx16s |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_ADD_4 | ..//rtl/filt4.v | 1 | ripple | + | 192 | 17s | 16sx16s |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_ADD_00 | ..//rtl/filt4.v | 1 | ripple | + | 193 | 17s | 16sx16s |
+-------------+------------------+---+------------+----+------+-----+---------+
| AWDP_ADD_1 | ..//rtl/filt4.v | 1 | ripple | + | 194 | 17s | 16sx16s |
+-------------+------------------+---+------------+----+------+-----+---------+
AWDP_partiti	..//rtl/filt4.v	1	ripple	+	199	35s	34sx34s
on_2							
				+	199	34s	33sx33s
				+	199	34s	33sx33s
			non_booth	*	195	33s	17sx16s
			non-booth	*	196	33s	17sx16s
			non-booth	*	197	33s	17sx16s
			non-booth	*	198	33s	17sx16s
+-------------+------------------+---+------------+----+------+------+--------+							
AWDP_ADD_5	..//rtl/filt4.v	1	ripple	+	206	35s	35sx35s
+-------------+------------------+---+------------+----+------+-----+---------+

partition bit width and sign
May 2003 110 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Optimizing the Design

➤ Optimize the design using the do_optimize command:

bgx_shell>do_optimize

The optimization can take a while to finish depending on the speed of your machine.
When complete, you will compare it to the traditional synthesis run to show the QOR
improvement.

Generating Reports

When the BGX run finishes, you can examine the results.

1. Report the area and speed of the design:

bgx_shell>set_current_module filt4
bgx_shell>report_timing
bgx_shell>get_area

See the Command Reference for BuildGates Synthesis and Cadence PKS for
more information on these commands.

Figure 4-5 on page 112 shows an example of the timing report.

From these reports, it is evident that the design has the following specifications:

❑ Speed: 100 MHz

❑ Area:185423.52 um2

❑ Run Time: approximately 30 minutes (depending on the speed of your machine)
May 2003 111 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Figure 4-5 Timing Report after Optimization
+---+
| Instance | Arc | Cell | Delay | Arrival | Required |
| | | | | Time | Time |
|--------------+----------------+------------------+-------+---------+----------|
	cycle[1] ^			0.47	0.47
i_177	A ^ -> Y ^	BUFX12	0.13	0.60	0.60
i_166	B ^ -> Y v	NOR2BX4	0.07	0.67	0.67
i_5548	A v -> Y v	BUFX20	0.14	0.81	0.81
i_4914	A v -> Y v	BUFX3	0.14	0.95	0.95
i_837	A1 v -> Y ^	AOI22XL	0.28	1.24	1.24
i_85	A ^ -> Y v	NAND2X2	0.15	1.39	1.39
i_510	data_H1[1] v	AWDP_ADD_4		1.39	1.39
i_510/i_3	A v -> Y ^	XNOR2X4	0.29	1.68	1.68
i_510/i_37	A0 ^ -> Y v	OAI21X4	0.08	1.76	1.76
i_510/i_5842	A v -> Y v	BUFX2	0.20	1.96	1.95
i_510/i_53	A0 v -> Y ^	AOI21X4	0.20	2.15	2.15
i_510/i_112	A ^ -> Y ^	XOR2X1	0.40	2.55	2.55
i_510	s1[4] ^	AWDP_ADD_4		2.55	2.55
i_507	s1[4] ^	AWDP_partition_2		2.55	2.55
i_507/i_317	A ^ -> Y v	INVX1	0.16	2.71	2.71
i_507/i_4595	A v -> Y v	BUFX8	0.19	2.90	2.90
i_507/i_399	B v -> Y ^	NOR2X1	0.19	3.09	3.09
i_507/i_1638	B ^ -> CO ^	ADDFX1	0.57	3.66	3.66
i_507/i_1698	A ^ -> CO ^	AFHCINX2	0.45	4.11	4.11
i_507/i_3530	B ^ -> Y ^	XOR2X2	0.31	4.43	4.43
i_507/i_3531	A ^ -> Y ^	XOR2X1	0.29	4.72	4.72
i_507/i_1776	CI ^ -> CO ^	ADDFX2	0.30	5.03	5.03
i_507/i_1851	A ^ -> S ^	AFHCONX2	0.50	5.53	5.53
i_507/i_1861	B ^ -> CO ^	ADDFHX1	0.38	5.91	5.91
i_507/i_1924	A ^ -> S v	ADDFHX4	0.49	6.40	6.39
i_507/i_1928	B v -> CON ^	AFHCONX2	0.34	6.74	6.74
i_507/i_1985	CIN ^ -> S v	AFHCINX2	0.34	7.08	7.08
i_507/i_1987	A v -> CO v	AFHCINX2	0.39	7.47	7.47
i_507/i_2038	CI v -> CO v	ADDFHX2	0.25	7.72	7.72
i_507/i_2085	A v -> S v	AFHCINX2	0.52	8.24	8.24
i_507/i_2344	A v -> Y ^	NOR2X2	0.19	8.43	8.42
i_507/i_2521	A ^ -> Y v	NOR2XL	0.13	8.55	8.55
i_507/i_1388	A v -> Y v	BUFX4	0.17	8.72	8.72
i_507/i_2555	A1 v -> Y ^	AOI21X1	0.26	8.98	8.98
i_507/i_2624	B0 ^ -> Y v	OAI21X1	0.21	9.20	9.19
i_507/i_2701	A0 v -> Y ^	AOI21X2	0.18	9.38	9.38
i_507/i_2770	B0 ^ -> Y v	OAI21X2	0.11	9.48	9.48
i_507/i_2839	B0 v -> Y ^	AOI21X2	0.15	9.63	9.63
i_507/i_3799	S0 ^ -> Y v	MXI2X1	0.20	9.83	9.83
i_507	mult_out[32] v	AWDP_partition_2		9.83	9.83
u3	d[32] v	reg_35_0		9.83	9.83
u3/q_reg_32	D v	SDFFRHQXL	0.00	9.83	9.83
+---+

2. In the Logical browser double click on module AWDP_partition_2 using the left mouse
button.
May 2003 112 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
3. Highlight the worst path:

a. Bring up the pop-up menu clicking and holding the right mouse button in your
Schematic window.

b. Select Worst Path.

The result is shown below:
May 2003 113 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Note: The automatic architecture selection chose a faster adder to meet timing. (See
also More about Automatic Architecture Selection.)

4. Check which adder was used:

bgx_shell> set_current_module filt4

bgx_shell> report_resources -hier

Figure 4-6 on page 114 shows the resulting resource report.

The tool upsized the adders from RIPPLE to CLA or FCLA on the critical path in
AWDP_partition_2.

Figure 4-6 Resource Report After Optimization
+---+
Arithmetic Resources
Module
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_ADD_0
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_ADD_3
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_ADD_4
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_ADD_00
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_ADD_1
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_partiti
on_2
+--------------+-----------------+---+--------+----+------+-----+---------+
AWDP_ADD_5
+---+

Writing Netlist, Database Files and Report File

1. Write out the Verilog netlist and database.

bg_shell> write_verilog -hierarchical $adb_dir/filter_dp.v
bg_shell> write_adb $adb_dir/filter_dp.adb

2. Write out the results to a report file:

report_timing > $rep_dir/filter_dp.rpt
report_area >> $rep_dir/filter_dp.rpt
report_resources -hier >> $rep_dir/filter_dp.rpt

3. Select File – Exit or type exit in the console to end this BGX session.
May 2003 114 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Examining Traditional Synthesis Results

To examine the results of traditional synthesis, turn to the bg_shell run you started at the
beginning of the tutorial. If it is still running, you either let it go to completion, or you can
interrupt it by clicking on the Stop icon under menu bar.

1. To get the area and speed of the design, enter the following:

bg_shell> report_timing

bg_shell> get_area

From these reports, it is evident that the design has the following specifications:

❑ Speed: 94 MHz

❑ Area: 230393.12 um2

❑ Run Time: approximately 90 minutes (depending on the speed of your machine)

Note: The reported slack is -0.69 ns. Since the design was compiled for 100 MHz, this
translates into a maximum frequency of approximately 94 MHz.

2. Select File – Exit or type exit in the console to end the traditional synthesis session.

Comparing BGX and Traditional Results

Figure 4-7 on page 115 compares the speed and area of these two results.

Figure 4-7 Comparing Results

Comparing these two results, notice that both tools start with the same design and with the
same constraints, and use the same script. By using BuildGates Extreme, you achieved
substantial area, timing, and run-time savings.

These results come to you without the difficulty of manual partitioning, without specialized
datapath knowledge, and without manual intervention in your synthesis process. After
automatically partitioning your design, the BGX tool works to close timing automatically
between datapath and control logic, while applying several highly specialized datapath
optimizations: automatic architecture selection, automatic operator merging, and Wallace
tree optimizations.

Area (um2) Speed

Normal flow 230393.12 94 MHz

DP 185423.52 100 MHz
May 2003 115 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Datapath
Summary

In this session, you

■ Learned about BuildGates Extreme (BGX) datapath features.

■ Compared the quality of results from BuildGates Extreme with the results from a
traditional synthesis run.
May 2003 116 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
5
Getting Started with Low Power
Synthesis

■ Introduction on page 118

■ Objectives on page 118

■ Example Design on page 119

■ Setting Up for This Module on page 119

■ Regular BGX Flow with Power Estimation on page 122

■ BGX LPS Flow on page 123

❑ Setting up Design Environment on page 124

❑ Reading the Synthesis Technology Libraries on page 124

❑ Reading the HDL Models for the Design on page 125

❑ Creating Generic Gate-level Netlist and Exploring Sleep-mode Options at the RTL
Level on page 125

❑ Setting Constraints on page 130

❑ Setting Sleep-Mode and Clock-Gating Options on page 130

❑ Optimizing the Design on page 132

❑ Simulating and Reading the Toggle Count File on page 135

❑ Optimizing the Power on page 137

❑ Analyzing the Results and Generating Reports on page 137

❑ Power Analysis in BuildGates Extreme on page 141

❑ Generating Reports on page 148

❑ Writing Netlist and Database Files on page 148

■ Gate-Level Only Flow on page 149

■ LPS-DFT flow on page 149
May 2003 117 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
■ Summary on page 151

Introduction

Today, low power is emerging as a critical issue in ASIC design. The primary driving factors
are the remarkable success and growth of personal computing devices (portable desktops,
audio- and video-based multimedia products) and wireless communications systems
(personal digital assistants, pagers, and cellular phones). These technologies demand high-
speed computation and complex functionalities, which means low-power consumption is a
crucial design concern.

Another development that emphasizes the need for low-power solutions is the growing
number of large, high-performance designs. Millions of transistors switching at high clock
speeds lead to power consumption problems that can be difficult to solve late in the design
cycle. The high cost associated with packaging and cooling strategies is yet another factor
that makes it imperative to have a seamless low-power methodology.

Because power dissipation is becoming just as important as performance and area, power
analysis and optimization needs to be an integral part of the design methodology. The
Cadence approach with Low-Power Synthesis (LPS) is to address low-power issues early in
the design cycle and fix them automatically during the optimization flow. LPS explores options
for lowering power at the RTL level, but does not make any commitments until the gate level.
Also, all gate-level transformations take into account power, delay, and placement
information. This option lets engineers determine a design’s power dissipation early in the
design process which is a key benefit for chip designers targeting power-sensitive
applications.

Objectives

In this module, you will run the regular BGX flow and the BGX-LPS flow in parallel on the
same design. You will learn more about the

■ LPS features while running the BGX-LPS flow

■ LPS automatic power saving capability when comparing the results of both flows

At the end of this module, the gate-level only LPS flow and LPS DFT flow are briefly
addressed.

Note: This module assumes that you completed Chapter 2, “Getting Started with BuildGates
Synthesis.”
May 2003 118 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Example Design

You will use an FIR filter (shown in Figure 5-1) with the following specifications:

32-Tap
16-bit coefficient
16-bit I/O data

Figure 5-1 FIR Filter Architecture

Setting Up for This Module
Note: We assume that you already copied the data. If not, see Getting Started on page 12.

Required License

You need a BuildGates Extreme (BGX) license to run this module. To save running time you
can run two copies of bgx_shell in parallel, one for the regular flow and one for the LPS
flow. This implies that you need to check out two BGX licenses. You can still complete the
whole flow with only one license, but it will take longer as you need to run two flows one after
the other. Call your sales representative to get demo licenses if needed.

x(n)

16-tap Tapped Delay Line 16-tap Tapped Delay Line

+

x

+

+

+

x

+

+

x x

+

+ y(n)

Accumulator

Filter
Coefficients
May 2003 119 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Ensure Access to a Verilog Simulator

To do any meaningful power optimization, you need to simulate the design. LPS supports all
simulators. You can either use a Cadence® simulator (Cadence® NC-Verilog® simulator, or
Verilog®-XL simulator) or another vendor’s Verilog simulator. In this tutorial, we use the
Verilog-XL simulator.

Note: If you want to use the Verilog-XL simulator, you need to use version 2.7 or higher.

Locate the path to your simulator, type the following command in a UNIX window:

which verilog

If “no verilog” is returned, contact your system administrator to give you the installation
directory to the Verilog simulator and set up the environment accordingly.

Link to the Simulation Library

While running the simulation you need to link to the LPS PLI shared library to capture the
design switching activity during the simulation.

Note: You can skip this step if you call the simulator within the bgx_shell environment.

■ SunOS/Solaris:

setenv LD_LIBRARY_PATH
your_install_path/version/lib/archives/sunos7/sparc:$LD_LIBRARY_PATH

■ HPUX:

setenv SHLIB_PATH
your_install_path/version/lib/archives/hpux11/hppa32:$SHLIB_PATH

■ IBM:

setenv LD_LIBRARY_PATH
your_install_path/version/lib/archives/aix43/ppc32:$LD_LIBRARY_PATH

Required Files

You need the following files when you start the BuildGates-LPS flow:

■ Simulation library

A complete set of Verilog files for the library cells.

■ Synthesis library

A .tlf or .alf file containing either cell-based or arc-based power tables. BGX
supports both the traditional 2-D look-up table and the 3-D look-up table. In case of the
3-D table, the internal power is not only a function of the input slew and output load
capacitance, but also of the sum of the capacitances on the other output pins.
May 2003 120 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
■ Verilog or VHDL netlist, preferably at RTL level.

■ Testbench

Unlike your traditional testbench, which is designed for coverage, you need a testbench
that simulates how the design works in real life. To emphasize power savings, consider
exercising the parts of the design that are used most during power sensitive application.
For example, if you were designing a digital camera, consider emphasizing the photo
taking process and de-emphasizing the save to hard drive process.

■ Constraints

The your_install_path/version/tutorial/RAK/tutorial_lps directory
contains the files needed to run this module and has the following directory structure:

tutorial_lps Root directory

tcl Scripts to run the RAK LPS module

rtl Verilog design modules

lib Synthesis libraries and simulation libraries

rpt Design outputs including timing, area, hierarchy and other
report files

adb Design outputs including netlist and database files

simulation Simulating files and test benches

run_dir Running directory
May 2003 121 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Regular BGX Flow with Power Estimation

You will start a traditional synthesis run with power estimation. Later, you will compare its
results with those of the LPS flow to see the automatic power saving capability of LPS. A
regular BGX flow with power estimation contains these steps:

read_alf # or read_tlf

read_verilog # or read_vhdl

do_build_generic
Set timing constraints

do_optimize write_verilog -hier

Simulate # generates toggle count format (TCF) file
Write netlist and database files
Generate reports and analyze the design

The TCF file recording the switching activities of the circuit will be used by LPS to estimate
the power consumption of the design. For more information about TCF file, refer to Simulating
and Reading the Toggle Count File on page 135.

To execute this flow, follow these steps:

1. Change the current directory to tutorial_lps/run_dir in the directory you created.

2. Start BGX by entering the following command:

unix_shell>bgx_shell -gui -f ../tcl/run_no_lps.tcl -logfile run_no_lps.log
-cmdfile run_no_lps.cmd &

While this process runs in the background, you can start the BGX LPS flow. The sample
script, run_no_lps.tcl, is provided in the tcl directory.
May 2003 122 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
BGX LPS Flow

Note: Colored steps are either LPS-specific or have specific LPS options.

The following sections explain these steps in detail. The Tcl script for this flow,
run_lps.tcl, is provided in the tcl directory.

Read HLD Model for Design

Create Generic Gate-Level Netlist

Set Constraints

do_build_generic -sleep_mode

Explore Sleep Mode

do_optimize -power -stop_for_power_simulation

Explore/Insert Clock Gating
Optimize Design

Write Verilog Netlist

Simulate Design

Read TCF

Optimize Power
do_optimize -power

Decommit Clock-gating, Commit Sleep Mode, Optimize Gate-
level Netlist

Generate Reports

Write Netlist and Database Files

Read Libraries

Set Sleep-Mode and Clock-Gating
Options
May 2003 123 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Setting up Design Environment

1. From the run_dir directory, invoke BuildGates Extreme in graphical user interface
(GUI) mode:

unix_shell>bgx_shell -gui &

2. Set up your design environment by running the following script in the console of the
BuildGates Synthesis window:

bgx_shell>source ../tcl/setup.tcl

The setup.tcl file defines all path variables and has the following content:

set rak_dir ..
set tcl_dir $rak_dir/tcl
set rtl_dir $rak_dir/rtl
set lib_dir $rak_dir/lib
set rep_dir $rak_dir/rpt
set adb_dir $rak_dir/adb
set sim_dir $rak_dir/simulation

Reading the Synthesis Technology Libraries

1. Read in the synthesis technology libraries by running the following script:

bgx_shell>source $tcl_dir/read_lib.tcl

The read_lib.tcl script contains the following statements:

read_tlf $lib_dir/slow_4.3.tlf
read_symbol $lib_dir/slow.sym

2. View the contents of the technology library with the following command:

bgx_shell>report_library

The report_library command reports on the cells in the library, the wireload models,
the operating conditions, and more. Since you only read one library, you do not need to
specify the library name here.

3. Ensure that the design does not map to cells without power characterization with the
following command:

bgx_shell>check_library -power library_pwr.rpt

The check_library command generates a file containing all the cells without power
characterization.

4. Prevent the design from mapping into those cells with the following command:

bgx_shell>foreach i [exec cat library_pwr.rpt] \
{set_cell_property dont_utilize true $i}

This command sets some cell properties on the cells without power characterization.
May 2003 124 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Or you can run the following script which executes steps 3 and 4:

bgx_shell>source $tcl_dir/check_lib.tcl

Reading the HDL Models for the Design

➤ After loading the libraries, read the RTL code for this design:

bgx_shell>source $tcl_dir/read_design.tcl

The read_design.tcl script has the following content:
read_verilog $rtl_dir/filt4.v

Creating Generic Gate-level Netlist and Exploring Sleep-mode Options at
the RTL Level

1. Transform the RTL netlist you just read into a hierarchical, gate-level netlist consisting of
technology- independent logic gates.

bgx_shell>do_build_generic -sleep_mode

The -sleep_mode option of the do_build_generic command tells LPS to explore
areas of the design where power could be saved using the sleep-mode technique.

Note: The sleep-mode logic is only committed during gate-level power optimization
based on timing, area and power.

2. Using the left mouse, click on the + icon next to filt4 to see the hierarchy beneath.

3. Display the schematic generated by do_build_generic by double clicking on top
module filt4 in the Logical browser using the left mouse button.

The schematic viewer window is activated. The schematic is displayed (See Figure 5-2).
May 2003 125 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Figure 5-2 Schematic of Top Module filt4

Note: If you get a zoomed out view of the schematic, use the Zoom Fit icon on the tool
bar under the Schematic tab to fit the schematic in the Schematic window.

4. Select Reports – Sleep Mode Logic Info to list the functional blocks that were marked
as sleep-mode candidates.

The Sleep Mode Information window is displayed.

Zoom Fit Icon
May 2003 126 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
a. Select Hierarchical.

b. Click the Search button to populate the window.

The result is shown in Figure 5-3 on page 127. One sleep-mode candidate
LPS_SleepModeModule_16 was found.

Figure 5-3 Sleep Mode Information Window

c. Click the left mouse button on the sleep-mode candidate in the Sleep Mode
Information window.

The sleep mode module is highlighted in the schematic.
May 2003 127 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
d. Click the right mouse button on the sleep-mode candidate in the Sleep Mode
Information window.

A window with the components of the sleep-mode logic pops up.

e. Click Cancel to close the Sleep Mode Information window.

5. List all instance IDs of candidates for sleep-mode information in the current module.

bgx_shell>get_sleep_mode_instance_list -hier

The result consists of one triplet, where the first number identifies the sleep-mode
module. The second number identifies the data bus. The third number identifies the
enable signal.

If the current module is not filt4 (or round_clip), you will not be able to see the
LPS_SleepModeModule_16. In that case, type set_current_module filt4 and
try again.

Examining RTL Code of the round_clip Module

Examining the output in the console, shows that the sleep mode candidate was added to the
round_clipmodule. Look at the RTL code for the round_clipmodule which is excerpted
from filt4.v under the rtl directory:

module round_clip (clipped, data_out, data_in);
input [34:0] data_in; // <35,4,t>
output [15:0] data_out; // <16,0,t>
output clipped;
wire carry;
wire [14:0] lower;
wire [15:0] upper, cap, rnd;
assign upper = {data_in[34], data_in[29:15]};
assign lower = {data_in[15], data_in[13:0]};
assign carry = (| lower) & data_in[14];
assign rnd = upper + carry;
assign cap = {data_in[34], {15{~data_in[34]}}};
assign clipped = data_in[34] ? (~ (& data_in[33:30])) : (| data_in[33:30]);
assign data_out = clipped ? cap : rnd;

endmodule // round_clip

Look at the last assign statement:

assign data_out = clipped ? cap : rnd;
May 2003 128 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
The output of this module, data_out, is controlled by signal clipped. If clipped is high,
data_out equals cap, otherwise if clipped is low, data_out equals rnd, which is the
output of an adder, as indicated by

assign rnd = upper + carry;

That is a 16 plus 1 bit addition: inputs to the adder are bus upper and wire carry. Whenever
the value of upper or carry changes, the adder calculates the value for signal rnd.
However, the signal rnd is only needed when the signal clipped is low. So LPS sees a
power saving opportunity here and inserts AND gates in front of the adder inputs as shown
in Figure 5-4. The number of additions could potentially drop depending on how often the
input signals toggle and what the probability is that signal clipped is high.

Figure 5-4 LPS power saving opportunity

At this point, LPS has only identified this sleep-mode candidate as an opportunity for sleep
mode. LPS dynamically computes power savings for each opportunity as well as the cost of
implementation—one array of AND gates and two inverters in this example. This dynamic
computation is done considering the simulation-based switching information, the capacitance
of the nets or gates and the constraints in the design. (You will apply constraints in the next
step.) After optimization, only opportunities that actually save power and that do not violate
timing paths are kept.
May 2003 129 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Setting Constraints

1. Set the timing constraints by running the following script.

bgx_shell>source $tcl_dir/constraints.tcl

The constraints.tcl file sets up the ideal clock, binds the clock root to the clock pin,
and sets input and external delays for primary input and output ports. This script has the
following content:

set_current_module filt4
set_top_timing_module filt4

set cyc 10.00
set_clock CLK -period $cyc -waveform "0 [expr $cyc /2]"
set_clock_root -clock CLK [find -port SYS_CLK]
set_clock_insertion_delay 0.3 -pin {SYS_CLK}

proc all_inputs {} {find -port -inputs -no_clocks *}
proc all_outputs {} {find -port -outputs *}
set_input_delay -clock CLK 0.4 [all_inputs]
set_external_delay -clock CLK 0.5 [all_outputs]

set_drive_cell -cell DFFX4 -from_pin CK -pin Q [all_inputs]
set_drive_cell -cell CLKBUFX4 SYS_CLK
set_port_capacitance [expr [get_cell_pin_load -cell DFFX4 -pin D]*4.0] \

[all_outputs]
set_false_path -from [find -port -input reset]

The last command instructs the tool not to optimize any timing path starting from the
input signal reset.

2. Check the validity of the constraints.

bgx_shell>check_timing -detail

No warnings are issued.

3. Check the netlist to make sure there are no problems.

bgx_shell>check_netlist -verbose

All checks come up clean.

Setting Sleep-Mode and Clock-Gating Options

Next, you will check the sleep-mode and clock-gating options.

1. Check the default values of the sleep-mode options.

bgx_shell>get_sleep_mode_options

The get_sleep_mode_options command returns the table shown in Figure 5-5 on
page 131. Only options that are set or for which the tool has defined a default are
reported.
May 2003 130 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Figure 5-5 Default Sleep-mode Options
+-----------------------------+
Sleep Mode Options
Options
----------------+------------
-no_dissolve
-timing_driven
+-----------------------------+

By default, LPS does not dissolve the hierarchy of a sleep-mode module when it is
committed and it commits each sleep mode module only if it does not violate timing.

2. Check the default values of the clock-gating options.

bgx_shell>get_clock_gating_options

The get_clock_gating_options command returns the table shown in Figure 5-6.

Figure 5-6 Default Clock-Gating Options
 +---------------------------------+
 | Clock-Gating Options |
 |---------------------------------|
 | Options | Value |
 |-----------------+---------------|
 | -auto_test_port | false |
 | -control | none |
 | -control_mode | use_test_mode |
 | -control_port | NOT_SET |
 | -domain | all |
 | -force | NOT SET |
 | -gating_style | latch |
 | -ignore | NOT SET |
 | -max_fanout | NOT SET |
 | -minsize | 3 |
 | -no_timing | false |
 | -observe | false |
 | -obs_style | port |
 | -remove_all | false |
 | -rg_dissolve | false |
 | -rg_force | NOT SET |
 | -rg_ignore | NOT SET |
 | -rg_max | 10 |
 | -same_polarity | false |
 | -xor_depth | 5 |
 | -reset | false |
 | -exclude_cells | NOT SET |
 +---------------------------------+

Most options are related to Design for Test (DFT). For more information on how to set some
of these options, refer to Getting Started with Design For Test on page 73. For this module,
you can use default values.
May 2003 131 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Optimizing the Design

1. Map the design to the target technology and insert clock-gating elements.

bgx_shell>do_optimize -power -stop_for_power_simulation

The do_optimize command maps a generic cell netlist to a technology-specific cell
netlist and optimizes the netlist for timing according to the constraints. Logic optimization
includes uniquification, constant propagation, structuring, redundancy removal,
technology mapping, timing-driven optimization, component swapping, buffering of multi-
port nets, and design-rule fixing.

Since you specified stop_for_power_simulation, the tool stops post-mapping
optimization just before power optimization is performed. Up till then LPS only explores
the power saving opportunities. After this point you can run a simulation and read in the
toggle count information. Based on the toggle count information LPS can perform all
types of gate-level transformations to simultaneously optimize power, delay, and area.

Note: Depending on the performance of your machine, the synthesis can run for a while.
You can take this time to read more about the clock-gating techniques used by LPS.
Refer to More about LPS Clock Gating Technique on page 170.

2. Scroll the console back to see what the tool has done so far.

The information shows that BuildGates was working on dissolving instances, duplicating
and structuring modules, propagating constants, removing redundancies, exploring
clock-gating, inserting clock-gating logic, mapping modules, optimizing modules to meet
constraints, fixing design rules, and swapping datapath components.

During clock-gating exploration, LPS identifies all the clock-gating candidates and
creates one gating logic per register bank with the same enable signal.

LPS also creates a dummy module that has only one input port connected to the enable
signal for the clock gating. LPS needs this dummy module to identify the clock-gating
candidates and their corresponding enable functions during decommitment. After gate-
level timing optimization, LPS performs decommitment of the clock-gating logic based on
timing and power information.

3. Examine one register in the schematic viewer to better understand how clock-gating
logic works.

a. In the Logical browser, first click on the + icon in front of filt4, then click on the +icon
in front of instance u1 (module name cf_reg) to expand its hierarchy.

You see a list of 32 register banks.

b. Click on instance r00 (module name reg_16_1) to highlight it.

c. Bring up the pop-up menu by clicking the right mouse button in the Logical browser.
May 2003 132 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
d. Select Open Schematic – New Window from the pop-up menu and release the
right button.

A new Schematic window pops up for the selected instance.

In Figure 5-7, three components were manually highlighted: a latch, a gating cell
(AND gate) and a dummy module, LPS_CG_EN_34_0. The dummy module allows
LPS to mark the design. You can remove it after the final optimization using the
do_remove_cg_dummy_hierarchy command, but once you issue this
command, LPS no longer keeps track of gating instances. Do not issue this
command now!

Figure 5-7 Clock-Gating Logic

Note: The output signal from the gating cell drives all 16 registers in this register bank.

e. Close the Schematic window by clicking on the Close Window icon (red cross).

4. Check how many gating logic circuits exist in this stage.

a. Double click on filt4 in the Logical browser to make it the current module.
May 2003 133 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
b. Select Reports – Clock Gating Logic Info.

The Clock Gating Information window is displayed.

c. Select Hierarchical.

d. Click the Search button to populate the window.

The result is shown in Figure 5-8.

Figure 5-8 Clock-Gating Information Window

e. Click left on any of the gating instance or component of the gating instance.

The instance is highlighted on the schematic.

f. Click right on the same gating instance or component of the gating instance.

The hierarchical path is displayed in the clock-gating information window.

g. Click Cancel to close the Clock Gating Information window.
May 2003 134 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
5. List the information on the clock-gating candidates in the console.

bgx_shell>set_current_module filt4
bgx_shell>get_gating_instance_list -hier

To make the output a little bit easier to read, you can enter:

bgx_shell>foreach i [get_gating_instance_list -hier] \
{puts [get_names $i]}

This returns a number of lines similar to the following one:

SYS_CLK LPS_CG_EN_1__0 lock i_2_LPS_CG_GATING_1

The first entry identifies the clock domain. The second one identifies the dummy module,
the third one identifies the enable signal and the last entry identifies the gating instance.

Simulating and Reading the Toggle Count File

To do any meaningful power optimization, you need toggle count (or gate-level switching
activity) information and to create this information in a Toggle Count Format (TCF), you must
simulate the gate-level netlist.

1. Modify the testbench to create a TCF file.

Note: For this module, a modified testbench called test_bench_0.v is provided in the
simulation directory, just for demonstration purpose. The test vectors are randomly
generated.

You need to modify your testbench to use LPS Program Language Interface (PLI) tasks.
The PLI tasks are provided in a shared library (which works fine with most Verilog
simulators):

your_install_path/version/lib/archives/os/platform/lps_pli.so

a. At the beginning of the time slot you want to start the capturing, insert:

$toggle_count(instance1, instance2 &);

b. To stop recording the TCF file and specify the TCF file name, enter the following
command to create a flat TCF file:

$toggle_count_report_flat(tcf_file_name, hier_top);

For a hierarchical TCF file, use the next routine which requires a hierarchical netlist:

$toggle_count_report_hier(tcf_file_name, hier_top);

After the simulation, a TCF file tcf_file_name is created with the toggle count
information of the netlist.

The closer the testing vectors in the testbench represent the input vectors in a real
situation, the more accurate the LPS results will be.
May 2003 135 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Note: If you are a VHDL user, refer to “Generating TCF Files from a VHDL-Based
Design” in Low Power Synthesis for BuildGates Synthesis and Cadence PKS.

2. Create the gate-level Verilog netlist needed for simulation.

bgx_shell>set_current_module filt4
bgx_shell>write_verilog -hier $sim_dir/filt4_lps.v

You see a warning message “Verilog continuous assignment written.” This is caused by
assign statements dumped in the netlist. You can safely ignore that warning.

3. Start the simulation.

bgx_shell>verilog -f $sim_dir/sim_lps.opt

The sim_lps.opt file has the following content:

-v ../lib/tsmc18.v
+loadpli1=lps_pli:lps_bootstrap
+toggle
+libext+.v
+notimingchecks
../simulation/test_bench_lps.v
../simulation/filt4_lps.v

The second line loads the LPS PLI shared library.

The notimingchecks switch turns off setup and hold time checks by the simulator. At
this stage, the netlist is not fully timing-optimized yet and might contain some setup or
hold time violations. If the Verilog simulator catches those violations, the simulation
results might not be reliable, so you want to turn off the setup and hold time checks.

You see some warnings about too few port connections on gating latches, which you can
ignore. The reason is that the latches have inverted outputs, which the dumped netlist
did not characterize.

Note: While the simulation is running, you can read More about TCF Files on page 173.

4. Read the TCF file.

bgx_shell>read_tcf power_lps.tcf -scale 0.01

The command contains a scale factor. In the gate-level simulation you actually simulate
with a clock 100 times slower to get a reliable result, which is a commonly used technique
in gate-level circuit simulation. So when you read the TCF file in, you need to add a scale
to adjust the toggle rate back.

Note: You can also read a TCF file from the GUI by selecting File – Open.
May 2003 136 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Optimizing the Power

Start the power optimization.

bgx_shell>do_optimize -power

In this final step of the basic LPS flow, BGX performs three tasks with one command:

■ Decommitting clock-gating logic

Note: LPS only decommits clock-gating instances if the proposed clock-gating logic
does not save power or if it causes a timing violation.

■ Committing sleep-mode logic

Note: LPS only commits sleep-mode logic if the sleep-mode logic saves power and does
not cause a timing violation.

■ Performing gate-level power transformations

During gate-level power optimization, LPS performs the following transformations to
minimize the power dissipation in the design:

❑ Gate Sizing

❑ Pin Swapping

❑ Buffer Removal

❑ Gate Merging

❑ Slew Optimization

❑ Logic Restructuring

All these transformations are done automatically, so you cannot call any transformation
individually.

Note: Depending on the performance of your machine, the optimization can run for a while.
You can take this time to read More about Gate-Level Power Optimization on page 174.

Analyzing the Results and Generating Reports

1. Check the overall power dissipated in the current module.

bgx_shell>get_power

2. Get a further break down on the power dissipation.

bgx_shell>report_power

The result is shown in Figure 5-9 on page 138.
May 2003 137 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Figure 5-9 Power Report
+---+
| Report | report_power |
|----------------------------+----------------------|
| Options | |
+----------------------------+----------------------+
Date	20030527.161700
Tool	bgx_shell
Release	v5.10-s061
Version	May 23 2003 12:12:42
+----------------------------+----------------------+	
Module	filt4
Timing Operating Condition	slow
Power Operating Library	Typical
Process	1.000000
Voltage	1.620000
Temperature	125.000000
time unit	1.00 ns
capacitance unit	1.00 pF
power unit	1.00mW
+---+	
+---+	
filt4	
---+	
--------------------+----------+---------+----------+------------+----------+----------	
Module	Instance
--------------------+----------+---------+----------+------------+----------+----------	
filt4	
+---+

where

❑ Internal Cell Power is the total internal cell power for the current module (in
mW).

❑ Leakage Power is the total leakage power for the current module (in mW).

❑ Net Power is the net power (in mW) of all nets in the current module.

❑ Total Power is the total power dissipated by the current module (in mW).

Note: To report the power usage on a none hierarchical instance, use the
report_cell_instance -power command.

3. Scroll back the console to see what the tool has done to reduce power.

LPS first tried to meet the timing, then worked on clock gating committing or
decommitting, then sleep mode commitment. Finally, LPS worked on gate-level
optimization with the various techniques discussed in More about Gate-Level Power
Optimization on page 174.

...
Info: Commiting clock gating of flip-flops < q_reg_0 q_reg_1 q_reg_10

q_reg_11 q_reg_12 q_reg_13 q_reg_14 q_reg_15 q_reg_2 q_reg_3
q_reg_4 q_reg_5 q_reg_6 q_reg_7 q_reg_8 q_reg_9 > in module
filt4/u4. The estimated power savings is 12.44%. <POPT-229>.
May 2003 138 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
This message indicates that clock-gating logic in register bank u4 got committed.

To report power on a selected object (net in this example), follow these steps:

1. In the Logical browser, double-click on instance u4 to display its schematic in the
Schematic window.

2. Click on the search icon (similar to a camera) in the Schematic window.

A Search Objects window pops up as shown in Figure 5-10 on page 139.

3. Select Net under Object Type and type lock in the Search Text.

4. Click Search in the Search Objects window.

You can see the net lock in the Found Objects window.

Figure 5-10 Search for signal in Schematic Window
May 2003 139 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
5. Double-click on lock.

The net lock is now highlighted in red in the Schematic window.

6. Click right on the net lock in the Schematic window to bring up the Net pop-up menu.

7. Select Power in the pop up menu.

You get the following line in the console.

Net power (lock): prob(0.06250*), toggle rate(0.02500*), cap(0.25276),
power(8.290000 uW) <NAVIGATES-106>.

The power report for the selected net lists the signal probability, the toggle rate (a ratio
of toggle count over the total simulation time), the loading capacitance, and the total
power dissipated on this net. The asterisk (*) indicates that the value comes from the
TCF file, while a non * value would indicate that the value was computed.

You can get similar information by entering the following commands:

bgx_shell>set_current_module filt4
bgx_shell>report_power -net u4/lock

Figure 5-11 shows the result. It reports the same information except that instead of reporting
toggle rate, it uses the term transition density, which is the same as the toggle rate.

Figure 5-11 Report Power on a Net
+---+
| filt4 |
|---+
| Module | Net | Probability | Trans. Den. | Capacitance | Power(mW) |
|---+
| u4 | lock | *0.0625 | 0.0250 | 0.2527 | 8.292e-03 |
+---+

From the output of the do_optimize -power command, you can also see that one sleep
mode logic got committed. If you report_power -net on signal clipped in instance u6,
you will see the signal probability is about 0.29. As explained earlier in Examining RTL Code
of the round_clip Module on page 128, the adder is shut off whenever the signal clipped is
high, based on the following RTL code:

Assign data_out = clipped ? cap: rnd;

In this case, 29 percent of the time the signal clipped is high and LPS figured that the power
consumption would be smaller if the sleep mode module got committed.
May 2003 140 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Power Analysis in BuildGates Extreme

You will use the following power analysis features offered by LPS.

■ Getting Statistical Reports on page 141

■ Viewing The Power Level Legend on page 143

■ Annotating Power on page 144

■ Adding Color on page 145

■ Displaying an Instance or Net Power Pie Chart on page 146

Getting Statistical Reports

To get the statistical report on the probability (prod), enter the following command:

bgx_shell> report_tc_stats -prob

To get the statistical report on the transition density (td), enter the following command:

bgx_shell> report_tc_stats -td

Figure 5-12 shows the report for the transition density. The one for signal probability is similar.

Figure 5-12 Statistical Report on Transition Density
+--------------------------------+
| Transition Density (td) |
Statistics For Nets
td
-------------------+------------
0.000000-0.000050
+-------------------+------------+
0.000050-0.000100
+-------------------+------------+
0.000100-0.000500
+-------------------+------------+
0.000500-0.001000
+-------------------+------------+
0.001000-0.005000
+-------------------+------------+
0.005000-0.010000
+-------------------+------------+
0.010000-0.050000
+-------------------+------------+
0.050000-0.100000
+-------------------+------------+
0.100000-0.500000
+-------------------+------------+
0.500000->
+--------------------------------+
May 2003 141 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
You can also get a graphical statistical report that contains the switching activity on individual
nets, as well as the overall distribution of the switching activity for a particular instance.

The toggle count histogram lets you view the probability distribution or toggle count
information on a per net basis.

To display a toggle rate histogram, follow these steps:

1. Make sure the current module is set to filt4.

2. Select Reports – Power Toggle Rate Histogram.

The Toggle Rate Histogram window appears.

3. In the Toggle Rate Histogram window, select the Compute Histogram icon as shown in
Figure 5-13.

The Histogram shown in Figure 5-13 appears.

Figure 5-13 Toggle Rate Histogram

4. Close the Toggle Rate Histogram window by clicking on the Close Window icon.

Compute Histogram icon
May 2003 142 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Viewing The Power Level Legend

The Power Level Legend displays the colors used for the different power levels when
annotating the power in the Schematic window or the Logical browser.

To display the Power Level Legend, select View – Power Level Legend. You see a window
similar to the one shown in Figure 5-14.

Figure 5-14 Power Level Legend

The Power Level Legend has three columns:

■ Level displays the ten power levels from 0 (the lowest) to 9 (the highest).

■ Color displays the colors assigned to each level.

■ Value displays the values assigned to each power level. By default, level 0 is 00.00% and
level 9 is 20.00%.

To change the power level values and colors, select Edit – Preferences – Colors, and
select the Power Levels tab.
May 2003 143 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Annotating Power

To annotate the power next to the instance or names in the schematic, follow these steps:

1. Select Edit – Preferences – Schematic.

The Schematic Preferences window appears.

2. Select the Highlighting tab.

3. Select Power under Power Properties.

4. Click OK.

5. Bring up the pop-up menu by clicking the right mouse button in the Schematic window.

6. Select Annotate Power – Instance or select Worst Power.

❑ Annotate Instance Power displays the power value below each instance in the
schematic view. If you have a flat netlist, instance power is the sum of internal power
and leakage power. For a hierarchical netlist, instance power is the sum of internal
and leakage power of primitive cells in the hierarchy and power consumed by the
nets driven by the cells.

Figure 5-15 on page 145 shows the power consumption annotated for the
instances. (You should zoom in several times to see this.)
May 2003 144 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
❑ Worst Power highlights (in the Schematic window) the specified number of objects
that contain the worst power values for the current module.

Figure 5-15 Annotated Power in Schematic

Adding Color

You can use color to display the power characteristics in the Logical browser and schematic.

To easier see the colorization, make sure to display the schematic on one page.

1. Select Edit – Preferences – Schematic.

The Schematic Preferences window appears

2. Select the Paging tab.

3. Set Page Size to None.

4. Click OK.

power numbers for instances
May 2003 145 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
To add color to your schematic, follow these steps:

1. Bring up the pop-up menu by clicking the right mouse button in the Schematic window.

2. Select Colorize Power Levels.

The schematic is annotated with different colors. Figure 5-16 shows a zoomed -in part of
the schematic. For the meaning of the colors, see Viewing The Power Level Legend.

Figure 5-16 Colorize Power levels

Displaying an Instance or Net Power Pie Chart

To display an instance or net power pie chart, follow these steps:

1. Bring up the Commands pop-up menu by clicking the right mouse button in the
Schematic window.

2. Select Power Piecharts – Instance (or Net).

The Instance Power Usage window shown in Figure 5-17 on page 147 appears. This
window displays a pie chart of up to ten instances that consume the most power and the
remainder. The Net Power Usage window shown in Figure 5-18 on page 147 displays a
pie chart of up to ten nets that dissipate the most power and the remainder.
May 2003 146 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Figure 5-17 Instance Power Pie Chart

Figure 5-18 Net Power Pie Chart

3. Select Close on the Instance Power Usage and the Net Power Usage windows.
May 2003 147 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Generating Reports

1. Write out the design and the reports for timing, area, resources as well as power.

bgx_shell>write_adb -hier $adb_dir/filter_lps.adb
bgx_shell>write_verilog -hier $adb_dir/filter_lps.v
bgx_shell>report_timing > $rep_dir/filter_lps.rpt
bgx_shell>report_area >> $rep_dir/filter_lps.rpt
bgx_shell>report_resources -hier >> $rep_dir/filter_lps.rpt
bgx_shell>report_power >> $rep_dir/filter_lps.rpt

2. Compare the numbers you see in the filter_lps.rpt file to the ones in the
filter_no_lps.rpt file.

Figure 5-19 Results Comparison with Normal Flow

Note: Your results may differ from the ones shown here because of the randomly
generated test vectors in the testbench used for the power simulation.

Writing Netlist and Database Files

1. Write out the Verilog netlist and database.

bg_shell> write_adb -hierarchical $adb_dir/filter_lps.adb
bg_shell> write_verilog -hierarchical $adb_dir/filter_lps.v

2. Select File – Exit or type exit in the console to end this session.

That concludes the regular LPS flow.

Tip

For maximum power accuracy, you should resimulate your design after the final
do_optimize -power command.

The same applies to the sleep-mode only flow, clock-gating only flow and gate-level only
flow, which are described in the next sections. For this tutorial, we did not rerun the
simulation to save on run time.

Area (um2) Worst slack (ns) Power (mW)

Normal flow 179449.31 +0.01 343.1023

LPS 165904.20 -0.00 234.1955
May 2003 148 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
Gate-Level Only Flow

Although LPS works best when starting from RTL, sometimes you might want to apply LPS
to gate-level netlists only.

Sample Script Starting from a Gate-Level Netlist
read_alf # or read_tlf
read_verilog # or read_vhdl
do_build_generic
Simulate
read_tcf
Set timing constraints
do_optimize -power

Sample Script Starting from a Timing-Optimized Netlist
set_global depth_for_fast_slew_prop 2
read_alf # or read_tlf
read_verilog # or read_vhdl
do_build_generic
Simulate
read_tcf
Set timing constraints
do_xform_optimize_power -gate_level

Note: The value for the global depth_for_fast_slew_prop is set to 2 to prevent slack
from getting worse.

The run_gate.tcl script (which is provided in the tcl directory) starts with a timing-
optimized netlist for this filter design and allows you to run this flow.

LPS-DFT flow

The following is a sample DFT-LPS observability flow script:

read_alf # or read_tlf
read_verilog # or read_vhdl
set_global dft_scan_path_connect tieback
do_build_generic -sleep_mode
set timing constraints
check_dft_rules
set_sleep_mode_options
set_clock_gating_options
do_optimize -power -stop_before mapping
check_dft_rules
do_optimize -power -stop_for_power_simulation
simulate
read_tcf
do_optimize -power
set_global dft_scan_path_connect chain
do_xform_connect_scan
May 2003 149 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
The run_lps_dft.tcl script (which is included in the tcl directory) allows you to run this
flow on the filt4 design. LPS can add controllability and observability to the design and is
fully compatible with DFT. BuildGates actually allows you to make a design with multiple clock
domains observable. For more information about using DFT, see Design for Test (DFT)
Using BuildGates Synthesis and Cadence PKS.

Figure 5-20 illustrates how LPS adds a control port and observability circuit to a register.

Figure 5-20 LPS Observability Circuitry

You can add a control port and observability circuit to a register, using the following single
command:

bgx_shell>set_clock_gating_options -control post_seq_element \
-auto_test_port true \
-observe true \
-domain clock_net \
-obs_style port

control post_seq_element adds the controllability logic after the sequential element. In the
circuit in Figure 5-20, the OR gate is inserted after the latch.

-auto_test_port creates a test port in the top module. If you do not want an additional
port in your design, you can either include the observability register in a scan chain or share
the test ports with functional input/output port.
May 2003 150 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
-observe makes all gated signals observable. Each of the gating signals is added to an
XOR tree and the output of the XOR tree is connected to either a port or observability register.
In this case, a port will be used since you specified -obs_style port.

-domain groups gating signals driven by the same clock signal under DFT settings.

-obs_style creates a port in the top module for each observability domain and its logic is
connected to this port through an XOR tree.

Summary

In this session, you

■ Became familiar with the LPS design flow which provides power estimation, and
optimization techniques that consider timing constraints.

■ Learned that LPS makes all power decisions based on actual power computations rather
than rule based decisions.

■ Learned that LPS minimizes the power by committing the RTL transformations and
performing gate-level power optimizations while satisfying the timing constraints

■ Learned various techniques to analyze the power saving results.

■ Received an introduction to the DFT-LPS flow
May 2003 151 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
Getting Started with Low Power Synthesis
May 2003 152 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
A
More about BuildGates Synthesis

■ More about Optimizing the Design on page 154

■ More about Timing Reports on page 156
May 2003 153 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about BuildGates Synthesis
More about Optimizing the Design

Top-Down Optimization

In top-down design flow, the designer sets the constraints at the top level, and optimization is
performed from the top level without first individually optimizing lower-level modules. Top-
down flow is traditionally used to optimize smaller designs. However, BuildGates Synthesis
has much higher capacity. Compared to other tools, it can handle much larger designs top
down. You can easily do top-down optimization on one million gate designs. BuildGates
Synthesis top-down flow is very easy to use, and it doesn't require complicated scripting and
typically produces a better quality of results (QOR).

Bottom-Up Optimization

In the bottom-up optimization approach, lower-level modules are first optimized individually
with constraints derived from top-level constraints. These optimized lower-level modules are
then “stitched together” and marked dont_modify. Then, the next level of the hierarchy is
optimized until all levels including the top level are optimized. The process of deriving lower-
level constraints from top-level constraints is commonly referred to as time-budgeting. The
do_time_budget command in BuildGates appropriately splits combinational delay
requirements across module boundaries based on the number of levels of logic and
compressibility of the logic. Compared to other tools, the BuildGates Synthesis time
budgeting process involves fewer iterations and requires less scripting time from the user.

More on do_optimize

The do_optimize command is the simplest way to optimize the design. It applies to the
hierarchy in and under the current module, as set by the set_current_module command.
Depending upon the state of the design database, logic optimization will include some or all
of these steps: uniquification, constant propagation, structuring, redundancy removal,
technology mapping, timing-driven optimization, buffering of multiport nets, and design-rule
fixing. All of these steps can be run individually or as a subset using a unique concept called
transforms. These transforms have a prefix of do_xform_. Transforms are a very powerful
means of customizing your optimization flow. Figure A-1 on page 154 shows the
do_optimize flow.

Figure A-1 do_optimize Flow
May 2003 154 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about BuildGates Synthesis
Return to do_optimize Info Messages on page 43 for more information on the messages
generated by do_optimize.
May 2003 155 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about BuildGates Synthesis
More about Timing Reports

Analyzing Simultaneous Best Case and Worst Case Analysis

Setup checks are performed using worst case PVT corner(s) while hold checks are
performed using best case operating corner(s). In the simplest of the cases, you specify two
PVT corners (best and worst) and setup, hold checks are done as mentioned.

There are several ways to set up BuildGates for simultaneous best case, worst case
analyses.

Example for Best Case-Worst Case Analysis Using One Library and Two Operating Conditions

set_operating_condition -pvt min bccombest
set_operating_condition -pvt max wccomworst

set_global pvt_early_path min
set_global pvt_late_path max
set_global timing_analysis_type bc_wc

In this case, setup checks are performed using the worst case operating condition and the
hold checks are performed using the best case operating condition.

Example for Best Case-Worst Case Analysis Using Two Libraries and Two Operating Conditions

read_alf -min min_lib -max max_lib -name merged_library_name

set_operating_condition -library min_lib -pvt min bccom
set_operating_condition -library max_lib -pvt max wccom

set_global pvt_early_path min
set_global pvt_late_path max
set_global timing_analysis_type bc_wc

Setup checks are performed using the worst-case operating condition. The worst-case delays
are picked from max_lib and scaled appropriately for the worst operating condition.
Similarly, the hold checks are performed using the best-case operating condition. The best-
case delays are picked from the min_lib library and scaled appropriately for the best
operating condition.

Return to Generating Area Reports on page 50.
May 2003 156 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
B
More about Datapath

■ More about Operator Merging on page 158

■ More about Automatic Architecture Selection on page 161

■ More about the AmbitWare Library on page 163

■ More about Extended Languages on page 166
May 2003 157 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
More about Operator Merging

The goal of the BGX datapath feature is to provide powerful optimization of datapath streams
and components, but in a standard, easy to use synthesis flow, and with automatic timing
closure between datapath and control logic. After automatically partitioning the datapath and
control logic, several powerful datapath techniques are applied to produce a handcrafted-
quality result. These include operator merging, automatic architecture selection, and
architecture refinement techniques. For details on how each of these features work, refer to
Datapath for BuildGates Synthesis and Cadence PKS.

Operator merging is a powerful technique that eliminates redundancies that naturally exist
between sequentially connected discrete datapath components. It will improve both speed
and area QOR. In general terms, what operator merging does is first locate a datapath
component (one of 13 functions including arithmetic and comparisons).

Next, it reads upstream and downstream from that component and locates other sequentially
connected components. Sequentially connected datapath components have naturally
occurring redundancies and lend themselves well to optimization.

Finally, operator merging groups these components, determines their function, and replaces
them with a custom build component with the same function. This custom built component
has several key features that make it smaller and faster than the previous discrete
components.

For instance, in this example, each discrete component in the original design has a carry
propagate adder (CPA): See Figure B-1.

Figure B-1 Carry Propagate Adder (Ripple Adder)

The most basic CPA is a ripple adder (shown). The ripple adder has the disadvantage that
the critical path is dependent on the bit width because it follows the ripple action from the
least significant bit (LSB) to the most significant bit (MSB). Thus, a 128-bit graphics controller,
whose library has full adders with 0.5 ns of delay would be limited to a speed of 64 ns or
May 2003 158 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
15.6 MHz if a ripple adder was used. The disadvantage of having CPAs is that, if they are in
a timing critical path it is very expensive (in terms of area) to speed them up. Off the critical
path, it is no problem to go with a ripple adder because it is small.

Operator merging solves this problem by converting each of the intermediate CPA adders to
a format known as 3:2 compression illustrated by Figure B-2.

Figure B-2 Compression

The top adder is in 3:2 compression and the one below is a traditional CPA adder. Notice that
the primary inputs of the first adder have been used, including the carry bit for addition. Also
notice that the carry bit was passed to a downstream adder. 3:2 compression has the same
number of components and does the same amount of computation—it just does it in a
different order. By changing the order of the computation, the 3:2 compression improves the
speed of the path.

After converting over each of the intermediate adders to 3:2 format, operator merging adds
these 3:2 adders to a Wallace Tree. The second technique that operator merging applies is a
Wallace Tree optimization. Through this optimization, the tool orders the inputs to the Wallace
Tree according to the arrival times. This also includes streamlining the critical path to the
output of the Wallace Tree. Effectively, this means that the critical path can almost bypass
the adders that were previously in its path. Once again, this substantially improves the speed
of the path. Figure B-3 on page 160 shows an example diagram of a Wallace Tree:
May 2003 159 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
Figure B-3 Wallace Tree

The last step in the operator merging technique is to select a final adder for this custom-built
module that is just large enough to meet the speed requirement of the design. Quite often, so
much improvement is made with 3:2 compression and Wallace Tree optimization that smaller
adders can be used. This feature, in conjunction with the elimination of slow CPA adders from
the critical path, results in area savings for the design as well as increased speed.

Note: Operator merging works best if you do not include a lot of hierarchy between datapath
components, because the tool defaults to preserving a user-defined hierarchy. Therefore, do
not place each multiplier in your design in a module by itself. Operator merging only applies
to inferred components, not to gate level netlists or to instantiated components.

Return to Operator Merging on page 108.
May 2003 160 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
More about Automatic Architecture Selection

Automatic Architecture Selection (AAS) is a technique that automatically selects the correct
architectures for your adders and multipliers in your design.

First it looks at the timing context of the module. For example, off the critical path, area-
optimized adders are selected. On the critical path, adder size and speed is experimentally
increased until timing is met or the largest adder is used.

Next, AAS looks at the bit-width context and library availability when selecting architectures.
For example, for multipliers, BGX considers the bit-width of the operands to determine if it
makes sense to build a booth-encoded or non-booth multiplier. Also, it tries to use specialized
cells in the library, such as booth cells or 4:2 compression cells. If those are not available, the
tool builds the cells it needs. In another example, the tool uses a square instead of a multiplier
if it finds that the multiplier and multiplicand are the same vector.

The AAS technique is applied to every datapath operator in your design, including the inferred
and instantiated operators, as well as the customized operator-merged components. For
more on AAS, refer to the Datapath for BuildGates Synthesis and Cadence PKS.

The tool also does automatic timing-driven implementation refinement. For example, if all
inputs have the same arrive time, the tool may implement what is shown in Figure B-4. This
reduces the levels of logic from input to output and should lead to the best timing. However,
if the input arrival time is skewed, as show in Figure B-5, the software adjusts the order of
addition accordingly, from iteration to iteration, to achieve the best timing.

Figure B-4 Timing-Driven Implementation Refinement with Uniform Arrival Time
May 2003 161 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
Figure B-5 Timing-driven Implementation Refinement with Skewed Arrival Time

If this adder tree is part of a bigger design and the input skew must be derived from the
surrounding logic, it is hard to manually predict the skew and decide the configuration and
order of the adder tree. An adder tree like this can be found as part of the carrysave reduction
tree inside of a multiplier, where timing from the surrounding logic is very difficult to calculate
manually. The software is better equipped for the job because it can calculate the timing
information dynamically.

Return to Generating Reports on page 111.
May 2003 162 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
More about the AmbitWare Library

Another feature of the BGX datapath offering is the free AmbitWare component library. This
library contains many of the popular datapath components that are used in complex
networking, multi-media, DSP, and processor designs today.

BuildGates Synthesis comes with three pre-defined AmbitWare libraries that provide both
synthesis and simulation models of all of the components:

■ AmbitWare Complex Arithmetic Library (AWARITH)—Defines complex arithmetic
functions in RTL that can be instantiated in the source RTL. For example, a combined
incrementer and decrementer, multiply accumulators, pipelined multipliers, and vector
adders.

■ AmbitWare Complex Logical Library (AWLOGIC)—Defines complex logic functions that
can be instantiated in the source RTL, for example, arithmetic and logical shifters,
rotaters, encoders and decoders.

■ AmbitWare Sequential Logic Library (AWSEQ)—Defines complex sequential logic
functions that can be instantiated in the source RTL. For example, a reset-enable flip-
flop, and a n-tap shift register.

The three AmbitWare libraries use the IP model by containing the encrypted models of
components. The synthesis models of the components are defined in Verilog or VHDL RTL,
the simulation models of the components are defined in Verilog and VHDL. The components
are then decrypted, synthesized and optimized in the context of the design.

Below are some examples:

■ Pipelined Multiplier

■ Multiply-Accumulate (MAC)

■ Vector Add

■ Comparator

■ Square

■ Combinational Divider with Remainder

■ Barrel Shifter

■ Programmable Incrementer/Decrementer

■ Programmable Adder/Subtractor

■ Absolute Value
May 2003 163 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
■ Priority Encoder/Decoder

■ Rotate Left/Right

■ Generalized Sum of Products

■ Saturator

■ Rounder

■ Overflow Detector

■ Blender

■ Universal Multiplexer

■ Register with Reset and Enable

The way to access these components is through instantiation, which involves specifying the
component parameters and mapping the ports. Figure B-6 shows an example.

Figure B-6 Instantiation of a Pipeline Multiplier

The port map is shown for a pipeline multiplier. Each of the components comes with a
simulation model as well several examples of how to use these components (see the
AmbitWare Component Reference).

Each component used from the library is custom built for the particular usage. The
construction is similar to the optimizations done on operator-merged components. For
example, the final adders in the pipeline multiplier above are selected based on the timing
context of the design. It is important to note, however, that instantiated components are not
eligible for operator merging.

module fun (A, B, TC, CLK, Y);

input [8:0] A;

input [6:0] B;

input TC; // 0 if unsigned, 1 if signed

input CLK;

output [15:0] Y;

// 9x7, 1 pipeline stage added

AWARITH_PIPEMULT # (9,7,1) U0

(.A(A), .B(B), .TC(TC), .CLK(CLK), .Z(Y));

endmodule
May 2003 164 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
Inference Verses Instantiation

For several datapath components, you have the option to infer them or instantiate them from
the library (see Figure B-7). This is similar to Synopsys. You could use y = a+b; or you could
instantiate an adder DW01_ADD (.A (A)...) and so on.

Figure B-7 Difference between Instantiation and Inference

For the most part, with BGX, the result will be the same for inference as with instantiate, with
the exception that instantiated components are not eligible for operator merging. Because
operator merging offers improved QOR, you should probably use inference whenever
possible. See the Datapath for BuildGates Synthesis and Cadence PKS for details.

Return to Introduction to BGX Datapath on page 100.

// The following is an inference to an adder:

y = a + 1;

// This is an instantiation of an incrementer:

AWARITH_INCDEC #(width,0) U0(.A(a), .DEC(1’b0), .Z(y));
May 2003 165 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
More about Extended Languages

The following is the relationship between various Verilog languages:

■ Verilog-2001 (originally named Verilog-2000) is a superset of Verilog-1995.

■ Verilog-DP is a superset of Verilog-2001.

■ Verilog-1995 and Verilog-2001 are both IEEE standards.

BGX supports all three versions. Verilog 2001 and Verilog-DP are purely additive extensions
of Verilog-95. This means that you do not have to convert your design over to take advantage
of the new features. Verilog-2001 contains several enhancements to the Verilog-95, which
makes designing with Verilog easier. Of particular interest are the generate function and the
signed data type.

Previously, in Verilog-95, sign extension was a manual effort. It was fairly laborious and
somewhat cryptic. The truncation and part-select involved in this created some limitations for
advanced datapath engines. By supporting the signed data type, these limitations are lifted
and the code becomes much cleaner. Moreover, if your design uses only the unsigned data
type, BGX can accomplish the same quality of results as using signed data type, because it
understands the signed nature behind the RTL coding.

Verilog-DP contains several datapath specific enhancements to Verilog-2001. Unlike MCL, a
proprietary language from Synopsys, Cadence has asked the IEEE to approve Verilog-DP as
a standard. Also there is another salient difference: Verilog-DP is purely additive—you do not
have to re-code your design to take advantage of the features it offers. Simply use your design
as it exists today and change only the parts where you want to take advantage of the new
features.

Here is a list of some of the compelling features of Verilog-DP:

■ New signal attributes and querying functions:

❑ Signed (Verilog 2001)

❑ carrysave (via pragma)

❑ Signal attribute querying functions ($size, $is_signed, $low, $high)

■ Attribute inheritance

❑ Signal attributes can be deferred and inherited from the parent module via signal
connection

❑ Allows highly parameterized designs without explicit parameters
May 2003 166 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
■ Explicit replication and conditional compilation

❑ for, if and case (compatible with Verilog 2001)

■ Array Signals and Operations

❑ Array signals and I/O ports

❑ Array operations: vector inner-product, vector-matrix product and other linear
algebra operations

❑ Array initialization, flattening and unflattening functions

■ New Datapath Primitives

❑ Succinct representation and improved QOR

❑ $blend (linear interpolation), $abs, $sgnmult, $lead0, $lead1, $sat,
$rotatel, $rotater, $iroundmult, $itruncmult

Return to Required Files on page 102.
May 2003 167 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Datapath
May 2003 168 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
C
More about Low Power Synthesis

■ More about LPS Clock Gating Technique on page 170

■ More about TCF Files on page 173

■ More about Gate-Level Power Optimization on page 174
May 2003 169 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
More about LPS Clock Gating Technique

Depending on the performance of your machine, the synthesis can run for a while. You can
take this time to read more about the clock-gating techniques used by LPS.

In LPS, clock-gating consists of the following two steps:

1. Exploration and insertion:

LPS starts with identifying the set of registers for clock gating and the periods of inactivity
in those registers.

Next, LPS inserts gating logic for clocks in the inactive periods identified during the
exploration phase.

2. Commitment

During this phase, LPS commits gating logic based on power savings, performs timing
checks for the setup and hold times of the gated clocks, and removes gating logic where
timing constraints are violated or if there is no possible power savings.

Even though data is loaded into registers very infrequently in many designs, the clock signal
continues to toggle at every clock cycle. Often, the clock signal also drives a large capacitive
load, making clock signals a major source of dynamic power dissipation.

Gating a group of flip-flops that are enabled by the same control signal reduces unnecessary
clock toggles.

By using clock gating, power is not consumed during the idle period when the register is shut
off by the gating function. Also, the logic of the enable circuitry on the data pin in the original
design is removed which saves power.

For example, consider the following Verilog module excerpted from the filt4.v file.

module reg_16 (clk, lock, set, d, q);
input clk, lock, set;
input [15:0] d;
output [15:0] q;
reg [15:0] q;
always @ (posedge clk or posedge set)
begin

if (set == 1’b1)
begin

q <= 16’b0;
end
else
begin

if (lock == 1’b0)
begin

q <= d;
end
May 2003 170 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
end
end

endmodule

reg_16 is register bank with an enable signal ~lock. Figure C-1 illustrates how clock gating
works to reduce power.

Figure C-1 Clock-Gating Example

Instead of adding a MUX in front of each data input of every register, LPS gates the clock with
an AND gate to drive the entire register bank. You can control the number of fanouts that the
clock-gating cell output can drive using the set_clock_gating_options -max_fanout
command. If -max_fanout is set to 3 and 6 fanouts are required, LPS clones the gating cell.

Figure C-1 on page 171 also shows that a latch is inserted before the AND. This latch is used
to eliminate any possible clipping on the gated clock signal. Without the latch, a spike on
signal lock can propagate through the AND gate and induce clock clipping, which is bad. If
you are sure the enabling signal is glitch free you can eliminate the latch using
set_clock_gating_options -gating_style none.

Figure C-2 on page 172 illustrates how latches can eliminate spikes on an enabling signal.

D Q
Data

En

clk

D QData

En

clk
May 2003 171 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Figure C-2 Eliminating Spikes with Latch

Here is how timing check is done on gated logic. The data input of the gating cell must be
stable:

■ Before the clock input makes a transition from the controlling value to the non-controlling
value (setup time).

■ After the clock input returns to a controlling value (hold time)

You can change the setup and hold times using the set_clock_gating_check command.

With a Physically Knowledgeable Synthesis (PKS) license, LPS can save even more power
with the root gating technique. In this case, LPS inserts gating logic at the root of the clock to
save the power consumed by the clock-tree network.This is in addition to gating the register
banks. For more details, see Root Gating in Low-power for BuildGates® Synthesis and
Cadence® PKS.

Return to Optimizing the Design on page 132, step 2.

Gated
Clock

QEn

clk

D Q

clk

clk

En

QEn

gclk

En
May 2003 172 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
More about TCF Files

A Toggle Count Format (TCF) file contains net or pin switching activities, as well as signal
probabilities. TCF is not an industry standard format, but a pure Cadence format. The TCF
file can be flat or hierarchical. The switching activity equals to the toggle counts on the net or
pin during the entire simulation. The signal probability means the probability for this signal to
stay at 1 in the total recorded toggle counts.

If none of the logic nodes in the fanin cone contain assertion values, LPS assumes default
values on the primary inputs and outputs of the sequential elements. The default value of
signal probability is 0.5, and the default value of the toggle count is half of the clock toggle
count. If there is no clock in the design, the transition will be simply 0. For internal nets, LPS
uses probabilistic technique to the switch activities. New nets might be inserted in
optimization, and if there is a request for the switch activities on any of those newly created
nets, LPS uses probabilistic technique to calculate the switch activity for those nets upon
request.

Return to Simulating and Reading the Toggle Count File on page 135, step 4.
May 2003 173 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
More about Gate-Level Power Optimization

■ Gate Sizing on page 174

■ Pin Swapping on page 176

■ Buffer Removal on page 176

■ Gate Merging on page 177

■ Slew Optimization on page 178

■ Logic Restructuring on page 179

These LPS optimization techniques work with the timing engine to identify trade-off points in
the power delay curve. When combined with the various effort levels, you can choose
between faster run time or a better quality result in terms of power dissipation.

Gate Sizing

Gate sizing makes the CMOS gate size smaller or larger to minimize the total power
dissipation without violating timing constraints.

In general, reducing the size of a gate leads to a decrease in power dissipation but to an
increase in delay.

The overall internal cell power dissipation of a gate consists of:

■ Leakage power

■ Short-circuit power

■ Power dissipated by parasitic capacitance

Sizing the gate reduces the short-circuit power dissipation and power dissipated by parasitic
capacitance. Gate sizing can, however, increase the short-circuit power dissipation of the
fanout logic because the slew rate of the output signal can increase when this transformation
is performed. LPS makes tradeoffs between the gate sizing and the increase of power
dissipated due to slew rate in order to optimally reduce the power dissipation of the design.

Figure C-3 demonstrates the importance of gate selection for gate sizing to maximize power
dissipation savings. The power of the circuit in Figure C-3 (A) can be reduced by downsizing
either gate I or gate II, but not by both due to the timing constraints. Downsizing gate I results
in a circuit with less power because both inputs of gate I are heavily toggled.
May 2003 174 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Figure C-3 Gate Sizing

AND2C

Power: 1.2 uW
Slack: 0.3 ns

AND2C

AND2A

Power: 0.7 uW

Slack: 0.0 ns

AND2A
Power: 1.1 uW
Slack: 0.0 ns

(A)

(B)

(C)

AND2CAND2C

I

II
May 2003 175 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Pin Swapping

Pin swapping matches nets connected to logically equivalent pins so power dissipation can
be minimized. LPS matches pins with higher capacitance to nets that have lower switching
activity. Figure C-4 shows how pin swapping works.

Pin swapping can actually increase the delay of the design if not done carefully. LPS finds the
optimal configuration that reduces power dissipation without affecting timing.

Figure C-4 Pin Swapping

Buffer Removal

Sometimes during timing optimization buffers are added to shield the critical path from a high
capacitive load. However, during timing optimization, the critical path itself can shift resulting
in unnecessary buffers on non-critical paths.

While these unnecessary buffers are removed in a postprocessing step, only a limited
number can be removed without violating timing. To maximize power savings, the power
optimizer removes unnecessary buffers that drive highly active nets.

Note: In a normal timing optimization flow, regular buffer removal can increase power. The
reason is that the power saved by removing a buffer can be significantly offset by the power
increase at the buffer’s fanout due to the increased slew. LPS performs a detailed analysis to
ensure that the removal of each buffer indeed saves power.

Power = 1.0 mW Power = 0.7 mW

higher pin capacity
May 2003 176 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Gate Merging

A major portion of dynamic power dissipation consists of driving the capacitive load of a net.
A significant amount of dissipated power can be saved by dissolving the net because the
dynamic power dissipation of a net is proportional to the switching activity of the net. These
savings are achieved by merging the gates on either side of the net. See Figure C-5 to see
an example of gate merging.

Note: Although gate merging eliminates the power loss on the net, it can increase the internal
power dissipation of the new gate. LPS makes the correct tradeoffs.

Figure C-5 Gate Merging

a

b

c

Power = 0.95mW

c

a

b

Power = 0.85mW
May 2003 177 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Slew Optimization

The internal power of a cell largely depends on the slew of the input signals. The larger the
input slew, the larger the power dissipated by this gate. If a signal has a large slew, driving
the signal through a buffer improves the signal’s slew and reduces the overall power of the
cells driven by the signal.

Figure C-6 shows an example of how slew optimization works during timing-constrained
power optimization. LPS reduces slew by adding buffers. The challenge for LPS is to choose
the set of gates that it needs to buffer. LPS performs a detailed analysis to identify the optimal
partition that will reduce power as much as possible without violating timing and adds a buffer
of optimal size to that cluster.

Figure C-6 Slew Optimization

Power = 2.0mW Power = 1.8mW

Buffer to
reduce slew
May 2003 178 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Logic Restructuring

Logic restructuring is different from other transformations performed during power
optimization. Unlike gate merging, buffer removal, and other small local transformations that
do not make significant changes to the circuit structure, logic restructuring actually changes
the topological structure and internal functions of a circuit without compromising the circuit’s
functional integrity.

Figure C-7 on page 179 shows a circuit before logic restructuring. Signal A has the lowest
switching activity among all inputs. Although the final output of the circuit has a low switching
activity, the two internal nodes are highly active, causing the bulk of switching power
dissipation.

Figure C-7 Circuit Before Logic Restructuring

Figure C-8 on page 179 shows how logic restructuring can find a more efficient circuit
implementation that cannot be done by other power optimization transformations. The new
circuit dissipates much less power than the original circuit shown in Figure 3-9 because the
logic functions at the two internal nodes are now less active.

Figure C-8 Circuit After Logic Restructuring

B

A

D

C

A

B

D
C

May 2003 179 Product Version 5.0.10

Cadence Synthesis Rapid Adoption Kit
More about Low Power Synthesis
Return to Analyzing the Results and Generating Reports on page 137.
May 2003 180 Product Version 5.0.10

	Contents
	Preface
	About This Manual
	Other Information Sources
	Documentation Conventions
	Text Command Syntax
	Using Menus
	Using Forms

	Before You Begin
	Invoking BuildGates Synthesis or BuildGates Extreme Synthesis
	Command Language Interface
	Getting Started
	Set up your UNIX Environment
	Download the Tutorial Data
	Install the Libraries
	Regarding the Results

	Getting Started with BuildGates Synthesis
	Introduction to BuildGates Synthesis
	Objectives
	Example Design
	Setting Up to Run the Tutorial
	Required License
	Required Files

	Basic BuildGates Flow
	Setting Up Your Design Environment
	Setting Global Variables
	Reading the Technology Library
	Reading the HDL Models for the Design
	Creating a Generic Gate-Level Netlist
	Setting Test Synthesis Assertions
	Setting Constraints
	Checking Constraints
	Setting Path Groups
	Optimizing the Design
	Generating Reports
	Writing Netlist and Database Files
	Setting Scan Chain Assertions
	Incremental Timing Optimization

	Interfacing with Physical Design Tools
	Using BuildGates Synthesis Graphical User Interface
	Migrating to BuildGates from Design Compiler
	Constraint Translation Example

	Distributed Synthesis
	Summary
	Where to Go from Here

	Getting Started with Design For Test
	Introduction to BuildGates Test Synthesis
	Objectives
	Example Design
	Setting Up to Run the Tutorial
	Required License
	Required Files

	BuildGates Top-Down Test Synthesis Configuration Flow
	Setting up the Design Environment
	Read Libraries and the HDL Models for the Design
	Setting Test Synthesis Assertions
	Checking DFT Assertions and Rule Violations
	Fixing DFT Rule Violations
	Setting Constraints
	Optimizing the Design
	Setting Scan Chain Assertions
	Connecting the Scan Chains
	Checking the Timing of the Design
	Viewing the Scan Chains
	Writing Netlist and Database Files

	Writing Interface Files to Third Party ATPG Tools
	Summary

	Getting Started with Datapath
	Introduction to BGX Datapath
	Objectives
	Example Design
	Setting Up to Run the Tutorial
	Required License
	Required Files

	Traditional Synthesis Run
	BGX Datapath Flow
	Setting up the Design Environment
	Setting up Global Variables
	Reading the Synthesis Technology Libraries
	Reading the HDL Models for the Design
	Creating a Generic Gate-Level Netlist
	Setting Constraints
	Operator Merging
	Optimizing the Design
	Generating Reports
	Writing Netlist, Database Files and Report File

	Examining Traditional Synthesis Results
	Comparing BGX and Traditional Results
	Summary

	Getting Started with Low Power Synthesis
	Introduction
	Objectives
	Example Design
	Setting Up for This Module
	Required License
	Ensure Access to a Verilog Simulator
	Link to the Simulation Library
	Required Files

	Regular BGX Flow with Power Estimation
	BGX LPS Flow
	Setting up Design Environment
	Reading the Synthesis Technology Libraries
	Reading the HDL Models for the Design
	Creating Generic Gate-level Netlist and Exploring Sleep-mode Options at the RTL Level
	Setting Constraints
	Setting Sleep-Mode and Clock-Gating Options
	Optimizing the Design
	Simulating and Reading the Toggle Count File
	Optimizing the Power
	Analyzing the Results and Generating Reports
	Power Analysis in BuildGates Extreme
	Generating Reports
	Writing Netlist and Database Files

	Gate-Level Only Flow
	Sample Script Starting from a Gate-Level Netlist
	Sample Script Starting from a Timing-Optimized Netlist

	LPS-DFT flow
	Summary

	More about BuildGates Synthesis
	More about Optimizing the Design
	Top-Down Optimization
	Bottom-Up Optimization
	More on do_optimize

	More about Timing Reports

	More about Datapath
	More about Operator Merging
	More about Automatic Architecture Selection
	More about the AmbitWare Library
	Inference Verses Instantiation

	More about Extended Languages

	More about Low Power Synthesis
	More about LPS Clock Gating Technique
	More about TCF Files
	More about Gate-Level Power Optimization
	Gate Sizing
	Pin Swapping
	Buffer Removal
	Gate Merging
	Slew Optimization
	Logic Restructuring

