
HDL Modeling for BuildGates Synthesis
User Guide

Product Version 5.0.13
December 2003

 2002-2003 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in
this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

HDL Modeling for BuildGates Synthesis
List of Examples . 9

List of Figures . 13

List of Tables . 15

Preface . 17

About This Manual . 18
Other Information Sources . 18
Documentation Conventions . 20

Using Menus . 20
Using Forms . 21

1
Modeling and Synthesizing HDL Designs . 23

Overview . 24
RTL Synthesis Flow . 25

Tasks . 26
Read Design Data . 27
Build Generic Design . 28
Optimize Design . 29
Report Resources . 29
Write Netlist . 30

Additional Information . 31
Synthesizing Mixed VHDL and Verilog Designs . 32
Querying the HDL Design Pool . 33
Synthesizing a Specified Module . 36
Synthesizing Multiple Top-Level Designs . 37
Synthesizing Parameterized Designs . 38
Synthesizing Designs with GTECH Cells . 39

Troubleshooting . 40
December 2003 3 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
2
High-Level Optimizations . 41

Overview . 42
Tasks . 44

Resource Sharing . 45
Tree Height Reduction (THR) . 46
Implicit Constant Propagation (ICP) . 50
Common Sub-Expression Elimination (CSE) . 51
Architecture Selection . 53
Extraction of Sum-of-Products (SOP) Logic . 54
Multiplexer Optimization . 55
Finite State Machine (FSM) Extraction . 56

Additional Information . 57
Sharing Hardware Resources . 58
Minimizing Implementation Area by Matching Bit Widths . 59
Minimizing MUX Overhead by Matching Common HDL Variables 60
Removing Redundant Multiplexers . 61
Sharing Multi-Function Operations . 61
Sharing Across Nested Conditions . 61
Avoiding Combinational Loops . 62
Interacting with Other Optimization Techniques . 63

Troubleshooting . 66

3
Synthesizing Verilog Designs . 67

Overview . 68
Tasks . 69

Read Design Data . 69
Build Generic Design . 72
Write Netlist . 72

Additional Information . 75
Verilog Modeling Styles . 75
Verilog Synthesis Directives . 90

Verilog Compiler Directives . 104
December 2003 4 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Non-Standard Verilog Compiler Directives . 104
Supported Synopsys Directives . 105
Verilog-Related Commands and Globals . 106

Supported Verilog Modeling Constructs . 108
Troubleshooting . 117

do_build_generic Generates Extremely Long Module Name 118
Eliminating Busses in a Netlist . 118
Resolving Name Mapping Problem with Formal Verification 118
Eliminating Unwanted Escape Characters in Front of Signal Names 120
BuildGates Synthesis Does Not Prune Registers With Their D Inputs Constant . . . 120
Preserving Instances from the RTL Through the Optimization Flow 121
Preserving the set and reset Signals Next to the D-input of the Flip Flops 122
Preventing Modules from being Overwritten During read_verilog 122
Using the \ Character in Verilog . 122
Low Power Synthesis Cannot Apply Inferred Enable Register Banks 123
Honoring ‘defines in an ‘include File in a Verilog Pre-Processor 123
Removing Bus Objects in the Hierarchy or Module . 124
Generating Incorrect Logic for Asynchronous set and reset Pins 125
Floating Nets . 125

4
Verilog-2001 Extensions . 127

Overview . 128
Verilog-2001 Hardware Description Language Extensions . 128

Verilog-1995, Verilog-2001, and Verilog Datapath Modes of Parsing 129
Generate Statements . 129
Multidimensional Arrays . 134
Automatic Functions and Tasks . 135
Parameter Passing by Name . 135
Comma-Separated Sensitivity List . 136
ANSI-Style Declarations . 136
Variable Part Selects . 137
Constant Functions . 137
New Preprocessor Directives . 138
December 2003 5 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
5
Synthesizing VHDL Designs . 141

Overview . 142
Tasks . 143

Setting the Globals for Synthesizing VHDL Designs . 144
Read Design Data . 148
Build Generic Design . 155
Write Netlist . 156

Additional Information . 159
Hierarchical VHDL Designs . 160
VHDL Modeling Styles . 163
VHDL Synthesis Directives . 174
Supported Synopsys Directives . 191
Supported Cadence (Ambit) Directives and BuildGates Equivalents 193
Supported BuildGates Synthesis-Only VHDL Directives . 194
VHDL-Related Commands and Globals . 196
VHDL Constructs . 199

Troubleshooting . 210
VHDL Netlist from write_vhdl Missing Generic Delay Parameters 211
Cannot Infer a Bus Keeper Element Using a BLOCK/GUARDED Statement 211
Extra Generic Logic Added to VHDL Netlist with Undriven Nets 211
Undriven Ports and Nets Left After Optimization . 211
Error When Using IEEE Standard Logic Packages in BuildGates 212
Unconnected Flip Flops in the Final Netlist . 212
Setting Finite State Machine Compile Directives for a VHDL Finite State 213
Error During do_build_generic if Design Architecture is not Specified 214
Unconditional Loops are not Supported if There is More than One Clock Edge . . . 214
Error on the Condition Clause of a wait Using read_vhdl 215
VHDL LOOP Construct Runs Out of Memory . 216
Undeclared Identifier Error Message in VHDL Structural Netlists 217
Locally Static Expressions in VHDL87 LRM and VHDL93 LRM 218
VHDL93 LRM Definition of a Locally Static Expression . 218
Using the \ Character in VHDL . 218
Passing Generic Values from the Command Line . 219
Writing One-Bit Busses . 219
December 2003 6 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
6
Optimizing and Structuring Finite State Machines. 221

Overview . 222
Tasks . 225

Model FSM . 225
Synthesize FSM . 225

Additional Information . 228
state_vector Directive . 228
FSM Coding Styles . 230
FSM Verification . 237

Troubleshooting . 243
Mux Inference Pragma is not Honored in a Finite State Machine 244
A 3 state FSM Causes do_build_generic to Crash when extract_fsm is On 244
Setting FSM Compile Directives for a VHDL Finite State . 244
State Machine Extraction Fails, by either Hanging or Running Out of Memory 245
Coding State Machines in VHDL . 245
FSM Extraction Fails in the Presence of Incompletely Assigned Registers 246

7
Using the EDIF Interface. 251

Overview . 252
Tasks . 252

Read Design Data . 253
Write Netlist . 254
Represent Power and Ground in EDIF . 254

Troubleshooting . 263
How to Export an EDIF Schematic for Viewing in a Different Tool 263

A
AmbitWare . 265

Introduction . 266
Generators . 266
Libraries . 267

AmbitWare Flow . 268
December 2003 7 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare Generators . 269
AWACL Generator . 270
AWDP Generator . 271
AWMUX Generator . 273
AWSOP Generator . 274
AWRS Generator . 275

AmbitWare Libraries . 276
Setting the Library Search Order . 277
Using Predefined AmbitWare Libraries . 277
Defining Your Own AmbitWare Libraries . 277
Using Synthesis Directives . 282

B
Functional Verification with Verplex . 283

Introduction . 284
Verplex Conformal Logical Equivalence Checker . 284

Non-Equivalency Resolutions . 284

Index. 289
December 2003 8 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
List of Examples
Example 1-1 Instantiating a Counter in a VHDL Module . 32

Example 1-2 Instantiating a Counter in a Verilog Module. 32

Example 1-3 VHDL Design Consisting of Three Entities . 34

Example 1-4 Using the -module Option for Each of the Top-Level Designs 37

Example 1-5 Using the -all Option . 37

Example 1-6 Using the foreach TCL Command. 37

Example 1-7 Automatic Elaboration . 38

Example 1-8 Overriding the Default Parameter Values . 40

Example 2-1 THR Produces Better Slack and Area. 46

Example 2-2 Modeling Bit-Width Matching. 47

Example 2-3 Modeling Parentheses with Tree Height Reduction. 48

Example 2-4 Applying ICP to an if Statement . 50

Example 2-5 RTL Description with a Redundant Arithmetic Expression 51

Example 2-1 Operator Merging . 63

Example 3-1 Modeling an Asynchronous Operation On a Flip-Flop 81

Example 3-2 Negating the Condition in an if Statement. 82

Example 3-3 Modeling a State Transition Table to Infer a Latch. 84

Example 3-4 Preventing a Latch by Assigning a Default Value to next_state 84

Example 3-5 Preventing a Latch by Using the Default case in the case Statement 85

Example 3-6 Using Don’t Care Conditions in a casez Statement 86

Example 3-7 Report of the casex Statement . 87

Example 3-8 Using Don’t Care Conditions in a casex Statement 88

Example 3-9 Report of the casex Statement . 88

Example 3-10 Using the for Statement to Describe Repetitive Operations 89

Example 3-11 Using Synthesis On and Off Directives . 91

Example 3-12 Specifying the Architecture Selection Directive . 92

Example 3-13 Specifying the Architecture Selection Directive with Multiple Operators . . . 93

Example 3-14 Using the case Statement Directive . 93
December 2003 9 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Example 3-15 Using the full Case Directive to Suppress the Latch Inference 94

Example 3-16 Using the full Case Directive to Infer a Latch . 94

Example 3-17 Using the parallel Case Directive. 95

Example 3-18 Using the Multiplexer case Directive . 96

Example 3-19 Using the Module Template Directive . 96

Example 3-20 Using the map_to_module Directive . 97

Example 3-21 Using the return_port_name with the map_to_module Directive 97

Example 3-22 Implementing asynchronous set and reset Control Logic 99

Example 3-23 Using the set and reset Synchronous Signals Synthesis Directive 101

Example 3-24 Using the set_reset Synchronous Signals in a Block Synthesis Directive. 103

Example 3-25 Using the Operator Merging Directive . 103

Example 3-26 Bitwise Assignment Restriction . 115

Example 3-27 Conditional Assignment Restriction. 116

Example 3-28 Changing Module Names . 118

Example 3-29 Resolving Name Mapping Problem with Formal Verification. 118

Example 3-30 Preserving Inverters Without Using HDL Directives 121

Example 3-31 Using Incorrect set and reset Logic . 125

Example 3-32 Using Correct set and reset Logic. 125

Example 4-1 Using the if generate Statement . 130

Example 4-2 Using the if generate Statement . 131

Example 4-3 Using the case generate Statement for Multi-Way Branching 131

Example 4-4 Using the case generate Statement to Define Primitives. 132

Example 4-5 Using the for generate Statement . 133

Example 4-6 Using the for generate Statement . 134

Example 4-7 Examples of Multi-Dimensional Arrays of wire and reg 134

Example 4-8 Specifying Module Instance Parameters by Name 135

Example 4-9 Using the defparam Keyword . 135

Example 4-10 Using a Comma-Separated Sensitivity List . 136

Example 4-11 Verilog-1995 Style Declaration . 136

Example 4-12 Verilog-2001 ANSI C-like Declaration . 136

Example 4-13 Variable Part Select . 137
December 2003 10 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Example 4-14 Using a Function Call in a Constant Expression . 138

Example 4-15 Using the `ifndef Directive . 139

Example 5-1 Report of Reusing HDL VHDL Units . 152

Example 5-2 Instantiating an Entity for Synthesis . 161

Example 5-3 Non-Synthesizable Design . 162

Example 5-4 Design with Restrictions on Entities with Multiple Architectures 163

Example 5-5 Synthesizing Combinational Logic to Generate Signal z. 164

Example 5-6 Synthesizing Combinational Logic to Generate Signal z. 165

Example 5-7 Inferring a Latch . 166

Example 5-8 Inferring a Flip-Flop . 167

Example 5-9 Synthesizing a Synchronous set and reset Signals On a Flip-Flop 168

Example 5-10 Synthesizing Asynchronous set and reset Signals On a Flip-Flop 168

Example 5-11 Modeling a State Transition Table to Infer a Latch. 171

Example 5-12 Assigning the next_state Signal a Value Unconditionally, then Modifying it
by a case Statement . 172

Example 5-13 Using the others Clause in the case Statement to Capture all the Remaining
Cases where next_state is Assigned a Value . 172

Example 5-14 Using a for loop Statement to Describe Repetitive Operations 173

Example 5-15 Reversing and Assigning Bits of curr_state to next_state. 173

Example 5-16 Using Synthesis On and Off Directives . 175

Example 5-17 Using the Architecture Selection Directive for VHDL. 176

Example 5-18 Using the Architecture Selection Directive for Multiple Operators 177

Example 5-19 Using the case Statement Directive . 177

Example 5-20 Using the Enumeration Encoding Directive . 178

Example 5-21 Using the Entity Template Directive. 178

Example 5-22 Using the Function and Task Mapping Directives 179

Example 5-23 Using the Signed Type Directive . 179

Example 5-24 Using the Resolution Function Directive . 180

Example 5-25 Using the Type Conversion Directives . 181

Example 5-26 Using the SYNC_SET_RESET_PROCESS Synthesis Directive 184

Example 5-27 Using the Signal Directive . 187
December 2003 11 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Example 5-28 Using the SYNC_SET_RESET_LOCAL Synthesis Directive 189

Example 5-29 Using the Operator Merging Directive . 190

Example 5-1 Using a VHDL87 LRM Range Expression that is Locally Static 218

Example 6-1 Modeling a State Machine. 223

Example 6-2 Using the VHDL state_vector Directive . 229

Example 6-3 How Output Initialization is Lost . 232

Example 6-4 Compact Coding Style. 234

Example 6-5 Detailed Coding Style . 235

Example 6-6 Output Not Specified Completely . 236

Example 6-7 Equivalence Checking Fails to Verify the Synthesized FSM, Whereas a Simula-
tor Succeeds. 239

Example 6-8 Ambit Library and Attributes Package . 245

Example 6-9 FSM extraction fails due to incompletely assigned "burst_counter" 246

Example 6-10 FSM is extracted when "burst_counter" is completely assigned 248

Example 7-1 Verilog Model Showing How to Use the Power Net Globals 256

Example 7-2 Output for Module Bottom Using the Power Net Globals 256

Example 7-3 Output for EDIF Using Port Power and Ground Globals 258

Example 7-4 Edif Output Using Power and Ground Globals . 260
December 2003 12 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
List of Figures
Figure 1-1 RTL Synthesis Flow . 26

Figure 1-2 Schematic of VHDL Design with Three Entities . 35

Figure 2-1 RTL Synthesis Flow-High-Level Optimizations . 43

Figure 2-2 Matching Bit-Widths with THR Disabled . 47

Figure 2-3 Matching Bit-Widths with THR Enabled . 48

Figure 2-4 Using Parenthesis with Tree Height Reduction Disabled 49

Figure 2-5 Using Parenthesis with Tree Height Reduction Enabled 49

Figure 2-6 Generic Netlist Using Common Sub-Expression Elimination 52

Figure 2-7 Generic Netlist with Common Sub-Expression Elimination Disabled 52

Figure 2-8 Extracting Sum-of-Products Logic from a Constant case Statement 54

Figure 2-9 Modeling Two Arithmetic Expressions for Sharing . 59

Figure 2-10 Matching Bit Widths . 60

Figure 2-11 Matching Common HDL Variables . 60

Figure 2-12 Removing Redundant Multiplexers . 61

Figure 2-13 Sharing Across Conditional Statements . 62

Figure 2-14 Avoiding a Combinational Loop. 62

Figure 2-15 Sharing Partial Arithmetic Expressions . 64

Figure 3-1 RTL Synthesis Flow - Verilog . 68

Figure 3-2 Synthesizing Combinational Logic to Implement Variable dout 76

Figure 3-3 Synthesizing Combinational Logic to Implement Signal z. 77

Figure 3-4 Inferring a Latch . 79

Figure 3-5 Inferring a Flip-Flop . 80

Figure 3-6 Schematic Representation of an Asynchronous Operation On a Flip-Flop. . . . 81

Figure 3-7 Schematic Representation of Negating the Condition in an if Statement 83

Figure 3-8 Schematic Representation of Using Don’t Care Conditions in a casez Statement
87

Figure 3-9 Schematic of set and reset Control Logic . 99

Figure 3-10 Schematic of set and reset Synchronous Signal Logic 102
December 2003 13 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Figure 5-1 RTL Synthesis Flow - VHDL . 143

Figure 5-2 Default Implementation of set and reset Control Logic 182

Figure 5-3 Implementing set and reset Control Logic . 182

Figure 5-4 Implementing set and reset Synchronous Block Logic 185

Figure 5-5 Implementing set and reset Synchronous Signal Logic 188

Figure 5-6 Implementing set and reset Synchronous Signals in a Block Logic 190

Figure 6-1 State Machine Structure—Two Case Statements . 222

Figure 6-2 Rtl Synthesis Flow - FSM . 224

Figure 7-1 RTL Synthesis Flow - EDIF . 252

Figure A-1 AmbitWare Flow in the RTL Flow . 268

Figure A-2 Example Library Report . 282
December 2003 14 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
List of Tables
Table 2-1 Supported Adder Architectures. 53

Table 3-1 Register Inference: set and reset Control . 98

Table 3-2 Supported Verilog Synopsys Directives . 105

Table 3-3 Verilog Related Commands . 106

Table 3-4 Verilog-Specific Global Variables . 106

Table 3-5 Verilog Constructs and Level of Support. 108

Table 5-1 Predefined VHDL Environments . 144

Table 5-2 Predefined VHDL Libraries Standard Environment . 145

Table 5-3 Predefined VHDL Libraries Synopsys Environment . 145

Table 5-4 Predefined VHDL Libraries Synergy Environment . 145

Table 5-5 Predefined VHDL Libraries Common Environment . 146

Table 5-6 Supported VHDL Synopsys Directives . 191

Table 5-7 Supported Cadence (Ambit) VHDL Directives and BuildGates Equivalents. . . 193

Table 5-8 BuildGates-Only VHDL Directives . 194

Table 5-9 VHDL shell Commands . 196

Table 5-10 VHDL-Specific Global Variables . 197

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis 199

Table 5-12 Attribute Set for the Pre-defined Language Environment 208

Table 6-1 state_vector Encoding Options . 226

Table 7-1 Globals for Specifying Power and Ground for Nets. 255

Table 7-2 Globals for Representing Power and Ground for Ports. 257

Table 7-3 EDIF Globals for Specifying an Instance . 259

Table A-1 AmbitWare Generators and Libraries in BuildGates. 267

Table A-2 Library of Complete ATL and XATL Multiplexers . 273
December 2003 15 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
December 2003 16 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Preface

This preface contains the following sections:

■ About This Manual on page 18

■ Other Information Sources on page 18

■ Documentation Conventions on page 20
December 2003 17 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Preface
About This Manual

This manual describes HDL modeling for BuildGates Synthesis. The BuildGates® synthesis
software accepts both VHDL and Verilog design modules.

Other Information Sources

For more information about BuildGates Synthesis and other related products, consult the
following sources:

■ AmbitWare Component Reference

■ BuildGates Synthesis User Guide

■ CeltIC User Guide

■ Command Reference for BuildGates Synthesis and Cadence PKS

■ Datapath for BuildGates Synthesis and Cadence PKS

■ Delay Calculation Algorithm Guide

■ Design for Test Using BuildGates Synthesis and Cadence PKS

■ Distributed Processing for BuildGates Synthesis

■ Global Variable Reference for BuildGates Synthesis and Cadence PKS

■ Glossary for BuildGates Synthesis and Cadence PKS

■ GUI Guide for BuildGates Synthesis and Cadence PKS

■ Low Power for BuildGates Synthesis and Cadence PKS

■ Low Power Synthesis Tutorial

■ Migration Guide for BuildGates Synthesis and Cadence PKS

■ Modeling Generation for Verilog 2001 and the Verilog Datapath Extension

■ PKS User Guide

■ SDC Constraints Support Guide

■ Synthesis Place-and-Route Flow Guide

■ Common Timing Engine (CTE) User Guide

■ Verilog Datapath Extension Reference
December 2003 18 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Preface
■ VHDL Datapath Package Reference

■ Known Problems and Solutions in BuildGates Synthesis

■ Know Problems and Solutions in Cadence PKS

■ What’s New in Cadence PKS

■ What’s New in BuildGates Synthesis

BuildGates Synthesis is used with other Cadence tools during various design flows. The
following documents provide information about these tools and flows. These documents are
available if your site purchased the product licenses.

■ Cadence Timing Library Format Reference

■ Cadence Pearl Timing Analyzer User Guide

■ Cadence General Constraint Format Reference

The following books are references, but are not included with the CD-ROM documentation:

■ IEEE 1364 Verilog HDL LRM

■ TCL Reference, Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley
Publishing Company
December 2003 19 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Preface
Documentation Conventions

Text Command Syntax

The list below defines the syntax conventions used for the BuildGates Synthesis text interface
commands.

literal Nonitalic words indicate keywords you enter literally. These
keywords represent command or option names.

argument Words in italics indicate user-defined arguments or information
for which you must substitute a name or a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument.

[] Brackets indicate optional arguments. When used with OR-bars,
they enclose a list of choices from which you can choose one.

{ } Braces indicate that a choice is required from the list of
arguments separated by OR-bars. Choose one from the list.

{ argument1 | argument2 | argument3 }

{ } Braces, used in Tcl commands, indicate that the braces must be
typed in.

... Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,
[argument]...), you can specify zero or more arguments. If
the three dots are used without brackets (argument...), you
must specify at least one argument.

The pound sign precedes comments in command files.

Using Menus

The GUI commands can take one of three forms.

CommandName A command name with no dots or arrow executes immediately.
December 2003 20 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Preface
CommandName… A command name with three dots displays a form for choosing
options.

CommandName -> A command name with a right arrow displays a menu with
additional commands. Commands are presented in what are
called command sequences, for example: File – Import – LEF.
From the File menu, choose Import, then LEF.

Using Forms

… A menu button containing three dots provides browsing
capability. Select the browse button to see a list of choices.

Ok The Ok button performs the command and closes the form.

Cancel The Cancel button cancels the command and closes the form.

Defaults The Defaults button displays default values for options on the
form.

Apply The Apply button performs the command but does not close the
form.
December 2003 21 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Preface
December 2003 22 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
1
Modeling and Synthesizing HDL Designs

The BuildGates® Synthesis software accepts VHDL, Verilog, and EDIF hardware description
language (HDL) design modules.This chapter describes the basic steps involved in RTL
synthesis in the following sections:

■ Overview on page 24

■ Tasks on page 26

■ Additional Information on page 31

■ Troubleshooting on page 40
December 2003 23 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Overview

The BuildGates Synthesis Design Flow in the BuildGates Synthesis User Guide shows a
typical synthesis design flow and identifies the capabilities of the BuildGates Synthesis tool.
Each step in the design flow is linked to the corresponding documentation.

The RTL Synthesis Flow on page 25 shows the tasks that are performed to synthesize an
RTL design described with an HDL such as Verilog or VHDL.

The basic steps in RTL synthesis include reading in the design data described in Verilog,
VHDL, or EDIF and generating the corresponding hardware implementation in the form of a
generic (technology independent) netlist. RTL synthesis is the process of generating a
generic netlist from a Register Transfer Level (RTL) design described in a Hardware
Description Language (HDL). A generic netlist is comprised of technology-independent
register-transfer level blocks such as flip-flops, arithmetic logic units (ALU), multiplexers, and
Boolean logic gates interconnected by wires. The generic netlist is then optimized and
mapped to the target technology library. See VHDL-Related Commands and Globals on
page 196 and Verilog-Related Commands and Globals on page 106 for a list of commands
and globals used to synthesize VHDL and Verilog designs. For detailed information on how
BuildGates synthesizes Verilog or VHDL designs, see Synthesizing Verilog Designs on
page 67 and Synthesizing VHDL Designs on page 141 respectively.

BuildGates synthesizes netlists that are functionally-equivalent (according to both exhaustive
simulation and formal verification) to the input HDL model. However, the exact structure of the
netlist and the run-time of the tool can vary depending upon the style of the input HDL model.
In addition, there are HDL models that are impractical or infeasible to use for synthesizing
functionally-equivalent hardware. See Verilog Modeling Styles on page 75 and VHDL
Modeling Styles on page 163 for more information on suggested Verilog or VHDL design
practices. See Verilog-2001 Extensions on page 127 for a listing and description of the new
extensions to the Verilog modeling language.

Part of building a generic netlist from a RTL description is generating implementations for
complex hardware components such as multiplexors, Boolean gates, encoders, decoders,
and arithmetic components. BuildGates uses a collection of RTL module generators and pre-
defined RTL libraries to implement these components. Descriptions of the basic and datapath
component generators and libraries are provided in Appendix A, AmbitWare.

BuildGates offers Datapath Synthesis to aid in implementing the datapath elements for high
performing designs. See Datapath for BuildGates Synthesis and Cadence PKS for
details on the Datapath product.
December 2003 24 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
RTL Synthesis Flow

Figure 1-1 shows the typical RTL synthesis flow through a flow diagram and its corresponding
Tcl script. For information on reading libraries, see Using Timing Libraries in the Timing
Analysis for BuildGates Synthesis and Cadence Physically Knowledgeable
Synthesis (PKS).

You can obtain information about the synthesized design after the do_build_generic and
after the do_optimize design phase. For example, after do_build_generic, the
report_resources command provides information about the initial architecture, size,
format, and the corresponding RTL line number of arithmetic resources. After do_optimize,
each arithmetic resource has a final architecture, which was selected by the tool while
satisfying constraints during optimization.

You can also write a generic netlist after the do_build_generic design phase to verify that
the generic netlist is functionally equivalent to the RTL design. Write the final netlist after
optimization is complete. Use the write_adb command to preserve the generic netlist for
optimization in another session. The write_adb command uses a binary database to save
the netlist and any optimization-related attributes stored on netlist objects. These attributes
are not written when the netlist is written in Verilog or VHDL format.
December 2003 25 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Figure 1-1 RTL Synthesis Flow

read_verilog rtl.v

read_alf lca300k.alf

do_build_generic

write_verilog rtl.gen.v

report_resources

do_optimize

write_verilog rtl.map.v

report_resources

Tasks

The RTL Synthesis Flow shows the tasks when synthesizing an RTL design described in an
HDL such as Verilog or VHDL. Each of these tasks are described in detail in the following
sections:

■ Read Design Data on page 27

■ Build Generic Design on page 28

■ Optimize Design on page 29

■ Report Resources on page 29

■ Write Netlist on page 30

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 26 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Read Design Data

➤ Enter the appropriate command, such as read_vhdl for VHDL files or read_verilog
for Verilog files. For example, the following command reads in a pair of Verilog designs:

read_verilog controller.v dma.v

The first step in synthesizing a hardware description language (HDL) design is to read in the
HDL design.

Read in the design data using the following commands:

■ read_adb: Use this command when the design is saved in an Ambit Database (adb)
format. The adb format exchanges design information from one session to another. The
advantages of using .adb files is the speed in which these files are written and read,
compared to ASCII HDL files.

■ read_edif: Use this command when the design in an Electronic Design Interchange
Format (EDIF). The EDIF format exchanges design data between different CAD
systems, and between CAD systems and printed circuit fabrication and assembly. The
read_edif command directly generates the generic netlist.

■ read_verilog: Use this command for Verilog designs. The Verilog language describes
hardware components as a set of modules. Each of these modules has an interface to
other modules to describe interconnectivity. The top level module contains instances of
other modules (a hierarchy).

■ read_vhdl: Use this command for Very High Speed Integrated Circuit Hardware
Description Language (VHDL) designs. The VHDL format describes hardware
components as a set of entities and architectures.

Note: For hierarchical designs, BuildGates does not require the designs to be read in any
particular order. It is possible to read the designs in either a bottom-up or a top-down manner.
However, the entire design must be loaded before synthesis. You can also read and
synthesize a large design one module at a time.

VHDL designs have the following restrictions: An entity must be read in before any of the
entity’s architectures, and packages and package bodies must be read in prior to reading in
any other packages, entities, or architectures that refer to them.
December 2003 27 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Build Generic Design

➤ To build the generic design, enter the following command:

do_build_generic

After you read in all the design data, use the do_build_generic command to generate a
hierarchical, gate-level netlist consisting of generic cells. The created netlist uses technology
independent cells from the Ambit Technology Library (ATL) and the extended ATL (XATL)
library. Arithmetic components use the AmbitWare Arithmetic Component Library (AWACL).

Use the do_build_generic command options to generate netlists for selected modules in
the design hierarchy. See Synthesizing a Specified Module on page 36 for information about
these options.

Note: In an EDIF design, it is not necessary to enter the do_build_generic command;
the read_edif command directly generates the generic netlist from the EDIF description.

The do_build_generic command performs the following functions:

■ Generates an internal control and data flow graph (CDFG) to analyze the design.

■ Determines the number and type of registers (latches and flip-flops) needed to store data
values in the design.

■ Determines the types and sizes of arithmetic components (adders, multipliers, and so
on) required to implement the operations in the design.

■ Generates hardware for registers and arithmetic components and the appropriate
interconnect logic.

In addition, the do_build_generic command completes the following high-level generic
optimizations:

■ Resource Sharing

■ Tree Height Reduction

■ Implicit Constant Propagation

■ Common Sub-Expression Elimination (CSE)

■ Initial Architecture Selection

■ Extraction of Sum-of-Products Logic

■ MUX Extraction

■ Finite State Machine (FSM) Extraction
December 2003 28 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
These optimizations significantly improve your design’s area and performance. See Chapter
2, High-Level Optimizations on page 41 for further information.

Optimize Design

➤ Once the generic netlist is generated, enter the following command to perform various
logic mapping, and timing optimizations on the design:

do_optimize

In addition, the do_optimize command selects the optimal datapath architectures.

Report Resources

➤ Enter the following command to view information about the hardware resources
generated to implement the design. Resources include flip-flops, latches, multiplexers,
AmbitWare modules, and datapath modules.

report_resources

By default, the report_resources command provides information about the architecture,
size, format, and line numbers of arithmetic resources that were generated to implement the
arithmetic operations in the RTL design. After do_build_generic, the report shows the
initial architectures. After do_optimize, the report shows the final architecture that was
selected given the specified constraints.

In addition, the report_resources command reports the resources generated by each of
the AmbitWare generators. See AmbitWare Generators on page 269 for more information.

Use the report_resources -hierarchical command for the following purposes:

■ To identify datapath operators

■ To examine how operators are merged

■ To examine the selected architecture of each (merged) operator

For more information see the Datapath for BuildGates Synthesis and Cadence PKS.
December 2003 29 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Write Netlist

➤ Use one of the following commands to write out a generic netlist:

■ write_adb

■ write_edif

■ write_vhdl

■ write_verilog

Write out a generic netlist in VHDL or Verilog to verify that the generic netlist, produced by
the do_build_generic command, is functionally equivalent to the RTL design. Verify the
design using techniques such as simulation or formal verification.

The final netlist is generated as the last step in the RTL synthesis flow. After optimization is
compete and the report results are satisfactory, save the final netlist.

Important

Use a binary netlist database (write_adb) to exchange database information and
to preserve optimization-related attributes stored on netlist objects. These attributes
are lost if the netlist is saved in a VHDL or a Verilog format, potentially resulting in
long optimization run times and poor quality of results.

Saving the Generic Netlist for Optimization in Another Session

➤ Use the write_adb command to save the generic netlist for optimization in another
session.

The write_adb command writes design data stored by the shell to the database in the
Ambit Synthesis database (ADB) file format. By default, the ADB netlist is a hierarchical netlist
of the current module and all instances inside it. Use the ADB file to quickly load data and
perform further synthesis or analysis. Use the read_adb command to load the data from the
.adb file into the database.
December 2003 30 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Simulating a Generic Netlist Before Optimization

To verify the functionality of the netlist generated by BuildGates using simulation, you need
the simulation models for the cells that comprise the netlist.

Netlists generated after the do_build_generic command consist of generic ATL and
XATL cells.

➤ To simulate the netlist without the cell simulation models, use the -equation option with
the write_verilog or the write_vhdl command.

This writes out the generic netlist in the form of Boolean equations instead of
instantiations of ATL and XATL cells. For example,

write_verilog -hierarchical -equation generic.v

write_vhdl -hierarchical -equation generic.vhd

The resulting Verilog or VHDL file provides functional information about the ATL and the XATL
components, and can be verified without the need for additional libraries.

Netlists generated after the do_optimize command consist of cells from the selected target
technology. Verilog and VHDL simulation models for these are available directly from the
ASIC vendor that supplied the technology library.

Additional Information

■ Synthesizing Mixed VHDL and Verilog Designs on page 32

■ Querying the HDL Design Pool on page 33

■ Synthesizing a Specified Module on page 36

■ Synthesizing Multiple Top-Level Designs on page 37

■ Synthesizing Parameterized Designs on page 38

■ Synthesizing Designs with GTECH Cells on page 39
December 2003 31 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Synthesizing Mixed VHDL and Verilog Designs

You can synthesize VHDL and Verilog designs in the same session. No special attributes or
synthesis directives are needed for mixed VHDL and Verilog designs. When using mixed
VHDL and Verilog hierarchical designs, the following constraints apply:

■ Component instances in a Verilog module are resolved if a module or technology cell
with the exactS name is found. For example, an instance of a module named counter
is resolved only with another VHDL or Verilog module named counter.

■ Component instances in a VHDL module are resolved in a case-insensitive manner. For
example, an instance of a module named counter in a VHDL module is linked with
other VHDL and Verilog modules named COUNTER, or Counter, and so on. An error
occurs if there are multiple modules whose names match counter in a case-insensitive
manner.

■ VHDL modules that have similar names (identical letters but in different upper or lower
case form) are treated as identical modules. For example, if VHDL modules COUNTER
and counter are read in sequentially, the latter module counter replaces COUNTER in
the module pool.

The following examples show a VHDL design, TOP_VHDL and a Verilog design,
TOP_VERILOG. Each design instantiates a lower-level module. Instance I1 of COUNTER in
entity TOP_VHDL is linked with the Verilog module counter because counter and
COUNTER are identical from a case-insensitive point of view. However, the instance inst1 of
counter in module TOP_VERILOG is not linked to COUNTERS because a Verilog
instantiation requires an exact, case sensitive match.

Example 1-1 Instantiating a Counter in a VHDL Module
entity TOP_VHDL is

...

I1 : COUNTER port map (...); -- linked with “counter”

end;

Example 1-2 Instantiating a Counter in a Verilog Module
module TOP_VERILOG (...);

...

counter inst1 (...); // not linked with "COUNTER"

endmodule
December 2003 32 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Querying the HDL Design Pool

Design data is often organized into tens or even hundreds of HDL files. You can investigate
the design hierarchy right after the HDL files are read into BuildGates Synthesis. Queries
determine which subtrees in the design hierarchy need to be synthesized. Use these queries
to generate Makefile-like scripts for managing the design’s generic build and optimization
steps.

Use the following commands to query the entire pool of HDL designs read in using the
read_vhdl or the read_verilog commands:

■ get_hdl_top_level (page 35)

■ get_hdl_hierarchy (page 35)

■ get_hdl_type (page 36)

■ get_hdl_file (page 36)

To illustrate the get_hdl commands, consider the following VHDL design, shown in
Example 1-3. It consists of three entities: TOP, BOT, and BOTG. Assume that the design is in
a VHDL file called design.vhd that has been read in using the read_vhdl command.
December 2003 33 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Example 1-3 VHDL Design Consisting of Three Entities
entity BOTG is

generic (WIDTH : natural := 1);

port (Q: out bit_vector(WIDTH-1 downto 0));

end;

architecture A of BOTG is

begin

 Q <= (others => ’1’);

end;

entity BOT is

port (Q: out integer);

end;

architecture A of BOT is

begin

 Q <= 25;

end;

entity TOP is

port (AO: out bit_vector(7 downto 0);

 BO: out integer);

end;

architecture A of TOP is

begin

 IB : entity work.BOT port map (BO);

 IA : entity work.BOTG generic map (8) port map (AO);

end;

After do_build_generic, Figure 1-2 shows the schematic representation of the three
entity VHDL design.
December 2003 34 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Figure 1-2 Schematic of VHDL Design with Three Entities

Using the get_hdl_top_level Command

➤ Use the get_hdl_top_level command to display a list containing the names of all top
level designs (designs that are not instantiated by any other design).

For example, from the VHDL Example 1-3 above, the command:

get_hdl_top_level

yields the following output:

TOP

Using the get_hdl_hierarchy Command

➤ Use the get_hdl_hierarchy command to display the design hierarchy.

For each design, the command lists the names of the designs that were instantiated
within it (design hierarchical) and determines if the instantiations are parameterized
(using parameters in Verilog or generics in VHDL).

For example, from the VHDL Example 1-3 above, the command:

get_hdl_hierarchy

yields the following output:

{TOP {{BOT n} {BOTG p}}} {BOT {}} {BOTG {}}
December 2003 35 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
The output indicates that TOP instantiates both BOT (n represents a non-parameterized
instantiation) and BOTG (p indicates a parameterized instantiation, since design BOTG
contains generics). BOT and BOTG do not instantiate any other designs.

➤ Specify the module to obtain the hierarchy for a specific design. For example:

get_hdl_hierarchy TOP

yields the following output:

{TOP {{BOT n} {BOTG p}}}

Using the get_hdl_type Command

➤ Use the get_hdl_type command to determine the language (VHDL or Verilog) of the
described design.

For example entering the following command:

get_hdl_type TOP

yields the following output:

VHDL

Using the get_hdl_file Command

➤ Use the get_hdl_file command to return the name of the HDL source file.

For example, entering the following command:

get_hdl_file BOTG

yields the following output:

design.vhd

Synthesizing a Specified Module

➤ Use the -module option with the do_build_generic command to synthesize a
generic netlist for a named module (or entity in VHDL) and all sub-modules in the
hierarchy. For example:

do_build_generic -module des_top

The -module option selects the named module as the top of the design hierarchy and as the
default top timing module.To determine which module will serve as the starting point for
synthesis, the tool looks for an exact match of the specified module in the HDL design pool.
If a unique match is found, then that module is used as a starting point for synthesis.
December 2003 36 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Synthesizing Multiple Top-Level Designs

➤ Use the -module option, the -all option, or the foreach Tcl command to synthesize
all the modules (or entities in VHDL) in the design hierarchy.

The do_build_generic command synthesizes all modules in the design hierarchy into a
generic netlist. If there are multiple top-level modules in the design hierarchy, indicate the
specific module in the design hierarchy to synthesize.

For example, assume that there are three top-level modules in the HDL design pool. Entering
the following command:

get_hdl_top_level

identifies the three top-level modules:

TOP1 TOP2 TOP3

Examples 1-4 through 1-6 show how to synthesize top-level designs in the HDL design pool:

Example 1-4 Using the -module Option for Each of the Top-Level Designs
do_build_generic -module TOP1

do_build_generic -module TOP2

do_build_generic -module TOP3

Example 1-5 Using the -all Option
do_build_generic -all

Example 1-6 Using the foreach TCL Command
foreach top [get_hdl_top_level] {

do_build_generic -module $top

}

Note: For multiple top-level designs, an error results if the do_build_generic command
is used without either the -all or -module option.
December 2003 37 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Synthesizing Parameterized Designs

Use the do_build_generic command to propagate specified values and to specify values
for instantiation.

Propagating Specified Values for Instantiation

The do_build_generic command automatically elaborates the design by propagating
generic values (parameters in Verilog) specified for instantiation as shown in Example 1-7.

Example 1-7 Automatic Elaboration
Entity BOT is

 generic (L, R: natural := 1);

 port (O: out bit_vector(L downto R));

end;

Architecture A of BOT is

begin

O <= (others => ’1’);

end;

Entity TOP is

 port (O: out bit_vector(7 downto 0));

end;

Architecture A of TOP is

begin

I8 : entity work.BOT generic map (7, 0) port map (O);

end;

In this example, the do_build_generic command builds the modules TOP and
BOT_L7_R0 (derived from the instance I8 in design TOP). The actual values (7 and 0) of the
two generics (L and R) provided in instance I8 override the default values for generics in the
entity definition for BOT.
December 2003 38 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Synthesizing Designs with GTECH Cells

You can synthesize designs that use GTECH cells. To read designs that instantiate GTECH
cells, do the following:

■ For structural designs:

read_alf gtech.alf

read_verilog (read_vhdl) -structural design.v (.vhd)

■ For partly structural designs:

read_verilog (read_vhdl) design.v (.vhd)

do_build_generic

■ To map these GTECH components to ATL/XATL components:

do_xform_unmap -hier

■ To map these components to another target library:

do_xform_unmap -hier

read_tlf new_target_library.tlf

set_global target_technology new_target_library

do_xform_map -hier
December 2003 39 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Modeling and Synthesizing HDL Designs
Specifying Values for Instantiation

While automatic elaboration works for designs that are instantiated in a higher level design,
some applications require an override of the default parameter values directly from the
do_build_generic command (as in elaborating top-level modules with different values of
the parameters).

➤ To override the default parameter values, use the -parameter option, as shown in
Example 1-8. This option specifies the values to use for the indicated generics.

Example 1-8 Overriding the Default Parameter Values

Synthesizing the design BOT with generic values L=4 and R=1:

do_build_generic -module BOT -parameter {{L 3} {R 2}}

yields the following output:

Info: Building generic design BOT (instantiated from the command line)
with the parameter(s) L=3, R=2 <CDFG-340>.

Info: Processing design BOT_L3_R2 <CDFG-303>.

Finished processing module: BOT_L3_R2 <MODGEN-110>.

Note: An error occurs if a generic name specified using the -parameter option is not a valid
generic name for that design.

Troubleshooting

Look for troubleshooting information at the end of each chapter. Additional troubleshooting
information can be found in the latest version of Known Problems and Solutions for
BuildGates Synthesis and Cadence PKS that accompanied your release.
December 2003 40 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
2
High-Level Optimizations

This chapter describes high-level optimizations for RTL Verilog or VHDL designs and includes
the following sections:

■ Overview on page 42

■ Tasks on page 44

■ Additional Information on page 57

■ Troubleshooting on page 66
December 2003 41 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Overview

This chapter describes the high-level optimizations that are performed on RTL designs during
synthesis. Control these optimizations using the set_global command. All globals have a
default value when you start a new shell session. Extensive experiments have identified
that the default values are the best for most designs. However, you may attain better results
by changing a global value with the set_global command.

Once a global is set to a new value, the global retains that value for the current shell session
until you set a new value for the global using the set_global command. Use the
get_global command to get the value of any global. Use the reset_global command to
set the value of any global to its default value.

Optimization is automatic when you use the HDL optimization commands. The goal of
optimization is to generate the best design, in terms of area and delay, that meets specified
constraints. A design that is optimized for minimal area is often the one that consumes
minimal power for a given frequency.

Perform RTL synthesis as shown by the flow diagram and the corresponding Tcl script as in
Figure 2-1. High-level optimizations are performed during the do_build_generic and the
do_optimize design phases. You can generate reports, such as report_resources,
after the do_build_generic and do_optimize design phases. See Chapter 1, “Modeling
and Synthesizing HDL Designs,” for detailed information on the RTL synthesis flow.

The high-level optimization techniques are described in the Tasks section.
December 2003 42 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-1 RTL Synthesis Flow-High-Level Optimizations

read_verilog rtl.v
read_alf lca300k.alf

do_build_generic

write_verilog rtl.gen.v
report_resources

do_optimize

write_verilog rtl.map.v
report_resources

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 43 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Tasks

Control the following RTL high-level optimizations by specifying globals during the
do_build_generic and do_optimize design phases.

■ Resource Sharing on page 45 – Reduces the number of logic modules needed to
implement HDL arithmetic operations.

■ Tree Height Reduction (THR) on page 46 – Minimizes the delay of complex arithmetic
expressions.

■ Implicit Constant Propagation (ICP) on page 50 – Reduces area and delay by identifying
variables in the RTL design that can be implemented as constants in the synthesized
design.

■ Common Sub-Expression Elimination (CSE) on page 51 – Removes redundant
arithmetic expressions from the RTL description to minimize the hardware components
required to implement those expressions.

■ Architecture Selection on page 53 – Sets the default architecture used to implement
adders and multipliers.

■ Extraction of Sum-of-Products (SOP) Logic on page 54– Reduces area by using
specialized logic optimization techniques on constant case statements.

■ Multiplexer Optimization on page 55– Reduces runtime by defining the threshold size
below which all muxes are dissolved.

■ Finite State Machine (FSM) Extraction on page 56 – Extracts the State Transition Table
for the Finite State Machine.
December 2003 44 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Resource Sharing

➤ Set the following global to true to turn on resource sharing optimization:

set_global hdl_resource_sharing {true | false}

Default: true

Follow these guidelines when using the hdl_resouce_sharing global command. For
more information on resource sharing, see Additional Information on page 57.

■ Resource sharing takes place during the do_build_generic and the do_optimize
design stages of the RTL Synthesis flow.

■ Set the global hdl_resource_sharing variable to true before using the
do_build_generic command. This lets the tool collect information for sharing.

■ Sharing is performed at the end of the timing optimization phase to reclaim area without
worsening slack. During the do_optimize phase, set the global
hdl_resource_sharing variable to false to disable resource sharing, or it will
attempt to reclaim area after timing optimizations.

■ Resource sharing requires the HDL to have arithmetic operations in different branches
of a single conditional construct such as a case or an if statement.

■ Sharing is not performed across different conditional constructs or HDL modules.

■ Carry-save clusters are unsuitable for resource sharing, which limits the number of
sharing possibilities in a design. See Resource Sharing with Carry-Save Inferences on
page 65 for additional information.

■ False paths are not identified, which can cause pessimistic timing analysis, and limits the
number of sharing decisions in a design.

See Additional Information on page 57 for more information on resource sharing.
December 2003 45 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Tree Height Reduction (THR)

➤ Set the following global to true to enable tree height reduction:

set_global hdl_tree_height_reduction {true | false}

Default: true (BuildGates Synthesis)
Default: false (BuildGates Extreme and PKS)

Note: The default is false in BuildGates Extreme and PKS because THR can reduce
the effectiveness of some datapath optimizations.

THR is done during the do_build_generic phase of the design flow.

Tree Height Reduction (THR) is a timing independent optimization technique for reducing the
height of an arithmetic expression tree by balancing its subtrees. The height of a tree is
balanced when the height of its left and right subtrees do not differ by more than one.The
height of the tree is equal to the number of steps needed to compute the expression, so the
smaller the height of the expression tree, the smaller the delay in computing the expression.
The following sections describe how to use THR to improve slack, area, and delay.

As shown in Example 2-1, THR improves slack and area of datapath rich designs that have
chains of adders, multipliers, or subtractors. The design can have a combination of adders,
subtractors, and multipliers within the same expression, or it can have an individual chain of
adders, a chain of subtractors, or a chain of multipliers.

Example 2-1 THR Produces Better Slack and Area

THR improves performance by reducing the critical path delay. You can get an area gain by
doing a bit-width matched THR.

The expression z= a+ b+ c+ d in Example 2-2 is implemented with a skewed adder tree with
a height of 3, as shown in Figure 2-2 when THR is disabled.
December 2003 46 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Example 2-2 Modeling Bit-Width Matching
module thr (z,a,b,c,d);

input [1:0] a,c;

input [2:0] b,d;

output [5:0] z;

reg [5:0] z;

always @(a or b or c or d)

begin

 z = a + b + c + d;

end

endmodule

Figure 2-2 Matching Bit-Widths with THR Disabled

When THR is enabled, the expression is implemented with a balanced tree with a height of
2, as shown in Figure 2-3. Whenever possible, the THR optimization assigns expression input
variables with similar bit-width to a single hardware component to minimize the size of that
component. This bit-width matching may result in smaller adders, subtractors, and
multipliers, which in turn, results in a smaller area.
December 2003 47 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-3 Matching Bit-Widths with THR Enabled

Using Parentheses with Tree Height Reduction

THR honors parentheses in an expression. THR does not rebalance expressions across
parentheses, but lets you use parentheses as directives to control how you want to rebalance
the expression tree. Example 2-3 shows how you can use parentheses to separate early
arriving inputs from late arriving inputs.

Example 2-3 Modeling Parentheses with Tree Height Reduction
module thr (z,a,b,c,d,e,f);

input [2:0] a,b,c,d,e,f;

output [2:0] z;

reg [2:0] z;

always @(a or b or c or d or e or f)

begin

 z = (a + b + c + d) + (e + f);

end

endmodule

If late arriving inputs are not separated from the early arriving inputs, THR may generate a
structure whose critical path is worse than if THR were disabled.

Figure 2-4 shows a structure using parenthesis with THR disabled.
December 2003 48 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-4 Using Parenthesis with Tree Height Reduction Disabled

In Figure 2-5, sub-expressions (a+b+c+d) and (e+f) are separated by parentheses and are
rebalanced independently.

Figure 2-5 Using Parenthesis with Tree Height Reduction Enabled
December 2003 49 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Implicit Constant Propagation (ICP)

Implicit constant propagation is an optimization technique that replaces program variables
with constant values within conditional statements. ICP determines whether the value of a
variable in a conditional clause evaluates to a constant, and if it does, propagates that
constant to all uses of the variable in the relevant branch of the condition. The goal of constant
propagation is to discover values that are constant on all possible executions of a program
and to propagate these constant values as far forward through the program as possible. The
advantage of the ICP optimization is shown in Example 2-4, where the constant 3 is
propagated to the subtraction operation, eliminating the need for a subtractor in the netlist.

Note: Implicit constant propagation is done by default by the do_build_generic
command.

Example 2-4 Applying ICP to an if Statement
module icp (z,a);

input [1:0] a;

output [1:0] z;

reg [1:0] z;

 always @(a)

begin

if (a == 3)

 z = a - 1;

else

 z = a;

end

endmodule
December 2003 50 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Common Sub-Expression Elimination (CSE)

➤ Set the following global to true to enable the Common Sub-Expression Elimination
optimization:

set_global hdl_common_subexpression_elimination {true | false}

Default: true

Common Sub-Expression Elimination (CSE) is an optimization technique that removes
redundant arithmetic expressions from the RTL description to minimize the hardware
required to implement those expressions. Figure 2-6 shows the generic netlist generated for
the module cse shown in Example 2-5 with CSE enabled.

Example 2-5 RTL Description with a Redundant Arithmetic Expression
module cse (z,a,b,c,d,sel);

input sel;

input [7:0] a,b,c,d;

output [15:0] z;

reg [15:0] z;

always @ (a or b or c or d or sel)

begin

if (sel)

 z = a * b + c;

else

 z = d + a * b;

end

endmodule
December 2003 51 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-6 Generic Netlist Using Common Sub-Expression Elimination

Figure 2-7 shows two multipliers used to implement output z when CSE is disabled.

Figure 2-7 Generic Netlist with Common Sub-Expression Elimination Disabled
December 2003 52 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Architecture Selection

➤ Use the following global to set the default adder architecture used to implement final
adders:

set_global aware_adder_architecture {ripple | csel | cla | fcla}

Default: fcla

A synthesis tool does not treat an adder as a single truth table during implementation.
Instead, the tool employs a known, pre-defined scheme to compose the adder. Such a
scheme is known as the architecture of an adder.

Cadence PKS and BuildGates Extreme Synthesis support four carry-propagate adder
architectures that trade off between area and timing (seeTable 2-1).

See Resource Sharing with Architecture Selection on page 65 for information on how
resource sharing interacts with adder architecture selection.

Table 2-1 Supported Adder Architectures

Architecture Description

fcla (fast carry look ahead adder) Provides a solution that is usually the fastest
and largest. A regular structure with a large
total wire length.

csel (carry select adder) Provides a solution with the best/moderate
area-delay product. A regular structure with
low total wire length.

cla (carry look ahead adder) Provides the best area-delay product
solution. A regular structure but much more
wire length than the csel.

ripple (ripple adder) Provides a solution with the smallest area. A
very dense structure with the least total wire
length.
December 2003 53 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Extraction of Sum-of-Products (SOP) Logic

➤ Set the following global to true to automatically extract logic from case statements that
can be represented by Boolean equations in sum-of-products form:

set_global hdl_extract_sum_of_products_logic {true | false}

Default: true

A variable that is assigned only constant values within a case statement, such as variable z
can be represented by a Boolean equation that is in a sum-of-products (SOP) form as shown
in Figure 2-8. SOP logic that is identified and extracted during the do_build_generic
design phase can be minimized during the do_optimize design phase with specialized and
efficient logic optimization techniques.

Figure 2-8 Extracting Sum-of-Products Logic from a Constant case Statement
module sop (z,d);

input [2:0] d;

output z;

reg z;

always @ (d)

begin

case (d)

3’b000 : z = 1’b0;

3’b001 : z = 1’b0;

3’b010 : z = 1’b0;

3’b011 : z = 1’b1;

3’b100 : z = 1’b0;

3’b101 : z = 1’b1;

3’b110 : z = 1’b1;

 3’b111 : z = 1’b1;

endcase

end

endmodule
December 2003 54 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
When the hdl_extract_sum_of_products_logic global is set to false, the SOP logic
is not identified and extracted. Instead, the logic is minimized within the context of
surrounding logic using generalized logic optimization techniques.

Multiplexer Optimization

➤ Use the following global to set the multiplexer dissolve size:

set_global aware_mux_dissolve_size {positive integer}

Default: 8

BuildGates uses multiplexers whenever possible to implement logic for variables in the RTL
design that are assigned values within if-then-else or case statements. During the
do_optimize design phase, multiplexers that have less than the number of data inputs
specified by the global aware_mux_dissolve_size are dissolved and optimized within the
context of surrounding logic. Specialized optimizations are applied to multiplexers that have
more than the number of data inputs specified by aware_mux_dissolve_size. After logic
optimization, if the size of the optimized mux is found to be less than that of the
aware_mux_dissolve_size input mux, it is dissolved. In general, synthesis run-time
increases as the aware_mux_dissolve_size increases.

Muxes inferred using the directive infer_mux are not dissolved or optimized.
December 2003 55 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Finite State Machine (FSM) Extraction

➤ Use the following command to enable finite state machine extraction optimization:

do_build_generic -extract_fsm

After reading the design data into the BuildGates Synthesis software, you can extract
and view the state transition table for the FSM. The state transition table contains
information about equivalent states, initial states, and state encodings.

Use Cadence synthesis pragmas to perform FSM optimizations. See Chapter 6,
Optimizing and Structuring Finite State Machines on page 221 for more information on
FSM optimizations.
December 2003 56 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Additional Information

The following sections provide additional information on resource sharing:

■ Sharing Hardware Resources on page 58

■ Minimizing Implementation Area by Matching Bit Widths on page 59

■ Minimizing MUX Overhead by Matching Common HDL Variables on page 60

■ Removing Redundant Multiplexers on page 61

■ Sharing Multi-Function Operations on page 61

■ Sharing Across Nested Conditions on page 61

■ Avoiding Combinational Loops on page 62

■ Interacting with Other Optimization Techniques on page 63
December 2003 57 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Sharing Hardware Resources

Resource sharing is an optimization technique that reclaims design area (reduces gate
count) without worsening design performance. This optimization is based on the principle that
two similar arithmetic operations can be performed on one arithmetic hardware component if
they are never used at the same time.

Use this technique to share hardware resources across portions of the design. During the
synthesis flow resource sharing is performed for area reclamation as a post timing
optimization step. Sharing is performed incrementally by merging two datapath modules into
one. This guarantees that the design timing constraints are not violated, resulting in a design
with smaller area and possibly reduced delay.

Resource sharing provides the following capabilities:

■ Makes sharing decisions after timing optimizations when accurate timing and area
estimates are available.

■ Enhances Datapath Synthesis if the design netlist contains datapath modules that
implement complex arithmetic functions such as a sum of products (a+b*c). Sharing
spontaneously synthesizes an equivalent module that implements the functionality of two
(complex) datapath modules.

■ Identifies RTL sharing possibilities automatically as opposed to being driven by user-
specified pragmas. The automated feature lets appropriate sharing decisions be based
on timing constraints, which are usually hard for you to determine from the RTL code and
bare input-output constraints.

■ Incorporates many additional features, such as redundant mux removal, name and bit-
width based matching, incremental and nested-condition sharing that provides a
powerful framework for improving area. These are described in the following sections.

Sharing Two Arithmetic Expressions

Resource sharing attempts to share arithmetic expressions that are specified in mutually
exclusive segments of the HDL source, that is, the arithmetic expressions are in different
parts (or branches) of a conditional HDL construct.

Figure 2-9 shows how to model two arithmetic expressions that you want to share. These
expressions are mutually exclusive, because they are in different parts of the same if
statement. The shared hardware (which implements one adder) selects the appropriate
inputs depending on the value of q.
December 2003 58 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-9 Modeling Two Arithmetic Expressions for Sharing

Note: Sharing is independent of the fact that two mutually exclusive expressions drive a
different or the same variable (if the second expression is also assigned to ‘x’).

Minimizing Implementation Area by Matching Bit Widths

While sharing two arithmetic expressions, terms with closer bit widths are matched to reduce
functional-unit area.

In Figure 2-10, the 12-bit multiplier (arithmetic expression ‘y’) is matched with the 8-bit
multiplier (arithmetic expression ‘x 1’) instead of the 4-bit (in the arithmetic expression ‘x 2’).
The result is two multipliers with widths of 12 bits and 4 bits each. This is a smaller area
implementation than matching the 12-bit multiplier with the 4-bit multiplier that results in 12-
bit and 8-bit multipliers.

d

b

c

a

q
int_x

int_y

0

1

0

1

+

if (q == 1’b0)
x = a + b; //Datapath Expression 1

else
y = c + d; //Datapath Expression 2
December 2003 59 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-10 Matching Bit Widths

Minimizing MUX Overhead by Matching Common HDL Variables

When two arithmetic expressions are shared, more than one match between the input
variables is possible.

As shown in Figure 2-11, sharing takes advantage of the commutativity of arithmetic
operations and matches a with c (due to the common variable b). This results in only one
MUX. In general, between any two arithmetic expressions, terms with common variable
names have a higher priority for being matched.

Figure 2-11 Matching Common HDL Variables

f [12:1]

{4’b0, b[8:1]}

e [12:1]

{4’b0, a [8:1]}

q

0

1

0

1

X

[16:1]

[24:1]

x1

y

if (q == 1‘b0)
begin

x1 = (a[8:1] * b[8:1]);
x2 = (c[4:1] * d[4:1]);

end
else

y = e[12:1] * f[12:1];

a

c

0

1

q
b +

if (q == 1’b0)
x = a + b;

else

y = b + c;
December 2003 60 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Removing Redundant Multiplexers

In some designs, modules selected for sharing are driving inputs of the same multiplexer. This
happens when the unshared arithmetic expressions are driving the same HDL variable. In
Figure 2-12, after the arithmetic expressions are shared, the multiplexers at the output
becomes redundant because it selects between the fan-outs from the shared module.
Sharing performs logic optimization to identify and remove redundant multiplexers. This is
critical when satisfying a tight timing constraint.

Figure 2-12 Removing Redundant Multiplexers

Sharing Multi-Function Operations

Sharing is done across different arithmetic operations if there are no available operations of
the same type. The following are the multi-function operations that are shared:

■ Subtraction operations are shared with addition operations.

■ Certain relational Operators of differing types are shared.

Sharing Across Nested Conditions

Sharing is done across nested conditions in the design. In Figure 2-13, the multiplier is
shared across two conditional statements (s and r). The second multiplication (d * a) is
assigned to y on the condition s=11&r=1, whereas the first expression is assigned to x on
the condition s=01. Even though there is two-level nesting, the mutual exclusion of the
multiplication is based on the value of s. Therefore, the optimized control logic is dependent
only on r and the optimized control logic (dependent only on s[1]) is automatically
generated during sharing.

a

b
0

1

q

x

+

c

d

+

+

if (q == 1’b0)
x_mux = a + b;

else
x_mux = c + d;
December 2003 61 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Figure 2-13 Sharing Across Conditional Statements

Avoiding Combinational Loops

Combinational loops create undesirable circuit behaviors. A resource sharing decision can
introduce a combinational loop in the netlist. To avoid this, sharing checks for the possibility
of a loop at each incremental step.

As shown in Figure 2-14, if a path (through f) already exists between the two add operations,
then sharing the two adders will create a combinational loop. Such sharing decisions are
automatically detected and rejected.

Figure 2-14 Avoiding a Combinational Loop

b

d

0

1

s [1] a

y

1

0

s[1] & r

a

b

x

X

-

case (s)
2’b01 : x = a * b;
2’b11 : if (r)
y = d * a;

else
y = a - b;

a

b 1

0d

c

g

f

+

+

if (c == 1’b1)
f = a + b;
else
begin
g = f + c;
f = d;

end;
December 2003 62 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Interacting with Other Optimization Techniques

Resource Sharing works with Datapath optimizations including Operator Merging,
Architecture Selection, and Carry-save inferencing. In addition, Resource Sharing
complements the Low-power Synthesis sleep-mode operation.These interactions are
explained in the following sections:

■ Resource Sharing with Operator Merging on page 63

■ Resource Sharing with Operator Merging on page 63

■ Resource Sharing with Carry-Save Inferences on page 65

■ Resource Sharing with Sleep-Mode Operation on page 65

Resource Sharing with Operator Merging

A powerful optimization feature of the resource sharing implementation is its ability to share
arbitrary (or partial) arithmetic expressions. Operator merging (see Example 2-1) clusters the
datapath operations and results in improved delay and area.

Example 2-1 Operator Merging
module foo (a,b,c,d,e,f,s,x,y);

input s;

input [7:0] a,b;

input [3:0] c,d;

input [11:0] e,f;

output [23:0] y;

output [16:0] x;

reg [16:0] x;

reg [23:0] y;

always @ (a or b or c or d or e or f or s)

begin

if (s)

x = (a * b) + (c * d);

else

y = e * f;

end

endmodule
December 2003 63 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Since the arithmetic expression x is merged into one module, there is no access to the
intermediate multiplication outputs. Therefore, at the outset, the two arithmetic expressions
cannot be shared. However, Figure 2-15 shows how sharing can be achieved for
Example 2-1.

First, resource sharing attempts to derive a single arithmetic expression that can implement
both the unshared expressions. For this example, two multiplications (24 bit and 8 bit)
followed by a 24-bit addition (as shown in Figure 2-15) can implement both the expressions.
The idea is to provide constants (zeros and ones) at the inputs such that the hardware works
as a simple multiplier or a sum-of-products. This is achieved by the set of input multiplexers
as shown in the following figure.

Figure 2-15 Sharing Partial Arithmetic Expressions

Matching is performed to determine if one arithmetic expression is functionally equivalent to
the other. The matched multipliers (a result of bit-width matching explained in the previous
section) are shown by the dotted line. A shared CDFG that is equivalent to both the original
arithmetic expressions is created. The shared CDFG contains a new datapath partition and
information for generating MUXes to conditionally select the inputs. Based on the condition
q, inputs are selected so that the new datapath partition operates like one of the two original
partitions. The inputs in the figure are appropriately padded so they are MUXed with the
matched pair.

{4’h01,a} 0

1e

s

0

1

{4’h0,lb}

f

s

0

14’h0

s

0

1

cl

41’h0

s

c

X

X

+

12

12

24

4

4

8

24
x

y

17

24
December 2003 64 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Resource Sharing with Architecture Selection

Every synthesized datapath module has a selected architecture (ripple, booth, etc.) that
affects the timing and area of the module. Resource sharing automatically selects the best
architecture for the shared module. The interaction with architecture selection is as follows:

■ Resource sharing honors any architecture pragma that you specify on arithmetic
operators. If you specify architectures for both modules then they have to be identical to
enable sharing.

■ Each incremental sharing decision selects the most timing critical architecture from the
two unshared modules.

■ Architecture selection for area-reclamation follows resource sharing and selects the least
area architecture for the shared module.

Resource Sharing with Carry-Save Inferences

Carry-save inferences create multiple clusters within a datapath partition. Currently, resource
sharing of carry-save clusters is not supported. However, this feature can be turned off to
enhance resource sharing possibilities.

Note: The above optimization techniques require the Datapath Option. Refer to Datapath
for BuildGates Synthesis and Cadence PKS for more information.

Resource Sharing with Sleep-Mode Operation

Resource sharing complements Cadence Low-Power Synthesis, in particular, the sleep-
mode operation. When resource sharing is turned on with low-power synthesis, sleep
modules are treated differently. Sharing (in some cases) can make sleep-mode redundant.
Nevertheless, turning on sleep-mode operation with resource sharing can save power.

For more information on sleep mode, see the Sleep Mode chapter of the Cadence Low-
power Synthesis of BuildGates Synthesis and PKS.
December 2003 65 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
High-Level Optimizations
Troubleshooting

Additional troubleshooting information can be found in the latest version of Known Problems
and Solutions for BuildGates Synthesis and Cadence PKS that came with your release.
December 2003 66 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
3
Synthesizing Verilog Designs

This chapter explains how to synthesize Verilog designs using Verilog synthesis commands,
Verilog synthesis directives, and Verilog modeling styles in the following sections:

■ Overview on page 68

■ Tasks on page 69

■ Additional Information on page 75

■ Troubleshooting on page 117
December 2003 67 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Overview

BuildGates Synthesis synthesizes Verilog designs into generic or technology mapped
netlists, and then outputs these resulting netlists. See Tasks on page 69 for detailed
information on how to complete these tasks. See Verilog-Related Commands and Globals on
page 106 for a list of commands and globals that are used to manipulate Verilog synthesis.

Use Verilog modeling styles to construct a gate level netlist from a register-transfer level
Verilog design. See Verilog Modeling Styles on page 75 for more information. See Supported
Verilog Modeling Constructs on page 108 for a list of supported Verilog HDL constructs and
how they are used in the BuildGates Synthesis process.

For detailed information on the Verilog-2001 language extensions, refer to Chapter 4, Verilog-
2001 Extensions. Verilog-2001 language features are explained in detail in the IEEE 1364-
2001 Verilog HDL standard Language Reference Manual (LRM).

Use synthesis directives to control the synthesis process. See Verilog Synthesis Directives
on page 90 and Verilog Compiler Directives on page 104 for more information.

Supported Synopsys Directives on page 105 lists the Synopsys directives supported by
BuildGates Synthesis.

Perform RTL synthesis, as shown in Figure 3-1 after loading the timing and power libraries.
For information on reading libraries, see Using Timing Libraries in the Timing Analysis
for BuildGates Synthesis and PKS.

For detailed RTL flow information, see the RTL Synthesis Flow in Chapter 1.

Figure 3-1 RTL Synthesis Flow - Verilog

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 68 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Tasks

The Verilog synthesis flow describes the following tasks for synthesizing Verilog designs:

■ Read Design Data on page 69

■ Build Generic Design on page 72

■ Write Netlist on page 72

For details about command arguments, see the Command Reference for BuildGates
Synthesis and PKS. For information on how to model Verilog designs see Verilog Modeling
Styles on page 75.

Read Design Data

The first step in RTL synthesis is to read in the HDL design. The design data is read in using
the Ambit Database (ADB), Electronic Design Interchange Format (EDIF), Verilog, or the
VHDL format.

This section describes the data read in using the Verilog format. A design is read in a bottom-
up or a top-down fashion.

Before reading in the designs, set the following globals described in the following sections.
December 2003 69 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Switching between Verilog-1995, Verilog-2001, and Verilog-DP

➤ Specify the Verilog version used to read Verilog designs:

set_global hdl_verilog_read_version { 1995 | 2001 | dp }

Default: 2001

This global ensures that only Verilog files that conform to the appropriate Verilog
standard are parsed successfully.

Verilog-DP is an upwardly compatible, proprietary extension to Verilog-2001 that
includes a concise datapath description language to facilitate complex, highly
parameterized datapath designs. See Datapath for BuildGates Synthesis and
Cadence PKS for more information on Verilog-DP extensions

Specifying the Naming Style of Object Names

➤ Specify if the naming style of input and output object names will be in Verilog, VHDL, or
no naming style:

set_global naming_style {vhdl | verilog | none}

Use the find command to get the names of input and object names.

Reading and Storing Verilog Modules as Components into an AmbitWare Library

➤ Use the read_verilog command to read in Verilog design files, and use the
-aware_library option to store Verilog modules as components in a specified
AmbitWare library:

read_verilog [-aware_library aware_libname] verilog_filename

For example, the following command reads three Verilog designs into the AmbitWare
library ZM122200.

read_verilog -aware_library ZM122200 zm_des1.v zm_des2.v zm_des3.v

For more information on AmbitWare libraries see Appendix A, “AmbitWare,”.

Follow the read_verilog command with the do_build_generic command before using
constraint or optimization commands.
December 2003 70 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Creating a Verilog Netlist Directly for Structural Constructs

➤ Use the read_verilog -structural command to create a netlist for Verilog designs
that contain only structural constructs (module and gate instances and simple
assignments).

read_verilog [-structural] verilog_filenames

For example, the following command reads netlist.v and runs the
do_build_generic command:

read_verilog -structural netlist.v

Multiple file names are separated by blank spaces.

The -structural option does not support full RTL. It only handles the structural subset
of Verilog, that is, module and gate instances, concurrent assignment statements, and
simple expressions (references to nets, bit-selects and part-selects of nets,
concatenations of nets, and the unary (~) operator.

Passing Arguments to the Verilog Preprocessor (VPP)

Pass arguments to the read_verilog command, such as the search path, using the
following global:

set_global hdl_verilog_vpp_arg

If this variable is set to -I/home/rtl, the read_verilog command searches for Verilog
files in /home/rtl.

Getting HDL File Names, Hierarchy, and Top Level Design Names

You can use the get_hdl command after reading the HDL files into BuildGates Synthesis
without having to first generate a generic netlist. See Querying the HDL Design Pool on
page 33 for information on how to use these commands.

■ Using the get_hdl_top_level Command on page 35

■ Using the get_hdl_hierarchy Command on page 35

■ Using the get_hdl_type Command on page 36

■ Using the get_hdl_file Command on page 36
December 2003 71 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Build Generic Design

➤ Use the do_build_generic command to transform the Verilog design into a
hierarchical, gate-level netlist consisting of technology-independent logic gates:

do_build_generic

Follow these guidelines when building a generic design:

■ Issue the do_build_generic command after specifying the source Verilog files for the
initial design database and before using the do_optimize command. Write the
generated netlist in Verilog with the write_verilog command. Load the generated
netlist for optimization and analysis using the read_verilog command.

■ By default, the do_build_generic command treats all procedural (initial and
always) blocks as part of the module in which they appear without any hierarchy. When
grouping is specified with the -group_all_processes,
-group_named_processes, or -group_process option, a new level of hierarchy is
created to represent each selected block.

■ Use the do_build_generic -module option to generate netlists for selected modules
in the design hierarchy.

Write Netlist

Specifying the Maximum Line Length for Writing Out Verilog Netlist in Files

➤ Use the following global variable to specify the line length for writing out a Verilog netlist
in a file:

set_global hdl_verilog_out_columns integer

Default: 80

Set the global hdl_write_multi_line_port_maps to false to ignore the limit.

Writing Out Compact Files for Verilog Netlist Output

➤ Set the following global to true to write out compact files for the Verilog netlist output:

set_global hdl_verilog_out_compact { true | false }

Default: true

The compact files have multiple statements on one line. If the files are unreadable, set the
variable to false so only one statement is written per line.
December 2003 72 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Writing Declarations for Implicit Wires

➤ Set the following global to true to write declarations for implicit wires:

set_global hdl_verilog_out_declare_implicit_wires { true | false }

Default: false

Note: Implicit wires in Verilog do not require a declaration.

Writing Primitive Verilog Operators Instead of ATL Equivalent Components

➤ Set the following global to true to write primitive Verilog operators instead of the ATL
equivalent components:

set_global hdl_verilog_out_prim { true | false }

Default: true

Keeping Track of the RTL Source Code

➤ Set the following global to true to keep track of the RTL source code:

set_global hdl_verilog_out_source_track { true | false }

Default: false

Selecting the Netlisting Style for Unconnected Instance Pins

➤ Use the following global variables to select the netlisting style for unconnected instance
pins:

set_global hdl_verilog_out_unconnected_style { none | partial | full }

Default: none

Specifying Constant Signals as Supply Signals

➤ Set the following global variable to true to specify that constant signals (1 or 0) will be
declared as supply signals (supply1 or supply0).

set_global hdl_verilog_out_use_supply { true | false }

Default: false
December 2003 73 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Writing out Modules in Top-Down or Bottom-Up Order

➤ Use the following global variables to control whether Verilog netlists write out modules in
top-down or bottom-up order:

set_global hdl_write_top_down {true | false}

Default: false

Specifies whether the design hierarchy should be written out in a top-down or bottom-up
fashion. When the global is set to true, higher-level modules precede the lower-level
modules in the netlist. When the global is set to false, lower-level modules are written
out prior to modules that instantiate them.

Writing a Verilog Netlist

➤ Use the write_verilog command to write out a Verilog netlist:

write_verilog [-hierarchical] [-equation] verilog_file_name

For example, the following saves the hierarchical netlist in the file counter.v.net:

write_verilog -hierarchy counter.v.net

Note: If assign statements exist in the output, use the set_global
fix_multiport_nets command.

Follow these guidelines when writing out a Verilog netlist:

■ The write_verilog command writes out the netlist stored in the database in Verilog.
The netlist is generated by the do_build_generic or the do_optimize command.

■ If a netlist is written out after using the do_optimize command, then it contains
instances of cells in the target technology library. Verify the netlist through simulation
using a Verilog library from the target technology.
December 2003 74 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Additional Information

■ Verilog Modeling Styles on page 75

■ Verilog Synthesis Directives on page 90

■ Verilog Compiler Directives on page 104

■ Operator Merging Directive on page 103

■ Supported Synopsys Directives on page 105

■ Verilog-Related Commands and Globals on page 106

■ Supported Verilog Modeling Constructs on page 108

Verilog Modeling Styles

See Supported Verilog Modeling Constructs on page 108 for a complete listing of supported
and unsupported Verilog HDL constructs. This section includes the following information:

■ Modeling Combinational Logic on page 76

■ Inferring a Register on page 78

■ Using case Statements for Multi-Way Branching on page 83

■ Using a for Statement to Describe Repetitive Operations on page 89
December 2003 75 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Modeling Combinational Logic

Procedural assignments are the main style for modeling combinational logic. Use a
procedural assignment statement in a sequential block of an always statement. The
statement describes the composition of intermediate values within a combinational block.

Variables used on the left side of a procedural assignment are declared as reg (a storage
data type). However, not all variables declared as a reg data type need to be implemented
in hardware with a memory element (latch or flip-flop).

BuildGates synthesizes combinational logic to implement a variable under the following
conditions:

■ The variable is unconditionally assigned a value before it is used.

■ Whenever any of the variables in the right-hand side expression change.

Combinational logic is synthesized to implement the variable dout in Figure 3-2.

Figure 3-2 Synthesizing Combinational Logic to Implement Variable dout

module comb_or (dout,a,b,c);

input a,b,c;

output dout;

reg dout;

always @ (a,b,c)

begin

 dout = a || b || c;

end

endmodule
December 2003 76 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
■ The variable is conditionally assigned a value under all possible conditions whenever any
of the variables in the right side expression change, as shown in Figure 3-3.

Figure 3-3 Synthesizing Combinational Logic to Implement Signal z
module comb_mux (dout,sel,a,b,);

input sel,a,b;

output dout;

reg dout;

always @ (a,b,sel)

begin

if (sel)

 dout = a;

else

 dout = b;

end

endmodule
December 2003 77 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Inferring a Register

Inferring registers lets you use sequential logic and keeps your designs technology
independent. A register can be a level-sensitive (latch) or an edge-triggered (flip-flop)
memory element. BuildGates Synthesis identifies registers from the syntax of the HDL and
generates a sequential element table that reports the number and type of memory elements
inferred for the model synthesized by the do_build_generic command.

The following sections describe how to infer a register:

■ Inferring a Register as a Latch on page 78

■ Inferring a Register as a Flip-Flop on page 79

Inferring a Register as a Latch

BuildGates Synthesis infers a latch for a variable if it is updated whenever any of the variables
that contribute to its value change when the enable signal is valid (Figure 3-4). Signal dout
is updated when en is high, otherwise signal dout retains its previous value. The BuildGates
Synthesis software infers a latch to implement the variable dout.
December 2003 78 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Figure 3-4 Inferring a Latch
module latch (dout,en,sel,a,b);

input en,sel,a,b;

output dout;

reg dout;

always @(en or sel or a or b)

begin

if (en)

begin

if (sel)

 dout = a;

else

 dout = b;

end

end

endmodule

Inferring a Register as a Flip-Flop

When an assignment is conditioned upon a rising or falling transition on a signal, an edge-
triggered flip-flop is inferred to implement the variable on the left-hand side of the assignment,
as shown in Figure 3-5.
December 2003 79 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Figure 3-5 Inferring a Flip-Flop
module sync_flop (clk, din, dout);

input clk;

input din;

output dout;

reg dout;

always @(posedge clk)

begin

 dout <= din;

end

endmodule

A flip-flop with asynchronous operation is inferred, as shown in Example 3-1, when an
assignment is made without being dependent on the clock edge. The asynchronous behavior
is implemented in hardware through asynchronous set and reset pins on a flip-flop, as shown
in Figure 3-6.
December 2003 80 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Example 3-1 Modeling an Asynchronous Operation On a Flip-Flop
module ff_ar(dout,clk,rst,en,sel,a,b);

input clk,rst,en,sel,a,b;

output dout;

reg dout;

always @(posedge clk or posedge rst) begin

if (rst)

 dout = 1’b0;

else if (en) begin

if (sel)

 dout = a;

else

 dout = b;

end

end

endmodule

Figure 3-6 Schematic Representation of an Asynchronous Operation On a Flip-Flop
December 2003 81 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
The always block is triggered when a rising edge is detected on clk or a falling edge on
reset. If reset is active low, then the event in the sensitivity list and the condition in the if
statement should be negated as shown in Example 3-2.

Example 3-2 Negating the Condition in an if Statement
module ff_ar(dout,clk,rst,en,sel,a,b);

input clk,rst,en,sel,a,b;

output dout;

reg dout;

always @(posedge clk or negedge rst) begin

if (~rst)

 dout = 1’b0;

else if (en) begin

if (sel)

 dout = a;

else

 dout = b;

end

end

endmodule

Figure 3-7 shows the schematic representation of negating the condition.
December 2003 82 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Figure 3-7 Schematic Representation of Negating the Condition in an if Statement

Using case Statements for Multi-Way Branching

Use a case statement for multi-way branching in a functional description. When a case
statement is used as a decoder to assign one of several different values to a variable, the
ensuing logic is implemented as combinational or sequential logic based on whether the
variable is assigned a value in all branches of the case statement. BuildGates Synthesis
automatically determines whether a case statement is full or parallel. A case
statement is full if all possible case items are specified. A case statement is parallel if
none of the case statement conditions overlap and are mutually exclusive. If automatic
determination of full or parallel case is not possible, use the full and parallel
case directives (see Full Case Directive on page 94, and Parallel Case Directive on
page 95).

The following sections describe the impact on synthesis for different use models and types of
case statements.

Using an Incomplete case Statement to Infer a Latch

When a case statement does not specify all possible case condition values, a latch is
inferred. If BuildGates determines that the case is not full, it uses a latch to implement a
state transition table as shown in Example 3-3.
December 2003 83 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Example 3-3 Modeling a State Transition Table to Infer a Latch
module case_latch(dout,sel,a,b,c);

input [1:0] sel;

input a,b,c;

output dout;

reg dout;

always @(a,b,c,sel) begin

case (sel)

2’b00 : dout = a;

2’b01 : dout = b;

2’b10 : dout = c;

endcase

end

endmodule

Using an Fully Specified case Statement to Prevent a Latch

Use one of the following methods to assign a default value to next_state:

■ Assign the next_state variable an unconditional value, then use a case statement to
modify it, as shown in the Example 3-4.

Example 3-4 Preventing a Latch by Assigning a Default Value to next_state

module case_latch(dout,sel,a,b,c);

input [1:0] sel;

input a,b,c;

output dout;

reg dout;

 always @(a,b,c,sel) begin

dout = 1’b0;

 case (sel)

2’b00 : dout = a;

2’b01 : dout = b;

2’b10 : dout = c;

 endcase

 end

endmodule
December 2003 84 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Use the default case in the case statement to capture all the remaining cases where the next
state variable is assigned a value, as shown in Example 3-5.

Example 3-5 Preventing a Latch by Using the Default case in the case Statement
module case_latch(dout,sel,a,b,c);

input [1:0] sel;

input a,b,c;

output dout;

reg dout;

 always @(a,b,c,sel) begin

dout = 1’b0;

 case (sel)

2’b00 : dout = a;

2’b01 : dout = b;

2’b10 : dout = c;

default : dout = 1‘b0;

 endcase

 end

endmodule

You can also use the full case synthesis directive as discussed in Full Case
Directive on page 94. The simulation results between functional and gate level models may
mismatch if this synthesis directive is used.

Using casez and casex Statements to Treat x, z and ? Like Don’t Cares

Use casex and casez statements to treat x, z and ? values like don’t care conditions when
comparing for the matching case. These statements are treated like case statements with
the following differences:

■ Use a casez statement to treat z and ? as a don’t care condition.

■ Use a casex statement to treat x, z and ? as a don’t care condition.
December 2003 85 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Example 3-6 shows a casez statement using don’t care conditions to mask three of the
four bits in the decoding select line (input sel).

Example 3-6 Using Don’t Care Conditions in a casez Statement
module case_z(dout,sel,a,b,c,d,e);

input [3:0] sel;

input a,b,c,d,e;

output dout;

reg dout;

always @(a,b,c,d,e,sel) begin

casez (sel)

4’b0000 : dout = a;

4’b???1 : dout = b;

4’b??1? : dout = c;

4’b?1?? : dout = d;

4’b1??? : dout = e;

endcase

end

endmodule

In the example, dout is set to b if sel[0] = 1, regardless of the values of sel[3], sel[2]
and sel[1]; dout is set to c only if sel[0] = 0 and sel[1] = 1, regardless of the values
of sel[3] and se[2]. Figure 3-8 shows the schematic representation.
December 2003 86 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Figure 3-8 Schematic Representation of Using Don’t Care Conditions in a casez
Statement

➤ Enter the read_verilog and do_build_generic commands to view a report of the
casez statement as shown in Example 3-7.

Example 3-7 Report of the casex Statement
bg_shell[1]>read_verilog case_z.v

bg_shell[2]>do_build_generic

 Info: Processing design ’case_z’ <CDFG-303>.

Statistics for case statements in module ’case_z’ (File case_z.v) <CDFG-800>.

+--+

| Case Statistics Table |

|--|

| Line | Type | Full | Parallel |

|---------+---------+---------+----------|

| 8 | casez | AUTO | NO |

+--+

Finished processing module: ’case_z’ <MODGEN-110>.
December 2003 87 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
One or more case items overlap (not parallel) and a priority encoder is required to implement
the equivalent hardware.

Example 3-8 shows a casex statement using don’t care conditions in the same manner as
the casez statement. The difference between the two models is that the casex statement
masks three bits of the select line that would match x, z, or ?, but the casez statement will
not mask x in the select line.

Example 3-8 Using Don’t Care Conditions in a casex Statement
module case_x(dout,sel,a,b,c,d,e);

input [3:0] sel;

input a,b,c,d,e;

output dout;

reg dout;

always @(a,b,c,d,e,sel) begin

casez (sel)

4’bxxx1 : dout = a;

4’bxx1x : dout = b;

4’bx1xx : dout = c;

4’b1xxx : dout = d;

default : dout = e;

endcase

end

endmodule

➤ Enter the read_verilog and do_build_generic commands to view a report of the
casez statement as shown in Example 3-9.

Example 3-9 Report of the casex Statement
bg_shell[1]>read_verilog casex.v

bg_shell[2]>do_build_generic

 Info: Processing design ’case_x’ <CDFG-303>.

Statistics for case statements in module ’case_x’ (File casex.v) <CDFG-800>.

 +--+

 | Case Statistics Table |

 |--|

 | Line | Type | Full | Parallel |

 |---------+---------+---------+----------|

 | 8 | casex | AUTO | NO |

 +--+
December 2003 88 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
 Finished processing module: ’case_x’ <MODGEN-110>.

 Info: Setting ’case_x’ as the top of the design hierarchy <FNP-704>.

 Info: Setting ’case_x’ as the default top timing module <FNP-705>.

Using a for Statement to Describe Repetitive Operations

Use the for statement to describe repetitive operations as shown in Example 3-10 where i
is declared as an integer and dout is a 4-bit register.

Example 3-10 Using the for Statement to Describe Repetitive Operations
module for_loop(dout,sel,a,b,)

input sel;

input [3:0] a,b;

output [3:0] dout;

reg [3:0] dout;

integer i;

 always @(a,b,sel) begin

 for (i=0; i<=3; i=i+1) begin

 if (sel)

dout[i] = a[3-i];

 else

dout[i] = b[i];

 end

 end

endmoudle

The for statement is expanded to repeat the operations over the range of the index.

Supported Forms of the for Statement in Verilog
for (index = low; index < high; index = index+step)

for (index = low; index <= high; index = index+step)

for (index = high; index > low; index = index-step)

for (index = high; index >= low; index = index-step)

The index is declared as an integer or a reg; high, low and step are integers, and
high must be greater than or equal to low.

Note: High, low and step must evaluate to constant numbers at compile time. An error
message is generated if one of them does not evaluate to a constant number.
December 2003 89 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
A for statement can be nested inside another for statement, but it cannot contain any form
of timing control or event control. Therefore, the following usage of the for statement is
illegal:

for (i = 0; i <= 7; i = i + 1)

@(posedge clk) out[7-i] <= in[i] ;

Verilog Synthesis Directives

Synthesis directives are specially-formatted comments. Do not confuse these comments with
Verilog HDL compiler directives that begin with ‘.

BuildGates Synthesis supports the following two forms of Verilog synthesis directives:

■ Short comments that terminate at the end of the line:

// ambit synthesis directive_name

■ Long comments that extend beyond one line:

/* ambit synthesis directive_name */

Each comment begins with the words ambit synthesis.

Note: When using a comment for specifying a synthesis directive, that comment should not
contain any extra characters other than what is necessary for the synthesis directive.

■ Synthesis On and Off Directives on page 91

■ Architecture Selection Directive on page 92

■ case Statement Directives on page 93

■ Module Template Directive on page 96

■ Function and Task Mapping Directives on page 96

■ Set and Reset Synthesis Directives on page 98

■ Block Directives on page 100

■ Signal Directives on page 101

■ Signals in a Block Directive on page 102

■ Operator Merging Directive on page 103
December 2003 90 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Synthesis On and Off Directives

By default, BuildGates Synthesis compiles all HDL code from a file. Use the code selection
synthesis directives in pairs around HDL code that should not be compiled for synthesis.

All the code following the synthesis directive // ambit synthesis off, up to and including
the synthesis directive // ambit synthesis on is ignored by the tool.

Initialization code can be added for debugging purposes (Example 3-11). This code is not
synthesized. If the initial block is surrounded by these synthesis directives, the tool will
skip over the entire block.

Example 3-11 Using Synthesis On and Off Directives
// ambit synthesis off

initial begin

cond_flag = 0 ;

$display(“cond_flag cleared at the beginning.”) ;

end

// ambit synthesis on

always @(posedge clock)

if (cond_flag)

...
December 2003 91 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Architecture Selection Directive

Use this directive to select different types of architectures for arithmetic and comparator
(relational) operators. The available architectures are based on whether you have purchased
the Datapath license with BuildGates Synthesis.

For information on Datapath, refer to the Datapath for BuildGates Synthesis and
Cadence PKS.

The standard BuildGates Synthesis software without Datapath contains the following final
adder architectures:

■ cla (carry lookahead)

■ ripple (ripple carry)

The BuildGates Synthesis software with Datapath contains the following final adder and
multiplier encoding architectures:

Datapath final adder architectures:

■ fcla (fast carry lookahead)

■ cla (carry lookahead)

■ csel (carry select)

■ ripple (ripple carry)

Datapath multiplier encoding architectures:

■ non-booth

■ booth

For Verilog, specify the architecture selection directive immediately after the operator as
shown in the following example.

Example 3-12 Specifying the Architecture Selection Directive
assign x = a + /* ambit synthesis architecture = ripple */ b

If there are multiple operators in the expression, place the directive immediately following the
desired operator, as shown in Example 3-13.
December 2003 92 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Example 3-13 Specifying the Architecture Selection Directive with Multiple Operators
// implement subtractor with ripple-carry architecture

assign x1 a + b - /* ambit synthesis architecture = ripple */ c;

// implement adder with ripple-carry and subtractor

// with carry lookahead architecture

assign x2 a + /* ambit synthesis architecture = ripple */

 b - /* ambit synthesis architecture = cla */ c;

case Statement Directives

A case statement can be interpreted in many ways. The default interpretation is that the
priority is in decoding the case labels in the order listed in the model. That is, the case
statement is interpreted as a nested if-else statement.

The case statement synthesis directive provides the mechanism to modify the default
interpretation to capture the design intent. Example 3-14 shows how to use the case
statement directive.

Example 3-14 Using the case Statement Directive
// ambit synthesis case = value

This synthesis directive takes one, two, or three comma-separated values: full, parallel,
or mux.The order of the values is unimportant, but place the synthesis directive immediately
after the case expression. For example:

// ambit synthesis case = full, parallel

Note: While the above Ambit pragma is comma separated, the synopsys pragma is space
separated. For example:

// synopsys full_case parallel_case

If the case statement has sufficient information, the following synthesis directives are
automatically inferred even if they are not included in the code:

■ Full Case Directive on page 94

■ Parallel Case Directive on page 95

■ Multiplexer case Directive on page 95
December 2003 93 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Full Case Directive

If the synthesis directive value includes full, the case expression evaluates to only those
values specified by the case labels in the case statement as shown in Example 3-15. This
implies that all other possible values of the case expression are treated as don’t care
conditions.

Note: This further implies that there is no need for a default clause in the case statement
and no latch is inferred.

Example 3-15 Using the full Case Directive to Suppress the Latch Inference
case (arith_opcode) // ambit synthesis case = full

4’b0000 : result = 32’h0 ;// clear

4’b0001 : result = src1 + src2 ;// add

4’b0010 : result = src1 + 1’b1 ;// inc

4’b1001 : result = src1 - src2 ;// sub1

4’b1101 : result = src2 - src1 ;// sub2

4’b1010 : result = src1 - 1’b1 ;// dec
endcase

Use the case = full directive to suppress the latch inference only if the procedural
assignments in each case item are made to all the variables modified in the case statement.

In the case statement shown in Example 3-16, the second case item does not modify reg2,
so it is inferred as a latch (to retain last value).

Example 3-16 Using the full Case Directive to Infer a Latch
case (cntr_sig) // ambit synthesis case = full

2’b00 : begin reg1 = 0 ; reg2 = v_field ; end

2’b01 : reg1 = v_field ; // latch inferred for reg2

2’b10 : begin reg1 = v_field ; reg2 = 0 ; end

endcase

If the case = full synthesis directive is incorrectly used, RTL-and gate-level simulation
results in a mismatch. When an unspecified case occurs during the simulation, the RTL
model will preserve the value of the variable because it is a reg type variable. The gate-level
simulation uses the implemented combinational logic, possibly generating an incorrect
output.
December 2003 94 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Parallel Case Directive

If the synthesis directive value includes parallel, all the case labels have equal priority of
matching the case expression. The optimizer uses this information to avoid building a
decoder to decode for 2n alternatives where n is the size (in bits) of the case expression. The
optimizer builds a parallel decoding logic instead of priority encoder logic to drive the select
lines for the multiplexer. Example 3-17 shows how to use the parallel case directive.

Example 3-17 Using the parallel Case Directive
case (1’b1) // ambit synthesis case = parallel

cc[0] : cntr = 0 ;

cc[1] : cntr = data_in ;

cc[2] : cntr = cntr - 1 ;

cc[3] : cntr = cntr + 1 ;

endcase

During simulation, if the case expression matches more than one case label, the logic
corresponds to each case label. This causes the results to differ between RTL simulation and
netlist simulation. This occurs if you use casex or casez statements to mask certain
combinations. The RTL simulation performs the procedural assignment corresponding to the
first case label match, whereas the gate-level simulation enables the logic for all the matching
case labels. Therefore, ensure that only one case label is matched in the case statement
before using the parallel case directive. Example 3-17 shows logic to guarantee that only
one of the four bits of cc is high at any given time.

Multiplexer case Directive

If the synthesis directive value includes mux, the case statement indicates that the decoding
logic for loading the value in the register is always a multiplexer instead of a priority encoder
(implies full and parallel) as shown in Example 3-18.
December 2003 95 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Example 3-18 Using the Multiplexer case Directive
always @ (sel) begin

case (sel) //ambit synthesis case = mux

3’b000 : out = d1;

3’b001 : out = d2;

3’b010 : out = d3;

3’b011 : out = d4;

3’b100 : out = d5;

3’b111 : out = d6;

endcase

end

Module Template Directive

The template directive on a module indicates that the template module is not to be
synthesized except in the context of an instantiation as shown in Example 3-19.

Example 3-19 Using the Module Template Directive
module foo(din,dout); // ambit synthesis template

parameter width := 64;

input [width-1:0] din;

output [width-1:0] dout;

...

endmodule

Function and Task Mapping Directives

Use the map_to_module directive to specify that the behavior of a task or function is to be
implemented using a given module or cell. Use the return_port_name directive to map a
function’s return value onto the given module port.

Use the map_to_module directive to specify that any call to the given task or function is to
be internally mapped to an instantiation of the specified module. The statements in the task
or function body are therefore ignored.

Arguments to the task or function are mapped by name onto ports in the module.

In Example 3-20, task t is mapped to module flop. The arguments of t are associated by
name with the ports of module flop. So the task argument q is associated with port q of
module flop.
December 2003 96 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
A call to t like this:

t(a, b, c);

is equivalent to an instantiation of module flop:

flop u1(.q(a), .d(b), .clk(c));

Example 3-20 Using the map_to_module Directive

If a module has the interface:

module flop (q, d, clk);

then a task can be mapped to this module as follows:

task t;

//ambit synthesis map_to_module flop

output q;

input d, clk;

q = d;

endtask

Use the return_port_name directive with functions that use the map_to_module
directive. The directive specifies that the return value for the function call is given by the output
port of the mapped-to module, as shown in Example 3-21.

Example 3-21 Using the return_port_name with the map_to_module Directive

A cell MUX has the following ports:

module MUX (q, d0, d1, sel);

Function f can be mapped to cell MUX as follows:

function f;

input d0, d1, sel;

// ambit synthesis map_to_module MUX

// ambit synthesis return_port_name q

f = sel ? d0 : d1;

endfunction

Then input d0 of function f is mapped to port d0 of cell MUX, and so on. Port q of MUX is used
to provide the return value for the function. As a result, the following two statements are
equivalent:

assign q = f (d0, d1, sel);

...

MUX u1 (.q(q), .d0 (d0), .d1 (d1), .sel (sel));
December 2003 97 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Set and Reset Synthesis Directives

When the do_build_generic command infers a register from a HDL description, it also
infers set and reset control of the register and defines whether these controls are
synchronous or asynchronous.

Table 3-1 summarizes the condition in which the set and reset operation is inferred. This
automatic detection of the set and reset operation is always active, even when the
synthesis directives are not used. The synthesis directives express the preference to have the
set and reset operations implemented using the set and reset pins on the storage
elements.

Note: These directives only convey user preferences. They do not force the tool to honor
the directives. Therefore, in some scenarios the directives could be ignored if such an
omission provides a better quality netlist. The behavior of the netlist is not affected. To force
the tool to implement a specific flip-flop or latch, use the set_register_type command.

Table 3-1 Register Inference: set and reset Control

Example 3-22 shows how to implement synchronous set and reset logic for inferred flip-
flops. Figure 3-9 provides the schematic representation of the logic.

Clock Flip-Flop Latch

Sync @(posedge clk) Not-Applicable

Async @(posedge clk or posedge set or
negedge reset)

@(data or enable or set or reset)
December 2003 98 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Example 3-22 Implementing asynchronous set and reset Control Logic
module async_set_reset_flop_n (clk, din, set, reset, dout);

input clk;

input din;

input set;

input reset;

output dout;

reg dout;

 always @(posedge clk or negedge set or negedge reset) begin

 if (~set)

dout <= 1’b1;

 else

 if (~reset)

dout <= 1’b0;

 else

dout <= din;

 end

endmodule

Figure 3-9 Schematic of set and reset Control Logic

Controls the input to the data pin of the flip-flop component using set and reset logic, so
that the data value is 1 when set is active low, 0 when reset is active low, and driven by the
data source when both set and reset are inactive (default).

(B) implements the set and reset operation by selecting the appropriate flip-flop
component (cell) from the technology library and connecting the output of set and reset
December 2003 99 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
logic directly to the set and reset pins of the component. The data pin of the component is
driven directly by the data source.

There are six synthesis directives to support the selection of set and reset logic
implementation at the block level or at the signal level for each register inferred. These
synthesis directives are advisory directives only. They do not force the optimizer to implement
set and reset logic with one approach. Instead, they drive the selection of the component
from the technology library to provide the option for the optimizer. To force the optimizer to
implement a particular flip-flop or latch, use the set_register_type command.

Note: These directives only advise the tool of a user preference. The tool could ignore these
directives if a better netlist can be obtained with such an omission. However, these synthesis
directives do not change the behavior of the netlist in any way. If the design is written with
synchronous control on a flip-flop, and the synthesis directive specifies asynchronous
selection, the resulting implementation is synchronous. A warning message is issued if the
synthesis directive conflicts with the model.

Directives can always be viewed in the report that is generated after the
do_build_generic command is issued.

Block Directives

Specify the synthesis directive for block level set and reset signal selection as follows:

// ambit synthesis set_reset asynchronous blocks = block_name_list

// ambit synthesis set_reset synchronous blocks = block_name_list

These synthesis directives indicate that the set and reset control logic for the inferred
registers listed in named blocks listed should be connected to the asynchronous and
synchronous pins respectively.

The block_name_list is a comma-separated list of simple block names in string form
(surrounded by quotes). Hierarchical block names are not supported.

Note: Use these directives inside a module with listed names and before the always block.
It is an error to list an undefined block name.
December 2003 100 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Signal Directives

Specify the synthesis directives for signal level set and reset signal selection as follows:

// ambit synthesis set_reset asynchronous signals = signal_name_list

// ambit synthesis set_reset synchronous signals = signal_name_list

In Verilog, when set and reset control logic is inferred for a register, it is possible to
selectively connect some of the signals directly to the set or reset pin of the component
and let the other signals propagate through logic onto the data pin.

The signal_name_list is a comma-separated list of signal names (surrounded by
parentheses) in a module as shown in Example 3-23. Hierarchical signal names are not
permitted.

Note: These directives must be used inside a module and precede all always blocks. Do
not list an undefined or an unused signal. Also, the signal directive must be specified in the
same declarative region as the signal being attributed.

Example 3-23 Using the set and reset Synchronous Signals Synthesis Directive
module sync_sig_dff(out1, out2, clk, in, set1, set2, rst1, rst2);

output out1, out2;

input in, clk, set1, set2, rst1, rst2;

reg out1, out2;

//ambit synthesis set_reset synchronous signals="set1"

 always @(posedge clk) begin

 if (set1)

out1 <= 1;

 else if (rst1)

out1 <= 0;

 else out1 <= in;

 end

 always @(posedge clk) begin

 if (set2)

out2 <= 1;

 else if (rst2)

out2 <= 0;

 else out2 <= in;

 end

endmodule
December 2003 101 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
The flip-flops inferred for out1 and out2 are connected so that the set signal connects to
the synchronous set pin and the reset signal is connected through combinational logic
feeding the data port D. Figure 3-10 shows the generated logic.

Figure 3-10 Schematic of set and reset Synchronous Signal Logic

Signals in a Block Directive

For Verilog, specify both the block and the signal name for the set and reset operation by
using the following directives:

//ambit synthesis set_reset asynchronous block (block_name) = signal_name_list

//ambit synthesis set_reset synchronous block (block_name) = signal_name_list
December 2003 102 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Only the signals listed in the named block that perform synchronous or asynchronous set
and reset operations are connected to the synchronous or asynchronous pins respectively.
For registers inferred from other blocks, these signals are connected to the data input.

Example 3-24 Using the set_reset Synchronous Signals in a Block Synthesis Directive
module sync_block_sig_dff(out1, out2, clk, in, rst);

output out1, out2;

input in, clk, rst;

reg out1, out2;

/*ambit synthesis set_reset synchronous block(blk_1) = rst */

always @(posedge clk) begin: blk_1

if (rst)

 out1 <= 0;

else out1 <= in;

end

always @(posedge clk) begin: blk_2

if (rst)

 out2 <= 0;

else out2 <= in;

 out2 <= 1’b0;

end

endmodule

Operator Merging Directive

Use a pragma to control operator merging that forces merging to stop at the operator on
which the property is attached.

The pragma, shown in Example 3-25, results in an unmerged implementation of the following
expression. This expression is useful in situations in which the designer wants to force the
software to prevent merging of(+) or (*) operators with other downstream operators:

Example 3-25 Using the Operator Merging Directive
assign z = a * //ambit synthesis merge_boundary

b + c;
December 2003 103 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Verilog Compiler Directives

The read_verilog command supports and interprets the following Verilog HDL compiler
directives:

■ `define

■ `ifdef

■ `ifndef

■ `else

■ `elsif

■ `endif

■ `include

■ `undef

■ `default_nettype

■ `line

The read_verilog command also supports the following non-standard compiler directives,
only if the global variable hdl_verilog_old_vpp is set to true. Support for these non-
standard directives will be removed in future versions. Any other Verilog HDL compiler
directives are ignored by the read_verilog command.

Non-Standard Verilog Compiler Directives

The following non-standard Verilog compiler directives are not supported:

■ ‘for

■ ‘if

■ ‘eval

■ ‘{}
December 2003 104 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Supported Synopsys Directives

Table 3-2 lists the correspondence of BuildGates Verilog directives to Synopsys directives.

Note: The Cadence Verilog directives supported by BuildGates are identical to the Synopsys
directives. That is, for any Synopsys directive: // synopsys x y z, a Cadence directive is
supported: // cadence x y z. BuildGates Synthesis directives begin with // ambit
synthesis.

See Datapath for BuildGates Synthesis and Cadence PKS for a list of Ambit-only
datapath directives supported by BuildGates.

Table 3-2 Supported Verilog Synopsys Directives

Synopsys BuildGates

translate_off synthesis off

translate_on synthesis on

full_case case = full

parallel_case case = parallel

sync_set_reset set_reset synchronous signal

async_set_reset set_reset asynchronous signal

sync_set_reset_local set_reset synchronous block

async_set_reset_local set_reset asynchronous block

sync_set_reset_local_all set_reset synchronous blocks

async_set_reset_local_all set_reset asynchronous block

infer_mux case = mux

infer_mux block (xxx) = mux

state_vector state_vector xxx

template template

map_to_module map_to_module

return_port_name return_port_name
December 2003 105 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Verilog-Related Commands and Globals

Table 3-3 provides the Verilog-related variables. Table 3-4 provides the Verilog-specific global
variables used with the command; the default values are shown in parentheses. See the HDL
Globals chapter of the Global Variable Reference for BuildGates Synthesis and PKS
for more information.

Table 3-3 Verilog Related Commands

Variable Description

read_verilog Analyze Verilog source files.

write_verilog Write Verilog netlist.

get_hdl_type For a given module, returns the file type, either Verilog or
VHDL.

get_hdl_hierarchy Return a hierarchical list of modules in the design and a list
of their parametrized and non-parameterized instances.

get_hdl_file Return the file name corresponding to the module.

get_hdl_top_level Return a list of top level module names.

Table 3-4 Verilog-Specific Global Variables

Variable Description (Default)

hdl_verilog_out_columns Specify the maximum line length for writing out
Verilog netlist in files. (80)

hdl_verilog_out_compact Write out compact files for Verilog netlist output. If set
to false, only one statement is written per line.
(true)

hdl_verilog_out_
declare_implicit_wires

Implicit wires in Verilog do not require a declaration. If
set to true the declarations for implicit wires are also
written. (false)

hdl_verilog_out_prim Write primitive Verilog operators when set to true,
instead of the ATL equivalent components. (true)

hdl_verilog_out_source_
track

Keep track of the RTL source code. (false)
December 2003 106 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
hdl_verilog_out_
unconnected_style

Select the netlisting style for unconnected instance
pins. (none)

hdl_verilog_out_use_
supply

Specify constant signals (1 or 0) as supply signals
(supply1 or supply0). If set to true, the generated
Verilog code will contain supply declarations. If set to
false, the literal constants 1’b1 and 1’b0 are used
for connection to power and ground. (false)

hdl_verilog_vpp_arg The variable hdl_verilog_vpp_arg is a string
made up of the following.
Default: ““

-Ipathname - Shows the directories where to
search for include files.

-Dmacro - Defines the macro equivalent to ‘define
macro.

-Dmacro = value - Defines the macro with the
specified value. Equivalent to the ‘define macro
value.

naming_style
{vhdl | verilog | none}

Determine that the I/O of the object names will take
place in either VHDL, Verilog or no naming style. In
effect, it reads and prints object names in the
specified naming style. The difference in the three
options is the way in which the escaping of the illegal
string takes place. (Verilog)

hdl_verilog_read_version
[1995 | 2001 | dp]

Handle potential incompatibility by enabling Verilog
parsing for Verilog–1995, Verilog–2001, and Verilog–
DP (datapath).Turns on language-specific error
checks. (2001)

Table 3-4 Verilog-Specific Global Variables, continued

Variable Description (Default)
December 2003 107 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Supported Verilog Modeling Constructs

■ Verilog, Verilog-2001, and Verilog-DP Constructs and Level of Support on page 108

■ Notes on Verilog Constructs on page 115

Verilog, Verilog-2001, and Verilog-DP Constructs and Level of Support

Table 3-5 lists the level of support for all Verilog HDL constructs and indicates the level as fully
supported (Full), partially supported (Partial), ignored (Ignored), and not supported (No).
Wherever possible, restrictions are listed to describe the partially supported language
constructs. The extension column specifies whether the construct is a Verilog-2001 or
Verilog-DP extension, otherwise the construct is Verilog.

For detailed information about the Verilog Datapath Extension (Verilog-DP) constructs, see
the Verilog Datapath Extension Reference.

Table 3-5 Verilog Constructs and Level of Support

Group Construct Support Extension

Basic Identifiers Full

escaped identifiers Full

sized constants (b, o, d, h) Full

unsized constants

2’b11, 3’07, 32’d123, 8’hff

Full

signed constants (s)

3’bs101

Full

string constants No

real constants No

use of z, ? in constants Full

use of x in constants Full

module, endmodule Full

macromodule Full

hierarchical references No

//comment Full
December 2003 108 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
/*comment*/ Full

system tasks

$display

Ignored

system functions

Only $signed and $unsigned

Partial

ANSI-style module, task, and
function port lists See ANSI-Style
Declarations for more information.

Full Verilog-2001

attributes Ignored Verilog-2001

Data types wire, wand, wor, tri,
triand, trior

Full

tri0, tri1 No

supply0, supply1 Full

trireg, small, medium,
large

No

reg, integer Full

real No

time No

event No

parameter Full

range and type in parameter
declaration

Full Verilog-2001

scalared, vectored Ignored

input, output, inout Full

memory

For example, reg [7:0] x [3:0];

Full

N-dimensional arrays Full Verilog-2001

deferred range Full Verilog-DP

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 109 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
input [] d; deferred sign Full Verilog-DP

input signed () d; array slice Full Verilog-DP

assignment to array Full Verilog-DP

Signal cloning
declarations

clone Full Verilog-DP

Drive Strengths Ignored

Module Instances connect port by name, order Full

override parameter by order Full

override parameter by name Full Verilog-2001

defparam Partial

constants connected to ports Full

unconnected ports Full

expressions connected to ports Full

delay on built-in gates Ignored

Generate Statements if generate Full Verilog-2001

case generate Full Verilog-2001

for generate Full Verilog-2001

concurrent begin end blocks Full Verilog-2001

genvar Full Verilog-2001

Built-in primitives and, or, nand, nor, xor,
xnor

Full

not, notif0, notif1 Full

buf, bufif0, bufif1 Full

tran Full

tranif0, tranif1, rtran,
rtranif0, rtranif1

No

pmos, nmos, cmos, rpmos,
rnmos, rcmos

No

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 110 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
pullup, pulldown No

User Defined Primitives
(UDPs)

primitive No

table No

Datapath Primitives $blend(), $abs(),
$sgnmult(), $compge(),
$lead0(), $lead1(),
$sat(), $round(),
$rotatel(), $rotater(),
$iroundmult(),
$itruncmult()

Full Verilog-DP

Operators and
Expressions

+, - (binary and unary) Full

/, %

See Notes on Verilog Constructs on
page 115

Full

* Full

word concatenation Full Verilog-DP

~ Full

Bitwise Operations &, |, ^, ~^, ^~ Full

Reduction Operations &, |, ^, ~&, ~|, ~^, ^~

!, &&, ||

==, !=, <, <=, >, >=

<<, >>

{}, {n{}}

?:

function call

Full

===, !== No

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 111 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Unary Array Operations $reduction_sum(), *, -, +,
||, &&, |, &, ^, ~^, ~&,
~|, ^~

Full Verilog-DP

Binary Array Operations *, +, -, <<, >>, <<<, >>>,
==, !=, >, <, >=, <=, /, %

Full Verilog-DP

Array Transposition $transpose Full Verilog-DP

** Partial Verilog-2001

Event control event or Full

@ Partial

delay and wait (#) Ignored

event or using comma syntax Full Verilog-2001

posedge, negedge Partial

wait Ignored

intra-assignment event control Ignored

event trigger (->) No

Bit and part selects bit-select Full

bit-select of array element Full Verilog-2001

constant part select Full

variable part select (+ : , -:) Full Verilog-2001

variable bit-select on left side of an
assignment

Full Verilog-2001

Continuous assignments net and wire declaration Full

using assign Full

use of delay Ignored

Procedural blocks always (exactly one @ required) Partial

initial Ignored

Procedural statements ; Full

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 112 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
begin-end Full

if, else Full

repeat*

Note: The repeat statement must
have a constant repeat count.

Full

case, casex, casez, default Full

task enable Full

for (constant bounds, only + and -
operation on index)*

Note: Thefor statement must have
constant bounds.

Partial

while*

Note: The while statement must
have constant bounds.

Partial

forever*

Note: The forever statement
must contain a disable statement.

Partial

*A loop is unrolled to a maximum count specified in
hdl_max_loop limit

disable

Note: The disable statement
must be applied to an enclosing task
or named block.

Partial

fork-join No

Procedural assignments blocking (=) assignments Full

non-blocking (<=) assignments Full

procedural continuous assignments
(assign)

No

deassign No

force, release No

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 113 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Functions and tasks function Full

task Full

automatic tasks and functions Full Verilog-2001

Named blocks named block creation Full

local variable declaration Full

Specify block specify Ignored

specparam Ignored

module path delays Ignored

Compiler directives `define Full

`undef Full

‘resetall Full

`ifndef, `elsif, ‘line Full Verilog-2001

‘ifdef, `else, `endif Full

`include Full

Non-standard compiler
directives

`if No longer
supported

`for No longer
supported

`eval No longer
supported

`{} No longer
supported

Deferred port
declarations and signal
attribute inheritance

Full Verilog-DP

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 114 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Notes on Verilog Constructs

■ For Verilog module instances, there is limited support for defparams using hierarchical
names. The defparam must refer to module instance in the current module.

■ For Verilog procedural statements, a loop is unrolled to a maximum count specified in
hdl_max_loop limit

■ The Verilog-2001 system functions $signed and $unsigned are supported. When
Verilog-DP is enabled, Verilog-DP system functions are also supported.

■ The Verilog-2001 ** operator is only supported when both the operands are constants
or when the left operand is a power of 2.

■ To infer the / and % operators, you need a BGX or a PKS license that provides the
Datapath capabilities. Otherwise, these operators are supported when both the
operands are constants or when the right operand is a static power of 2.

■ All Verilog bitwise assignments must be either blocking or non-blocking or an error
message displays, as shown in Example 3-26.

Example 3-26 Bitwise Assignment Restriction

The following code:

x[0] <= a;

x[1] = b;

Results in the following error:

Signal query functions $low()

$high()

$right()

$size()

$is_signed()

Full Verilog_DP

Conversion between
arrays and scalars

$flatten()

$unflatten ()

Full Verilog-DP

Constant Functions $min(), $max(), $log2() Full Verilog-DP

Table 3-5 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
December 2003 115 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
 ==> ERROR: All assignments to individual bits of register ’x’ in module
’mixtest’

should be either all blocking or all non-blocking (File /regress/

Verilog/mixed_assign.1.v, Line 9) <CDFG-238>.

■ All Verilog conditional assignments must be either blocking or non-blocking or an error
message displays as shown in Example 3-27.

Example 3-27 Conditional Assignment Restriction

The following code:

if (s)

 x <= a;

else

 x = a;

Results in the following error:

==> ERROR: All assignments within a conditional statement should be either

all blocking or all non-blocking (File /regress/

Verilog/mixed_assign.0.v, Line 8) <CDFG-463>.
December 2003 116 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Troubleshooting

Additional troubleshooting information can be found in the latest version of Known Problems
and Solutions for BuildGates Synthesis and Cadence PKS that came with your release.

■ do_build_generic Generates Extremely Long Module Name on page 118

■ Eliminating Busses in a Netlist on page 118

■ Eliminating Unwanted Escape Characters in Front of Signal Names on page 120

■ BuildGates Synthesis Does Not Prune Registers With Their D Inputs Constant on
page 120

■ Preserving Instances from the RTL Through the Optimization Flow on page 121

■ Preserving the set and reset Signals Next to the D-input of the Flip Flops on page 122

■ Preventing Modules from being Overwritten During read_verilog on page 122

■ Using the \ Character in Verilog on page 122

■ Low Power Synthesis Cannot Apply Inferred Enable Register Banks on page 123

■ Honoring ‘defines in an ‘include File in a Verilog Pre-Processor on page 123

■ Removing Bus Objects in the Hierarchy or Module on page 124

■ Generating Incorrect Logic for Asynchronous set and reset Pins on page 125

■ Floating Nets on page 125
December 2003 117 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
do_build_generic Generates Extremely Long Module Name

In Verilog modules, parameters are passed that are unique for each module. This information
is added to the module name after using the do_build_generic command even if you
have specified the maximum name length for the module using the set_global
dcn_module_max_length.

This is the expected behavior of the BuildGates Synthesis tool. Use the do_change_name
command after using the do_build_generic command to replace the long module name
as shown in Example 3-28.

Example 3-28 Changing Module Names
set_global dcn_module_allow_conversion true

set_global dcn_module_max_length

do_change_names -use_rules

Eliminating Busses in a Netlist

➤ To eliminate busses in a netlist use the do_blast_busses command to split the bus
into single-bit signals.

By default, this command splits the bus nets and bus ports in the whole hierarchy, starting
from the current module. You have the option to split only bus nets or only bus ports. You can
customize the generated net names or port names by using the global variable,
buscomp_generator.

A bus signal dout[3:0] becomes four separate signals (dout_3, dout_2, dout_1, and
dout_0) after you use the following commands:

set_global buscomp_generator {%s_%d} do_blast_busses

If there are conflicts (for example, if you already have a signal called dout_3 before blasting
the bus), BuildGates synthesis will not use the conflicting name, but it will create an arbitrary
name. Use a different buscomp_generator to avoid conflicting names.

Resolving Name Mapping Problem with Formal Verification

Removes bus objects in the hierarchy or in the current module. When converted to scalars,
use the hdl_array_generator and hdl_record_generator globals to name the
scalars for array and record busses and use the buscomp_generator global to name the
scalars of all other busses as shown in Example 3-29.

Example 3-29 Resolving Name Mapping Problem with Formal Verification
December 2003 118 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
package p is

type arr is array (1 downto 0) of bit_vector(2 downto 0);

type rec is

record

 field1 : integer range 0 to 3;

 field2 : arr;

end record;

end;

use work.p.all;

entity e is

port(p_rec : in rec;

 q_rec : out rec);

end;

architecture a of e is

begin

 q_rec <= p_rec;

end;

set_global hdl_array_generator %s\[%d\]

set_global hdl_record_generator %s\[%s\]

do_build_generic

do_blast_busses

entity e is

port (

_rec[field1][1]\: in std_logic;

_rec[field1][0]\: in std_logic;

_rec[field2][1][2]\: in std_logic;

_rec[field2][1][1]\: in std_logic;

_rec[field2][1][0]\: in std_logic;

_rec[field2][0][2]\: in std_logic;

_rec[field2][0][1]\: in std_logic;

_rec[field2][0][0]\: in std_logic;

 \q_rec[field1][1]\: out std_logic;

 \q_rec[field1][0]\: out std_logic;

 \q_rec[field2][1][2]\: out std_logic;

 \q_rec[field2][1][1]\: out std_logic;

 \q_rec[field2][1][0]\: out std_logic;

 \q_rec[field2][0][2]\: out std_logic;

 \q_rec[field2][0][1]\: out std_logic;

 \q_rec[field2][0][0]\: out std_logic

);

end entity e;
December 2003 119 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Eliminating Unwanted Escape Characters in Front of Signal Names

➤ To get rid of the escape characters "\" in front of the signal names, set the following
global:

set_global buscomp_generator "%s_%d"

The default setting is %s_%d which means that when a bus is split into individual signals, the
signals will be named SigName[Bit]. This global can be modified to the user’s preference. The
%s_%d setting is the most common.

BuildGates Synthesis Does Not Prune Registers With Their D Inputs
Constant

The optimization engine removes registers whose outputs are tied low, high, or are unused,
but keeps registers where the inputs are tied low or high. It is not uncommon for such registers
to be used in designs to hold permanent values, such as device ID, company code, or chip
version. For example, you may want a register with the permanent hexadecimal value 1DA5,
so when the chip gets placed in a system, the system firmware can read out this value and
knows the correct version of the chip.
December 2003 120 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Preserving Instances from the RTL Through the Optimization Flow

You can preserve the inverters in BuildGates without using HDL directives that is universal to
all synthesis tools.

Create a module called inv and instantiate it multiple times instead of using a series of
inverters or inversion statements, as shown in Example 3-30.

Note: If you dissolve this hierarchy, use a set_dont_modify attribute on all of these inv
instances.

Example 3-30 Preserving Inverters Without Using HDL Directives
module test (in, out);

input in;

output out;

 inv i0 (n1,in);

 inv i1 (n2,n1);

 inv i2 (n3,n2);

 inv i3 (out,n3);

endmodule

module inv (out,in);

input in;

output out;

 assign out = ~in;

endmodule
December 2003 121 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Preserving the set and reset Signals Next to the D-input of the Flip Flops

In BuildGates, if you do not have any synchronous set_reset flops in the library, then the
set_reset signals will be placed in a gate close to the D-input of the flop. However, if there
is a critical signal fanning in to the D-input, then the set_reset signal is not guaranteed to
be close to the D-input.

BuildGates Synthesis does not preserve the logic close to the D input. However, there are
directives that you can specify in the RTL that guide the tool to optimally implement the
set_reset signals.

➤ Use the following directive for synchronous set to reset signals:

// ambit synthesis set_reset synchronous signals = signal_name_list

Refer to Signal Directives on page 101 for more information.

Preventing Modules from being Overwritten During read_verilog

The read_verilog command will overwrite modules of the same name with the last one
read in. To solve this problem, use Ambit Databases (adb’s) by using the write_adb
command when writing out each independently optimized block instead of
write_verilog. When you read these adb’s of the sub-blocks into the top level using
read_adb, BuildGates Synthesis will rename modules of the same name automatically;
appending a _0, _1, and so on to the end of the original module name (unless you specify
the -overwrite switch).

Using the \ Character in Verilog

Use the \ character in Verilog to specify characters which are not legal in Verilog. So if you
want to include characters in a name which are illegal in Verilog, add a \ before the name,
and add a space after the name.
December 2003 122 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Low Power Synthesis Cannot Apply Inferred Enable Register Banks

Low Power Synthesis (LPS) explores clock gating candidates if the controlled signal is in the
same construct as the register bank. If the controlled signal is not in the same construct as
the register bank, LPS will not be able to apply clock gating to it.

The following code cannot be explored as a clock gating candidate:

wire [7:0] d_in = (b) ? a : dt ;

my_ff ffl (.q(dt), .d(d_in), .clk(clk));

assign d_in + (b) ? a : d;

always @ (posedge clk) begin d<=d_in;

end

To solve this problem, change the above code to the following:

always @ (posedge clk) begin

if (b)

d<=d_in;

end

Honoring ‘defines in an ‘include File in a Verilog Pre-Processor

If you have a Verilog source file with an ‘include directive specifying an .h file containing
‘define directives, the parser does not see the ‘define because it is called during
read_verilog. Hence, it is trying to find the ‘define in that same file. You can resolve the
problem in the following manner:

1. Provide Buildgates with a search path if the `include files are not in the current working
directory:

set_global hdl_verilog_vpp_arg "-I/mnt2/joeblow/project/verilog/
include_files"

2. Set up a string variable with the names of all source and `include files:

set vfiles "main.v subblock.v globals.h"

3. Pass this string to read_verilog so it sees all the files instead of just main.v.

read_verilog $vfiles

This lets read_verilog find the `include files. The read_verilog command, by
default, looks only in the current directory for ‘include files. The -I search string tells
read_verilog to search the specified directories for .h files.
December 2003 123 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Removing Bus Objects in the Hierarchy or Module

➤ Use the do_blast_busses command arguments to remove bus objects in the
hierarchy or in the current module:

do_blast_busses [-nets] [-ports] [-current_module]

When the do_blast_busses command is followed by the write_verilog command, a
netlist is written with all of the busses converted to scalars. For example, if a physical design
tool does not support the concatenation operator { } in Verilog, then the do_blast_busses
command performs this conversion to scalars for the current module. Use the
buscomp_generator global to name the scalars, or a default naming convention will be
used.

Use the -nets option to remove all the bus nets from the top level and the lower levels of the
design. This converts the pin, port, and net bus objects in the current module or in the
hierarchy to scalars. If instances of the module exist, they are modified to connect each bit of
the previously bussed port separately.

The following example shows how the bus objects in two modules, a and b have been
removed by the do_blast_busses command and converted to scalars.

Before do_blast_busses:

module a(out);

 output [1:0] out;

 b b1(out);

endmodule

module b(out);

output [1:0] out;

endmodule

After do_blast_busses:

module a(\out[1], \out[0]);

output \out[1] ;

output \out[0] ;

b b1(.\out[1] (\out[1]), .\out[0] (\out[0]));

endmodule

module b(\out[1] , \out[0]);

output \out[1] ;

output \out[0] ;

endmodule
December 2003 124 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
Generating Incorrect Logic for Asynchronous set and reset Pins

Incorrect logic for a flip-flop with asynchronous set and reset pins is generated when there
is an if-then-else statement that controls the assignment to the flip-flop nested within
the if-then-else branch, as shown in Example 3-31.

Example 3-31 Using Incorrect set and reset Logic
always @ (posedge clk or posedge set or posedge reset)

if (set)

out <= 1’bl;

else if (reset)

if (en)

out <= 1’bl;

else

out <= in;

A workaround is to rewrite the RTL to remove the nested if-then-else statement as
shown in Example 3-32.

Example 3-32 Using Correct set and reset Logic
always @ (posedge clk or posedge set or posedge reset)

if (set)

out <= l’bl;

else if (reset)

out <= !en;

else

out <= in;

Floating Nets

By default, BuildGates Synthesis ties floating inputs to ground.

➤ To create a floating pin, attach it to a net that is not driven and set the following global to
none:

set_global hdl_undrivin_net_value none

This keeps the net attached to the pin, but leaves it floating. You must read the netlist
after setting this global.
December 2003 125 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing Verilog Designs
December 2003 126 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
4
Verilog-2001 Extensions

This chapter describes how to handle incompatibilities between the Verilog versions and
explains the new Verilog-2001 synthesis-specific features relevant to RTL synthesis. The
features supported in this release include a reference to the corresponding chapter number
of the Verilog-2001 LRM.

■ Overview on page 128

■ Verilog-2001 Hardware Description Language Extensions on page 128
December 2003 127 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Overview

Verilog-2001 is the latest version of the IEEE 1364 Verilog HDL standard. The Verilog-2001
extensions are a superset of the existing Verilog-1995 language. These extensions increase
design productivity and enhance synthesis capability. Prior knowledge and experience of
Verilog-1995 is assumed. The new Verilog-2001 language features supported in this release
are explained in detail in the IEEE 1364-2001 Verilog HDL standard Language
Reference Manual (LRM).

Verilog-2001 Hardware Description Language Extensions

The following Verilog-2001 HDL extensions are supported in this release and are explained
in the following sections:

■ Verilog-1995, Verilog-2001, and Verilog Datapath Modes of Parsing on page 129

■ Generate Statements on page 129 (LRM 12.1.3)

■ Multidimensional Arrays on page 134 (LRM 3.10)

■ Automatic Functions and Tasks on page 135 (LRM 10)

■ Parameter Passing by Name on page 135 (LRM 12.2.2.2)

■ Comma-Separated Sensitivity List on page 136

■ ANSI-Style Declarations on page 136 (LRM 12.3.4)

■ Variable Part Selects on page 137 (LRM 4.2.1)

■ Constant Functions on page 137 (LRM 10.3.5)

■ New Preprocessor Directives on page 138 (LRM 19)

The following Verilog-2001 extensions are not supported in this release:

■ Automatic Width Extension Beyond 32 Bits (LRM 2.5.1)

■ Reg Declaration Initial Assignment (LRM 6.2.1)

■ Attributes (LRM 2.8)
December 2003 128 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Verilog-1995, Verilog-2001, and Verilog Datapath Modes of Parsing

➤ To handle potential incompatibilities, BuildGates supports separate Verilog-2001,
Verilog-1995, or Verilog-DP (datapath) modes of parsing using the following global
variable:

set_global hdl_verilog_read_version [1995 | 2001 | dp]

In addition to enabling Verilog parsing for Verilog-1995, Verilog-2001, or Verilog-DP, the global
variable hdl_verilog_read_version also turns on language-specific error checks. For
example, in Verilog-2001 it is illegal to assign values to a whole array, but this is legal in
Verilog-DP.

In most cases, a Verilog-2001 design behaves like a Verilog-1995 design. Verilog-2001 adds
several new keywords to the Verilog language. Older models, which happen to use one of
these new reserved words, will not work with a Verilog-2001 simulator or other software tools.
For example, generate is a new keyword in Verilog-2001, therefore, a Verilog-1995 design
that has a wire name generate will not compile under Verilog-2001 rules.

Verilog-DP (datapath) is an upwardly compatible, proprietary extension to Verilog-2001 that
includes a concise datapath description language to facilitate complex, highly parameterized
datapath designs. See Datapath for BuildGates Synthesis and Cadence PKS for more
information on Verilog-DP extensions.

Generate Statements

Use Verilog generate statements to conditionally compile concurrent constructs. The
Verilog-2001 generate statements are modeled on VHDL generate statements.

Concurrent Begin and End Blocks

The begin/end keywords are used to group concurrent statements within a generate
statement. A begin/end block must be labeled if declarations are included within it. There
are three types of generate statements:

■ if generate Statement – Performs a set of concurrent statements if a specified
condition is met.

■ case generate Statement – Behaves like a nested if statement. Selects from a set of
concurrent statements.

■ for generate Statement – Replicates a set of concurrent statements.
December 2003 129 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
The if, case, and for generate statements provide different ways of conditionally
compiling a declaration or concurrent statement or a block of declarations and concurrent
statements.

Note: The condition must not depend on dynamic values such as the values of wires or
registers. The if generate condition, the case generate expression and choices, and the
for generate loop bounds must be constant expressions.

if generate Statement

Use the if generate statement to conditionally generate a concurrent statement as shown
in Example 4-1.

Example 4-1 Using the if generate Statement
parameter pl = 1, p2 =2;

generate if (pl == p2)

 assign q = d;

else

 assign q = ~d;

endgenerate

In this example, one of two possible assignment statements is generated depending on the
values of the parameters. If the condition (p1 == p2) evaluates to true (taking into account
any parameter overrides or defparams), then the result of the if generate statement is that
the first assignment statement will be processed and the second will be ignored. Otherwise,
only the second assignment will be processed.

The determination of which concurrent statement to process is made after the design has
been linked together and module instantiations and defparams have been processed.

Generate statements let you choose concurrent models (a particular instance) based on the
selection criteria as shown in Example 4-2.
December 2003 130 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Example 4-2 Using the if generate Statement
module crc_gen (a,b,crc_out);

parameter a_width = 8,b_width = 15;

parameter crc_en =1, crc8 =1;

input [a_width-1:0] a;

input [b_width-1:0] b;

input crc_en, crc8;

output crc_out;

generate

if ((crc_en == 1’b1) & (crc8 == 1’b1))

CRC8 #(a_width) U1 (a, crc_en, crc_out); // Instantiate an 8 bit crc generator

else

 CRC16 #(b_width) U1 (b, crc_en, crc_out); // Instantiate a 16 bit crc
generator

endgenerate // The generated instance is U1

endmodule

case generate Statement

Use a case generate statement for multi-way branching in a functional description as
shown in Example 4-3.

Example 4-3 Using the case generate Statement for Multi-Way Branching
parameter p = 2;

generate case (p)

1: assign q = d

2: assign q = ~d;

3: assign q = 1’bl;

default: assign q = 1’bl;

endcase

endgenerate

The value of p determines which one of the assignment statements is processed. The case
expression (p) is evaluated after the design has been linked together.
December 2003 131 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
A case generate permits modules, lets you define primitives, and lets initial and
always blocks be conditionally instantiated into another module based on a case construct
as shown in Example 4-4.

Example 4-4 Using the case generate Statement to Define Primitives
generate

case (width)

1: counter_2bitx1 (en, reset, preset, datain, dataout);

// 2 bit counter implementation

2: counter_3bitx1 (en, reset, preset, datain, dataout);

// 3 bit counter implementation

default: counter_4bit #(width) x1 (en, reset, preset, datin, dataout);

// others - 4 bit counter implemtation

endcase

endgenerate // generated instance is x1
December 2003 132 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
for generate Statement

Use a for generate statement to replicate a concurrent block. The for generate
statement uses a genvar.

Genvar

A genvar is a new declaration which resembles an integer declaration, except that it is used
only within a for generate statement. A genvar is a 32-bit integer and is treated as a
constant when referenced. A genvar can be assigned a value only in a for generate
statement between the parentheses following the keyword for as shown in Example 4-5.

Example 4-5 Using the for generate Statement
genvar i;

generate for (i = 0; i <= 7; i = i + 1)

begin : blah

assign a[i] = b[i] + c[i];

end

endgenerate

Nest a for generate statement to generate multi-dimensional arrays of component
instances or other concurrent statements. In Example 4-5, eight copies of the assignment
statement are created. In each copy, any reference to the genvar ‘i’ is replaced by its value
during iteration. So the above generate statement is equivalent to:

assign a[0] = b[0] + c[0];

assign a[1] = b[1] + c[1];

assign a[2] = b[2] + c[2];

assign a[3] = b[3] + c[3];

assign a[4] = b[4] + c[4];

assign a[5] = b[5] + c[5];

assign a[6] = b[6] + c[6];

assign a[7] = b[7] + c[7];

The for generate statement, like the procedural for statement, is restricted to the
following form:

for (i = <expr>; i <relop> <expr>; i = i <addop> <expr>)
December 2003 133 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Example 4-6 Using the for generate Statement
parameter size = 4;

genvar i;

generate

for (i = 0; i < size; i = i + 1) begin:bit

xor g1 (t[i], a[i], b[i], c[i];

and g2 (sum [i], t[i], c[i]);

end

endgenerate

// Generated instance name are:

// xor gates : bit[0].g1, bit[1].g1, bit[2].g1 bit[3].g1

// and gates: bit[0].g2, bit[1].g2, bit[2]. g2, bit[3].g2

Multidimensional Arrays

In Verilog-1995, only one dimensional arrays of reg are allowed. In contrast, Verilog-2001
allows multi-dimensional arrays of wire and reg. Verilog-2001 allows reading and writing
array words and bits within array words, but does not allow reading or writing of array slices
or whole arrays. Verilog-DP allows the same constructs that Verilog-2001 allows. Verilog-DP
also allows reading and writing of array slices and whole arrays.

Example 4-7 Examples of Multi-Dimensional Arrays of wire and reg

reg [7:0] tmp;

-- one-dimensional array of reg

reg [7:0] ml[3:0]; -- legal in Verilog-1995, 2001, and DP

reg [7:0] m2[3:0]; -- legal in Verilog-1995, 2001, and DP

-- one- and two-dimensional arrays of wire

wire [7:0] w1[3:0]; -- illegal in Verilog-1995, legal in 2001 and DP

wire [7:0] w2[3:0] [2:0]; -- illegal in Verilog-1995, legal in 2001 and DP

-- two-dimensional arrays of reg

reg [7:0] al[3:0] [2:0]; -- illegal in Verilog-1995, legal in 2001 and DP

reg [7:0] a2[3:0] [2:0]; -- illegal in Verilog-1995, legal in 2001 and DP

-- reding and writing within an array

m1[1] = tmp; -- legal in Verilog-1995, 2001, and DP

tmp = m1[1]; -- legal in Verilog-1995, 2001, and DP

-- reading and writing array slices and whole arrays

m2 = m1; -- array assignment, legal only in Verilog-DP
December 2003 134 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
m2[3:2] = m1[1:0]; -- array slice, legal only in Verilog-DP

Automatic Functions and Tasks

Verilog-1995 functions or tasks use static memory for arguments and local variables, which
is why a task enable is not permitted in a concurrent context. If two tasks start at the same
time, they will write over each other’s data.

Verilog-2001 includes reentrant procedures that are implemented so more than one process
can perform it at the same time without conflict. By using the keyword automatic to mark a
task or function that performs in a per-call context (just as C or VHDL functions or procedures
do), Verilog compilers treat the variables inside of the task as unique stacked variables. The
parameters and local variables for these procedures are allocated immediately when they are
called and then discarded when the procedures exit.

The BuildGates software treats Verilog functions and tasks as automatic procedures, whether
the keyword automatic is specified or not. For this reason, synthesis of a non-automatic
function or task, which relies on static allocation of local variables, will produce a simulation
mismatch.

Parameter Passing by Name

Verilog-1995 defines two ways to change parameters for instantiated modules: parameter
redefinition and defparam statements.

Verilog-2001 lets you specify module instance parameters (like module instance ports) by
name, as shown in the following example.

Example 4-8 Specifying Module Instance Parameters by Name
mod #(.width(1), .length(2)) ul(q,d);

Passing parameters by name is similar to defparam statements, except only the parameters
that change are referenced in named port instantiations.

Example 4-9 Using the defparam Keyword
defparam ul.width = 1;

defparam u1.length = 2;

mod ul (q,d);
December 2003 135 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Comma-Separated Sensitivity List

Verilog-1995 uses the keyword or as a separator between signals in the sensitivity list.
Verilog-2001 lets a comma take the place of the keyword or in an event list as shown in
Example 4-10.

Example 4-10 Using a Comma-Separated Sensitivity List
always @ (posedge clk, negedge reset)

ANSI-Style Declarations

The Verilog-1995 mode uses the older Kernighan and Ritchie C language syntax to declare
module ports, as shown in Example 4-11, which requires that module header ports be
declared up to three times: in the module header port list, in an output port declaration, and
in a reg data-type declaration. Verilog-2001 updates the syntax for declaring ports and
parameters in a more ANSI C fashion, as shown in Example 4-11, which combines the
header port list, port direction, and data-type declarations into a single declaration, as shown
below:

Example 4-11 Verilog-1995 Style Declaration
module m(q, d);

parameter p = 1;

output q;

reg q;

input d;

wire d;

always @d

assign q = d;

endmodule

Example 4-12 Verilog-2001 ANSI C-like Declaration
module m #(parameter p + 1)

(output reg q, input wire d);

always @d

assign q = d;

endmodule

Use this enhancement in functions and tasks to make port declarations more compact.
December 2003 136 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Variable Part Selects

Verilog-1995 permits variable bit selects of a vector, but the part selects must be constant;
thus, you cannot use a variable to select a specific byte out of a word.

Verilog-2001 lets a slice have a variable base offset and a constant width. This means that
the starting point of the part select can vary during simulation run time, but the width of the
part select remains constant, as shown in Example 4-13.

Example 4-13 Variable Part Select
wire [31:0] d;

wire [3:0] x;

wire [3:0] q;

asssign q = d[x+:4];

is equivalent to the following:

assign q = {d[x+3], d[x+2], d[x+1], d[x]};

Constant Functions

A constant expression is required in certain contexts, for example, when specifying a range
in a declaration or a part select. In Verilog-1995, a constant expression can be a literal, a
parameter, or some arithmetic expression whose operands are constant expressions.
Verilog-2001 allows a function call to appear in a constant expression in certain
circumstances. Mainly, the arguments to the function must be constant expressions, and the
function must compute its result entirely on the basis of its arguments.

In Example 4-14, the functions min and max are used to size the declaration of wire x.
Because these functions are called with constant arguments, and return a result based only
on their arguments, their calls are considered constant expressions. In Verilog-1995, it is
illegal to use a function call in sizing a declaration.
December 2003 137 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
Example 4-14 Using a Function Call in a Constant Expression
module m;

parameter pl = 1, p2 = 2;

wire [max(pl,p2):min(pl,p2)] x;

function min;

input x, y;

integer x, y;

 min = x < y ? x : y;

endfunction

function max;

input x, y;

integer x, y;

 max = x > y ? x : y;

endfunction

endmodule

New Preprocessor Directives

Preprocessor directives permit macro definition and use, file inclusion, and conditional
compilation.

Verilog-1995 supports conditional compilation using only a few compiler directives like
`ifdef, `else, and `endif.

Verilog-2001 adds the following C-like preprocessor directives:

■ ifndef Directive (comparable to #ifndef)

■ line Directive (comparable to #line).

■ ‘elsif Directive (comparable to #elif)
December 2003 138 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
ifndef Directive

Use an `ifndef directive to discard code in a program if an identifier is defined as a macro.If
the ifndef text macro identifier is defined, the ifndef group of lines is ignored.

Example 4-15 Using the `ifndef Directive
‘define first_block

‘ifdef first_block

‘ifndef second_nest

initial $display)”first block is defined”0;

‘esle

initial $display (“first block and second_nest defined”);

‘endif

...

line Directive

The ‘line directive is mainly used by a source preprocessor to relate the processed output
back to the original source file. Use the ‘line directive to change the source file and the line
number. For example, If your Verilog file is called foo.v:

foo.v:

module m;

some_syntax_error

you will see a message from read_verilog pointing to a syntax error on line 2 of foo.v.
However, if you use the ‘line directive, then the compiler thinks it is looking at a different
file or line. For example:

foo.v:

module m;

‘line 1 “bar.v” 25

some_syntax_error

The read_verilogmessage reports that the syntax error occurred on line 25 of bar.v (bar.v
is an example file name). Even if there are no syntax errors, the line number and file name
given in the ‘line directive can affect other reports, such as messages from
do_build_generic, or the line number and file name on netlist objects.
December 2003 139 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Verilog-2001 Extensions
‘elsif Directive

The ‘elsif directive must appear after an ‘ifdef or ‘ifndef directive. The ‘elsif
directive is a short hand for ‘else...’ifdef...’endif. For example,

‘ifdef....x

‘elsif....y

‘endif

is equivalent to:

‘ifdef....x

‘else

‘ifdef....y

‘endif

‘endif
December 2003 140 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
5
Synthesizing VHDL Designs

This chapter explains how to synthesize VHDL designs using VHDL synthesis commands,
VHDL synthesis directives, and VHDL modeling styles in the following sections.

■ Overview on page 142

■ Tasks on page 143

■ Additional Information on page 159

■ Troubleshooting on page 210
December 2003 141 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Overview

Use BuildGates Synthesis to synthesize VHDL designs. See Tasks on page 143 for detailed
information. See VHDL-Related Commands and Globals on page 196 for a list of commands
and globals used to synthesize VHDL designs.

Use VHDL to construct a gate level netlist from a register-transfer level VHDL model. Two
models may simulate identically and describe the same behavior (functionality) of a design.
However, the implementation of the two models through logic synthesis can differ significantly
in terms of their gate count (area), critical paths, and physical characteristics. The section,
VHDL Modeling Styles on page 163 describes the impact that different VHDL modeling styles
have on logic synthesis and netlist generation.

The BuildGates Synthesis tool supports both the VHDL’87 and VHDL’93 modeling styles
which adhere to the ANSI/IEEE standards on VHDL language definition. See VHDL
Constructs on page 199 for a list of supported VHDL modeling constructs.

The synthesizable subset of VHDL is based on the IEEE P1076.6 Standard for VHDL
Register Transfer Level Synthesis. For more detail on the VHDL syntax and semantics,
refer to the following IEEE Standard VHDL Language Reference Manuals:

■ ANSI/IEEE Std 1076-1987 (for VHDL’87)

■ ANSI/IEEE Std 1076-1993 (for VHDL’93)

Use synthesis directives to control the synthesis process. See VHDL Synthesis Directives on
page 174 for more information.

Perform RTL synthesis, as shown in Figure 5-1 after loading the timing and power libraries.
For information on reading libraries, see Using Timing Libraries in the Timing Analysis
for BuildGates Synthesis and Cadence Physically Knowledgeable Synthesis (PKS).

For detailed RTL flow information, see RTL Synthesis Flow in Chapter 1.
December 2003 142 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Figure 5-1 RTL Synthesis Flow - VHDL

Tasks

The VHDL synthesis flow describes the standard tasks for synthesizing VHDL designs.

■ Setting the Globals for Synthesizing VHDL Designs on page 144

■ Read Design Data on page 148

■ Build Generic Design on page 155

■ Write Netlist on page 156

For details about command arguments, see the BuildGates Command Reference
Manual. For information on how to model VHDL designs see VHDL Modeling Styles on
page 163.

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 143 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Setting the Globals for Synthesizing VHDL Designs

➤ The default environment for BuildGates Synthesis is common. Use the global
hdl_vhdl_environment command arguments to change the environment setting:

set_global hdl_vhdl_environment {standard | synopsys | common | synergy}

Note: The global hdl_vhdl_environment must not be changed after using the
read_vhdl command or previously analyzed units will be invalidated.

Follow these guidelines when using a predefined VHDL environment:

■ Packages and entities in VHDL are stored in libraries. A package contains a collection of
commonly used declarations and subprograms. A package can be compiled and used
by more than one design or entity.

■ Refer to Table 5-1 for a description of the predefined VHDL environments, and tables 5-2
to 5-5 for descriptions of all the predefined libraries for each of the VHDL environments.

■ The VHDL source for the VHDL library packages is located in the following directory:

$env(AMBIT_VHDL_LIBS)/version/library

where version is either 1987 or 1993, and library is one of the following:
ieee_ambit (for hdl_vhdl_environment set to standard), ieee_synergy (for
hdl_vhdl_environment set to synergy), ieee_synopsys (for
hdl_vhdl_environment set to synopsys), ieee (for hdl_vhdl_environment set
to common).

Table 5-1 Predefined VHDL Environments

standard Provides the arithmetic packages standardized by the IEEE. No vendor
specific packages are available in this environment.

synopsys Provides the arithmetic packages supported by Synopsys’ VHDL Compiler.
These packages are not approved nor standardized in IEEE (even though
they are compiled into the VHDL library ‘IEEE’).

synergy Provides the arithmetic packages supported by the Cadence Synergy
synthesis tool.

common Provides a union of the standard and synopsys environments used in the
instance that the design refers to arithmetic packages from both these
environments. (Default)
December 2003 144 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
.

Table 5-2 Predefined VHDL Libraries Standard Environment

Library Package(s)

AMBIT attributes

STD standard

textio

IEEE std_logic_1164

numeric_bit

numeric_std

Table 5-3 Predefined VHDL Libraries Synopsys Environment

Library Package(s)

AMBIT attributes

STD standard

textio

SYNOPSYS attributes

bv_arithmetic

IEEE std_logic_1164

std_logic_arith

std_logic_misc

std_logic_signed

std_logic_textio

std_logic_unsigned

Table 5-4 Predefined VHDL Libraries Synergy Environment

Library Packages

AMBIT attributes
December 2003 145 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
STD standard

textio

SYNERGY constraints

signed_arith

std_logic_misc

IEEE std_logic_1164

std_logic_arith

std_logic_textio

Table 5-5 Predefined VHDL Libraries Common Environment

Library Packages

AMBIT attributes

STD standard

textio

SYNOPSYS attributes

bv_arithmetic

IEEE numeric_bit

numeric_std

std_logic_1164

std_logic_arith

std_logic_misc

std_logic_signed

std_logic_textio

std_logic_unsigned

vital_primitives

vital_timing

Table 5-4 Predefined VHDL Libraries Synergy Environment, continued
December 2003 146 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Verifying VHDL Code Compliance with the LRM

➤ Set the following global variable to true to enforce a strict interpretation of the VHDL
Language Reference Manual (LRM) in order to guarantee portability to other VHDL
tools:

set_global hdl_vhdl_lrm_compliance {true | false}

Default: false.
December 2003 147 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Read Design Data

Defining Logical Libraries

➤ Use the set_vhdl_library command arguments to define a new logical library:

set_vhdl_library library_name directory_name

VHDL designs are stored in libraries. A library is a storage area in the host environment for
compiled entities, architectures, packages, and configurations and is useful for managing
multiple design projects.

Follow these guidelines to define a logical library:

■ Each logical library used in a design, except the library WORK, must be associated with
a physical directory, using the set_vhdl_library command.

■ The directory name must be a valid path to an existing directory. This preserves the
contents of the library from one synthesis run to another. For example:

set_vhdl_library MYLIB /home/me/vhdlibs/lib1

Use the read_vhdl command after the set_vhdl_library command to analyze the
file design.vhd into library MYLIB.

read_vhdl -library MYLIB design.vhd

Mapping the WORK Library to an Existing Logical Library

➤ Use the set_vhdl_library command arguments to map the WORK library to an
existing logical library:

set_vhdl_library WORK library

Many different design libraries may exist simultaneously. Only one of them can be used as
the actual working library. The name of this logical library is WORK. By default, the library WORK
is mapped to the logical library TEMP. An error message is generated if two VHDL libraries are
mapped to the same physical directory.

Follow these guidelines to map the WORK library to a logical library:

■ The library name must be the name of an existing logical library.

■ All subsequent read_vhdl commands must have an explicit -library flag, or the files
will be analyzed and stored into the last library to which WORK was mapped. For example:

set_vhdl_library MYLIB /home/me/vhdlibs/lib1
December 2003 148 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Analyzing and Storing a VHDL File into a Library

➤ Use the read_vhdl command arguments to analyze and store information into a library:

read_vhdl [-aware_library aware_libname] | [-library libname]
vhdl_filenames

Follow these guidelines to analyze and store a VHDL file into a library:

■ The following commands are identical. They analyze and store design.vhd into
library MYLIB:

set_vhdl_library WORK MYLIB

read_vhdl -library MYLIB design.vhd

■ An error message is generated if an attempt is made to analyze a VHDL design unit into
one of the standard libraries (STD, AMBIT, IEEE, SYNERGY, SYNOPSYS) without mapping
the library to a new directory using the set_vhdl_library command.

Showing the Mapping between VHDL Logical Libraries and the Corresponding
Directory

➤ Use the report_vhdl_library command arguments to show the mapping between
VHDL logical libraries and the directory:

report_vhdl_library [-verbose] [library] [{ > | >> } filename]

Using Arithmetic Packages From Other Vendors

1. Use the global hdl_vhdl_environment arguments to set up your VHDL environment:

set_global hdl_vhdl_environment { standard | synopsys| common | synergy}

2. Use the set_vhdl_library command arguments to redefine the library IEEE to a new
directory:

set_vhdl_library library_name directory_name

For example:

set_vhdl_library IEEE dir_name

3. Use the read_vhdl command arguments to analyze vendor-specific packages:

read_vhdl [-aware_library aware_libname] | [-library libname]
vhdl_filenames

VHDL does not predefine arithmetic operators on types that hold bits. Using arithmetic
packages lets you synthesize VHDL designs that include arithmetic operators.

Follow these guidelines when using arithmetic packages from other vendors:
December 2003 149 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Important

Using the hdl_vhdl_environment global is especially important because the
arithmetic packages associated with the standard, synergy, common, and
synopsys environments are tagged with special directives that let the tool
implement them efficiently.

■ If some of the VHDL designs have references to arithmetic packages from other
synthesis vendors they must be compiled into a library named IEEE.

■ Analyze a predefined VHDL package before reading in other vendor-specific packages
that are required in the IEEE library. Read any VHDL entities that use these packages.

■ There is no order restriction in reading entities and packages. However, if an entity refers
to a package, read in the package before the entity.

■ Because the local copy of the IEEE library was created using the set_vhdl_library
command, the corresponding directory is preserved after exiting from shell. When
reentering the shell environment, reuse the IEEE library created above by redefining
the IEEE library.

Example:

read_vhdl -library IEEE package

Resetting a VHDL Library

➤ Use the reset_vhdl_library command argument to remove all VHDL units that
have been analyzed into a specific library.

reset_vhdl_library library_name

Reset a VHDL library if you mistakenly analyzed a package into the wrong library, or if you
want to clear the library of all analyzed VHDL units and start over.

Make sure the library_name argument is the name of the library where you want to delete
all analyzed units.

The following example resets library MYLIB after a VHDL package from wrongpack.vhd
was analyzed into it:

read_vhdl -library MYLIB wrongpack.vhd

reset_vhdl_library MYLIB

Read the correct package into MYLIB:

read_vhdl -library MYLIB rightpack.vhd
December 2003 150 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Switching between VHDL’87 and VHDL’93

➤ Use the global hdl_vhdl_read_version to specify the VHDL version used to read
VHDL designs:

set_global hdl_vhdl_read_version { 1987 | 1993 }

Default: 1993

Use this global to ensure that only VHDL files that conform to the VHDL’87 standard or the
VHDL’93 standard are parsed successfully.

Note: When the value of the global hdl_vhdl_read_version is changed, the tool resets
the libraries STD, IEEE, and AMBIT to the default values for the language setting. Therefore,
you need to redefine the library IEEE to use other vendor-specific IEEE packages analyzed
into the correct VHDL version. See Using Arithmetic Packages From Other Vendors on
page 149 for more information on incorporating vendor-specific IEEE packages into the
library IEEE.

Follow these guidelines when switching between VHDL read versions:

■ BuildGates Synthesis supports both 1987 and 1993 versions of VHDL.You can read in
VHDL designs that are modeled using different versions. You can also read in VHDL
designs in one version and write out the synthesized netlist in another version.

■ For all the packages that are part of the predefined VHDL environment, both the VHDL’87
and VHDL’93 versions are precompiled and shipped with the tool.

■ If your project requires a mix of VHDL versions to be read in, use the same version of
VHDL for reading both sets of VHDL files.

■ If it is essential that the different sets of files be read in with the appropriate version-
specific syntax checking, then read in the VHDL code for the 1987 version and elaborate
it with do_build_generic and save out the generic ADB file. Repeat these steps for
the code using the 1993 version. In a new bg_shell session, read in the generic ADB
files, run do_build_generic to link the designs together, then proceed with
constraining and optimizing the design.

Reusing Previously Analyzed Entities

➤ Use the global hdl_vhdl_reuse_units to import VHDL entities that were previously
analyzed into a library:

set_global hdl_vhdl_reuse_units { true | false }

For large designs, analyze all the VHDL files into a library once and then reuse the analyzed
entities in subsequent synthesis sessions.
December 2003 151 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Follow these guidelines when reusing previously analyzed entities:

■ When the global is set to true, the do_build_generic command automatically
synthesizes all entities that reside in any VHDL library specified using the
set_vhdl_library command.

■ The default value of hdl_vhdl_reuse_units is false.

In the following example, assume the library MYSRC has entities TOP and BOTTOM
analyzed into it. If the value of hdl_vhdl_reuse_units is set to true, then
do_build_generic automatically picks up these entities for synthesis:

set_vhdl_library MYSRC ./lib

report_vhdl_library -verbose MYSRC

The report output is shown in Example 5-1.

Example 5-1 Report of Reusing HDL VHDL Units
+------------------------------------+

| Library | MYSRC |

| | |

| Directory | ./lib |

| | |

| Entities | TOP (TOP_A) |

| (Architectures) | BOTTOM (BOTTOM_A)|

+------------------------------------+

do_build_generic

INFO: Processing design ‘TOP’ <CDFG-303>.S

INFO: Processing design ‘BOTTOM’ <CDFG-303>.

If hdl_vhdl_reuse_units is set to false, then only entities that are explicitly read in
using read_vhdl in the current session will be synthesized by the tool.

In the following example, even though the library MYSRC has entities analyzed into it from
a previous synthesis session, they are not synthesized because the variable
hdl_vhdl_reuse_units is set to false:

set_vhdl_library MYSRC ./lib

set_global hdl_vhdl_reuse_units false

do_build_generic

The output is as follows:

Info: No designs to process. <CDFG-301>.
December 2003 152 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Specifying the Naming Style of Object Names

➤ Use the global naming_style to specify whether the input and output of object names
will be in VHDL or no naming style:

set_global naming_style {vhdl | verilog | none}

Modifying the Case of VHDL Names

➤ Use the global hdl_vhdl_case variables to specify the case of VHDL names stored in
the tool:

set_global hdl_vhdl_case { lower | upper | original }

Example

set_global hdl_vhdl_case lower

The case of VHDL names is only relevant for references to foreign modules. Examples of
foreign references are Verilog modules and library cells.

Follow these guidelines when modifying the case of VHDL names:

■ lower—converts all names to lower-case (Xpg is stored as xpg).

■ upper—converts all names to upper-case (Xpg is stored as XPG).

■ original—preserves the case used in the declaration of the object (Xpg is stored as
Xpg).

■ If the global hdl_vhdl_case is set to original, use the same case you used when
defining the object when referring to foreign objects. Thus, VHDL components and port
names should be identical in case to the Verilog module definition.

Getting HDL File Names, Hierarchy, and Top Level Design Names

The get_hdl commands can be used right after reading the HDL files into BuildGates
Synthesis without having to first generate a generic netlist. Refer to Querying the HDL Design
Pool on page 33 for information on how to use these commands.

■ Using the get_hdl_top_level Command on page 35

■ Using the get_hdl_hierarchy Command on page 35

■ Using the get_hdl_type Command on page 36

■ Using the get_hdl_file Command on page 36
December 2003 153 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Selecting Preferred Architectures

➤ Use the global hdl_vhdl_preferred_architecture to specify the name of the
architecture you prefer to use with an entity when multiple architectures are available:

set_global hdl_vhdl_preferred_architecture name

Before synthesis can proceed, every referenced entity in a VHDL design description must be
bound with a corresponding architecture. The architecture describes the actual function or
contents of the entity to which it is bound.

Follow these guidelines when selecting an architecture:

■ For arithmetic components, base architectural decisions on the type of cells available in
the target technology library.

■ When an entity has multiple architectures, the tool selects the architecture that will be
used to synthesize the entity by evaluating the following rules in the order listed.

❑ The global variable hdl_vhdl_preferred_architecture overrides any VHDL
entity architecture binding rules. For example:

set_global hdl_vhdl_preferred_architecture synth

If the entity, foo, has two architectures named sim and synth, the tool binds foo
to entity synth. By default, hdl_vhdl_preferred_architecture is set to the
null string ("").

❑ If the entity is being synthesized as an instantiation in a higher level entity, then any
explicit architecture binding specified for that instantiation is used to determine the
architecture implementation of the current entity. Configuration specifications and
component configurations (instances I2 and I8 respectively in Component
Instantiations and Bindings on page 160) can be used explicitly to specify the entity-
architecture to which the instance is bound.

❑ If the entity has a corresponding configuration declaration, the entity is bound to the
architecture specified in the top-level block of the configuration declaration. For
example, the configuration BOTTOM_CONF in the example on Restrictions on Entities
with Multiple Architectures on page 162 binds entity BOTTOM to architecture A1.

❑ If none of the previous rules apply, the tool binds the entity to the most recently
analyzed architecture (also known as the default architecture). For example:
Assume entity MRA has two architectures: A1 and A2. A1 is analyzed first followed
by A2. The synthesis of entity MRA will use architecture A2.

Note: Once an entity has been synthesized, the only way to resynthesize it with a
different architecture (perhaps by modifying a configuration declaration) is to reanalyze
the entity and its architectures. For the same reason, the global
hdl_vhdl_preferred_architecture should only be set prior to any
December 2003 154 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
do_build_generic command.

Build Generic Design

➤ Use the do_build_generic command options to transform the VHDL design into a
hierarchical, gate-level netlist consisting of technology-independent logic gates:

do_build_generic [-all] [-module name] [-extract_fsm] [-group_all_processes]
[-group_named_processes] [-group_process list_of_processes]
[-group_all_subprograms] [-group_subprograms list_of_subprograms]
[-parameters | -generics tcl_list] [-sleep_mode]

Follow these guidelines when building a generic design:

■ Use the do_build_generic command after specifying the source VHDL files for the
initial design database and before using the do_optimize command. The generated
netlist can then be written as a VHDL netlist (write_vhdl).

■ Run do_build_generic on a netlist even if it is already mapped to the target library.
After using the command, any instance of a target library cell in the source description
remains mapped to that cell in the design database. Load the netlist later for optimization
and analysis using the read_vhdl and read_adb commands, respectively.

■ By default, the do_build_generic command treats all procedural blocks (processes)
as part of the module in which they appear without any hierarchy. Use the -group option
to customize and control logical partitions grouped by various processes.

■ Use the do_build_generic command options to generate netlists for selected
modules in the design hierarchy. See Component Instantiations and Bindings on
page 160 for more information.

■ See Synthesizing a Specified Module on page 36 to build specific modules, multiple top-
level designs, and parameterized designs.
December 2003 155 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Write Netlist

Writing Architectures

➤ Set the global hdl_vhdl_write_architecture to true to write VHDL entities:

set_global hdl_vhdl_write_architecture {true | false}

Architectures are used to implement a design entity. There may be more than one
architecture for a design entity.

Defining Architecture Names

➤ Use the global hdl_vhdl_write_architecture_name to specify the name of the
architecture for each entity in the netlist:

set_global hdl_vhdl_write_architecture_name architecture_name

The default architecture name is netlist.

You can also add an optional ‘%s’ to the architecture name, which is replaced by the
entity name. Use the following to automatically assign different names to the various
architectures in your design:

set_global hdl_vhdl_write_architecture_name architecture_name_%s

For example, if a design has two modules, TOP and BOTTOM, the following command,
results in two differently named architectures: netlist_TOP and netlist_BOTTOM:

set_global hdl_vhdl_write_architecture_name "netlist_%s"

The following command, however, results in a VHDL netlist where both modules have
architectures with the name, netlist:

set_global hdl_vhdl_write_architecture_name "netlist"

Note: Giving the global hdl_vhdl_write_architecture_name a value with any
format specification having more than one ’%s’ results in an error. For example,
netlist, %s, A_%s_B are all acceptable; A%s%s is not.

Writing out Modules in Top-Down or Bottom-Up Order

➤ Use the following global variables to control whether VHDL netlists write out modules in
top-down or bottom-up order:

set_global hdl_write_top_down {true | false}

Default: false
December 2003 156 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Writing VHDL Entities

The top of every design hierarchy must be an entity.

➤ Set the global hdl_vhdl_write_entity to true to write VHDL entities when
write_vhdl is called:

set_global hdl_vhdl_write_entity {true | false}

Specifying the VHDL Entity Name

➤ Use the global hdl_vhdl_write_entity_name to specify the name for the entity
representing the current module during VHDL netlisting:

set_global hdl_vhdl_write_entity_name string

A complete VHDL description needs to contain at least one entity.

Follow these guidelines when specifying the VHDL entity name:

■ This variable only affects the name of the current top-level module in hierarchical
designs; all descendant modules use their own names.

■ If you set the variable to the empty string (““), the current module name is used as the
entity name. The default value is ““.

Selecting the Bit-Level Type

➤ Use the global hdl_vhdl_write_bit_type to define the bit-level type used in VHDL
netlists:

set_global hdl_vhdl_write_bit_type { std_logic | std_ulogic }

Default: std_logic.

For example, the following command maps bit ports to internal std_ulogic ports and
integer ports to internal std_ulogic_vector signals:

set_global hdl_vhdl_write_bit_type std_ulogic

Note: If you do not want to preserve the original VHDL port types, use the -no_wrap
option to write the module with std_logic types. Refer to the write_vhdl command
in the Command Reference for BuildGates Synthesis and Cadence PKS for
details.
December 2003 157 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Follow these guidelines when selecting the bit type in which VHDL netlists will be written:

■ When saving the VHDL file with the write_vhdl command, the netlister preserves the
port types of the current entity’s ports during netlisting. This requires generation of
conversion functions that transform potentially complex VHDL port types to a simpler bit-
level representation. Such conversion functions are encapsulated in a package that is
generated by the netlister.

■ All descendant module ports are always written with the equivalent bit-level
representation.

■ For a module that did not originate as a VHDL entity, the module’s ports are also written
out with the equivalent bit-level representation.

Selecting Between VHDL’87 and VHDL’93

➤ Use the global hdl_vhdl_write_version variables to specify the VHDL version of
the netlists that are written out using the write_vhdl command.

set_global hdl_vhdl_write_version { 1987 | 1993 }

Default: 1993

Follow these guidelines when selecting between VHDL’87 and VHDL’93:

■ The global ensures that the VHDL netlists that are written out conform to the VHDL’87
standard. For example:

set_global hdl_vhdl_write_version 1987

■ If you write VHDL netlists in the VHDL’87 mode, avoid illegal names that might be
generated by synthesis. When busses are bit-blasted, the individual net names are
formatted as specified by the global buscomp_generator. By default, names for the
nets of a bus are generated with the square brackets (b[1]). Such names are illegal in
VHDL ‘87 and are avoided by setting the following global prior to any
do_build_generic command. To avoid escaped values, set the buscomp generator:

set_global buscomp_generator %s_%d

This does not apply to VHDL ‘93 mode netlists, because a name such as b[1] is written
out as an escaped name \b[1]\.

Referring to VHDL Packages in Netlists

➤ Use the global hdl_vhdl_write_packages to specify the set of library and use
clauses that must precede every module written out:

set_global hdl_vhdl_write packages lib1.pack_x...
December 2003 158 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
For example, entering the following command:

set_global hdl_vhdl_write_packages "ieee.std_logic_1164 atl.comps1 atl.comps2"

Results in the following clauses preceding every module written out:

library ieee;

use ieee.std_logic_1164.all;

library atl;

use atl.comps1.all;

use atl.comps2.all;

The default value of this global is “ieee.std_logic_1164”.

Writing Component Declarations

➤ Use the global hdl_vhdl_write_components to specify whether the netlister should
write out component declarations for the technology cells that are referred to within the
modules:

set_global hdl_vhdl_write_components {true | false }

If the component declarations for all the cells in the technology library clib are
encapsulated in a package called components, writing component declarations for
individual modules is disabled by setting hdl_vhdl_write_components to false,
and making the components package visible to all modules being written out. For
example:

set_global hdl_vhdl_write_components false

Writing a VHDL Netlist

➤ Use the write_vhdl command arguments to write out a VHDL netlist:

write_vhdl [-hierarchical] [-equation] [-no_wrap] vhdl_file_name

Additional Information

■ Hierarchical VHDL Designs on page 160

■ VHDL Modeling Styles on page 163

■ VHDL Synthesis Directives on page 174

■ Supported Synopsys Directives on page 191

■ VHDL-Related Commands and Globals on page 196

■ VHDL Constructs on page 199
December 2003 159 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Hierarchical VHDL Designs

■ Component Instantiations and Bindings on page 160

■ Restrictions on Entities with Multiple Architectures on page 162

Component Instantiations and Bindings

BuildGates Synthesis supports several types of component instantiations in hierarchical
VHDL designs.

Consider an entity BOTTOM that has two architectures: A1 and A2. Example 5-2 illustrates the
various ways in which entity BOTTOM can be instantiated for synthesis and bound to a specific
entity architecture pair for implementation:

Instances I1, I2, I3, and I4 are examples of component instantiations that refer to
component declarations. Instance I1 of component BOTTOM relies on a default binding to
entity BOTTOM. The default architecture (the most recently analyzed) A2 is selected for
implementing I1. The configuration specification for I2 binds the component COMP to entity
BOTTOM, default architecture A2. The configuration specification for instance I3 binds COMP
explicitly to entity BOTTOM and its architecture A1. The configuration specification for I4
references the configuration BOTTOM_CONF, which binds I4 to entity BOTTOM and
architecture A2.

Instances I5 and I6 are examples of entity instantiations where the entity being instantiated
is directly referred to in the instantiation. Since no architecture is specified in instantiation I5,
the default architecture A2 is used for implementing this component instance. Instance I6
instantiates entity BOTTOM and implements with architecture A1.

Instance I7 is an instantiation that uses a configuration to indicate the entity and architecture
that is used to implement the instance.

Instances I8 and I9 illustrate that the binding for component instances are specified as
component configurations in a configuration declaration. Instance I8 of COMP is bound to
entity BOTTOM and architecture A1, while instance I9 is bound to the entity BOTTOM and
architecture A2 specified in configuration BOTTOM_CONF.

Use block configurations in configuration declarations to configure architectures. Component
configurations must not have any generic maps or port maps. In other words, even though
the component declaration COMP may be bound to entity BOTTOM, the generics and ports of
the component declaration must match that of the entity it is bound to.
December 2003 160 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-2 Instantiating an Entity for Synthesis
entity BOTTOM is

architecture A1 of BOTTOM is

architecture A2 of BOTTOM is

configuration BOTTOM_CONF of BOTTOM is

for A2

 end for;

end configuration BOTTOM_CONF;

entity TOP is

architecture A of TOP is

component BOTTOM

component COMP

for I2 : COMP use entity work.BOTTOM;

for I3 : COMP use entity work.BOTTOM (A1);

for I4 : COMP use configuration work.BOTTOM_CONF;

begin

-- instantiate component BOTTOM, default architecture

 I1 : BOTTOM

-- instantiate component COMP bound to entity BOTTOM

 I2 : COMP

 I3 : COMP

 I4 : COMP

 - instantiate entity BOTTOM, default architecture

 I5 : entity work.BOTTOM

-- instantiate entity BOTTOM, architecture A1

 I6 : entity work.BOTTOM(A1)

-- instantiate entity/architecture in BOTTOM_CONF

 I7 : configuration work.BOTTOM_CONF

-- instantiate component,binding in configuration

 -- declaration

 I8 : COMP

 I9 : COMP

end architecture A;

configuration TOP_CONF of TOP is

for A

for I8 : COMP use entity work.BOTTOM(A1);

for I9 : COMP use configuration work.BOTTOM_CONF;

end for;

end configuration TOP_CONF
December 2003 161 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Restrictions on Entities with Multiple Architectures

In VHDL, an entity can have multiple architectures (one for synthesis and one for simulation).
Although you can analyze an entity that has multiple architectures, the tool restricts an entity
to be bound to exactly one architecture in a single session of synthesis. In other words, once
an entity is bound to a specific architecture, it must be bound to that same architecture
everywhere in the design.

The design shown in Example 5-3, is not synthesizable because instances I1 and I2 bind
component COMP to different architectures of entity BOTTOM:

Example 5-3 Non-Synthesizable Design
entity TOP is

architecture A of TOP is

component COMP is

for I1 : COMP use entity work.BOTTOM (A1);

for I2 : COMP use entity work.BOTTOM (A2);

begin

 I1 : COMP

 I2 : COMP

end architecture A;

For the design shown in Example 5-4, the following command synthesizes the entity TOP and
consequently entity BOTTOM while processing instance I1. The entity BOTTOM is bound to
architecture A2 specified in the entity instantiation.

do_build_generic -module TOP

However, the following two commands result in an error since the first do_build_generic
binds BOTTOM to architecture A1 specified in configuration BOTTOM_CONF, while the second
do_build_generic encounters a conflicting bind when processing the entity instantiation
I1 (where BOTTOM is bound to A2):

do_build_generic -module BOTTOM

do_build_generic -module TOP
December 2003 162 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-4 Design with Restrictions on Entities with Multiple Architectures
entity BOTTOM is

architecture A1 of BOTTOM is

architecture A2 of BOTTOM is

configuration BOTTOM_CONF of BOTTOM is

for A1

end for;

end configuration BOTTOM_CONF;

entity TOP is

architecture A of TOP is

begin

 I1 : entity work.BOTTOM(A2);

end architecture A;

See Selecting Preferred Architectures on page 154 for information on precedence rules for
selecting an architecture when an entity has multiple architectures.

VHDL Modeling Styles

■ Modeling Combinational Logic on page 164

■ Inferring a Register on page 165

■ Using case Statements to Infer Registers on page 170

■ Using a for loop Statement for Describing Repetitive Operations on page 172
December 2003 163 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Modeling Combinational Logic

The BuildGates Synthesis software synthesizes combinational logic to implement a variable
or signal under any of the following conditions:

■ The variable or signal is unconditionally assigned a value before it is used and whenever
any of the signals in the right side of the expression change, as shown in Example 5-5.

Example 5-5 Synthesizing Combinational Logic to Generate Signal z
signal z: bit

process(a, b, c)

begin

 z <= a + b + c;

end process;

■ The variable or signal is conditionally assigned a value under all possible conditions
whenever any of the signals in the right side of the expression change as shown in
Example 5-6.

a

b

c

z+
December 2003 164 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-6 Synthesizing Combinational Logic to Generate Signal z
signal z: bit;

process (a, b, s)

begin

if (s = ’1’)

 z <= a;

else

 z <= b;

end process

Inferring a Register

A register is a level sensitive (latch) or edge-triggered (flip-flop) memory element. BuildGates
Synthesis infers registers from the syntax of the HDL and generates a sequential element
table that reports the number and type of memory elements inferred for the model
synthesized by the do_build_generic command.

The following sections describe how to infer a register:

■ Inferring a Register as a Latch on page 165.

■ Inferring a Register as a Flip-Flop on page 166.

Inferring a Register as a Latch

BuildGates Synthesis infers a latch for a variable that is incompletely assigned, and that is
updated whenever any of the variables that contribute to its value change, as shown in
Example 5-7.

a

b
zMUX

s

0

1

sel
December 2003 165 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-7 Inferring a Latch
signal dout: bit;

process (din, en)

begin

if en = '1' then

 dout <= din;

end if;

end process;

.

Signal dout is modified when signal en is high. The model does not specify what happens
when en is low (or unknown). The default behavior implied by VHDL is that the signal dout
retains its previous value. The software infers a latch to implement the signal dout.

In VHDL’93, the same latch is inferred by using a concurrent conditional signal assignment:

dout <= din when (en = '1');

In VHDL’87, an incomplete assignment is not possible since the conditional signal
assignment is required to have an else clause.

Inferring a Register as a Flip-Flop

When a process is triggered by a rising edge or a falling edge transition on a signal (typically
a clock signal), the variable or signal on the left side of a procedural assignment is inferred as
a flip-flop, as shown in Example 5-8.

din

en
dout

D

EN
Q

December 2003 166 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-8 Inferring a Flip-Flop
signal dout: bit;

process (clk)

begin

if (clk'event and clk = '1') then

 dout <= din;

end if;

end process;

A rising-edge-triggered D-type flip-flop is inferred when data input is connected to din, clock
input is connected to clk, and output is connected to dout.

In VHDL’93, the same flip-flop can be modeled by using a concurrent conditional signal
assignment:

dout <= din when rising_edge(clk);

Note: This model uses the standard rising_edge function (defined in packages
IEEE.STD_LOGIC_1164 and IEEE.NUMERIC_BIT) to specify a positive edge on signal
clk.

din doutD

CLK

Q

clk
December 2003 167 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-9 Synthesizing a Synchronous set and reset Signals On a Flip-Flop
process(clk)

begin

if (clk'event and clk = '1') then

if set = '1' then

 dout <= '1';

elsif reset = '1' then

 dout <= '0';

else

 dout <= din;

end if;

end if;

end process;

The process is triggered only on the rising edge of clk, but the assignment to dout is
controlled by set and reset signals; dout is assigned the value of din only when set and
reset are inactive.

Only single-bit set and reset signals are supported. See VHDL Synthesis Directives on
page 174 for more information on controlling the set and reset connections for a flip-flop.

Use the model, shown in Example 5-10, to synthesize a flip-flop with asynchronous set and
reset connections.

Example 5-10 Synthesizing Asynchronous set and reset Signals On a Flip-Flop
process(clk, rst)

begin

if set = ’1’ then

dout <= ’1’;

elsif reset = ’1’ then

dout <= ’0’;

elsif (clk’event and clk = ’1’) then

dout <= din;

end if;

end process;

The process is triggered when a rising edge is detected on clk or a change is detected on
set or reset. If set or reset is active low, then the condition in the if statement is
canceled. For example:
December 2003 168 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
process(clk, set, ...)

begin

if set = '0' then

 dout <= '1';

Specifying Clock Edges for Flip-Flops

■ Using an if statement:

process (clk)

begin

if (clk'event and clk = '1') then

 dout <= din;

end if;

end process

■ Using a wait statement:

process

begin

wait until (clk'event and clk = '1');

 dout <= din;

end process;

■ Using a conditional signal assignment statement in VHDL’93:

dout <= din when (clk'event and clk = '1');

Specifying Clock Signals for Flip-Flops

Specify the rising edge of the clock signal in the following ways:

■ For bit clock signals:

❑ clk'event and clk = '1'

❑ not clk'stable and clk = '1'

■ For boolean clock signals:

❑ clk'event and clk = TRUE

❑ not clk'stable and clk = TRUE

■ For std_ulogic and std_logic clock signals:

❑ rising_edge(clk)
December 2003 169 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
❑ clk'event and clk = '1'

❑ not clk'stable and clk = '1'

Specify the falling edge of the clock signal in the following ways:

■ For bit clock signals:

❑ clk'event and clk = '0'

❑ not clk'stable and clk = '0'

■ For boolean clock signals:

❑ clk'event and clk = FALSE

❑ not clk'stable and clk = FALSE

■ For std_ulogic and std_logic clock signals:

❑ falling_edge(clk)

❑ clk'event and clk = '0'

❑ not clk'stable and clk = '0'

All of these clock edge expressions can be used in if, wait, and conditional signal
assignment statements.

In addition, the following expressions can be used in wait statements to specify rising and
falling edges respectively:

■ wait until (clk = '1'); -- rising clock edge

■ wait until (clk = '0'); -- falling clock edge

Using case Statements to Infer Registers

Using a case statement allows for multi-way branching in a functional description. When a
case statement is used as a decoder to assign one of several different values to a variable,
the logic can be implemented as combinational or sequential logic based on whether the
signal or variable is assigned a value in branches of the case statement. Use a case
statement in one of two ways when inferring a register:

■ Using an Incomplete case Statement to Infer a Latch on page 171

■ Using a Complete case Statement to Prevent a Latch on page 171
December 2003 170 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Using an Incomplete case Statement to Infer a Latch

When a case statement specifies only some of the values that the case expression can
possibly have, a latch is inferred, as shown in Example 5-11.

Example 5-11 Modeling a State Transition Table to Infer a Latch
signal curr_state, next_state, modifier:std_logic_vector(2 downto 0);

process(curr_state, modifier)

begin

case curr_state is

when "000" => next_state <= "100" or modifier;

when "001" => next_state <= "110" or modifier;

 when "010" => next_state <= "001" and modifier;

when "100" => next_state <= "101" and modifier;

when "101" => next_state <= "010" or modifier;

when "110" => next_state <= "000" and modifier;

when others => null;

end case;

end process;

The next_state signal is assigned a new value if curr_state is any one of the six values
specified. For the other two possible states, the next_state signal retains its previous
value. This behavior causes the software to infer a 3-bit latch for next_state.

Using a Complete case Statement to Prevent a Latch

If you do not want the software to infer a latch, the next_state signal must be assigned a
value under all situations, in other words, the next_state signal must have a default value.

Assigning a Default Value to next_state

Assign a default value to next_state using one of the following examples:
December 2003 171 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-12 Assigning the next_state Signal a Value Unconditionally, then
Modifying it by a case Statement

process(curr_state, modifier)

begin

 next_state <= "000";

case curr_state is

when "000" => next_state <= "100" or modifier;

when "001" => next_state <= "110" or modifier;

when "010" => next_state <= "001" and modifier;

when "100" => next_state <= "101" and modifier;

when "101" => next_state <= "010" or modifier;

when "110" => next_state <= "000" and modifier;

when others => null;

end case;
end process;

Example 5-13 Using the others Clause in the case Statement to Capture all the
Remaining Cases where next_state is Assigned a Value
signal curr_state,next_state,modifier:

 std_logic_vector(2 downto 0);

process(curr_state, modifier)

begin

case curr_state is

when "000" => next_state <= "100" or modifier;

when "001" => next_state <= "110" or modifier;

when "010" => next_state <= "001" and modifier;

when "100" => next_state <= "101" and modifier;

when "101" => next_state <= "010" or modifier;

when "110" => next_state <= "000" and modifier;

when others => next_state <= "000";

end case;

end process;

Using a for loop Statement for Describing Repetitive Operations

Use a for loop statement to store all the bits of a vector (in_sig) in reverse order.
December 2003 172 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Supported for loop Statement Forms
for index in start_val to end_val loop

for index in start_val downto end_val loop

for index in discrete_subtype_indication loop

Example 5-14 Using a for loop Statement to Describe Repetitive Operations
process(in_sig, out_sig)

begin

for i in 0 to 7 loop

 out_sig(7-i) <= in_sig(i);

end loop;

end process;

where i is declared as integer and out_sig and in_sig are 8-bit signals. The for
loop is expanded to repeat the operations over the range of the index. Therefore, the for
statement model above is treated in an equivalent manner to the following operations:

out_sig(7) <= in_sig(0);

out_sig(6) <= in_sig(2);

out_sig(4) <= in_sig(3);

out_sig(3) <= in_sig(4);

out_sig(2) <= in_sig(5);

out_sig(1) <= in_sig(6);

out_sig(0) <= in_sig(7);

Example 5-15 Reversing and Assigning Bits of curr_state to next_state

signal curr_state: std_logic_vector(2 downto 0);

signal next_state: std_logic_vector(2 downto 0);

process(curr_state)

 subtype INT02 is integer range 0 to 2;

begin

for I in INT02 loop

 next_state(2-I) <= curr_state(I);

end loop;

end process;
December 2003 173 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
VHDL Synthesis Directives

Synthesis directives perform code selection or specify how the set and reset pins of a
register are wired. Two forms of VHDL synthesis directives are supported:

■ Attributes—Defines VHDL attributes attached to appropriate objects in the source VHDL.

■ Meta-comment—Defines the VHDL comments embedded in the VHDL source code.
These directives begin with the keyword ambit synthesis.

Note: If you use a comment to specify a synthesis directive, that comment should not contain
any extra characters other than what is necessary for the synthesis directive.

This section describes the following synthesis directives:

■ Code Selection Directives on page 175

❑ Synthesis On and Synthesis Off Directives on page 175

❑ Translate On and Translate Off Directives on page 175

■ Architecture Selection Directive on page 176

■ case Statement Directive on page 177

■ Enumeration Encoding Directive on page 177

■ Entity Template Directive on page 178

■ Function and Task Mapping Directives on page 178

■ Signed Type Directive on page 179

■ Resolution Function Directives on page 179

■ Type Conversion Directives on page 180

■ Set and Reset Synthesis Directives on page 181

❑ Process Directives on page 183

❑ Signal Directives on page 186

■ Operator Merging Directive on page 190

■ Supported Synopsys Directives on page 191
December 2003 174 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Code Selection Directives

By default, BuildGates Synthesis compiles all VHDL code from a file. Use the code selection
synthesis directives in pairs around VHDL code that should not be compiled for synthesis.

Synthesis On and Synthesis Off Directives

All the code following the synthesis directive -- ambit synthesis off up to and including
the synthesis directive -- ambit synthesis on is ignored by the tool. However, the code
between the two directives will be checked for syntactic correctness.

You can add assertions in your model that are not synthesized for debugging purposes. If the
assertions are surrounded by the synthesis on and synthesis off directives, the tool
ignores them for synthesis but verifies the syntax between the directives.

Example 5-16 Using Synthesis On and Off Directives
function DIVIDE (L, R: integer) return integer

is variable RESULT: integer;

begin

-- ambit synthesis off

assert (R /= 0)

 report "Attempt to Divide by Zero Unsupported !!!"

 severity ERROR;

-- ambit synthesis on

 RESULT:= L/R;

return (RESULT);

end DIVIDE;

Translate On and Translate Off Directives

The translate on and translate off code selection directives are used around VHDL
code that should be completely ignored by the VHDL parser and not synthesized by the tool.
All the code following the synthesis directive ambit translate off up to and including the
synthesis directive ambit translate on is ignored by the tool even if it contains syntax
errors.
December 2003 175 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Architecture Selection Directive

Use this directive to select different types of architectures for arithmetic and comparator
(relational) operators. The architectures available are based on whether you have purchased
BuildGates Extreme which comes with Datapath. For information on Datapath, refer to
Datapath for BuildGates Synthesis and PKS.

The standard BuildGates Synthesis software without Datapath contains the following final
adder architectures:

■ cla (carry lookahead)

■ ripple (ripple carry)

BuildGates Synthesis, with Datapath Synthesis of BuildGates Synthesis and Cadence
Physically Knowledgeable Synthesis (PKS), contains the following final adder and multiplier
encoding architectures:

Datapath final adder architectures:

■ fcla (fast carry lookahead)

■ cla (carry lookahead)

■ csel (carry select)

■ ripple (ripple carry)

Datapath multiplier encoding architectures:

■ non-booth

■ booth

For VHDL, specify the architecture selection directive immediately after the selected operator
is used, as shown in Example 5-17.

Example 5-17 Using the Architecture Selection Directive for VHDL
-- use Ripple Carry adder

x <= a + b; -- ambit synthesis architecture = ripple

If there are multiple operators in the expression, place the directive after the desired operator,
as shown in Example 5-18.
December 2003 176 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-18 Using the Architecture Selection Directive for Multiple Operators
-- implement subtractor with ripple-carry architecture

x1 <= a + b - c; -- ambit synthesis architecture = ripple

-- implement adder with ripple-carry and substractor

-- with carry lookahead architecture

x2 <= a + -- ambit synthesis architecture = ripple

b - c; -- ambit synthesis architecture = cla

case Statement Directive

If you use a case statement as a multiplexer instead of random logic, then the mux directive
should be specified for the case statement, as shown in Example 5-19.

Example 5-19 Using the case Statement Directive
process(d, s)

begin

case (s) is -- ambit synthesis mux

when "000" => z <= d(0);

when "001" => z <= d(1);

when "010" => z <= d(2);

when "011" => z <= d(3);

when "100" => z <= d(4);

when "101" => z <= d(5);

 -- "110" not specified.

when "111" => z <= d(7);

when others => null;

end case;

end process;

Enumeration Encoding Directive

Use this directive to override the default encoding of enumeration literals. In Example 5-20,
the literals RED and YELLOW would normally be encoded as 00 and 11, respectively
(corresponding to their position in the type COLOR, starting from 0). Because of the
ENUM_ENCODING attribute, RED and YELLOW are encoded as 10 and 01, respectively. The
attribute ENUM_ENCODING is declared in the package: ambit.attributes.

The ENUM_ENCODING value string must contain as many encodings as there are literals in
the corresponding enumeration type. All encodings contain only 0’s or 1’s and should have
an identical number of bits.
December 2003 177 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-20 Using the Enumeration Encoding Directive
type COLOR is (RED, BLUE, GREEN, YELLOW);

attribute ENUM_ENCODING: string;

attribute ENUM_ENCODING of COLOR: type is "10 00 11 01”;

Entity Template Directive

When an entity is written with generic declarations for use as a template, only the instantiated,
parameterized design needs to be synthesized. Use the TEMPLATE directive on an entity to
indicate that the template entity is not to be synthesized except in the context of an
instantiation from a higher level module, never as a top-level entity. Specify the TEMPLATE
directive as TRUE in the entity declaration as shown in Example 5-21.

Example 5-21 Using the Entity Template Directive
use ambit.attributes.all;

entity FOO is

generic (Width : integer := 64);

port (DIN : bit_vector (Width - 1 downto 0);

 DOUT : bit_vector (Width - 1 downto 0));

attribute TEMPLATE of FOO: entity is TRUE;

end FOO;

The do_build_generic command runs faster by designating entities as templates. It
eliminates synthesizing the template entities that are not actually used in the hierarchical
design as stand-alone modules. The attribute TEMPLATE is declared in the following
package: ambit.attributes.

Function and Task Mapping Directives

Use the map_to_module directive in functions and tasks, and use the return_port_name
directive only in functions. These directives should appear within the declaration of a task or
function. For example:

 -- ambit synthesis map_to_module module_name

The map_to_module directive specifies that any call to the given function or task is to be
internally mapped to an instantiation of the specified module. The statements in the function
or task body are therefore ignored. Arguments to the function or task are mapped positionally
onto ports in the module. For example:

 -- ambit synthesis return_port_name port_name
December 2003 178 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Use the return_port_name directive with functions. This directive applies only to a function
to which the map_to_module directive is in effect, and specifies that the return value for the
function call is given by the output port of the mapped-to module.

The following code, shown in Example 5-22, maps a function to entity BUF with output z:

Example 5-22 Using the Function and Task Mapping Directives
function f(d : in std_logic) return std_logic is

-- ambit synthesis map_to_module BUF

-- ambit synthesis return_port_name z

begin

return d;

end;

The following entity instantiation:

i1 : entity work.BUF port map(z, d);

is equivalent to the following function call:

q <= f(d);

Signed Type Directive

Use this directive to specify that the annotated vector type is to be treated like a signed type
for all arithmetic, logical, and relational operations. The attribute SIGNED_TYPE is a Boolean-
valued attribute declared in the package: ambit.attributes.

Example 5-23 shows the ieee.numeric_std.signed type.

Example 5-23 Using the Signed Type Directive
use ambit.attributes.all;

....

type SIGNED is array (NATURAL range <>) of STD_LOGIC;

-- Attribute the type ’SIGNED’ for synthesis

attribute SIGNED_TYPE of SIGNED : type is TRUE;

Resolution Function Directives

Use the RESOLUTON function directives to identify and define the intended behavior of a
resolution function in the design.
December 2003 179 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Define the resolution by specifying the string-valued attribute RESOLUTION to control how a
signal (with multiple drivers and resolved by the attributed function) is synthesized.

The following directives will cause a WIRED_AND, WIRED_OR, or WIRED_TRI (three-state)
behavior to be synthesized for any signal that is resolved by function MYRES:

attribute RESOLUTION: string;

attribute RESOLUTION of MYRES: function is "WIRED_AND";

attribute RESOLUTION of MYRES: function is "WIRED_OR";

attribute RESOLUTION of MYRES: function is "WIRED_TRI";

In Example 5-24, the function MYRES has been tagged as having WIRED_OR behavior using
the RESOLUTION attribute. signal X with resolution function MYRES is synthesized to
exhibit a WIRED_OR behavior.

Example 5-24 Using the Resolution Function Directive
function MYRES(bv: bit_vector) return ulogic_4 is variable tmp: bit:= '0';

begin

for I in vtbr'range loop

 tmp:= tmp or bv(I);

end loop;

return tmp;

end;

attribute RESOLUTION of MYRES: function is "WIRED_OR";

signal X: MYRES bit;

The attribute RESOLUTION is declared in the package ambit.attributes.

Type Conversion Directives

Use the TYPE_CONVERSION directives to translate between unrelated user-defined types.
The type conversion directive behaves like an identity operator; the body of such a function
does not need to be synthesized.

There are three types of type conversion directives that can be attached to a function body:

■ -- ambit synthesis BUILTIN_TYPE_CONVERSION

■ -- ambit synthesis BUILTIN_ZERO_EXTEND

■ -- ambit synthesis BUILTIN_SIGN_EXTEND
December 2003 180 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
When you use these directives, the function body is ignored by the synthesis tool. The
BUILTIN_TYPE_CONVERSION directive is used for converting between identically sized
types, such as between bit_vector (0 to 7) and std_logic_vector (0 to 7).

Use the BUILTIN_ZERO_EXTEND and BUILTIN_SIGN_EXTEND directives for conversions
where the size of the argument and returned value are different.

Example 5-25 treats the translate function as an identity operator.

Example 5-25 Using the Type Conversion Directives
function translate(b: bit) return integer is

 -- ambit synthesis BUILTIN_TYPE_CONVERSION

begin

if (b = '0') then

return 0;

else

return 1;

end if;

end function;

Set and Reset Synthesis Directives

When the do_build_generic command infers a register from a VHDL description, it also
infers set and reset control of the register, and defines whether these controls are
synchronous or asynchronous. For examples showing flip-flops and latches with set and reset
operations, see Inferring a Register on page 165.

There are two ways to implement the synchronous set and reset logic for these inferred
registers:

■ Control the Input to the Data Pin – Controls the input to the data pin of a register
component using set and reset logic so that the data value is 1 when set is active, 0
when reset is active, and driven by the data source when both set and reset are
inactive. This is the default approach. Figure 5-2 shows the default implementation of the
set and reset control logic.

■ Implement set and reset Control – Implements set and reset control of a register
by selecting the appropriate register component (cell) from the technology library and
connecting the output of set and reset logic directly to the set and reset pins of the
component. The data pin of the component is driven directly by the data source.
Figure 5-3 shows the implementation of the set and reset control logic.
December 2003 181 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Figure 5-2 Default Implementation of set and reset Control Logic

Figure 5-3 Implementing set and reset Control Logic

There are six synthesis directives to support set and reset logic at the process level, signal
level, or a mix of the process and signal levels for each register inferred. These synthesis
directives are advisory directives only. They do not force the tool to implement set and reset
logic with one approach; rather, they drive the selection of the component from the technology
library to provide additional options. To force the tool to implement a particular flip-flop or
latch, use the set_register_type command.

Note: These directives only convey user preferences. They do not force the tool to honor
the directives. Therefore, in some scenarios the directives could be ignored in order to provide
a better quality netlist. However, these synthesis directives do not change the behavior of the
design. If the design is written with synchronous control on a flip-flop and the synthesis
directive specifies asynchronous selection, the resulting implementation will still be
synchronous. A warning is displayed if the synthesis directive conflicts with the model.

set

reset

data
clock

data_out

data_out_

clock

set

reset

data data_out

data_out_
December 2003 182 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Process Directives

Use the process (or block) directives to control the connection of set and reset control logic
for all the registers inferred within a specific process. Specify process directives using
Boolean-valued attributes attached directly on the labels of the specific process as shown
below:

attribute SYNC_SET_RESET_PROCESS: boolean;

attribute SYNC_SET_RESET_PROCESS of P1: label is TRUE;

attribute ASYNC_SET_RESET_PROCESS: boolean;

attribute ASYNC_SET_RESET_PROCESS of P2: label is TRUE;

P1 and P2 are the labels of the processes. These directives indicate that the set and reset
control logic for all the registers inferred within the process is directly connected to the
synchronous (for SYNC_SET_RESET_PROCESS) and asynchronous (for
ASYNC_SET_RESET_PROCESS) pins of the register component. The attributes
SYNC_SET_RESET_PROCESS and ASYNC_SET_RESET_PROCESS are declared in the
package: ambit.attributes.

Note: These process directives must be specified in the declarative region of the
architecture that contains the process being attributed. An error results if you specify these
process directives for non-existent processes.

In Example 5-26 out1 is inferred as a D-type flip-flop with synchronous connections to set
and reset pins, but out2 is inferred as a D-type flip-flop with synchronous reset and set
operations controlled through combinational logic feeding the data port D, as shown in
Figure 5-4.
December 2003 183 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-26 Using the SYNC_SET_RESET_PROCESS Synthesis Directive
use ambit.attributes.all;

....

entity sync_block_dff is

port (clk, din, set, rst: in std_logic;

 out1, out2: out std_logic);

end entity sync_block_dff;

architecture A of sync_block_dff is

attribute SYNC_SET_RESET_PROCESS of P1: label is TRUE;

begin

 P1: process (clk)

begin

if rising_edge(clk) then

if (set = '1') then

 out1 <= '1';

elsif (rst = '1') then

 out1 <= '0';

else

 out1 <= din;

end if;

 end if;

end process;

P2: process (clk)

begin

if rising_edge(clk) then

if (set = '1') then

 out2 <= '1';

elsif (rst = '1') then

 out2 <='0';

else

 out2 <= din;

end if;

 end if;

end process;

end architecture A;
December 2003 184 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Figure 5-4 Implementing set and reset Synchronous Block Logic

If more than one flip-flop is controlled by the same set and reset signals (rst and set in
the process directives example), then each flip-flop will have set and reset signals
connected directly to its synchronous pins, respectively.

D
SEN
AS
AR
SS
SR
CLK

Q

Q_

D
SEN
AS
AR
SS
SR
CLK

Q

Q_

set
din
rst

clk

1
0
0

1
0
0
0
0

out1

out2
December 2003 185 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Signal Directives

Use signal directives to selectively connect some of the signals directly to the set or reset
pin of the component and let the other signals propagate through logic onto the data pin.

The signal directive states that the specified signal should be connected directly to the set
and reset pin of any inferred registers for which the signal causes a set or reset. Specify the
signal directive using Boolean-valued attributes attached directly to the appropriate signals,
as shown below:

attribute SYNC_SET_RESET: boolean;

attribute SYNC_SET_RESET of S: signal is true;

attribute ASYNC_SET_RESET: boolean;

attribute ASYNC_SET_RESET of R: signal is true;

The signals are tagged S and R with the attribute SYNC_SET_RESET and
ASYNC_SET_RESET, respectively, indicating that they should be connected directly to the
synchronous set and asynchronous reset pins of the inferred registers. The attributes
SYNC_SET_RESET and ASYNC_SET_RESET are declared in the package:
ambit.attributes.

Note: The signal directive must be specified in the same declarative region as the signal
being attributed. An error occurs if you specify these directives for a non-existent or unused
signal.

The flip-flop inferred for out1 and out2, shown in Example 5-27 is connected so that the
set signal connects to the synchronous set pin and the reset signal is connected through
combinational logic feeding the data port D. The generated logic is shown in Figure 5-5.
December 2003 186 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Example 5-27 Using the Signal Directive
use ambit.attributes.all;

....

entity sync_sig_dff is

port (clk, din, set1, rst1, set2, rst2: in std_logic;

 out1, out2: out std_logic);

attribute SYNC_SET_RESET of set1: signal is true;

attribute SYNC_SET_RESET of set2: signal is true;

end entity sync_sig_dff;

architecture A of sync_sig_dff is

begin

 P1: process (clk)

begin

if rising_edge(clk) then

if (set1 = '1') then

 out1 <= '1';

elsif (rst1 = '1') then

 out1 <= '0';

else

 out1 <= din;

end if;

end if;

end process;

 P2: process (clk)

begin

if rising_edge(clk) then

if (set2 = '1') then

 out2 <= '1';

elsif (rst2 = '1') then

 out2 <= '0';

else

 out2 <= din;

end if;

end if;

end process;

end architecture A;
December 2003 187 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Figure 5-5 Implementing set and reset Synchronous Signal Logic

Signals in a Process Directive

Sometimes it is necessary to connect signals directly to the set and to the reset pins of
certain registers and through the data input of other registers. In this situation, two synthesis
directives that provide a combination of the synthesis directives discussed above are useful.
These synthesis directive combinations let you specify both the process and the signal
names as follows.

Using the SYNC_RESET_LOCAL and ASYNC_SET_RESET_LOCAL Attributes

The following model uses the SYNC_SET_RESET_LOCAL attribute to indicate that the signal
rst should be connected to the synchronous set and reset pins of the register(s) inferred
in process P1:

signal rst, set: std_logic;

attribute SYNC_SET_RESET_LOCAL: string;

attribute SYNC_SET_RESET_LOCAL of P1: label is "rst";

attribute ASYNC_SET_RESET_LOCAL: string;

attribute ASYNC_SET_RESET_LOCAL of P2: label is "set";

The ASYNC_SET_RESET_LOCAL attribute indicates that the signal set should be connected
to the asynchronous set or reset pin of the register(s) inferred in P2.

D
SEN
AS
AR
SS
SR
CLK

Q

Q_

D
SEN
AS
AR
SS
SR
CLK

Q

Q_

set2

din
rst2

clk

1
0
0

1
0
0

0

out1

out2

set1

rst1

0

December 2003 188 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
The attributes SYNC_SET_RESET_LOCAL and ASYNC_SET_RESET_LOCAL are declared in
the package: ambit.attributes.

Only the listed signals in the process are inferred as synchronous or asynchronous set and
reset signals and will be connected to the synchronous or asynchronous pins respectively.
For registers inferred from other processes, signals can be connected to the data input as
appropriate. Example 5-28 shows how to use the SYNC_SET_RESET_LOCAL Synthesis
Directive.

Example 5-28 Using the SYNC_SET_RESET_LOCAL Synthesis Directive
use ambit.attributes.all;

....

entity sync_block_dff is

port (clk, din, rst: in std_logic;

 out1, out2: out std_logic);

end entity sync_block_dff;

architecture A of sync_block_dff is

attribute SYNC_SET_RESET_LOCAL of P1: label is "rst";

begin

 P1: process (clk, rst)

begin

if rising_edge(clk) then

if (rst = '1') then

 out1 <= '0';

else

 out1 <= din;

end if;

end if;

end process;

 P2: process (clk, rst)

begin

if rising_edge(clk) then

if (rst = '1') then

 out2 <= '0';

else

 out2 <= din;

end if;

 end if;

 end process;

end architecture A;
December 2003 189 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
The generated logic is shown in Figure 5-6. The reset control (rst signal) for flip-flop out1
is connected directly to the synchronous reset pin, whereas the reset control for flip-flop
out2 is connected through logic to the input pin. This is because the rst signal was identified
as synchronous in the directive for process P1 only.

Figure 5-6 Implementing set and reset Synchronous Signals in a Block Logic

Operator Merging Directive

A pragma controls operator merging by forcing merging to stop at a specific operator. The
pragma, shown in Example 5-29, results in an unmerged implementation of the following
expression (this expression is useful in situations in which the designer wants to force the
software to not merge (+) or (*) operators with other downstream operators).

Example 5-29 Using the Operator Merging Directive
z <= a * ambit synthesis merge_boundary

b + c;

D
SEN
AS
AR
SS
SR
CLK

Q

Q_

D
SEN
AS
AR
SS
SR
CLK

Q

Q_

din

clk

1
0
0

1
0
0
0
0

out1

out2

rst 0
December 2003 190 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Supported Synopsys Directives

Table 5-6 Supported VHDL Synopsys Directives

Synopsys BuildGates

built_in syn_feed_thru builtin_type_conversion

built_in syn_unsigned_to_integer builtin_unsigned_to_integer

built_in syn_signed_to_integer builtin_signed_to_integer

built_in syn_integer_to_unsigned builtin_integer_to_unsigned

built_in syn_integer_to_signed builtin_integer_to_signed

built_in syn_zero_extend builtin_zero_extend

built_in syn_sign_extend builtin_sign_extend

built_in syn_eql builtin_eq

built_in syn_neq builtin_neq

built_in syn_and builtin_and

built_in syn_nand builtin_nand

built_in syn_or builtin_or

built_in syn_nor builtin_nor

built_in syn_xor builtin_xor

built_in syn_xnor builtin_xnor

built_in syn_not builtin_not

built_in syn_buf builtin_buf

label label

label_applies_to propagate_label_to

map_to_operator mult_tc_op builtin_tc_mult

map_to_operator mult_uns_op builtin_uns_mult

map_to_operator sub_tc_op builtin_tc_sub

map_to_operator sub_uns_op builtin_uns_sub

map_to_operator add_tc_op builtin_tc_add

map_to_operator add_uns_op builtin_uns_add
December 2003 191 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
map_to_operator lt_tc_op builtin_tc_lt

map_to_operator lt_uns_op builtin_uns_lt

map_to_operator leq_tc_op builtin_tc_lte

map_to_operator leq_uns_op builtin_uns_lte

map_to_module map_to_module

resolution_method wired_or resolution wired_or

resolution_method wired_and resolution wired_and

resolution_method three_state resolution wired_tri

return_port_name return_port_name

synthesis_off synthesis off

synthesis_on synthesis on

translate_off translate off

translate_on translate on

Table 5-6 Supported VHDL Synopsys Directives, continued

Synopsys BuildGates
December 2003 192 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Supported Cadence (Ambit) Directives and BuildGates Equivalents

Table 5-7 Supported Cadence (Ambit) VHDL Directives and BuildGates Equivalents

Cadence (Ambit) BuildGates

translate_off translate off

translate_on translate on

resolution_method wired_and resolution wired_and

resolution_method wired_or resolution wired_or

resolution_method wired_tri_state resolution wired_tri

infer_mux mux

built_in SYN_FEED_THRU BUILTIN_TYPE_CONVERS

built_in SYN_AND BUILTIN_AND

built_in SYN_NAND BUILTIN_NAND

built_in SYN_OR BUILTIN_OR

built_in SYN_NOR BUILTIN_NOR

built_in SYN_XOR BUILTIN_XOR

built_in SYN_XNOR BUILTIN_XNOR

built_in SYN_NOT BUILTIN_NOT

built_in SYN_BUF BUILTIN_BUF
December 2003 193 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Supported BuildGates Synthesis-Only VHDL Directives

Table 5-8 BuildGates-Only VHDL Directives

BuildGates Directive

BUILTIN_OPERATOR

BUILTIN_TC_GT

BUILTIN_UNS_GT

BUILTIN_TC_GTE

BUILTIN_UNS_GTE

BUILTIN_TC_DIV

BUILTIN_UNS_DIV

BUILTIN_SLL

BUILTIN_SRL

BUILTIN_SLA

BUILTIN_SRA

BUILTIN_ROL

BUILTIN_ROR

BUILTIN_TC_MOD

BUILTIN_UNS_MOD

BUILTIN_TC_REM

BUILTIN_UNS_REM

BUILTIN_RISING_EDGE

BUILTIN_FALLING_EDGE

BUILTIN_AND_REDUCE

BUILTIN_NAND_REDUCE

BUILTIN_OR_REDUCE

BUILTIN_NOR_REDUCE

BUILTIN_XOR_REDUCE

BUILTIN_XNOR_REDUCE
December 2003 194 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
BUILTIN_STD_MATCH

BUILTIN_BLEND

BUILTIN_COMPGE

BUILTIN_IROUNDMULT

BUILTIN_ITRUNCMULT

BUILTIN_LEADO

BUILTIN_LEAD1

BUILTIN_ROUND

BUILTIN_SAT

BUILTIN_SGNMULT

Table 5-8 BuildGates-Only VHDL Directives

BuildGates Directive
December 2003 195 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
VHDL-Related Commands and Globals

Table 5-9 provides the VHDL-related shell prompt commands. Table 5-10 provides the
VHDL-specific global variables used with the HDL Globals chapter; the default values are
shown in parentheses. See the Global Variable Reference For BuildGates Synthesis
and Cadence PKS for a complete list of commands and globals, their descriptions, and
examples.

Table 5-9 VHDL shell Commands

Command Description

do_build_generic Transforms the design read into a hierarchical, gate-level
netlist consisting of technology-independent logic gates,
using components from the ATL and XAT libraries. Performs
constant propagation, loop unrolling, lifetime analysis,
register inferencing, and logic mapping. Also generates
netlists for selected modules in the design hierarchy.

read_vhdl Analyzes VHDL source files.

report_vhdl_library Lists mappings between all defined VHDL libraries and
corresponding physical directories.

reset_vhdl_library Deletes all analyzed units from the library.

set_vhdl_library Defines a new VHDL logical library and a directory to store
the analyzed VHDL units. Also, associate WORK to another
VHDL logical library.

write_vhdl Writes the VHDL netlist.

get_hdl_type For a given module, returns the file type, either Verilog or
VHDL.

get_hdl_hierarchy Returns a hierarchical list of modules in the design and a list
of their parametrized and non-parameterized instances.

get_hdl_file Returns the file name corresponding to the module.

get_hdl_top_level Returns a list of top level module names.
December 2003 196 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Table 5-10 VHDL-Specific Global Variables

Command Description (Default)

hdl_vhdl_case Specifies the case of VHDL symbols when files are
analyzed using read_vhdl. (original).

hdl_vhdl_environment Specifies the selection of the predefined arithmetic
libraries. Choices are standard, synopsys,
common, and synergy. (common).

hdl_vhdl_lrm_
compliance

When set to true, read_vhdl enforces a more strict
interpretation of the VHDL LRM. (false).

hdl_vhdl_preferred_
architecture

Specifies the name of the preferred architecture to
use with an entity when there are multiple
architectures (“”).

hdl_vhdl_read_version Specifies the VHDL version when files are analyzed
using read_vhdl. (1993).

hdl_vhdl_reuse_units Specifies whether pre-analyzed units in VHDL
libraries will be synthesized during
do_build_generic (false).

hdl_vhdl_write_
architecture

Specifies whether to write VHDL architectures when
write_vhdl is called (true).

hdl_vhdl_write_
architecture_name

Specifies the name of the architecture for each entity
in the netlist (netlist).

hdl_vhdl_write_bit_
type

Defines the bit type in which VHDL netlists will be
written. (std_logic)

hdl_vhdl_write_
components

Specifies whether component declarations for
technology cells are to be written in the VHDL netlists
(true).

hdl_vhdl_write_entity Specifies whether to write VHDL entities when
write_vhdl is called (true).

hdl_vhdl_write_
entity_name

Specifies the name for the current entity to be used. If
set to the empty string, “ “, then use current module
name as the entity name. When writing out a
hierarchical design, this variable only applies to the
current module while all descendants use their own
names (“ “).
December 2003 197 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
hdl_vhdl_write_
packages

Space separated list of package names for which
library/ uses. Clauses must precede each entity
during netlisting. For example: lib1.pack1
lib2.pack2. (ieee.std_logic_1164)

hdl_vhdl_write_
version

Specifies the VHDL version in which netlists will be
written. (1993)

naming_style
{vhdl | verilog | none}

Specifies whether the I/O of the object names will take
place in VHDL, Verilog, or no naming style. Reads
and prints object names in the specified naming style.

Table 5-10 VHDL-Specific Global Variables, continued

Command Description (Default)
December 2003 198 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
VHDL Constructs

■ Supported VHDL Constructs

■ Notes on Supported Constructs on page 204

■ VHDL Predefined Attributes on page 208

Supported VHDL Constructs

Table 5-11 lists the VHDL constructs supported by the BuildGates Synthesis tool. The list is
subject to change and modifications are ongoing. See Notes on Supported Constructs on
page 204 for more information and license requirements. Both VHDL 1987 and VHDL 1993
style descriptions are supported. The constructs are classified by one of the following four
categories:

■ Synthesized fully (Full)

■ Synthesized partially or in specific contexts (Partial)

■ Construct is ignored and a warning is generated (Ignored)

■ Construct is unsupported and an error message is generated (No)

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis

Construct Support

Design Entity and
Configuration

Entity Declaration Entity header Full

Entity declarative part Full

Entity statement part Ignored

Architecture Body Architecture declarative part Full

Architecture statement part Full

Configuration
Declaration

Configuration declarative part Partial

Block configuration Full

Component configuration Full
December 2003 199 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Subprogram and
Packages

Subprogram
Declaration

Full

Subprogram Body Subprogram declarative part Full

Subprogram statement part Full

Subprogram
Overloading

Full

Resolution Function Partial

Package
Declaration

Package declarative part Full

Deferred constants Full

Package Body Full

Types Scalar Type
Definition

Enumeration type Full

Integer Full

Physical Ignored

Floating Ignored

Composite Type
Definition

Array Full

Record Full

Access Type
Definition

Ignored

File Type Definition Ignored

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis, continued

Construct Support
December 2003 200 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Declarations Subprogram
Declaration

Full

Subprogram Body Full

Type Declaration Full

Subtype
Declaration

Full

Object Declaration Constant Full

Signal Full

Variable Full

Shared variable No

File No

Alias Declaration Full

Attribute
Declaration

Full

Component
Declaration

Full

Group Template
Declaration

No

Group Declaration No

Specifications Attribute
Specification

Full

Configuration
Specification

Full

Disconnection
Specification

No

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis, continued

Construct Support
December 2003 201 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Expressions Logical Operators and, or, nand, nor, xor, xnor Full

Relational
Operators

=, /=, >, <, >=, <= Full

Shift Operators sll, srl, sra

sla, ror, rol

Full

Partial

Arithmetic
Operators

+, -, & Full

Sign Operators +, - Full

Multiplying
Operators

*

mod

/, rem

Full

Full

Full

Miscellaneous
Operators

* *

abs

not

Partial

Full

Full

Operands Integer literal Full

Real literal Ignore

Physical literal Ignore

Enumeration literal Full

String literal Full

Bit string literal Full

Null literal No

Aggregates Record aggregates Full

Array aggregates Full

Function calls Qualified expression Full

Type conversion Full

Allocators No

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis, continued

Construct Support
December 2003 202 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Sequential
Statements

Wait Sensitivity clause Partial

Condition clause Partial

Timeout clause Ignored

Assertion Ignored

Report Ignored

Signal Assignment Full

Variable
Assignment

Full

Procedure Call Full

If Full

Case Full

Loop Unconditional loop No

While loop Partial

For loop Full

Next Full

Exit Full

Return Full

Null Full

Concurrent
Statements

Block Guard No

Block header No

Block declarative part Full

Block statement part Full

Timeout clause Ignored

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis, continued

Construct Support
December 2003 203 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Notes on Supported Constructs

The following sections provide information for the constructs described in Table 5-11.

Design Entities and Configurations

■ Generics and ports in an entity header can be of any allowable synthesizable type in an
interface object (bit, boolean, bit_vector, integer). See Types on page 205 for
more information.

■ Generics must have a default value specified, unless the entity has a TEMPLATE attribute
set to TRUE. See VHDL Synthesis Directives on page 174 for more information.

■ Declarations in an entity or architecture declarative part must be supported declarations.
See Declarations on page 206 for more information.

■ Configuration declarations and configuration specifications are supported with the
restriction that only one unique architecture is bound to an entity throughout the design.

Concurrent
Statements, cont.

Process Full

Concurrent
Procedure Call

Full

Concurrent
Assertion

Ignored

Concurrent Signal
Assignment

Conditional signal assignment Full

Selected signal assignment Full

Component
Instantiation

Full

Generate
Statement

If generate Full

For generate Full

Table 5-11 VHDL Constructs Supported in BuildGates Synthesis, continued

Construct Support
December 2003 204 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Subprograms and Packages

■ Impure functions are unsupported.

■ Recursive subprograms are supported.

■ Formal parameters in a subprogram declaration can be of any synthesizable type
allowed for an interface object (for example, bit, boolean, bit_vector, integer).
See Types below for more information.

■ Declarations in a subprogram declarative part, package declarative part, or package
body declarative part must be a supported declaration. See Declarations on page 206
for more information.

■ The resolved function defined in package IEEE.STD_LOGIC_1164 is the only
supported resolution function. User-defined resolution functions can be annotated with
the RESOLUTION attribute to force a WIRED_AND, WIRED_OR, or WIRED_TRI behavior.
Refer to VHDL Synthesis Directives on page 174 for further information.

Types

■ Objects (constants, signals, variables) declared with a subtype that is an ignored type or
derived from an ignored type are unsupported. For example, floating type definitions are
ignored but a signal of that floating type is flagged as an error. For example:

type GET_REAL is 2.4 to 3.9; --Ignored type definition

signal S: GET_REAL; --Error!

■ The attribute ENUM_ENCODING is used to override the default mapping between an
enumerated type and the corresponding encoding value. Refer to VHDL Synthesis
Directives on page 174 for further information.

■ Array type definitions are supported (see examples below).

subtype BYTE is bit_vector(7 downto 0);

type COLORS is (SAFFRON, WHITE, GREEN, BLUE);

type BIT_2D is array (0 to 255, 0 to 7) of bit;

type ANOTHER_BIT_2D is array (0 to 10) of BYTE;

type BITVECTOR_1D is array (0 to 255) of BYTE;

type INTEGER_1D is array (0 to 255) of integer;

type ENUM_1D is array (0 to 255) of COLOR;

type BOOL_1D is array (COLORS) of boolean;

-- a three dimensional bit

type BIT_3D is array (0 to 10) of BIT_2D;

-- a two dimensional integer

type INTEGER_2D is array (0 TO 10, 0 TO 10) of integer;
December 2003 205 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
■ Interface Objects (formal ports of an entity or a component, formal parameters of a
subprogram) can be of any supported type.

■ Null ranges are not supported.

Declarations

■ Initial values are supported for variables in a subprogram body.

■ Deferred constants are supported.

■ Signal kinds (bus and register) are unsupported.

■ Mode linkage in interface objects is unsupported.

■ All type declarations can be read in, but only objects of supported types described in the
types section are allowed to be declared.

■ User-defined attribute declarations and specifications are supported.

Names

■ Selected names that refer to elements of a record are supported.

■ Selected names used as expanded names are supported. An expanded name is used
to denote a declaration from a library, package, or other named construct.

■ The following predefined attributes are supported: base, left, right, high, low,
range, reverse_range, length.

■ The following predefined attributes are only supported in the context of clock edge
specifications: event, stable.

■ Expressions in attribute names are unsupported.

■ User defined attribute names are supported.

■ Indexing and slicing of function return values is supported.

Expressions

■ Signed arithmetic is supported.

■ The following operators are only supported in the VHDL 1993 mode: xnor, sll, srl,
sla, sra, rol, ror.
December 2003 206 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
■ The /, mod, and rem expressions are fully supported of you have the BGX or the PKS
license. Otherwise, they are supported when both the operands are constants or when
the right operand is a static power of 2.

■ The ** operator is only supported when both the operands are constants or when the
left operand is a power of 2.

■ Real and physical literals may only exist in after clauses, where they are ignored.

■ The TYPE_CONVERSION directives may be used to tag user-defined functions as having
a type conversion behavior. Refer to VHDL Synthesis Directives on page 174 for further
information.

■ Slices whose ranges cannot be determined statically are not supported.

■ Slices of array objects are supported. Similarly, direct indexing of a bit within an array is
supported. For example:

subtype BYTE is bit_vector(3 downto 0);

type MEMTYPE is array (255 downto 0) of BYTE;

variable MEM: MEMTYPE;

variable B1: bit;

…

MEM(3 downto 0):= X; -- supported multi-word slice

B1:= MEM(3)(0); -- supported reference to bit

■ sla operator is implemented as a logical left shift.

■ ror and rol operators are available with Datapath Synthesis of BuildGates Synthesis
and Cadence Physically Knowledgeable Synthesis (PKS).

Sequential Statements

■ When an explicit wait statement is used, it must be the first statement of a process. The
condition clause must represent the clock edge specification. The sensitivity clause, if
any, must only contain the clock signal specified in the condition clause.

■ Multiple wait statements in a process (implicit state machines) are unsupported.

■ Assignments that involve multiple “words” of 2-dimensional (or higher) objects are
supported.

■ The range in a for loop must be statically computable.

■ Delay mechanisms in signal assignments are ignored.

■ Multiple waveforms in signal assignments are unsupported.
December 2003 207 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
■ while loops are supported with the restriction that looping behavior can be statically
determined.

Concurrent Statements

■ Postponed processes including postponed concurrent procedure calls and postponed
concurrent signal assignments are unsupported.

■ Signal assignments that involve multiple “words” of 2-dimensional (or higher) objects are
supported.

■ Delay mechanisms in signal assignments are ignored.

■ Multiple waveforms in signal assignments are unsupported.

■ Guarded signal assignments are unsupported.

■ The range in a for-generate statement must be statically computable.

■ Declarations in a generate statement are only supported in VHDL 1993 mode.

VHDL Predefined Attributes

Table 5-12 lists the attributes and support level for the predefined language environment

Table 5-12 Attribute Set for the Pre-defined Language Environment

Pre-defined Attribute Support

‘Base Partial

‘Left Full

‘Right Full

‘High Full

‘Low Full

‘Ascending Partial

‘Image No

‘Value No

‘Pos Partial

‘Val Partial
December 2003 208 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Notes on Pre-defined Attributes

■ The following pre-defined attributes are supported only when the prefix is a static type
mark: Base, Ascending, Pos, Val, Succ, Pred, Leftof, Rightof

‘Succ Partial

‘Pred Partial

‘Leftof Partial

‘Rightof Partial

‘Range Full

‘Reverse_range Full

‘Length Full

‘Delayed No

‘Stable Partial

‘Quiet No

‘Transaction No

‘Event Partial

‘Active No

‘Last_event No

‘Last_active No

‘Last_value No

‘Driving No

‘Driving_value No

‘Simple_name No

‘Instance_name No

‘Path_name No

Table 5-12 Attribute Set for the Pre-defined Language Environment, continued,

Pre-defined Attribute Support
December 2003 209 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
■ The following pre-defined attributes are supported only in the context of clock edge
specifications:

❑ Event, Stable

■ Expressions in attribute names are not supported.

Troubleshooting

Additional troubleshooting information can be found in the latest version of Known Problems
and Solutions for BuildGates Synthesis and Cadence PKS that accompanied your
release.

■ VHDL Netlist from write_vhdl Missing Generic Delay Parameters on page 211

■ Cannot Infer a Bus Keeper Element Using a BLOCK/GUARDED Statement on page 211

■ Extra Generic Logic Added to VHDL Netlist with Undriven Nets on page 211

■ Undriven Ports and Nets Left After Optimization on page 211

■ Error When Using IEEE Standard Logic Packages in BuildGates on page 212

■ Unconnected Flip Flops in the Final Netlist on page 212

■ Setting Finite State Machine Compile Directives for a VHDL Finite State on page 213

■ Error During do_build_generic if Design Architecture is not Specified on page 214

■ Unconditional Loops are not Supported if There is More than One Clock Edge on
page 214

■ Error on the Condition Clause of a wait Using read_vhdl on page 215

■ VHDL LOOP Construct Runs Out of Memory on page 216

■ Undeclared Identifier Error Message in VHDL Structural Netlists on page 217

■ Locally Static Expressions in VHDL87 LRM and VHDL93 LRM on page 218

■ VHDL93 LRM Definition of a Locally Static Expression on page 218

■ Using the \ Character in VHDL on page 218

■ Passing Generic Values from the Command Line on page 219

■ Writing One-Bit Busses on page 219
December 2003 210 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
VHDL Netlist from write_vhdl Missing Generic Delay Parameters

Currently, BuildGates does not write out the generic delay parameters in a VHDL netlist.
Commonly, the ASIC vendor would have to provide a technology package with all the
component declarations. Link this package in the VHDL code and instruct BuildGates not to
write out the technology components in the netlist with the following command:

set_global hdl_vhdl_write_components false

Cannot Infer a Bus Keeper Element Using a BLOCK/GUARDED Statement

There is no special VHDL code to infer a bus keeper. It depends on the behavior of the bus
keeper. BLOCK/GUARDED statements are not supported in BuildGates.

Extra Generic Logic Added to VHDL Netlist with Undriven Nets

When reading a VHDL mapped netlist containing undriven nets, do_build_generic will
add generic components ATL_TRI or ATL_DC if the global variable
hdl_undriven_net_value is set to Z or X respectively. These inadvertently added generic
components cause the tool to fail when a transform command, which requires a mapped
netlist, is called, for example, do_xform_timing_correction.

The hdl_undriven_net_value variable assumes a value for an undriven net to be used
during constant propagation. Constant propagation is performed during the generic
optimization step. If this step is skipped, then the do_xform_constant_propagation
needs to be run prior to timing optimization. Use the following global to tell the tool not to add
any logic to an undriven net:

set_global hdl_undriven_net_value none.

Undriven Ports and Nets Left After Optimization

Use the following command before do_optimize. For example:

do_dissolve_hierarchy [find -module A}

This will eliminate the undriven ports.
December 2003 211 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Error When Using IEEE Standard Logic Packages in BuildGates

If you have used other synthesis tools such as Synergy or Design Compiler, several
“environments” may need to be set up to use specific IEEE packages. If the IEEE package
you used is not available in BuildGates 5.0, an error message similar to the one below will be
issued:

==> ERROR: No such primary unit std_logic_unsigned in library IEEE (File
foo.vhdl, Line3)<VHDLPT-703>.

Info: +: library “IEEE” mapes to “ieee”

+: library “ieee” maps to “/ambit/prod3/v4.0-s005.20010117.1900/

release/BuildGates/version/lib/tools/vhdl/1993/ieee_ambit”

<VHDLPT-525>.

➤ Use the following command to access the different IEEE std_logic packages:

set_global hdl_vhdl_environment {standard | synopsys | synergy | common}

The four predefined VHDL environments that are available are described in section, Setting
the Globals for Synthesizing VHDL Designs on page 144.

Unconnected Flip Flops in the Final Netlist

➤ If you have extra unconnected registers in the netlist, set the global
hdl_preserve_unused_registers to false.

For example, if declared VHDL variables in the clocked process are used as inputs to other
signals within the same process, BuildGates generates unconnected flip-flops for those
variables, then preserves the unconnected flip-flops during optimization if this global is set to
true.
December 2003 212 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Setting Finite State Machine Compile Directives for a VHDL Finite State

FSM optimization is controlled by using the attributes defined in the package
ambit.attributes. At the top of your VHDL source file, add the lines:

LIBRARY ambit;

USE ambit.attributes.all;

The source code for this package can be found at:

<install_dir>/BuildGates/version/lib/tools/vhdl/1993/ambit/attributes.vhd

The FSM related attributes are the following:

attribute STATE_VECTOR : boolean;

attribute MINIMIZE : boolean

attribute REACHABLE : boolean;

attribute ENCODING : string;

attribute PRESERVE : string;

attribute INITIAL : string;

Using them in your VHDL source code is as simple as adding some additional declarations
where you define your state vector. In the following example, the vector is curr_state:

TYPE statetype IS (idle,load, check, wait, finish);

SIGNAL curr_state : statetype;

SIGNAL next_state : statetype;

attribute STATE_VECTOR of curr_state:signal is true;

attribute ENCODING of curr_state:signal is "one_hot";

attribute MINIMIZE of curr_state:signal is TRUE;

attribute REACHABLE of curr_state:signal is TRUE;

This will allow BuildGates Synthesis to see the FSM compiler directives.
December 2003 213 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Error During do_build_generic if Design Architecture is not Specified

Make sure when you read in an entity named, for example, ‘foo’ using read_vhdl, that
you read in the associated architecture, or BuildGates will treat this as an error during
do_buld_generic and abort the elaboration.

Note: If both the entity and the architecture are missing, BuildGates just prints a warning and
treats the missing design as a black box.

However, if you read in the architecture, and you receive an error, it is possible that a previous
entity or package (on which foo is dependent) was read for a second time into BuildGates.
Look for an unintended design dependency. You can use UNIX scripts to grep out entity,
architecture, and package names from your source code and verify that they are unique from
each other. Sub designs developed from the same code may actually be different. For
example, a synchronous and asynchronous UART, or two similar memory controllers may
have some sub design names in common.

Unconditional Loops are not Supported if There is More than One Clock
Edge

The read_vhdl command does not support the following example because it contains more
than one clock edge in a process:

entity e is

port (q : out bit; d : in bit_vector (7 downto 0));

end

architecture a of e is

begin

process (d)

variable x : integer;

variable tmp : bit;

begin

x := 7;

tmp := ‘0’;

loop

tmp := tmp xor d(x);

exit when x = 0;

x := x - 1;

end loop;

q <= tmp;

end process;

end
December 2003 214 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Error on the Condition Clause of a wait Using read_vhdl

For example, the following RTL coding style of synchronous enable or reset:

WAIT UNTIL ck’EVENT AND ck=’1’ AND (nd=’1’ OR shifting_data);

which uses “wait on the clock edge” AND “a qualifier”, results in errors during the parsing
stage of reading the VHDL code (read_vhdl).

Since the data is being qualified with nd and shifting_data this renders it as a
synchronous enable. Therefore, model the circuit in one of the following two ways:

■ Using a sensitivity list in the process statement:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity qful is

port (clk : in std_ulogic;

 nd : in std_ulogic;

 shifting_data : in boolean;

 latch3_n : out std_ulogic

);

end qful;

architecture rtl of qful is

begin

 latch_proc: process (clk)

begin

if (clk = ’1’) and (clk’event) then

if (nd = ’1’) or shifting_data then

 latch3_n <= ’1’;

end if;

end if;

end process;

end rtl;
December 2003 215 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
■ Using the wait statement:

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity qful is

port (clk : in std_ulogic;

 nd : in std_ulogic;

 shifting_data : in boolean;

 latch3_n : out std_ulogic

);

end qful;

architecture rtl1 of qful is

begin

 latch_proc: process

begin

wait until clk = ’1’ and clk’event;

if (nd = ’1’ or shifting_data) then

 latch3_n <= ’1’;

end if;

end process;

end rtl1;

VHDL LOOP Construct Runs Out of Memory

The contents of the loop, times the number of iterations, determines how much memory is
being allocated. There is a limit on the number of loop iterations specified by the global
variable: hdl_max_loop_limit. For example,

wrapper : PROCESS (reg_value, inbits) -- RUNS OUT OF MEMORY!

BEGIN

FOR i IN NUMBITS-1 DOWNTO 0 LOOP

 outbits(i) <= reg_value(i) AND inbits(i);

END LOOP;

END PROCESS;

 outbits <= reg_value AND inbits; -- WORKS OK!

Break the LOOP into smaller (fewer iteration) loops by nesting them or by separating
functions. Or, in some cases, you may be able to eliminate the LOOP altogether by operating
on vectors instead of on bits.
December 2003 216 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Undeclared Identifier Error Message in VHDL Structural Netlists

Although .alf has the component definitions, BuildGates requires that the component
definitions of the cells be included in the architecture. This can be done by:

1. Using a use clause to access the component declarations from a package.

library xyz;

use xyz.libname.all

2. Manually inserting the component declarations in the netlist (architecture).
December 2003 217 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Locally Static Expressions in VHDL87 LRM and VHDL93 LRM

In the following declaration:

type GRA_T is array (0 to (2**RA’length)-1) of std_logic_vector(DIN’length -1)

where RA is:

signal RA : in std_logic_vector(3 downto 0);

the range expression 0 to (2**RA’length)-1) is not locally static according to the VHDL
87 LRM but it is locally static according to the VHDL93 LRM.

In the VHDL87 LRM, “A predefined attribute of a locally static subtype that is a value” is a
locally static expression. In this case, the predefined attribute (length) is on a signal object
that is of a locally static type, and not on a locally static subtype.

Example 5-1 Using a VHDL87 LRM Range Expression that is Locally Static
subtype xyz is std_logic_vector(3 downto 0);

type GRA_T is array (0 to (2**xyz’length)-1) of std_logic_vector(DIN’length -1
downto 0);

In this example, the range expression 0 to(2**xyz’length)-1 is a locally static
expression because the predefined attribute ‘LENGTH is on a locally static subtype xyz and
the expression 2 ** xyz’length -1 is a value (value = 2 **3 -1 =7).

VHDL93 LRM Definition of a Locally Static Expression

“A predefined attribute that is a value, other than the predefined attribute PATH_NAME, and
whose prefix is either a locally static subtype or is an object name that is of a locally static
subtype.” In the VHDL93 LRM, objects of locally static subtypes were also included in the
context. This causes RA’LENGTH to qualify as a locally static expression, causing the Range
and the Type GRA_T to be locally static as well.

Using the \ Character in VHDL

The \ character in VHDL lets you specify characters that are not legal in VHDL. If you want
to include characters in a name which are illegal in VHDL, add a \ character before and after
the name, and add space after the name.
December 2003 218 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
Passing Generic Values from the Command Line

➤ To pass VHDL generics from the command line, enter the following
do_build_generic command arguments. In this way, generic designs can be
elaborated directly.

do_build_generic -design FOO -generics { {name1 value1} {name2 value2} ..}

If the -design option is not used, then the default top-level module is built. The generics are
specified as a Tcl list of name and value pairs. The options -generic and -parameters
can be used interchangeably. If fewer generics are specified than exist in the design, then the
default values of the missing generics will be used in building the design. If more generics are
specified than exist in the design, then the extra generics are ignored.

➤ To synthesize the design ADD with the generic value L=0 and R=7, enter the following
command:

do_build_generic -design ADD -generics {{L 0} {R 7}}

➤ To synthesize all bit widths for the adder ADD from 1 through 16, use:

foreach i {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15} {

eval do_build_generic -generics “{{L 0} {R[expr $i]}}”

}

Writing One-Bit Busses

One bit busses are written out in BuildGates Synthesis in the following manner to keep the
database and the netlist consistent:

wire [0:0]xsig

To write a 1-bit bus as a simple signal, such as wire xsig, use one of the following
workarounds:

1. In the database, modify the port type to a bit type using Tcl commands.

2. Do not write signals like the following in the RTL code:

out std_logic_vector (0 downto 0)

Use a single-bit type such as std_logic or std_ulogic instead by setting the
following global:

set_global hdl_vhdl_write_bit_type { std_logic | std_ulogic }
December 2003 219 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Synthesizing VHDL Designs
December 2003 220 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
6
Optimizing and Structuring Finite State
Machines

This chapter describes how to model a Finite State Machine (FSM), and how to synthesize
and optimize a FSM using BuildGates® Synthesis.

■ Overview on page 222

■ Tasks on page 225

■ Additional Information on page 228

■ Troubleshooting on page 243
December 2003 221 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Overview

Using an FSM to describe internal states of the design lets BuildGates Synthesis determine
an encoding of those states, which results in a netlist that best meets the specified timing
constraints. This chapter provides guidelines for specifying FSMs in the RTL design, viewing
the state transition table generated by BuildGates, performing various FSM optimizations,
and verifying the synthesized netlist:

Figure 6-1 shows the general structure of a Finite State Machine (FSM) that consists of two
blocks of combinational logic, -next state logic- and -output logic-, and a set of flip-
flops, -state memory-, clocked by a single clock signal. The -current state- of the
FSM is the value stored in the state memory flip-flops.

Figure 6-1 State Machine Structure—Two Case Statements

Specify a state machine as shown in Example 6-1, using case statements or if-then-
else statements for the next state and output logic, and using a clocked process (VHDL) or
always block (Verilog) for the state memory.

➤ Identify the state memory by using the state_vector directive for Verilog designs:

// cadence state_vector state

or by using the state_vector attribute for VHDL designs:

attribute STATE_VECTOR of state : signal is true;

clocks

Output
Next outputs

State
Logic

State
Memory Logic

inputs

current state

next
state
December 2003 222 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Example 6-1 Modeling a State Machine
module fsm1 (clk,reset,start,go,z);

input clk,reset,start,go

output z;

parameter [1:0]

 RED = 2’b00

 BLUE = 2’b00

 YELLOW = 2’b01

 GREEN = 2’b10

reg [1:0] state;

reg [1:0] next_state;

reg z;

 // cadence state_vector state

always @(posedge clk or posedge reset)

begin

if (reset)

 state <= RED;

else

 state <= next_state;

end

always @(state or start or go)

begin

 z = 1’b0;

case (state)

 RED : begin

if (start)

 next_state = BLUE;

else

 next_state = RED;

end

 BLUE : next_state = YELLOW;

 YELLOW : next_state = GREEN;

 GREEN : begin

 z = go;

if (start)
December 2003 223 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
 next_state = RED;

else

 next_state = GREEN;

end

endcase

end

endmodule

➤ After reading in the design data, synthesize the FSM during the "Build Generic Design"
phase shown in Fig. 6-2 by issuing the following command:

do_build_generic -extract_fsm

Important

Both the -extract_fsm switch and the state_vector directive are required for
BuildGates to apply the specialized FSM extraction and optimization techniques. If
FSM synthesis does not occur, BuildGates will perform normal RTL synthesis as
described in Chapter 3, “Synthesizing Verilog Designs,” and Chapter 5,
“Synthesizing VHDL Designs.”

➤ View the report of the synthesized FSM, including the generated state transition table
and state encoding, by entering the following command at the shell prompt:

report_fsm -state_table -encoding

Figure 6-2 Rtl Synthesis Flow - FSM

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 224 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Tasks

The standard tasks you complete to synthesize a finite state machine are described in the
following sections.

■ Model FSM on page 225

■ Synthesize FSM on page 225

Model FSM

After reading the design data into the BuildGates Synthesis software, extract and view the
state transition table for the FSM.

Extracting the State Transition Table for the FSM

➤ Enter the following command in the shell prompt:

do_build_generic -extract_fsm

Note: BuildGates Synthesis only performs FSM optimization when the -extract_fsm
option is specified.

Viewing the State Transition Table for the FSM

After you extract the state transition table for the FSM, you can view it. The state transition
table contains information about equivalent states, initial states, and state encodings.

➤ Enter the following command in the shell prompt:

report_fsm -state

Synthesize FSM

The following list of FSM optimizations are listed by order of importance and the impact they
have on the quality of results (QoR). Use Cadence Synthesis pragmas to perform these FSM
optimizations.

■ Setting State Vector Encoding Styles for Better Area and Timing on page 226

■ Minimizing FSM State if There are Two or More Equivalent States on page 227

■ Checking Terminal State on the Extracted FSM on page 227
December 2003 225 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Setting State Vector Encoding Styles for Better Area and Timing

Changing the encoding of the FSM states can yield better results for area and timing.

➤ Perform the various encoding styles using the following Cadence pragma:

// ambit synthesis state_vector state_reg -encoding encoding_style

Table 6-1 shows the state_vector encoding options.
.
Table 6-1 state_vector Encoding Options

Option Description

encoding Sets one of several different encoding styles for the state vector

■ binary Specifies binary encoding of states

■ gray Specifies gray encoding of states

■ one_hot Specifies one hot encoding of states (one bit for each state)

■ random Specifies random assignment of states

■ input Maximizes the number of adjacent states that are inputs of identical or
similar outputs

■ output Maximizes the number of adjacent states that are outputs of identical
or similar (adjacent) inputs

■ combined Combines input and output encodings

■ area Computes encoding with the best area implementation. The area
encoding option is recommended because it computes a set of good
encodings and selects the one with the best implementation based on
a suitable area cost function. The area cost function is based on the
number of gates in the resulting netlist before technology mapping.

■ timing Computes encoding with the best timing implementation. The timing
encoding option is recommended because the tool computes a set of
good encodings and selects the one with the best implementation
based on a suitable timing cost function. The timing cost function is
based on the number of logic levels in the resulting netlist before
technology mapping.

minimize Minimizes the FSM by merging equivalent states
December 2003 226 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Minimizing FSM State if There are Two or More Equivalent States

State minimization optimization tells BuildGates Synthesis to minimize and validate the FSM.
Each state of an FSM typically corresponds to a unique behavior. In some cases, however,
two or more equivalent states, having identical I/O behavior, can occur in a state machine. If
equivalent states are found in the design, it may mean that the design has a bug. If you are
confident that the design does not have any equivalent states, then ignore this option to
reduce run time.

➤ Perform state minimization using the following Cadence pragma:

 //ambit synthesis state_vector state_reg -minimize

Checking Terminal State on the Extracted FSM

A terminal state check is always performed on the extracted FSM. A terminal state is a state
of the FSM from which there are no outputs. A well designed state machine should never
have a terminal state. If such a state is found in the FSM, it is included in the FSM report (see
Viewing the State Transition Table for the FSM on page 210).

reachable Removes all unreachable and invalid states from the state machine,
including the default case which represents the invalid states of the
FSM to be treated as don’t cares. This option reduces the run time
as the BuildGates Synthesis software handles the actions from invalid
states (represented by the default case). For a sparsely encoded
machine, the number of unreachable (invalid) states can be large,
leading to larger run times. This option is recommended for shorter run
times and will improve optimization.

preserve_state Specifies the states to be preserved and prevents those states from
being removed by the minimize or reachable options.

initial_states Specifies the states to be set as the initial states of the FSM.

Table 6-1 state_vector Encoding Options, continued

Option Description
December 2003 227 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Additional Information

■ state_vector Directive on page 228

■ FSM Coding Styles on page 230

■ FSM Verification on page 237

state_vector Directive

➤ Use the state_vector synthesis directive to specify the state vector and options for
FSM encoding and optimization. The following directive is for Verilog:

// ambit synthesis state_vector sig state_vector_flag

where sig is the name of the signal representing the state vector.

When a FSM is described, information relating to the encoding and optimization of the state
assignments is included in the source as either comments or attributes on the state signal or
variable. See Setting State Vector Encoding Styles for Better Area and Timing on page 226
for more information about state_vector syntax and state_vector encoding options.

The state_vector_flag is defined using one or more of the following options as defined
in Table 6-1:

■ encoding [binary|gray|one_hot|random|input|output|combined|
area|timing]

■ minimize

■ reachable

■ preserve_state

■ initial_state

Example 6-2 shows how to use attributes to specify the VHDL state_vector directive.
December 2003 228 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Example 6-2 Using the VHDL state_vector Directive
library ieee, ambit;

use ieee.std_logic_1164.all;

use ambit.attributes.all;

entity fsm is

port(

clk, rst : in std_logic;

data : out std_logic_vector(1 downto 0)

);

end fsm;

architecture rtl of fsm is

type COLOR is (red, blue, green, yellow);

signal STATE, NEXT_STATE : COLOR;

attribute STATE_VECTOR of STATE : signal is true;

attribute PRESERVE of STATE : signal is "red, blue";

attribute INITIAL of STATE : signal is "red";

attribute REACHABLE of STATE: signal is true;

attribute MINIMIZE of STATE : signal is true;

begin

 state_p: process(clk, rst)

begin

if (rst = ’1’) then

STATE <= red;

elsif (rising_edge(clk)) then

STATE <= NEXT_STATE;

end if;

end process state_p;

 next_state_p: process(state)

begin

case STATE is

when red =>

data <= "01";
December 2003 229 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
NEXT_STATE <= blue;

when blue =>

data <= "10";

NEXT_STATE <= green;

when green =>

data <= "11";

NEXT_STATE <= red;

when yellow =>

data <= "00";

NEXT_STATE <= red;

end case;

end process next_state_p;

end rtl;

FSM Coding Styles

The following coding styles are recommended to improve the quality of implementation and
optimization on an FSM.

■ Following Coding Style Rules on page 231

■ Using the -reachable Option on page 233

■ Avoiding a Simulation Mismatch on page 233

■ Setting the State and Output Values to Don’t Care Values on page 233

■ Using a Specific Valid State for Outputs on page 233

■ Using a Compact Coding Style on page 234

■ Using a Detailed Coding Style on page 235

■ Specifying an Output Completely on page 235
December 2003 230 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Following Coding Style Rules

When creating FSMs in BuildGates Synthesis, follow these coding style rules:

■ Code one FSM per module in Verilog or one per entity in VHDL.

■ Keep extraneous logic in the FSM to a minimum—Remove all unused inputs and outputs
and any logic that does not affect or depend on the FSM and associated logic.

■ Code the design so that the FSM can be reset to a desired state—The behavior of the
FSM is valid only after the reset has taken place. If the first operating cycle of the FSM
produces output values that are important, or if these output values can only be initialized
by a default assignment (which may be deleted during optimization with the
-reachable option), set the outputs of the FSM to desired values in the reset block.

Example 6-3 shows the default value of out as 00. If the -reachable flag is set, the default
case is optimized and out assumes the value 2’bxx (unknown).
December 2003 231 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Example 6-3 How Output Initialization is Lost
always @ (state or reset)

begin

 out=2’b00;

if (reset)

begin

 next_state = STATE0;

end

begin

case (state)

 STATE0:

begin

 next_state = STATE1;

 out = 2’b01;

end

 STATE1:

begin

 next_state = STATE2;

 out = 2’b10;

end

 STATE2:

begin

 next_state = STATE0

 out = 2’b11;

end

 default:

begin

 next_state = STATE0;

end

endcase

end

end
December 2003 232 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Using the -reachable Option

➤ To remove the default value of out during optimization, use the following Cadence
pragma:

//ambit synthesis state_vector state_reg -reachable

When the simulation begins, the value of out is always 2’bxx.

Note: The simulator interprets the default value as 2’b00 in the RTL. Use the -reachable
switch for large, sparse state vectors.

Avoiding a Simulation Mismatch

To avoid a simulation mismatch, change the reset block as follows:

if (reset) begin

next_state = STATE0;

out = 2b’00;

end

Setting the State and Output Values to Don’t Care Values

Include as much don’t care information as possible in the design. If the transitions from the
invalid states (represented by the default case) are unimportant, then set the state and output
values to don’t care values.

default: next_state <= 4’bxxxx;

out1 <= 2’bxx;

Using this method adds flexibility when optimizing the netlist and all invalid (unreachable)
states of the FSM can be treated as don’t cares. Use the -reachable option (see Using
the -reachable Option) with this method.

Using a Specific Valid State for Outputs

If design methodology constraints prohibit the use of the previous method, use a specific valid
state, such as the reset state of the FSM or any other valid state and a constant output value
for outputs. Assign output values explicitly, whenever possible.

default: next_state <= 4’b0000;//reset state of the machine

out1 <= 2’b01;

Important

The following coding style for the default case is not recommended:
December 2003 233 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
default: next_state <=current_state;

[out1 <= func(current_state)]

The full case pragma is ignored if the default clause is present.

Note: Simulate the full case directive by using the -reachable option. (see Using the -
reachable Option on page 233).

Using a Compact Coding Style

In Example 6-4, the variable out is 0 in STATE0, a don’t care in STATE1, and a don’t
care in the default case.

Example 6-4 Compact Coding Style
begin

out = 1’b0;

case (state)

STATE0:

begin

next_state = STATE1;

end

STATE1:

begin

next_state = STATE2;

end

STATE2:

begin

next_state = STATE0

out = 1’b1;

end

default:

begin

next_state = STATE0;

end

endcase

end
December 2003 234 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Using a Detailed Coding Style

By implementing a more detailed coding style, a more optimized design can be specified as
shown in Example 6-5. Be explicit when assigning the outputs in each state of the FSM.

Example 6-5 Detailed Coding Style
case (state)

STATE0:

begin

next_state = STATE1;

out = 1’b0;

end

STATE1:

begin

next_state = STATE2;

out = 1’bx;

end

STATE2:

begin

next_state = STATE0

out = 1’b1;

end

default:

begin

next_state = STATE0;

out = 1’bx;

end

endcase

Specifying an Output Completely

Outputs that are not specified completely are not handled by the FSM flow in BuildGates
Synthesis. In Example 6-6, out is not specified completely (out is not initialized prior to the
case statement) and causes the FSM extraction from the HDL to fail.

Note: This design is treated like normal HDL and synthesized outside the FSM flow.
December 2003 235 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Example 6-6 Output Not Specified Completely
case (state)

STATE0:

begin

next_state = STATE1;

out = 1’b0;

end

STATE1:

begin

next_state = STATE0;

end

default:

begin

next_state = STATE0;

out = 1’bx;

end

endcase

If out is to retain its value in STATE1, use another variable to store the previous value of out
and assign it explicitly to out.

If the output is a don’t care for some conditions, it should be driven unknown (x). BuildGates
Synthesis uses all don’t care information when optimizing the logic.

Assigning the output to a default value prior to the case statement ensures that the output is
specified for all possible state and input combinations. This avoids unexpected latch inference
on the output. Latch inferencing prevents the software from extracting the FSM. Simplify the
code by specifying a default value that can be overridden when necessary. The default value
can be 1, 0, or x.

Set the default value to the most frequently occurring value at that output or to a don’t care
whenever possible. The BuildGates Synthesis software performs an onset as well as an offset
synthesis and picks the best option (with a possible inverter) for implementing the next state
and the output logic of an FSM.

Use the -reachable and -encoding area options together to achieve the best optimization
results.

In cases where the FSM is on the critical path and timing is critical, use -encoding timing
or -encoding one_hot.
December 2003 236 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
FSM Verification

■ Avoid Using Sequential Optimizations on page 237

■ Code the Default Clause with a Restricted Structure on page 237

■ Use Only the -reachable Option for Sequential Optimization on page 238

■ View the Valid States on page 238

■ Unreachable or Unspecified States in the FSM on page 238

■ Do Not Specify Any Sequential Optimizations with the State Vector Pragma in the HDL
of the FSM on page 238

■ Using a Simulator to Verify the Synthesized FSM on page 239

■ Avoiding Mismatches Between the RTL of the FSM and its Synthesized Netlist on
page 241

■ Checking whether the Extracted FSM is Fault-Tolerant on page 242

■ Verplex Conformal Logical Equivalency Checker on page 242

Avoid Using Sequential Optimizations

To avoid using any sequential optimizations, the default clause of the case statement that
defines the state machine must have a restricted structure.

The default clause represents the action taken by the state machine upon reaching an invalid
state. Use a reset signal to set the FSM to a reset state so that the machine can start
operating. Using this approach, the FSM never enters the default case (invalid states).

Note: Constraints should not be imposed on invalid states.

Code the Default Clause with a Restricted Structure

To code the default clause of the case statement that defines the state machine with a
restricted structure, model your code as follows:

default: next_state <= 4’bxxxx;

out <= 2’bxx;

This approach provides the BuildGates Synthesis software with added flexibility when
optimizing the netlist, and all invalid (unreachable) states of the FSM are treated as don’t
cares. You also avoid generating any false counter examples (where the state vector
component is invalid).
December 2003 237 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Use Only the -reachable Option for Sequential Optimization

Examine the output from the equivalence checker, which is essentially a value assignment
(difference vector), in terms of the inputs and latches of the design that violate the expected
outcome.

// ambit synthesis state_vector state -reachable

View the Valid States

➤ Enter the following command in the shell prompt:

report_fsm -state

If the state register component of the difference vectors (generated as counter examples)
belongs to the invalid or unreachable states, then it is a false alarm and can be ignored.

Unreachable or Unspecified States in the FSM

All unreachable or unspecified states of the FSM are reported by the report_fsm
command.

The OTHERS state in the state transition table represents the set of unreachable or
unspecified states of the FSM. For example, for one-hot encoding, OTHERS is the set of all
states with more than one 1.

Unreachable states specified in the RTL are not included in the OTHERS set. For example, if
the RTL has:

case (curr_state)

 STATE0 :

 ...

but there is no transition to state STATE0 in the RTL, STATE0 is reported as an unreachable
state.

Do Not Specify Any Sequential Optimizations with the State Vector Pragma in the HDL
of the FSM

This approach does not specify any sequential optimizations with the state vector pragma in
the HDL of the FSM (sequential optimizations such as removing unreachable states by
specifying them as don’t cares, setting state vector encoding styles for better area and
timing, and performing FSM state minimization if there are two or more equivalent states).
There is a little room for optimization using the do_build_generic command with the
-extract_fsm option.
December 2003 238 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Using a Simulator to Verify the Synthesized FSM

Most design environments have the simulation environment set up to assert the reset signal,
which initializes a subset of the memory elements in the full design. The FSM state register
is also reset to the desired start state by such a reset line. The importance of being able to
reset the state register is emphasized in the state_vector Directive on page 228.

After the simulation begins, the FSM enters the start state and always operates in the set of
valid states (if the FSM is well designed). As the simulation environment examines the input
and output behavior of the FSM (not its state register value), sequential optimizations (such
as Setting State Vector Encoding Styles for Better Area and Timing on page 226 and
Minimizing FSM State if There are Two or More Equivalent States on page 227) are permitted
on the state machine.

Additionally, as the reset signal always transitions the FSM to a valid state, the simulation
environment does not have to consider transitions from invalid states (represented by the
default case statement). The interpretation of invalid states as don’t cares causes no
verification problems and provides the desired flexibility.

Using the -reachable option, as shown in Example 6-7, the default state (2’b11) is treated
as a don’t care. The values of the next_state and the output out (specified in the
default clause) are not honored. The synthesized netlist and the original netlist (using a
combinational equivalence checker) will mismatch. The counter -example produced by the
equivalence checker has its state bits set to 2’b11 (the invalid state that is treated as a
don’t care).

In the simulation, the reset signal is asserted causing the FSM to transition to STATE0. From
STATE0, no simulation sequence exercises the invalid transitions, treating the invalid state
as a don’t care and causing no problems in the simulation.

The simulation environment must be set up to pull up the reset beforehand to prevent a
mismatch for the simulation sequence prior to the event that asserts the reset.

Example 6-7 Equivalence Checking Fails to Verify the Synthesized FSM, Whereas a
Simulator Succeeds
module fsm1 (clk, out, reset, state);

input clk, reset;

output [1:0] out;

output [1:0] state;

parameter [1:0] // ambit synthesis enum state_info

STATE0 = 2’b00,

STATE1 = 2’b01,

STATE2 = 2’b10;
December 2003 239 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
reg [1:0] /* ambit synthesis enum state_info */ state;

reg [1:0] /* ambit synthesis enum state_info */ next_state;

reg [1:0] out;

// ambit synthesis state_vector state -reachable

always @ (posedge clk)

state <= next_state;

always @ (state or reset) begin

if (reset) begin

 out = 2’b01;

 next_state = STATE0;

end

else begin

case (state)

STATE0:

begin

 next_state = STATE1;

 out = state;

end

STATE1:

begin

next_state = STATE2;

out = state;

end

STATE2:

begin

next_state = STATE0

out = state;

end

default:

begin

next_state = STATE0;

out = 2’b11;

end

endcase

end

end

endmodule
December 2003 240 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Avoiding Mismatches Between the RTL of the FSM and its Synthesized Netlist

■ Ignore the simulation vectors

Ignore the simulation vectors prior to the reset being pulled up; the FSM’s desired
behavior only starts after the reset.

■ Do not use the -reachable option

The results you obtain will not be optimal but the simulation should progress without any
problems. This is similar to the workaround above, but it is not recommended.

always @ (state or reset)

begin

out=2’b00;

begin

case (state)

STATE0:

begin

 next_state = STATE1;

 out = 2’b01;

end

STATE1:

begin

 next_state = STATE2;

 out = 2’b10;

end

STATE2:

begin

 next_state = STATE0

 out = 2’b11;

end

default:

begin

 next_state = STATE0;

end

endcase

end

if (reset)

begin

 next_state = STATE0;

end

end
December 2003 241 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
The code above shows the default value of out as 00. If the -reachable flag is set, the
default case is optimized and the value of out is assumed to be 2’bxx. When the simulation
starts, the value of out will always be 2’bxx (unknown). The problem with the design is that
it does not initialize out in the reset block. The simulator interprets the default value of out
as 2’b00 in the RTL, but BuildGates Synthesis removes it during optimization using the -
reachable option.

■ Unknown values persist in the simulation output

If x (unknown) values persist in the simulation output of the synthesized design (but not
in the RTL simulation) after the reset is asserted, then most likely a problem in the RTL
design needs to be fixed. The x values usually die a few cycles after the reset, after which
the synthesized netlist behaves identically to the RTL design.

Checking whether the Extracted FSM is Fault-Tolerant

The extracted FSM is fault-tolerant if every state of the FSM transitions to a specified state.
This can be verified by checking that every state in the state transition table transitions to a
specified or valid state, or checking that all terminal states are valid states.

Verplex Conformal Logical Equivalency Checker

If you are using the Verplex Conformal Logical Equivalency Checker (LEC) to functionally
verify your design, refer to Appendix B, “Functional Verification with Verplex,” for more
information including a list of non-equivalency scenarios with resolution suggestions.
December 2003 242 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Troubleshooting

Additional troubleshooting information can be found in the latest version of Known Problems
and Solutions for BuildGates Synthesis and Cadence PKS that came with your release.

■ Mux Inference Pragma is not Honored in a Finite State Machine on page 244

■ A 3 state FSM Causes do_build_generic to Crash when extract_fsm is On on
page 244

■ Setting FSM Compile Directives for a VHDL Finite State on page 244

■ State Machine Extraction Fails, by either Hanging or Running Out of Memory on
page 245

■ Coding State Machines in VHDL on page 245

■ FSM Extraction Fails in the Presence of Incompletely Assigned Registers on page 246
December 2003 243 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
Mux Inference Pragma is not Honored in a Finite State Machine

The Mux inference pragma is not honored in FSM. The FSM extraction takes precedence
over the Mux pragma. This is true even when you use or do not use extract_fsm.

A 3 state FSM Causes do_build_generic to Crash when extract_fsm
is On

If you can get do_build_generic -extract_fsm to work up to a 20-bit wide state
register, but the tool crashes when you define the state register to be 24 bits, add the
-reachable switch to the state_vector pragma:

//ambit synthesis state_vector state -encoding timing -reachable

This treats unreachable states as don’t cares, which dramatically reduces run-time.

Setting FSM Compile Directives for a VHDL Finite State

See Error During do_build_generic if Design Architecture is not Specified on page 214
for information.
December 2003 244 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
State Machine Extraction Fails, by either Hanging or Running Out of
Memory

Workarounds are available for cases in which the number of states is small (from 10-20) but
the number of inputs or outputs is several dozen. One workaround is to separate the logic into
separate always blocks (for Verilog) or processes (for VHDL) as much as possible. If you can
reduce the logic down to the essentials, the state machine may extract with -extract_fsm.
If there is logic unrelated to the FSM in the Verilog module or VHDL architecture, remove it if
possible.

An easier workaround is to leave out the -extract_fsm switch, and elaborate it as normal
logic. The timing penalties are often small. You will not have the flexibility that is possible with
-extract_fsm (such as one-hot, binary, and so on) and you will not see the state table in
the log file, but you can get past the problem quickly without rewriting your code.

Coding State Machines in VHDL

Compiler directives do not work the same in VHDL as they do for Verilog. VHDL FSMs are
controlled by attributes. To access these predefined attributes, use the following Ambit library
and attributes package shown in Example 6-8.

Example 6-8 Ambit Library and Attributes Package
LIBRARY IEEE;

Library ambit;--<<<Added Library ambit

use ambit.std_logic_arith.ALL

--use IEEE.std_logic arith.ALL

use IEEE.std_logic_unsigned.ALL

use ambit.attributes.all --<<<Added this line too

Check out the source code for this package at:

<install_dir>/BuildGates/version/lib/tools/vhdl/1993/ambit/attributes.vhd

Add the following to define the attributes:

SIGNAL curr_st : statetype;

SIGNAL nxt_st : statetype;
December 2003 245 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
FSM Extraction Fails in the Presence of Incompletely Assigned Registers

You want to extract an FSM only for arb_state but the FSM extraction engine also tries to
extract an FSM for burst_counter, which is incompletely assigned, as shown in
Example 6-9. As a result, no FSM is extracted. This is a limitation of the FSM extraction
engine.

The reason that tool looks at the burst_counter FSM is because it is in the same process
with the arb_state FSM. As long as the arb_state FSM is in a separate process, then
whether the burst_counter is complete or not, the tool can extract a FSM for arb_state
correctly. Either assign burst_counter completely or make sure that arb_state and
burst_counter are in separate processes.

If burst_counter is assigned in all branches of the case statement of the
burst_process, as shown in Example 6-10 the FSM is extracted.

Example 6-9 FSM extraction fails due to incompletely assigned "burst_counter"
library ieee,ambit;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ambit.attributes.all;

entity arbiter is

 port (

 resetn : in std_logic;

 clk : in std_logic;

 acks : in std_logic_vector(1 downto 0);

 burst : out std_logic_vector(2 downto 0);

 arb : out std_logic_vector(2 downto 0)

);

end arbiter;

architecture synth of arbiter is

 signal arb_state : std_logic_vector(2 downto 0);

 SIGNAL next_arb_state : std_logic_vector(2 downto 0);

 SIGNAL burst_counter : std_logic_vector(2 downto 0);

 ATTRIBUTE STATE_VECTOR of arb_state : signal is true;

 ATTRIBUTE ENCODING of arb_state : signal is "one_hot";

 ATTRIBUTE SYNC_SET_RESET of resetn: signal is true;

begin
December 2003 246 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
next_arb:process(arb_state)

begin

 next_arb_state <= arb_state;

 case arb_state is

 when "000" =>

 next_arb_state <= "001";

 when "001" =>

 next_arb_state <= "010";

 when "010" =>

 next_arb_state <= "011";

 when "011" =>

 next_arb_state <= "000";

 when others => null;

 end case;

end process;

burst_process:process(clk, resetn, acks)

 begin

 if rising_edge(clk) then

 if resetn = ’0’ then

 arb_state <= "000";

 burst_counter <= (others => ’0’);

 else

 arb_state <= next_arb_state;

 end if;

 end if;

 case acks is

 when "10" =>

 if burst_counter = "000" then

 burst_counter <= "001";

 end if;

 when "01" =>

 if burst_counter = "001" then

 burst_counter <= "010";

 end if;

 when "11" =>
December 2003 247 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
 if burst_counter = "010" then

 burst_counter <= "011";

 end if;

 when others => null;

 end case;

end process;

burst <= burst_counter;

arb <= arb_state;

end synth;

Example 6-10 shows the modified RTL in which burst_counter is completely assigned
and the FSM is extracted.

Example 6-10 FSM is extracted when "burst_counter" is completely assigned
library ieee,ambit;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ambit.attributes.all;

entity arbiter is

 port (

 resetn : in std_logic;

 clk : in std_logic;

 acks : in std_logic_vector(1 downto 0);

 burst : out std_logic_vector(2 downto 0);

 arb : out std_logic_vector(2 downto 0)

);

end arbiter;

architecture synth of arbiter is

 signal arb_state : std_logic_vector(2 downto 0);

 SIGNAL next_arb_state : std_logic_vector(2 downto 0);

 SIGNAL burst_counter : std_logic_vector(2 downto 0);

 ATTRIBUTE STATE_VECTOR of arb_state : signal is true;

 ATTRIBUTE ENCODING of arb_state : signal is "one_hot";

 ATTRIBUTE SYNC_SET_RESET of resetn: signal is true;

begin
December 2003 248 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
next_arb:process(arb_state)

begin

 next_arb_state <= arb_state;

 case arb_state is

 when "000" =>

 next_arb_state <= "001";

 when "001" =>

 next_arb_state <= "010";

 when "010" =>

 next_arb_state <= "011";

 when "011" =>

 next_arb_state <= "000";

 when others => null;

 end case;

end process;

burst_process:process(clk, resetn, acks)

 begin

 if rising_edge(clk) then

 if resetn = ’0’ then

 arb_state <= "000";

 burst_counter <= (others => ’0’);

 else

 arb_state <= next_arb_state;

 end if;

 end if;

 case acks is

 when "10" =>

 if burst_counter = "000" then

 burst_counter <= "001";

 else

 burst_counter <= "000";

 end if;

 when "01" =>

 if burst_counter = "001" then
December 2003 249 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Optimizing and Structuring Finite State Machines
 burst_counter <= "010";

 else

 burst_counter <= "000";

 end if;

 when "11" =>

 if burst_counter = "010" then

 burst_counter <= "011";

 else

 burst_counter <= "000";

 end if;

 when others => burst_counter <= "000";

 end case;

end process;

burst <= burst_counter;

arb <= arb_state;

end synth;
December 2003 250 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
7
Using the EDIF Interface

This chapter provides an overview of the EDIF (Electronic Data Interchange Format)
interface, explains how to read an EDIF v2.0.0 file, write out designs in EDIF format, and how
to represent power and ground in EDIF in the following sections:

■ Overview on page 252

■ Tasks on page 252

■ Troubleshooting on page 263
December 2003 251 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Overview

Use the industry standard format, Electronic Design Interchange Format (EDIF), to exchange
design data between various EDA tools. BuildGates Synthesis supports EDIF 2.0.0. Use
BuildGates Synthesis to read in EDIF designs, to write out designs in EDIF format, and to
represent power and ground in EDIF.

Figure 7-1 RTL Synthesis Flow - EDIF

Tasks

The following are the standard tasks for using the EDIF interface:

■ Read Design Data on page 253

■ Write Netlist on page 254

■ Represent Power and Ground in EDIF on page 254

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 252 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Read Design Data

➤ Use the read_edif command to Import EDIF designs into BuildGates Synthesis:

read_edif file_name

For example, entering the following command:

read_edif design.edif

yields the following output:

Info: Parsing of ’design.edif’ file succeeded <EDIF-700>.

Info: Netlist transformation of ’design.edif’ succeeded <EDIF-701>.

Info: Setting ’TOP’ as the top of the design hierarchy <FNP-704>.

Info: Setting ’TOP’ as the default top timing module <FNP-705>.

Follow these guidelines when reading EDIF designs:

■ Since EDIF represents information in the form of structural netlists, do not build the
design using the do_build_generic command. The read_edif command parses
the EDIF file and automatically populates the BuildGates Synthesis netlist database.
Thus, you can enter any command after read_edif that is applicable to any module in
the netlist, such as report_hierarchy, find, or do_optimize. For example,
entering the following commands:

read_edif design.edif

report_hierarchy

yields the following output:

|-TOP(g)

||-MIDDLE(g)

|||-BOTTOM(g)

Entering the find command:

find -module -full

yields the following output.

BOTTOM MIDDLE TOP

■ If unresolved blackboxes remain after reading in EDIF designs, enter the
do_build_generic command to link such blackboxes.
December 2003 253 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Write Netlist

➤ Use the write_edif command arguments to write out designs in EDIF format:

write_edif [-hierarchical] file_name

For example, assume that the current module is TOP, which has the following
hierarchical structure:

report_hierarchy

yields the following output.

|-TOP(g)

||-MIDDLE(g)

|||-BOTTOM(g)

The following command writes out an EDIF description of all the three modules: TOP,
MIDDLE, and BOTTOM

write_edif -hierarchical out.edif

If the -hierarchical option is not specified, EDIF is only written out for the current module,
in this case TOP:

write_edif out.edif

The module MIDDLE will be represented as a blackbox in the EDIF output.

Represent Power and Ground in EDIF

■ Representing Power and Ground for Nets When Writing Out an EDIF Netlist on page 255

■ Representing Power and Ground for Ports When Writing Out an EDIF Netlist on
page 257

■ Representing Power and Ground for Instances When Writing Out an EDIF Netlist on
page 259

■ Represent Power and Ground When Reading In an EDIF Design on page 261
December 2003 254 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Representing Power and Ground for Nets When Writing Out an EDIF Netlist

Use the following globals to represent power and ground for nets and ports and to specify the
name, property, and value associated with each net and port. For instances, specify the name
of power and ground cells, pins, and instances for each module that has a power and ground
driven net within it.

See the Command Reference for BuildGates Synthesis and Cadence Physically
Knowledgeable Synthesis (PKS) for more information about each global command.

➤ Represent power and ground for nets when writing out an EDIF netlist by issuing the
following global:

set_global edifout_power_and_ground_representation net

Default: net

Use the globals Table 7-1 to specify the power and ground names, the property names, and
the property values for the power and ground nets.

The Verilog model in Example 7-1 is used to show how the power and ground globals work.

Example 7-2 shows the output produced by the power net globals using the Verilog model.

Table 7-1 Globals for Specifying Power and Ground for Nets

Global Default Value

set_global edifout_power_net_name string “ “

set_global edifout_power_net_property_name string default

set_global edifout_power_net_property_value string logic_1

set_global edifout_ground_net_name string “ “

set_global edifout_ground_net_property_name string default

set_global edifout_ground_net_property_value string logic_0
December 2003 255 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Example 7-1 Verilog Model Showing How to Use the Power Net Globals
module TOP (o1, o2, o3);

output o1, o2, o3;

BOTTOM i0 (o1, o2);

assign o3 = 1’b1;

endmodule

module BOTTOM (o1, o2);

output o1, o2;

assign o1 = 1’b0;

assign o2 = 1’b1;

endmodule

The following commands:

set_global edifout_power_net_name POWER

set_global edifout_power_net_property_name SUPPLY

set_global edifout_power_net_property_value LOGIC1

write_edif -hierarchical out.edif

produces the following output for module BOTTOM shown in Example 7-2.

Example 7-2 Output for Module Bottom Using the Power Net Globals
.....

 (library TOP

 (edifLevel 0)(technology (numberDefinition))

 (cell BOTTOM (cellType GENERIC)

 (view netlist (viewType Netlist)

 (interface

 (port o1 (direction Output))

 (port o2 (direction Output))

)

 (contents

 (net o1

 (joined

 (portRef o1)

)

 (property default (string "logic_0"))

)

 (net POWER

 (joined

 (portRef o2)
December 2003 256 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
)

 (property SUPPLY (string "LOGIC1"))

)

)

)

)

Since port o2 is driven to logic 1, the corresponding power net has been named POWER and
the appropriate property attached to it. In the EDIF output above, since no values were
specified for the three ground related globals, the ground net o1 retains its original name and
has the default property attached to it.

Representing Power and Ground for Ports When Writing Out an EDIF Netlist

➤ Represent power and ground for ports when writing out an EDIF netlist by entering the
following global command:

set_global edifout_power_and_ground_representation port

Default: net

Use the globals in Table 7-2 to specify the power and ground port names while reading out
EDIF designs.

Example 7-3 shows the EDIF output produced using the following port power and ground
globals using the Verilog model shown in Example 7-1.

set_global edifout_power_port_name SUPPLY1

set_global edifout_ground_port_name SUPPLY0

write_edif -hierarchical out.edif

Table 7-2 Globals for Representing Power and Ground for Ports

Global Default Value

set_global edifout_ground_port_name string GND

set_global edifout_power_port_name string PWR
December 2003 257 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Example 7-3 Output for EDIF Using Port Power and Ground Globals
(cell BOTTOM (cellType GENERIC)

 (view netlist (viewType Netlist)

 (interface

 (port SUPPLY0 (direction Input))

 (port SUPPLY1 (direction Input))

 (port o1 (direction Output))

 (port o2 (direction Output))

)

 (contents

 (net o2

 (joined

 (portRef SUPPLY1)

 (portRef o2)

)

 (property default (string "logic_1"))

)

 (net o1

 (joined

 (portRef SUPPLY0)

 (portRef o1)

)

 (property default (string "logic_0"))

)

)

)

)

 (cell TOP (cellType GENERIC)

 (view netlist (viewType Netlist)

 (interface

 (port SUPPLY1 (direction Input))

 (port o1 (direction Output))

 (port o2 (direction Output))

 (port o3 (direction Output))

)

)

The logic 0 and logic 1 values can be supplied to the logic within the module through the two
ports of BOTTOM, SUPPLY0 and SUPPLY1.
December 2003 258 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Note: Since the module TOP did not have any ground logic within it, no SUPPLY0 port was
added to its EDIF representation.

Representing Power and Ground for Instances When Writing Out an EDIF Netlist

➤ Represent power and ground for instances when writing out an EDIF netlist by entering
the following global command:

set_global edifout_power_and_ground_representation instance

Default: net

With this setting, all power or ground are represented as instances of power and ground cells.

The following globals determine the name of power and ground cells as well as pin and
instance names for each module that has a power and ground driven net within it.

Example 7-4 shows the output produced by using the following power and ground globals for
instances using the Verilog model shown in Example 7-1.

[1]>set_global edifout_power_cell_name PWRC

[2]>set_global edifout_power_pin_name PWRP

[3]>set_global edifout_power_instance_name PWRI

[4]>set_global edifout_ground_cell_name GNDC

[5]>set_global edifout_ground_pin_name GNDP

[6]>set_global edifout_ground_instance_name GNDI

[7]>write_edif -hierarchical out.edif

Table 7-3 EDIF Globals for Specifying an Instance

Global Default Value

set_global edifout_power_cell_name string PWR

set_global edifout_power_pin_name string PWR

set_global edifout_power_instance_name string PWR

set_global edifout_ground_cell_name string GND

set_global edifout_ground_pin_name string GND
December 2003 259 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Example 7-4 Edif Output Using Power and Ground Globals
(library TOP

 (edifLevel 0)(technology (numberDefinition))

 (cell PWRC (cellType GENERIC)

 (view netlist (viewType Netlist)

 (interface

 (port PWRP (direction Output))

)

 (cell GNDC (cellType GENERIC)

 (view netlist (viewType Netlist)

 (interface

 (port GNDP (direction Output))

)

 (cell BOTTOM (cellType GENERIC)

 (view netlist (viewType Netlist)

 (interface

 (port o1 (direction Output))

 (port o2 (direction Output))

)

 (contents

 (instance PWRI

 (viewRef netlist (cellRef PWRC))

)

 (instance GNDI

 (viewRef netlist (cellRef GNDC))

)

 (net o2

 (joined

 (portRef PWRP (instanceRef PWRI))

 (portRef o2)

)

 (property default (string "logic_1"))

)

 (net o1

 (joined

 (portRef GNDP (instanceRef GNDI))

 (portRef o1)

)

 (property default (string "logic_0")
December 2003 260 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Two cells PWRC and GNDC with pins PWRP and GNDP, respectively have been added. Power
and ground within module BOTTOM is represented as instances of these cells.

Represent Power and Ground When Reading In an EDIF Design

Use the following globals to specify a net, port, and instance representation for power and
ground while reading in EDIF designs
.

Globals for Specifying a Net Default Value

set_global
edifin_power_and_ground_representation net

net

set_global edifin_power_net_name string “ “

set_global edifin_power_net_property_name
string

default

set_global edifin_power_net_property_value
string

logic_1

set_global edifin_ground_net_name string “ “

set_global edifin_ground_net_property_name
string

default

set_global edifin_ground_net_property_value
string

logic_0

Globals for Specifying a Port Default Value

set_global
edifin_power_and_ground_representation port

net

set_global edifin_power_port_name string PWR

set_global edifin_ground_port_name string GND

Globals for Specifying an Instance Default Value

set_global
edifin_power_and_ground_representation
instance

net

set_global edifin_power_pin_name string PWR
December 2003 261 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
set_global edifin_power_instance_name string PWR

set_global edifin_ground_pin_name string GND

set_global edifin_ground_instance_name string GND

Globals for Specifying an Instance Default Value
December 2003 262 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
Troubleshooting

Additional troubleshooting information can be found in the latest version of Known Problems
and Solutions for BuildGates Synthesis and Cadence PKS that accompanied your
release.

How to Export an EDIF Schematic for Viewing in a Different Tool

By default, the write_edif command creates a netlist-only EDIF file that does not contain
graphical information for the schematic.

EDIF netlists containing schematics can be read into the ICCA tool (version IICC4.45) using
the edifin tool. The schematic can then be viewed in the Cadence DFII environment.

There is a method within BuildGates Synthesis for generating an EDIF file containing both a
netlist representation and a schematic representation, but it can only be used from the
BuildGates GUI (bg_shell -gui). It is not available from the textual bg_shell interface.
You need a symbol library (.slib) for viewing the schematic in the BuildGates GUI.

➤ The Schematic window can be exported to an EDIF 2.0.0 format by entering the following
command in the GUI bg_shell:

$vBGates(sch_active_window)write_edif -file filename [-indent -orcad -mono]

vBGates(sch_active_window) is an internal variable that stores the widget ID for
the current active schematic.

The following options are available:

■ Indent formats the file for readability by inserting spaces. This option can double the
EDIF file size.

■ Orcad creates an EDIF schematic suitable for Orcad tools that may not be readable by
other programs.

Mono causes the schematic to be displayed in black and white.
December 2003 263 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Using the EDIF Interface
December 2003 264 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
A
AmbitWare

This appendix includes the following information:

■ Introduction on page 266

■ AmbitWare Flow on page 268

■ AmbitWare Generators on page 269

■ AmbitWare Libraries on page 276
December 2003 265 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Introduction

An essential part of building a generic netlist from an RTL description is generating
implementations for the various datapath elements, multiplexers, Boolean gates, and
complex operations such as encoders, decoders, and pipelined multipliers. BuildGates
Synthesis uses the AmbitWare collection of module generators and pre-defined RTL libraries
to implement these operations. The generators are used to build inferred components. The
libraries contain the encrypted macro components written in RTL that are directly instantiated
in the source RTL.The inferred or instantiated components are automatically built during
synthesis, taking into account the technology library information and design constraints.

AmbitWare contains five generators and three pre-defined libraries.Table A-1 shows the use
model and lists whether the generator or library is technology independent, and whether the
Datapath license is required.

Generators

■ AmbitWare Arithmetic Component Library Generator (AWACL) — Default generator
used for realizing technology independent implementations for basic arithmetic
operations in the RTL, such as addition, subtraction, multiplication, shifts, increments,
decrements, and comparisons.

■ AmbitWare Datapath Generator (AWDP) — Used for generating more efficient
technology dependent implementations for the basic arithmetic operations, and
implementations for clusters of merged arithmetic operations (such as generating a
carry-save implementation for a chain of additions). The Datapath generator generates
generic components during do_build_generic, but generates technology mapped
components during mapping and optimization. It makes micro architectural trade-offs
based on libraries.

■ AmbitWare Multiplexer Generator (AWMUX) — Used to generate general N-to-1, M-bit
wide multiplexer implementations that may be required during the generic build.

■ AmbitWare Sum-of-Products (AWSOP)— Used to extract logic from case statements.

■ AmbitWare Resource Shared Module Generator (AWRS) — Used to implement one or
more AmbitWare modules into one shared module.
December 2003 266 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Libraries

■ AmbitWare Complex Arithmetic Library (AWARITH)—Defines complex arithmetic
functions in RTL that are instantiated in the source RTL. For example, a combined
incrementer and decrementer, multiply accumulators, pipelined multipliers, and vector
adders.

■ AmbitWare Complex Logical Library (AWLOGIC) — Defines complex logic functions that
are instantiated in the source RTL. For example, arithmetic and logical shifters, rotate
operations, encoders and decoders.

■ AmbitWare Sequential Logic Library (AWSEQ) — Defines complex sequential logic
functions that are instantiated in the source RTL. For example, a reset-enable flip-flop,
and a n-tap shift register.

Table A-1 AmbitWare Generators and Libraries in BuildGates

Generator/
Library Function Type Use Model

Datapath
License
Required

Technology
Dependent

AWACL Arithmetic Inferred No No

AWDP Arithmetic, Merged
Operators

Inferred Yes Yes

AWMUX Multiplexers Inferred No No

AWSOP Sum-of-Products Inferred No No

AWARITH Complex Arithmetic
Operations

Instantiated Yes No

AWRS Resource Sharing Inferred No Yes

AWLOGIC Complex Logical Operations Instantiated Yes No

AWSEQ Complex Sequential Logic
Operations

Instantiated Yes No
December 2003 267 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
AmbitWare Flow

Figure A-1 shows how the AmbitWare generators and libraries are typically used during the
generic build phase of BuildGates Synthesis and the commands associated with the flow.

Figure A-1 AmbitWare Flow in the RTL Flow

The AmbitWare interface serves as the link between RTL synthesis and the various
generators and libraries. From a synthesis point of view, the interface to all the generators is
identical. The AmbitWare interface determines which generator is used and passes the
specifications of the desired component from synthesis to the generator and returns the
generated component back to synthesis. The AmbitWare interface also resolves the
reference to the components instantiated from AmbitWare libraries.

For inferred components, BuildGates synthesis automatically queries the AmbitWare
interface to generate an implementation using the appropriate arithmetic (AWACL or AWDP),
multiplexer (AWMUX), and PLA (AWPLA) generators. Each generator is specialized to
implement its functionality. Instead of using a pre-built library of components, generators use
efficient algorithms to build the components. For example, the AWDP generator builds
datapath elements by making use of design characteristics like constants in the inputs. The
AWMUX generator implements optimal muxes in various situations, letting you write RTL at
a higher, more general level, thus, saving significant design time.

By default, for arithmetic components, BuildGates synthesis uses the technology-
independent AWACL generator. Use the AWDP generator only if all of the following conditions
are true:

■ The bgx_shell is being used or the software has been invoked with the -datapath
license.

■ A datapath license is available.

AmbitWare
Interface

AWACL

AWDP

AWPLA

AWARITH

AWLOGIC

AWSEQ

AWMUX

AWRS

Read Design Data

ReportWrite Netlist

Build Generic Design

Optimize Design
December 2003 268 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
The name of the generator used to generate components is prefixed to the name of the
generated component. For example, the AWACL generator implements an addition
operation, generates the adder module name, and prefixes AWACL. If the AWDP generator
implemented same addition operation, AWDP would be prefixed in the generated adder
module name.

For instantiated AmbitWare components, BuildGates automatically queries the AmbitWare
Interface that resolves the reference to the component using AWARITH, AWLOGIC, AWSEQ,
and user-defined libraries. Once the component definition is known, the AmbitWare Interface
uses the generators to build it in the same way as any RTL design.

The following sections provide details on each of the AmbitWare generators and the various
ways their functions can be manipulated in BuildGates. Use the pre-defined AmbitWare
libraries that accompany BuildGates or create and use your own AmbitWare libraries.

AmbitWare Generators

■ AWACL Generator on page 270

■ AWDP Generator on page 271

■ AWMUX Generator on page 273

■ AWSOP Generator on page 274

■ AWRS Generator on page 275
December 2003 269 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
AWACL Generator

Use the AWACL generator to synthesize the following basic arithmetic datapath operators:

unary minus, +, -, *, arithmetic shift right, logical shift right, shift left,
rotate left,rotate right, >, <, >=, <=, ==, !=, absolute value.

The AWACL generator synthesizes each operator separately and generates a technology
independent netlist. The generated components have names that start with AWACL_.

Note: The AWACL generator comes with BuildGates and PKS and does not require the
Datapath license.

Use the following tasks to control the functioning of the AWACL generator.

Changing the Architecture

➤ Use the following global variables to set the default adder architecture for final adders:

set_global aware_adder_architecture {ripple | csel | cla | fcla }

The AWACL generator uses a set of architectures to synthesize the different datapath
operators. For adders and final adders in multipliers, the available architectures are ripple,
conditional select (csel), and carry lookahead (cla). The only multiplier-encoding architecture
available for AWACL multipliers is non-Booth. The components generated using the AWACL
generator are not subjected to automatic architecture selection during timing optimization.

Setting the Operator Width Limit

➤ Use the following global variable to set the size of components that are dissolved:

set_global aware_dissolve_width positive_integer

Generated components are pre-structured by using architectures for the datapath operators,
so they are labeled as optimized and are not structured during optimization. However, small
AWACL components that are below a threshold are dissolved during optimization.

For more information on these global commands refer to the AmbitWare Globals chapter in
the Global Variable Reference Manual for BuildGates Synthesis and Cadence PKS.
December 2003 270 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
AWDP Generator

Use the AWDP generator to create the following simple and complex arithmetic datapath
components:

unary minus, +, -, *, arithmetic shift right, logical shift right, shift left,
rotate left, rotate right, >, <, >=, <=, ==, !=, absolute value.

The AWDP generator synthesizes the datapath partitions (created earlier by the process of
partitioning datapath from control) using specialized optimization techniques that yield better
quality of results (delay, area, power). All the modules generated by the AWDP generator
have names starting with AWDP_.

Note: The AWDP generator requires the Cadence Datapath Synthesis of BuildGates
Synthesis and PKS license.

The following are the standard tasks to control the functioning of the AWDP generator. For
complete details, refer to the AmbitWare Globals chapter in the Global Variable Reference
Manual for BuildGates Synthesis and Cadence PKS.

■ Setting the Operator Width Limit on page 271

■ Implementing Datapath Components on page 272

■ Controlling Operator Merging on page 272

■ Selecting the Adder Architecture on page 272

■ Selecting the Multiplier Architecture on page 273

Setting the Operator Width Limit

➤ Use the following global variable to set the size of components that are dissolved:

set_global aware_dissolve_width positive_integer

Generated components are pre-structured using architectures for the datapath operators.
They are labeled as optimized and are not structured during optimization. However, small
components that are below a threshold are dissolved during optimization.

Note: The dissolve width is based on the literal count of the operator and is influenced by the
architecture. For example: a 16-bit adder implemented using the cla architecture, is about the
same size as a 24-bit ripple adder, therefore the positive integer value should be 24.
December 2003 271 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Implementing Datapath Components

➤ Use the following global to automatically implement the datapath elements:

set_global aware_implementation_selection {true | false}

When set to true, the implementation of datapath components are automatically selected
based on the constraints.

Default: true

The modules generated by the AWDP generator are tagged as swappable and architecture
selection is performed on them during timing optimization. Constraint-driven architecture
selection attempts to select the best possible architectures under the design constraints for
all arithmetic operators. Because faster is not always better (area increases), automatic
architecture selection keeps the faster (larger) architectures on the critical path and accepts
the slower (smaller) architectures on non-critical paths.

Controlling Operator Merging

➤ Use the following global to control operator merging:

set_global aware_merge_operators {true | false}

Operator merging is a key datapath optimization that significantly improves the quality of
results (QOR). Operators are merged (combined) and the complex arithmetic expressions
are synthesized without intermediate carry-propagate adders. Operator merging performs
arithmetic simplification to eliminate redundant computations. This usually results in a better
delay and area implementation. Merging also results in implicit re-balancing of datapath
operations that are in a skewed graph.

Default: true

Selecting the Adder Architecture

➤ Use the following global to set the default adder architecture for final adders:

set_global aware_adder_architecture {ripple | csel | cla | fcla}

The AWDP generator synthesizes four adder architectures: ripple, carry select (csel), carry
lookahead (cla) and fast carry lookahead (fcla). AWDP also provides Booth and Non-Booth
multiplier encoding and mux-based and AND/OR-based shifter or rotator architectures.

Default: cla for AWCL and fcla for AWDP
December 2003 272 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Selecting the Multiplier Architecture

➤ Use the following global to set the default multiplier architecture for multipliers:

set_global aware_multiplier_architecture {booth | non-booth | auto}

The AWDP generator performs micro-architecture selection based on the availability of
appropriate cells in the technology library. AWDP decides whether to select a Booth or non-
Booth multiplier based on the availability of Booth encoding cells in the technology library and
the width and signedness of the input operands.

Default: auto

AWMUX Generator

The AWMUX generator contains the ATL, XATL, and AWARE multiplexers to implement
variables in the RTL description that are assigned values by either if-then-else or case
statements. ATL (Ambit Technology Library) and XATL (Extended Ambit Technology Library)
components are pre-defined and are contained in the BuildGates synthesis generic library.
AWARE components are automatically generated by the tool as needed.

The AWMUX generator does not require the Cadence Datapath Synthesis of BuildGates
Synthesis and PKS license.

A multiplexer is “complete” when the number of data inputs is 2 to the power of the number
of select inputs that are 1-bit wide. The BuildGates synthesis generic library currently
contains the following “complete” ATL and XATL multiplexers, shown in Table A-2.
.

Any additional multiplexers required to implement an RTL description are automatically
generated by the AWMUX generator and are made up of ATL, XATL, and AWARE
multiplexers. For example, AWARE multiplexers are generated to implement n-bit
multiplexers, incomplete multiplexers (such as, 10-to-1 mux), and complete multiplexers with
more than 16-data inputs.

Table A-2 Library of Complete ATL and XATL Multiplexers

Complete Multiplexer Function Data Inputs Select
Inputs Bit Width

ATL_MUX_21 2-to-1 mux 2 1 1

XATL_MUX_4 4-to-1 mux 4 2 1

XATL_MUX_8 8-to-1 mux 8 3 1

XATL_MUX_16 16-to-1 mux 16 4 1
December 2003 273 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
The naming convention for AWARE multiplexers is AWMUX_d_bwhere d is the number of data
inputs and b is the number of bits. The number of select inputs, s, for AWARE multiplexers
is the minimum number required to select the d data inputs, as per the equation:

2s-1 < d < 2s

Setting the Size of the Multiplexer (MUX) to be Dissolved

➤ Use the following global variable to set the size of the multiplexer to be dissolved:

set_global aware_mux_dissolve_size positive integer

BuildGates Synthesis uses multiplexers whenever possible to implement logic for variables in
the RTL design that are assigned values within if-then-else or case statements. During
the do_optimize design phase, multiplexers that have less than the number of data inputs
specified by the global aware_mux_dissolve_size are dissolved and optimized within the
context of surrounding logic. Specialized optimizations are applied to multiplexers that have
more than the number of data inputs specified by aware_mux_dissolve_size. After logic
optimization, if the size of the optimized mux is found to be less than that of the
aware_mux_dissolve_size input mux, it is dissolved. In general, synthesis run time
increases as the aware_mux_dissolve_size increases.

Default: 8

Muxes inferred using the directive infer_mux are not dissolved or optimized.

AWSOP Generator

The AWSOP generator extracts logic from case statements. A variable that is assigned only
constant values within a case statement, such as variable z can be represented by a
Boolean equation that is in a sum-of-products (SOP) form as shown in Figure 2-8 on page 54.
SOP logic that is identified and extracted during the do_build_generic design phase can
be minimized during the do_optimize design phase with specialized and efficient logic
optimization techniques
December 2003 274 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Extracting PLAs for Constant Case Statements

➤ Set the following global to true to automatically extract logic from case statements that
can be represented by Boolean equations in sum-of-products form:

set_global hdl_extract_sum_of_products_logic {true | false}

Default: true

When the hdl_extract_sum_of_products_logic global is set to false, the SOP logic
is not identified and extracted. Instead, the logic is minimized within the context of
surrounding logic using generalized logic optimization techniques.

For large, non-parallel casex or casez statements, faster run-times may be possible if SOP
logic is not extracted

Note: The AWSOP generator does not require the Datapath license.

AWRS Generator

The AWRS Generator creates resource shared (RS) modules that implement two or more
arithmetic operations in the HDL. These operations must be present in mutually exclusive
segments of a single HDL conditional construct such as a case or an if statement.

The modules created by this generator are named AWRS_partition_1,
AWRS_partition_2, and so on. After timing optimizations, resource sharing is performed
incrementally by replacing any two modules in the netlist with a new AWRS module. At this
time, the AWRS generator automatically synthesizes the functionality of the new shared
module and replaces the two original unshared modules.

For more details on Resource Sharing, see Chapter 2, “High-Level Optimizations.”
December 2003 275 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
AmbitWare Libraries

AmbitWare libraries are sets of pre-defined, ready-to-use components that enhance the
reusability of the designs and reduce the repeat design effort, thereby improving efficiency.
AmbitWare libraries support the intellectual property (IP) use model by containing the
encrypted models of components. The synthesis models of the components are defined in
Verilog RTL. The simulation models of the components are defined in the Verilog and VHDL.
The components are decrypted, synthesized, and optimized in process using the AmbitWare
generators. As with any RTL design, the synthesis and optimization engines use the
technology library information and the design constraints to build these components, thereby
taking full advantage of the capabilities of synthesis and optimization engine.

BuildGates synthesis contains the pre-defined AWARITH, AWLOGIC, and AWSEQ
AmbitWare libraries and supports user-defined libraries, all of which are discussed in the
following sections.

Note: You must purchase the Datapath license to use the AWARITH, AWLOGIC, and
AWSEQ libraries.

All globals that are applicable to RTL design are applicable to the AmbitWare library
components. For complete details, refer to the AmbitWare Globals chapter in the Global
Variable Reference Manual for BuildGates Synthesis and Cadence PKS.

. The following are the standard tasks to control the functioning of AmbitWare libraries:

■ Setting the Library Search Order on page 277

■ Using Predefined AmbitWare Libraries on page 277

■ Defining Your Own AmbitWare Libraries on page 277

■ Using Synthesis Directives on page 282
December 2003 276 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Setting the Library Search Order

➤ Use the following global to set the order in which AWARE libraries are searched:

set_global aware_library_search_order logical names

The aware_library_search_order global is applicable to pre-defined and user-defined
libraries.

Using Predefined AmbitWare Libraries

BuildGates Synthesis contains three pre-defined AmbitWare libraries: AWARITH, AWLOGIC,
and AWSEQ. The AWARITH library contains pre-defined complex arithmetic components.
The AWLOGIC library contains pre-defined complex logic components, and the AWSEQ
library contains pre-defined complex sequential logic components. Both synthesis and
simulation models of all the components are provided. The components in these libraries take
full advantage of the synthesis and optimization engines, including advanced datapath
techniques like operator merging and automatic architecture selection.

Use the synthesis directive ambit synthesis architecture in the RTL description to
control the architecture. All the synthesis directives that are applicable to a RTL design are
applicable to the AmbitWare library components. Refer to the Synthesis Directives sections
of either the Verilog Modeling Styles or VHDL Modeling Styles chapters, as required. You can
also use the Tcl command do_change_module_architecture.

Refer to AmbitWare Component Reference for detailed description and usage of the
AmbitWare library components.

Defining Your Own AmbitWare Libraries

You can create your own AmbitWare libraries of pre-defined components and use them as
you do with the AmbitWare libraries that ship with the software. The components can be
written in RTL and encrypted before saving in the library, allowing the exchange of
technology-independent IP blocks. The components are optimized like any other RTL design.
The datapath elements in the components use the AWDP generator techniques such as
operator merging and automatic architecture selection.

The following sections explain how to create and use your own libraries of components. For
complete details, refer to the Command Reference for BuildGates Synthesis and
Cadence PKS.

■ Creating an AmbitWare Library on page 278

■ Using Your Own Libraries on page 279
December 2003 277 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
■ Deleting a Component From a Library on page 279

■ Disabling a Component on page 279

■ Controlling the Architecture of a Component on page 280

■ Creating a Library Report on page 281

Creating an AmbitWare Library

1. Map the logical name of the library to the existing directory where the analyzed
components will physically reside using the following command arguments:

set_aware_library library_name library_path

For example:

set_aware_library AWMYLIB /home/smith/libs/lib1

2. Create the components files in RTL from Verilog or VHDL. One file must contain only one
component definition. For example:

Create component files AWMYCOMP1.v, AWMYCOMP2.v, and AWMYCOMP3.vhd and
place in /home/smith/comps.

3. Populate the library with the component file(s) using the read_verilog or read_vhdl
command. For example:

read_verilog -aware_library aware_libname verilog_filenames

or

read_vhdl -aware_library aware_libname vhdl_filenames

The above example contains both Verilog and VHDL component files:

read_verilog -aware_library AWMYLIB AWMYCOMP1.v AWMYCOMP2.v

read_vhdl -aware_library AWMYLIB AWMYCOMP3.vhd

If a syntax error is detected in the component file(s), correct it and repeat the file reading
step. This step performs the following functions:

❑ Reads the specified component files

❑ Checks the syntax

❑ Generates the corresponding encrypted files (.bd files) in the specified library

❑ Adds an entry for these components in the index file of the library

The library has been created and the components are ready to use.
December 2003 278 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Using Your Own Libraries

1. Map the library name to a physical path using the command explained in step 1 above:

set_aware_library library_name library_path

2. Set the order in which the libraries will be searched by using the following global:

set_global aware_library_search_order logical names

When the software reads any design instantiating a component from this library, it will
automatically fetch the component definition from the specified library. If two libraries contain
a component with the same name, the one found first is used.

Deleting a Component From a Library

➤ Use the following command to delete a component from a library:

delete_aware_component -library library_name component_name

The following example shows how to delete the component AWMYCOMP1 from the library
AWMYLIB:

delete_aware_component -library AWMYLIB AWMYCOMP1

If the -library option is not specified, the libraries are searched in the order defined
by the global aware_library_search_order and the first component that matches
the specified component is deleted.

➤ To delete all the components of the library AWMYLIB, use the -all option.

delete_aware_component -library library_name -all

Disabling a Component

➤ Use the following command with the dont_utilize argument to disable a component
temporarily:

set_aware_component_property [-library library_name] dont_utilize {true |
false} component_name

For example, making AWMYCOMP1 unavailable for use without deleting lets you share the
components selectively:

set_aware_component_property dont_utilize true -library AWMYLIB AWMYCOMP1
December 2003 279 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Controlling the Architecture of a Component

Change the architecture of an Ambitware component by using one of the following steps:

1. Specify the architecture of an Ambitware component by using the following Tcl
command:

do_change_module_architecture [-hier] [-adder_architecture
{adder arch value}] [-multiplier_architecture {mult arch value}
{list of modules}]

where

-adder_architecture: Specifies the final adder architecture used. The valid values
are ripple, fcla, cla, and csel.

-hier: Applies the command recursively to all the relevant Ambitware sub-modules in
the specified module.

-multiplier_architecture: Specifies the multiplier encoding scheme used. The
valid values are booth and non_booth. For example:

do_change_module_architecture -adder_architecture fcla
-multiplier_architecture booth AWARITH_MULT_ADD_wA8_wB8_wC8_wZ16

Use the Tcl command any time after do_build_generic. The specified Ambitware
modules will be resynthesized with the specified architecture values and the old modules
will be replaced with the new ones.

2. Specify the architecture by using the following synthesis directive:

ambit synthesis architecture

Place the directive after the closing parenthesis of the port list and before the final ‘;’. For
example:

AWARITH_MULT_ADD I1 (a,b,c,t,z)//ambit synthesis architecture=fcla,booth
;

The above instantiation synthesizes instance I1 of AWARITH_MULTADD that uses
booth-encoding scheme for the multiplier and fcla architecture for the final carry
propagate adder.
December 2003 280 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
The specified architecture is applied to all the relevant datapath elements in the instantiated
component. As with other specified architectures, these architectures are not overridden by
Constraint Driven Implement Selection during optimization. The following are the values of
the BuildGates Synthesis architecture directive:

■ fcla

■ cla

■ csel

■ ripple

■ booth

■ non_booth

Creating a Library Report

➤ Use the following command to create a report of an AmbitWare library:

report_aware_library -library lib_name -summary filename -component pattern

If the -summary option is not used, a verbose report is generated.

If the -library option is not used, a report is generated for all the AmbitWare libraries.

If the -component pattern is not specified, all the components in the library are
reported.

The following command:

report_aware_library -library AWMYLIB -summary SMITH_FILE -component AWMYCOMP3

generates a summary report named SMITH_FILE of the library AWMYLIB for the components
whose name matches the pattern AWMYCOMP3 as shown in Figure A-2.
December 2003 281 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
AmbitWare
Figure A-2 Example Library Report

Using Synthesis Directives

All the synthesis directives that are applicable to RTL design are also applicable to the
AmbitWare library components. Refer to the Synthesis Directives sections of either the
Verilog Modeling Styles or VHDL Modeling Styles chapters, as required.

+------------------------------------+
| Report | report_aware_library |
|---------+--------------------------|
| Options | -library AWLOGIC rpt.log |
+---------+--------------------------+
Date	20010322.123149
Tool	bg_shell
Release	v5.0-eng
Version	Mar 19 2001 16:58:58
+------------------------------------+	
+--	
-+	
Library	Directory
-----------+---------------------------+--	
-	
-----------+---------------------------+-----------------+-----------+--------------------+---------------------	
-	
AWLOGIC	/vobs/dt_internal/interna
	l/../../dt/release/BuildG
	ates/version/lib/tools/aw
	are/syn/AWLOGIC
+--
December 2003 282 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
B
Functional Verification with Verplex

This appendix includes the following information regarding functional verification of
BuildGates netlists with the Verplex Conformal Logical Equivalence Checker (LEC):

■ Introduction on page 284

■ Verplex Conformal Logical Equivalence Checker on page 284
December 2003 283 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Functional Verification with Verplex
Introduction

This appendix provides suggestions to those who use the Verplex Conformal Logic
Equivalence Checker (LEC) to verify the functional equivalence between an RTL description
and the netlist generated by BuildGates for that description.

The BuildGates® Synthesis software generates a hardware implementation from a register
transfer level (RTL) design. Complex algorithms are invoked during synthesis to ensure the
best possible netlist. However, it is both strongly recommended and customary to verify that
the generated netlist is functionally equivalent to the input RTL description by using either
simulation or formal verification techniques.

Verplex Conformal Logical Equivalence Checker

Proving functional equivalence between the synthesized netlist and the input RTL design
makes certain assumptions about the functional semantics of the hardware description
language (HDL) used for the RTL description. BuildGates supports Verilog and VHDL HDLs,
both of which are specified in detail in IEEE Standard Language Reference Manuals.
However, despite these detailed HDL specifications, synthesis, simulation, and equivalence
checking tools sometimes make different assumptions about how a Verilog or VHDL RTL
description should behave as hardware.

Non-Equivalency Resolutions

If Verplex LEC reports that the RTL description and netlist are not equivalent, check the
following non-equivalency scenarios and resolutions:

■ Does the netlist contain escaped names?

Type this LEC Setup command:

add renaming rule R1 \\%s @1 -re -map -type pi -type po

■ Does the RTL contain arrays or records?

Type these BuildGates commands prior to issuing the do_build_generic command:

set_global hdl_record_generator "%s\[%s\"

set_global hdl_array_generator "%s\[%d\"
December 2003 284 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Functional Verification with Verplex
■ Does the RTL contain blackboxes?

Type this LEC Setup command:

set undefined cell black_box -both

■ Does the RTL contain undriven variables or signals?

Type either this LEC Setup command:

set undriven signal 0 -both

or this BuildGates command:

set_global hdl_undriven_net_value none

■ Does the RTL contain a variable that is only assigned a constant value within
a clocked process?

Type this LEC Setup command:

set flatten model -nodff_to_dlat_feedback

■ Does the technology library have flip-flop or latch components with Q and QB
outputs, in which Q and QB are not always complements of each other?

Type this LEC Setup command:

set flatten model -seq_transform

■ Does the RTL specify a flip-flop or latch set/reset operation that cannot be
directly implemented by any component in the technology?

Type either this LEC Setup command:

set mapping method -phase

or this BuildGates command prior to issuing the do_optimize command:

set_global map_inversion_through_registers false
December 2003 285 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Functional Verification with Verplex
■ Does LEC report that there are corresponding, unmapped key points for both
Golden and Revised designs (for example, /RAMA_7 is unmapped in the
Golden design and /RAMA is unmapped in the Revised design), or non-
corresponding mapped key points?

Type this LEC command to force key point mapping:

add mapped point /RAMA_7 / RAMA

■ Does the RTL specify an FSM with non-default encoding?

1. Type the following BuildGates command after issuing the
do_build_generic -extract_fsm command to determine the generated FSM
encoding:

report_fsm -encoding

2. Next, create a file, “design.fsm”, that contains the FSM encoding information in the
format required by LEC.

3. Type this LEC command on the “design.fsm” file:

read fsm encoding design.fsm

■ Does the VHDL RTL contain integers with constrained ranges in which the
binary encoding of the maximum integer value is not all 1’s (for example,
signal ctr : integer range 0 to 177)?

Type this LEC Setup command to read both the RTL and the netlist:

read design file.vhdl -vhdl -rangeconstraint

The -rangeconstraint option instructs LEC to treat an integer only within the
specified range.

■ Are there flip-flops or latches in the netlist with only the complemented (QB)
output connected and was the “map_inversion_through_registers” global set
to “true” within BuildGates Extreme? That is, was
‘set_global map_inversion_through_registers true’ issued in
BuildGates Extreme?

Type this LEC command:

set mapping method -phase

■ Does the RTL have an incomplete condition in a function/procedure/task
block? For example, in the following Verilog block a==2’b00 is undefined:
if (a == 2’b01)

 begin
December 2003 286 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Functional Verification with Verplex
 out = b ;

 end

 else if (a == 2’b10)

 begin

 out = c ;

 end

 else if (a == 2’b11)

 begin

 out = d ;

 end

BuildGates Extreme interprets this case as a dont care but LEC does not,
which can lead to mismatches being reported.

To interpret this as a dont care in LEC, read in the design using the -functiondefault
X option:

read design test.v -functiondefault X -golden
December 2003 287 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Functional Verification with Verplex
December 2003 288 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Index
A
adder architectures 53, 92

select 272
Ambit Database (ADB) 69
AmbitWare

component
control the architecture 280

flow 268
generators 269

Arithmetic Component Library
(AWACL) 266, 270

Datapath (AWDP) 266, 271
Multiplexer (AWMUX) 266, 273
Resource Shared Module

(AWRS) 266, 275
Sum-of-Products (AWSOP) 266,

274
libraries 70, 267, 276

Complex Arithmetic
(AWARITH) 267

Complex Logical (AWLOGIC) 267
create a report 281
define 277
delete or disable a component 279
predefined 277
Sequential Logic (AWSEQ) 267
set search order 277
use your own 279

architecture
adder 53

change 270
select 272

change
AmbitWare component 280

Datapath 176
datapath 29
define names 156
entity restrictions 162
error if not specified 214
multiplier 273
report 29
selection 53

specify with multiple operators 93
Verilog directive 92
VHDL directive 176

with resource sharing 65
VHDL entity 27, 154, 160
write 156

area
improve with THR 46
minimize by matching bit widths 58

arithmetic
component library (AWACL) 28
expression tree 46
expressions

redundant 51
sharing 58

logic unit (ALU) 24
packages 149

array
assign values 129
definitions 205
multidimensional 134
slices 207

asynchronous
set and reset pins

generating incorrect logic 125
asynchronous operation

Verilog 80
VHDL 168

ATL
Ambit Technology Library 273
cells 31, 73
extended library (XATL) 28

attributes
Ambit 145
Boolean-valued 183, 186
control FSM optimization 213
predefined VHDL 206, 208
preserve 30
VHDL 174, 188
VHDL FSM 245

B
binary netlist database 25, 30
bit-width matching 47
blackbox

link 253
block directives 102
December 2003 289 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
specify in Verilog 100
Boolean

equations 31, 54
gates 24

build
generic design

Verilog 72
VHDL 155

busses
eliminate in a netlist 118
write a 1-bit bus as a signal 219

C
carry-save inferences 65
case statement 54

extract logic 54
extract PLAs 275
generate 131
infer a latch

Verilog 83
VHDL 171

infer a register
VHDL 170

multi-way branching in Verilog 83
prevent a latch in VHDL 171
Verilog synthesis directive 93
VHDL synthesis directive 177

casex statement
report 87
using dont care conditions 88
Verilog 85

casez statement
Verilog 85

cells
ATL and XATL 31

cla (carry look ahead adder) 53, 92
clock

async in Verilog 98
edges

specifying in VHDL 169
gating candidates 123
signals

specifying in VHDL 169
code compliance

verify with the LRM 147
coding style

FSM 230
combinational

logic

Verilog 76
VHDL 164

loops
avoiding 62

Commands
delete_aware_component

delete a component from an
AmbitWare library 279

do_blast_busses
eliminate busses 118
remove bus objects 124

do_build_generic
build generic design 28
extract state transition table for a

FSM 225
functions 28
perform FSM extraction 56
RTL synthesis flow 25
transform Verilog design into

netlist 72
transform VHDL design into a

netlist 155
do_change_name

replace long module names 118
do_optimize

optimize design 28
RTL synthesis flow 25

get_hdl_file
return the name of the HDL source

file 36
get_hdl_hierarchy

display the design hierarchy 35
get_hdl_top_level

list names of all top level designs 35
get_hdl_type

get the language design is written
in 36

read_adb
exchange design data 27
load data from .adb file into

database 30
read_edif

exchange design data between CAD
systems 27

import EDIF designs 253
read_verilog 27

create a quick direct netlist for
designs containing only
structural constructs 71

read in design files 70
read_vhdl 27
December 2003 290 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
analyze and store information into a
library 149

report_aware_library
create a report of an AmbitWare

library 281
report_fsm

view state transition table for a
FSM 225

view valid states 238
report_resources

generate reports 42
view data about hardware

resources 29
report_vhdl_library

show mapping between library and
directory 149

reset_vhdl_library
reset and remove VHDL units 150

set_aware_component_property
disable a component 279

set_aware_library
create AmbitWare library 278

write_adb
RTL synthesis flow 25
save generic netlist for

optimization 30
write_edif

write out designs in EDIF
format 254

write_verilog
write netlist 74
write out a Verilog netlist 74

write_vhdl
write netlist 159

Common Sub-Expression Elimination
(CSE) 51

compiler directives
FSM 213
Verilog 104
Verilog 2001 138

component
arithmetic 24, 28
hardware 24
instantiations 160
Verilog 32
VHDL 32

components
Verilog 27
VHDL 27

constant
functions 137

constraints
Verilog and VHDL designs 32

constructs
Verilog 108
VHDL 199

csel (carry select adder) 53

D
Datapath

architectures 92
DP

supported constructs 108
implement components 272

Datapath for BuildGates Synthesis and
Cadence PKS 92

declare
ports and parameters 136

default value
assign in next_state

Verilog 84
VHDL 171

default values
globals 42
override

for generics 38
delay

reduce 46
directives

Finite State Machine (FSM) 213
parentheses in THR 48
Verilog

compiler 104
preprocessor 138
Synopsys 105
synthesis 90

VHDL
BuildGates Synthesis 194
Cadence (Ambit) and BuildGates

equivalents 193
Synopsys 191
synthesis 174

dont care conditions
FSM values 233
modeling in Verilog 86

E
elaborate design 38
December 2003 291 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Electronic Design Exchange Format
(EDIF) 69, 261

import EDIF designs 253
link blackboxes 253
represent power and ground

instances 259
nets 255
ports 257
when reading in EDIF designs 261
when writing out EDIF 254

write netlist 254
elsif directive 140
entities

reusing 151
VHDL 27

escape characters
eliminating in front of signal names 120

extensions
Verilog-2001 127

F
fcla (fast carry look ahead adder) 53
Finite State Machine (FSM)

check terminal state 227
coding styles 230

avoid simulation mismatch 233
compact 234
detailed 235
-reachable option 233
set state and output values 233
specific valid state for outputs 233

directives
VHDL state_vector 228

extract 56
state transition table 225

minimizing state for two or more
equivalent states 227

set compile directives for a VHDL finite
state 213

state vector encoding styles 226
structure 222
verification 237

avoid RTL and netlist
mismatches 241

avoid sequential optimizations 237
code default clause with a restricted

structure 237
state vector pragma 238
unknown values in simulation

output 242
use -reachable option for sequential

optimization 238
using a simulator 239
view valid states 238

view state transition table 225
flip-flop

modeling in Verilog 79
modeling in VHDL 166
specifying clock edges in VHDL 169
specifying clock signals in VHDL 169
synthesizing asynchronous set and reset

VHDL 168
unconnected in final netlist 212

floating nets 125
for

generate statement 133
statement

describe repetitive operations
Verilog 89
VHDL 171

supported forms
Verilog 89
VHDL 173

full case 94
functions and tasks

automatic 135
mapping

Verilog 96
VHDL 178

G
generate statements 129

case 129
for 129
if 129

generators
AmbitWare 266

generic
netlist

generate from a RTL model 24
simulate before optimization 31
writing and saving 25

values
passing from the command line 219

genvar 133
Global (reset_global)

reset the value of a global to its default
value 42
December 2003 292 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Globals (set_global) 42
aware_adder_architecture

set default adder architecture for final
adders 270

set default architecture 53
aware_dissolve_width

set size of components that are
dissolved 270

aware_implementation_selection
implement datapath elements 272

aware_library_search_order
set order aware libraries search for

components 277
aware_merge_operators

control operator merging 272
aware_multiplier_architecture

set default for multipliers 273
aware_mux_dissolve_size

reduce runtime by defining threshold
size 55

set size of multiplexer to be
dissolved 274

buscomp_generator
eliminate escape characters 120

dcn_module_max_length
use after do_build_generic to change

long module names 118
edif out_ground_net_property_value

specify property value for ground
net 255

edifin_ground_instance_name
specify ground instance name 262

edifin_ground_net_name
specify name for ground net 261

edifin_ground_net_property_name
specify property name for ground

net 261
edifin_ground_net_property_value

specify property value for ground
net 261

edifin_ground_pin_name
specify ground pin name 262

edifin_ground_port_name
specify ground port name 261

edifin_power_instance_name
specify power instance name 262

edifin_power_net_name
specify name for power net 261

edifin_power_net_property_name
specify property name for power

net 261

edifin_power_net_property_value
specify property value for power

net 261
edifin_power_pin_name

specify power pin name 261
edifin_power_port_name

specify power net name 261
edifout_ground_cell_name

specify name for ground cell 259
edifout_ground_net_name

specify name for ground net 255
edifout_ground_net_property_name

specify property name for ground
net 255

edifout_ground_pin_name
specify name for ground pin 259

edifout_ground_port_name
specify ground port name 257

edifout_power_and_ground_representat
ion

represent power and ground in
EDIF 255

edifout_power_cell_name
specify name of power cell 259

edifout_power_instance_name
specify name for power

instance 259
edifout_power_net_name

specify power net name 255
edifout_power_net_property_name

specify property name for power
net 255

edifout_power_net_property_value
specify property value for power

net 255
edifout_power_pin_name

specify power pin name 259
edifout_power_port_name

specify power port name 257
hdl_common_subexpression_eliminatio

n
remove redundant expressions 51

hdl_extract_sum_of_products_logic
extract logic from constant case

statements 275
reduce area 54

hdl_resource_sharing
reduce logic modules 45

hdl_tree_height_reduction
minimize delay of complex arithmetic

expressions 46
December 2003 293 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
hdl_undriven_net_value
connect undriven nets to specified

value 211
create a floating net 125

hdl_verilog_out_columns
specify line length 72

hdl_verilog_out_compact
write out compact files for Verilog

netlist 72
hdl_verilog_out_declare_implicit_wires

write declarations for implicit
wires 73

hdl_verilog_out_prim
write primitive Verilog operators 73

hdl_verilog_out_source_track
keep track of RTL source code 73

hdl_verilog_out_unconnected_style
select netlisting style for unconnected

instance pins 73
hdl_verilog_out_use_supply

specify constant signals as supply
signals 73

hdl_verilog_read_version
specify mode of parsing and turn on

language-specific error
checks 129

specify Verilog version 70
hdl_verilog_vpp_arg

pass arguments to Verilog
Preprocessor 71

hdl_vhdl_case
specify case of names 153

hdl_vhdl_environment
change the VHDL environment 144

hdl_vhdl_lrm_compliance
verify code compliance 147

hdl_vhdl_preferred_architecture
specify preferred architecture 154

hdl_vhdl_read_version
specify version to read designs 151

hdl_vhdl_reuse_units
import previously analyzed

entities 151
hdl_vhdl_write_architecture

write design entity 156
hdl_vhdl_write_architecture_name

specify name of entity
architecture 156

hdl_vhdl_write_bit_type
define bit-level type used in

netlist 157

specify whether netlist contains
std_logic or std_ulogic
ports 219

hdl_vhdl_write_components
specify component declarations for

technology cells 159
hdl_vhdl_write_entity

write out entities 157
hdl_vhdl_write_entity_name

specify entity name 157
hdl_vhdl_write_packages

specify library and use clauses that
precede modules written
out 158

hdl_vhdl_write_version
specify version of netlist written

out 158
hdl_write_top_down

specify how netlists are written
out 156

write out Verilog modules in top-down
or bottom-up order 74

naming_style
specify object name style 153
specify Verilog input and output

object names 70
set_vhdl_library

define a logical library 148
map WORK library 148

H
hierarchical

argument with report resources 29
block names 100
design order 27
list of modules 106
names 115
references 108
signal names 101
VHDL designs 160

I
IEEE

Language Reference Manual
(LRM) 128

redefine library to a new directory 149
referring to VHDL packages in
December 2003 294 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
netlists 158
resolution function 205
Standard logic packages

error 212
Standard VHDL Language Reference

Manual 142
vendor-specific packages 151
VHDL libraries 144

if
generate statement 130
statement

applying ICP 50
modeling in Verilog 82
negating the condition in Verilog 82

ifndef directive 139
Implicit Constant Propagation (ICP) 50
improve

design with high level optimizations 41
optimization 227, 230
slack and area 46

L
latch

infer
Verilog 78
VHDL 171

model a state transition table
Verilog 83
VHDL 171

prevent
Verilog 84, 85
VHDL 171

suppress
Verilog 94

libraries
AmbitWare 267
ATL and XATL 273
define

AmbitWare 277
VHDL 148

delete a component 279
map WORK 148
predefined

AmbitWare 277
common 146
standard 145
Synergy 145
Synopsys 145
VHDL 145

reset VHDL 150
use your own 279

line directive 139

M
meta-comment

VHDL 174
minimize

FSM state 227
modeling

arithmetic expressions for sharing 59
asynchronous set and reset signals

VHDL 168
bit-width matching 47
clock edges for flip-flops

VHDL 169
combinational logic

Verilog 76
VHDL 164

dont care conditions
Verilog 86, 88

flip-flop
Verilog 79
VHDL 166

for statement
Verilog 89
VHDL 173

if statement
Verilog 82
VHDL 169

latch using an incomplete case statement
Verilog 83
VHDL 171

register as a flip-flop
Verilog 79
VHDL 166

register as a latch
Verilog 78
VHDL 165

set and reset control logic
Verilog 99
VHDL 182

state transition table
Verilog 83
VHDL 171

synchronous set and reset signals
Verilog 101
VHDL 168

Verilog styles 75
December 2003 295 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
supported constructs 108
VHDL styles 163

supported constructs 199
module

replace long names 118
synthesize 36

multidimensional arrays 134
multiple top-level designs 37
multiplexer

ATL and XATL 273
case directive 95
optimization 55
remove redundant 61
set size 274

multiplier architecture 273

N
name

get HDL file names 153
mapping

resolving with formal
verification 118

modifying case 153
replace long module names 118
style of VHDL objects 153

nets
floating 125
undriven

extra generic logic 211

O
operator

merging
controlling 272
directive 103
with resource sharing 63

width limit 270, 271
optimize

design 29

P
parallel case

Verilog synthesis directive 95
parameter

override default values 40

passing by name
defparam statement 135
redefinition 135

parentheses
use with Tree Height Reduction 46

power and ground
represent in EDIF 254

predefined
AmbitWare libraries 277
attributes 245
VHDL

attributes 206, 208
Environments 144
libraries 145

preserve
instances without directives 121
set and reset signals 122

prevent
modules from being overwritten during

read_verilog 122
procedural assignments

Verilog 76
VHDL 166

programmable logic arrays (PLAs)
extract 275

propagate
constants 50
values 38

Q
query

HDL design hierarchy 33

R
reachable option 233
read

design data 27
libraries 25
Verilog design data 69
VHDL design data 148

register
infer

as a flip-flop
Verilog 79
VHDL 166

as a latch
Verilog 78
December 2003 296 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
VHDL 165
using case statements

VHDL 170
prune with D inputs constant 120
set and reset control 98

register inferencing 165
remove

bus objects 124
resource sharing 45

architecture selection 65
avoiding combinational loops 62
carry-save inferencing 65
matching bit widths 60
matching common HDL variables 60
minimizing area 59
minimizing MUX overhead 60
nested conditions 61
operator merging 63
removing redundant multiplexers 61
sharing across nested conditions 61
sharing hardware resources 58
sleep-mode operation 65

ripple adder 53
RTL Synthesis

basic steps 24
flow 25
Tcl script 25

S
save generic netlist 30
set and reset

generating incorrect logic 125
Verilog synthesis directive 98

signal
comma-separated list 136
directives

Verilog 101
simulate a generic netlist 31
simulation

avoid mismatch 233
slack

improve with resource sharing 46
sleep-mode operation 65
state transition table

extract and view for a FSM 225
modeling in VHDL 171

state vector
encoding options 226

state_vector directive

VHDL 228
Sum-of-Products (SOP)

generator 275
logic 54

supported
adder architectures 53
Verilog

modeling constructs 108
VHDL

Ambit directives and BuildGates
Equivalents 193

BuildGates Synthesis-only
directives 194

environments 144
libraries common 146
libraries standard 145
libraries Synergy environment 145
libraries Synopsys 145
modeling constructs 199
Synopsys directives 191

Synergy
predefined VHDL libraries 145

Synopsys
predefined VHDL libraries 145
supported Verilog directives 105
supported VHDL directives 191

synthesis directives
use with AmbitWare library

components 282
Verilog 90

architecture selection 92
case statement 93
full case 94
function and task 96
module template 96
multiplexer 95
parallel case 95
set and reset 98
synthesis on and off 91

VHDL 174
architecture selection 176
case statement 177
code selection 175
entity template 178
enumeration encoding 177
function and task mapping 178
operator merging 190
process 183
resolution function 179
set and reset 181
signal directives 186
December 2003 297 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
signed type 179
sync_reset_local 188
synthesis on and off 175
translate on and off 175
type conversion directives 180

synthesize
mixed VHDL and Verilog designs 32
multiple top-level designs 37
parameterized designs 38
specified module 36
VHDL designs 141

T
tasks

AmbitWare 268
EDIF 252
FSM 225
high-level optimizations 44
Verilog 69
VHDL 143

tcl
foreach 37
RTL synthesis script 25

template directive
Verilog module 96
VHDL entity 178

terminal state check 227
tree height reduction (THR) 46

U
unconditional loops

support 214

V
values

override 40
propagate 38
specify 40

variable
part select 137

vendor specific packages 149
Verilog

1995 129
2001 extensions 127
compiler directives 104

DP 70, 129
supported constructs 108

for statements 89
get file names, hierarchy, and top-level

designs 71
keep track of RTL source code 73
modeling styles 75
preprocessor (VPP) 71

directives 137, 138, 289
honoring defines in an include

file 123
passing arguments 71

read design data 69
related commands and globals 106
select netlist style for unconnected

pins 73
specify

line length 72
naming style 70
supply signals 73
version 70

store modules as components in
AmbitWare library 70

supported modeling constructs 108
Synopsys directives 105
synthesis directives 90

architecture selection 92
block directives 100
case statement 93
full case 94
function and task mapping 96
module template 96
multiplexer case directive 95
operator merging 103
parallel case directive 95
set and reset 98
signal 101
signals in a block directive 102
synthesis on and off 91

Verilog-2001
supported constructs 108

write
compact files 72
declarations for implicit wires 73
modules in top-down or bottom-up

order 74
netlist 72, 74
primitive operators 73

VHDL
analyze and store a file into a

library 149
December 2003 298 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
build generic design 155
change the environment 144
code state machines 245
concurrent statements 208
declarations 206
define

architecture name 156
logical libraries 148

design entities and configurations 204
hierarchical designs 159

component instantiations and
bindings 160

map WORK library 148
modeling styles 163
names 206
predefined

attributes 208
common environment 146
environments 144
libraries

standard environment 145
Synergy libraries 145
Synopsys environment 145

read design data 148
related commands and globals 196
reset library 150
restrictions on entities with multiple

architectures 162
reuse previously analyzed entities 151
select

bit-level type 157
preferred architectures 154

sequential statements 207
show mapping between libraries and

directory 149
specify

case of names 153
entity name 157
library and use clauses that precede

modules written out 158
object naming style 153
version 158

subprograms and packages 205
supported

Ambit and BuildGates
equivalents 193

constructs 199
Synopsys directives 191
synthesis-only directives 194

switch between versions 151
synthesis directive

function and task mapping 178
synthesis directives 174

architecture selection 176
case statement 177
code selection 175
entity template 178
enumeration encoding 177
operator merging 190
process 183
resolution function 179
set and reset 181
signal 186
signed type 179
synthesis on and off 175
translate on and off 175
type conversion 180

types 205
using arithmetic packages from

vendors 149
verify code compliance 147
write

architectures 156
component declarations 159
entities 157
netlist 159
out modules in top-down or bottom-up

order 156

W
wait

error on condition clause 215
WORK library 148
write

architectures 156
final netlist 25
generic netlist 25, 29, 204
Verilog netlist 72
VHDL

architectures 156
component declarations 159
entities 157
modules in top-down or bottom-up

order 156
netlist 156, 159

X
XATL
December 2003 299 Product Version 5.0.13

HDL Modeling for BuildGates Synthesis
Extended Amit Technology Library 273
XATL cells 31
December 2003 300 Product Version 5.0.13

	List of Examples
	List of Figures
	List of Tables
	Preface
	About This Manual
	Other Information Sources
	Documentation Conventions
	Using Menus
	Using Forms

	Modeling and Synthesizing HDL Designs
	Overview
	RTL Synthesis Flow

	Tasks
	Read Design Data
	Build Generic Design
	Optimize Design
	Report Resources
	Write Netlist

	Additional Information
	Synthesizing Mixed VHDL and Verilog Designs
	Querying the HDL Design Pool
	Synthesizing a Specified Module
	Synthesizing Multiple Top-Level Designs
	Synthesizing Parameterized Designs
	Synthesizing Designs with GTECH Cells

	Troubleshooting

	High-Level Optimizations
	Overview
	Tasks
	Resource Sharing
	Tree Height Reduction (THR)
	Implicit Constant Propagation (ICP)
	Common Sub-Expression Elimination (CSE)
	Architecture Selection
	Extraction of Sum-of-Products (SOP) Logic
	Multiplexer Optimization
	Finite State Machine (FSM) Extraction

	Additional Information
	Sharing Hardware Resources
	Minimizing Implementation Area by Matching Bit Widths
	Minimizing MUX Overhead by Matching Common HDL Variables
	Removing Redundant Multiplexers
	Sharing Multi-Function Operations
	Sharing Across Nested Conditions
	Avoiding Combinational Loops
	Interacting with Other Optimization Techniques

	Troubleshooting

	Synthesizing Verilog Designs
	Overview
	Tasks
	Read Design Data
	Build Generic Design
	Write Netlist

	Additional Information
	Verilog Modeling Styles
	Verilog Synthesis Directives

	Verilog Compiler Directives
	Non-Standard Verilog Compiler Directives
	Supported Synopsys Directives
	Verilog-Related Commands and Globals

	Supported Verilog Modeling Constructs
	Troubleshooting
	do_build_generic Generates Extremely Long Module Name
	Eliminating Busses in a Netlist
	Resolving Name Mapping Problem with Formal Verification
	Eliminating Unwanted Escape Characters in Front of Signal Names
	BuildGates Synthesis Does Not Prune Registers With Their D Inputs Constant
	Preserving Instances from the RTL Through the Optimization Flow
	Preserving the set and reset Signals Next to the D-input of the Flip Flops
	Preventing Modules from being Overwritten During read_verilog
	Using the \ Character in Verilog
	Low Power Synthesis Cannot Apply Inferred Enable Register Banks
	Honoring ‘defines in an ‘include File in a Verilog Pre-Processor
	Removing Bus Objects in the Hierarchy or Module
	Generating Incorrect Logic for Asynchronous set and reset Pins
	Floating Nets

	Verilog-2001 Extensions
	Overview
	Verilog-2001 Hardware Description Language Extensions
	Verilog-1995, Verilog-2001, and Verilog Datapath Modes of Parsing
	Generate Statements
	Multidimensional Arrays
	Automatic Functions and Tasks
	Parameter Passing by Name
	Comma-Separated Sensitivity List
	ANSI-Style Declarations
	Variable Part Selects
	Constant Functions
	New Preprocessor Directives

	Synthesizing VHDL Designs
	Overview
	Tasks
	Setting the Globals for Synthesizing VHDL Designs
	Read Design Data
	Build Generic Design
	Write Netlist

	Additional Information
	Hierarchical VHDL Designs
	VHDL Modeling Styles
	VHDL Synthesis Directives
	Supported Synopsys Directives
	Supported Cadence (Ambit) Directives and BuildGates Equivalents
	Supported BuildGates Synthesis-Only VHDL Directives
	VHDL-Related Commands and Globals
	VHDL Constructs

	Troubleshooting
	VHDL Netlist from write_vhdl Missing Generic Delay Parameters
	Cannot Infer a Bus Keeper Element Using a BLOCK/GUARDED Statement
	Extra Generic Logic Added to VHDL Netlist with Undriven Nets
	Undriven Ports and Nets Left After Optimization
	Error When Using IEEE Standard Logic Packages in BuildGates
	Unconnected Flip Flops in the Final Netlist
	Setting Finite State Machine Compile Directives for a VHDL Finite State
	Error During do_build_generic if Design Architecture is not Specified
	Unconditional Loops are not Supported if There is More than One Clock Edge
	Error on the Condition Clause of a wait Using read_vhdl
	VHDL LOOP Construct Runs Out of Memory
	Undeclared Identifier Error Message in VHDL Structural Netlists
	Locally Static Expressions in VHDL87 LRM and VHDL93 LRM
	VHDL93 LRM Definition of a Locally Static Expression
	Using the \ Character in VHDL
	Passing Generic Values from the Command Line
	Writing One-Bit Busses

	Optimizing and Structuring Finite State Machines
	Overview
	Tasks
	Model FSM
	Synthesize FSM

	Additional Information
	state_vector Directive
	FSM Coding Styles
	FSM Verification

	Troubleshooting
	Mux Inference Pragma is not Honored in a Finite State Machine
	A 3 state FSM Causes do_build_generic to Crash when extract_fsm is On
	Setting FSM Compile Directives for a VHDL Finite State
	State Machine Extraction Fails, by either Hanging or Running Out of Memory
	Coding State Machines in VHDL
	FSM Extraction Fails in the Presence of Incompletely Assigned Registers

	Using the EDIF Interface
	Overview
	Tasks
	Read Design Data
	Write Netlist
	Represent Power and Ground in EDIF

	Troubleshooting
	How to Export an EDIF Schematic for Viewing in a Different Tool

	AmbitWare
	Introduction
	Generators
	Libraries

	AmbitWare Flow
	AmbitWare Generators
	AWACL Generator
	AWDP Generator
	AWMUX Generator
	AWSOP Generator
	AWRS Generator

	AmbitWare Libraries
	Setting the Library Search Order
	Using Predefined AmbitWare Libraries
	Defining Your Own AmbitWare Libraries
	Using Synthesis Directives

	Functional Verification with Verplex
	Introduction
	Verplex Conformal Logical Equivalence Checker
	Non-Equivalency Resolutions

	Index

