
Datapath for BuildGates Synthesis and
Cadence PKS

Product Version 5.0.13
December 2003

 2000-2003 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134, USA

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. (Cadence) contained in
this document are attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s
trademarks, contact the corporate legal department at the address shown above or call 1-800-862-4522.

All other trademarks are the property of their respective holders.

Restricted Print Permission: This publication is protected by copyright and any unauthorized use of this
publication may violate copyright, trademark, and other laws. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted,
transmitted, or distributed in any way, without prior written permission from Cadence. This statement grants
you permission to print one (1) hard copy of this publication subject to the following conditions:

1. The publication may be used solely for personal, informational, and noncommercial purposes;
2. The publication may not be modified in any way;
3. Any copy of the publication or portion thereof must include all original copyright, trademark, and other

proprietary notices and this permission statement; and
4. Cadence reserves the right to revoke this authorization at any time, and any such use shall be

discontinued immediately upon written notice from Cadence.

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. The information contained herein is the proprietary and confidential
information of Cadence or its licensors, and is supplied subject to, and may be used only by Cadence’s
customer in accordance with, a written agreement between Cadence and its customer. Except as may be
explicitly set forth in such agreement, Cadence does not make, and expressly disclaims, any
representations or warranties as to the completeness, accuracy or usefulness of the information contained
in this document. Cadence does not warrant that use of such information will not infringe any third party
rights, nor does Cadence assume any liability for damages or costs of any kind that may result from use of
such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor.

Datapath for BuildGates Synthesis and Cadence PKS
Contents

List of Tables . 7

List of Examples . 9

List of Figures . 11

Preface . 13

About This Manual . 13
Other Information Sources . 13
Documentation Conventions . 15

Text Command Syntax . 15
Using Menus . 15
Using Forms . 16

1
Introduction . 17

What Does Datapath Synthesis Do? . 18
Who Benefits from Datapath Synthesis? . 19
Basic Technical Background . 19

Adder Architectures . 19
Multiplier Architectures . 19
Operator Merging . 21
Architecture Selection . 22

Datapath Synthesis Features . 22
Datapath Partitioning . 22
Operator Merging . 22
Implementation Selection . 23
Extended Language Interface . 23
December 2003 3 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
AmbitWare Library Components . 23

2
Getting Started . 25

Installation and Licensing . 26
Datapath Library Requirements . 26
Languages Supported by the Datapath Synthesis Feature . 26

3
The Datapath Synthesis Design Flow. 27

The Datapath Synthesis Design Flow . 28
Running Datapath Synthesis . 28

4
Datapath Synthesis Features . 31

Datapath Partitioning . 32
Automatic Partitioning . 32
Artificial Design Hierarchy Within Modules . 32

Operator Merging . 32
Datapath Operators . 32
Merging Criteria . 33
Typical Merging Scenarios . 34
Non-Mergeable Scenarios . 38
User Control . 41
Datapath Cluster . 43
Hierarchical Relationship . 44
Accessibility of Carrysave Words in RTL . 44
VHDL Carrysave for Datapath . 45

Arithmetic Architectures . 48
Adder Architectures . 48
Multiplier Encoding Architectures . 49
Divider Architectures . 49
Default Setting . 50
Global User Control . 50
December 2003 4 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Local User Control . 50
Implementation Selection . 51

Context-Driven Architecture Selection . 52
Target Library-Based Architecture Selection . 52
Timing-Driven Architecture Selection . 52
Timing-Driven Implementation Refinement . 53
Dynamic Generation . 54
User Control . 54

Extended Language Interface . 56
Verilog-DP . 56
VHDL-DP . 57

Automatic Pipelining . 58
AmbitWare Library Components . 58
DesignWare Library Components . 60

5
Datapath Coding Style . 63

Upper-Bit Truncation . 64
Lower-Bit Truncation . 66
Self-Determined Bit Width . 67
Common Sub-Expression Sharing and Operator Merging . 71
Inference versus Instantiation . 73

6
General RTL Coding Recommendations . 75

Starting From RTL . 76
Importing the Gate-Level Netlist . 76
Design Hierarchy . 76
Handcrafted Datapath Modules . 78
Carrysave Arithmetic . 78
Constant Multiplication . 79
Signed Arithmetic . 80
Signed Constant Multiplication . 81
Explicit Bit-Width Extension Techniques . 82
Tight Bit-Width Control . 83
December 2003 5 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Inference versus Instantiation . 84
IAWDP_ Modules . 85

7
Global Variables, Pragmas, and Commands. 87

Datapath-Related Global Variables . 88
aware_adder_architecture . 88
aware_carrysave_inferencing . 88
aware_implementation_selection . 89
aware_merge_operators . 89
aware_multiplier_architecture . 89
hdl_resource_sharing . 89
hdl_tree_height_reduction . 90

Datapath-Related Pragmas . 90
architecture . 90
merge_boundary . 91
carrysave . 91
no_carrysave . 91

Datapath-Related Commands . 91
Explanation of the report_resources Table . 91
Module Name (Module) . 93
File Name and Line Number (File and Line) . 94
Cluster Number (C) . 94
Architecture (Arch) . 94
Operator Type (Op) . 94
Input and Output Format (In and Out) . 95
Use Model . 97

Index. 105
December 2003 6 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
List of Tables
Table 4-1 Supported Adder Architectures. 48

Table 4-2 Supported Multiplier Encoding Architectures . 49

Table 4-3 Supported Divider Architectures . 49

Table 4-4 Verilog-DP Primitives . 56

Table 4-5 VHDL-DP Primitives . 57

Table 4-6 AWARITH Arithmetic AmbitWare Components. 58

Table 4-7 AWLOGIC Logic AmbitWare Components . 59

Table 4-8 AWSEQ Sequential AmbitWare Components. 60

Table 4-9 Arithmetic Components . 60

Table 4-10 Logic Components . 61

Table 4-11 Sequential Components . 62

Table 5-1 Rules of Self-determined Bit-Width in Verilog LRM . 68

Table 5-2 Recommended Components to Instantiate if You Cannot Infer 74
December 2003 7 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
December 2003 8 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
List of Examples
Example 4-1 Typical Expressions That The Tool Will Merge . 35

Example 4-2 Merging Across HDL Statements . 35

Example 4-3 Merging a Comparator with Arithmetic Operators . 35

Example 4-4 Merging One Upstream Operator to Multiple Downstream Operators 36

Example 4-5 Merging product-of-sum . 37

Example 4-6 Merging identical shift operators . 38

Example 4-7 Instantiated Operators Cannot Be Merged . 39

Example 4-8 Inferred Operators Can Be Merged . 39

Example 4-9 Gate-Level Netlist Cannot Be Merged. 39

Example 4-10 Non-Interacting Operators Cannot Be Merged . 40

Example 4-11 Carrysave Words in Verilog . 45

Example 4-12 Carrysave Words in VHDL . 45

Example 5-1 Operator Merging is Allowed if Truncation Does Not Affect Final Outcome . 64

Example 5-2 Arithmetic With Full Precision Facilitates Operator Merging 64

Example 5-3 Mixture of Implied Upper-Bit Truncation and Full Precision Arithmetic May Hurt
Operator Merging . 65

Example 5-4 Mixture of Implied Upper-Bit Truncation and Full-Precision Arithmetic May Still
Allow Operator Merging . 65

Example 5-5 Arithmetic With Lower-Bit Truncation, Truncation Before Addition 66

Example 5-6 Arithmetic With Lower-Bit Truncation, Truncation After Addition 66

Example 5-7 Arithmetic With Lower-Bit Truncation, Truncation Before Addition 67

Example 5-8 Arithmetic With Lower-Bit Truncation, Truncation After Addition 67

Example 5-9 Design That Triggers the Self-Determined Rule of Addition 68

Example 5-10 LRM Interpretation Example 5-9 on page 68 . 68

Example 5-11 Merging-Inclined Variation of Example 5-9 on page 68. 69

Example 5-12 Design That Triggers the Self-Determined Rule of Multiplication 69

Example 5-13 LRM Interpretation Example 5-12 on page 69 . 70

Example 5-14 Merging-Inclined Variation of Example 5-12 on page 69. 70
December 2003 9 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Example 5-15 Design That Triggers Both Operator Merging and Common Subexpression
Elimination . 71

Example 6-1 Keeping Operators in Separate Levels of the Design Hierarchy 77

Example 6-2 Inferring Operators at the Same Level of Design Hierarchy 77

Example 6-3 Inferring Operators at the Same Level of Design Hierarchy 77

Example 6-4 Signed Addition in Verilog-1995 . 80

Example 6-5 Signed Addition in Verilog-2001 . 80

Example 6-6 Signed Multiplication in Verilog-1995 . 81

Example 6-7 Signed Multiplication in Verilog-2001 . 81

Example 6-8 Explicit Bit-Width Extension For Unsigned Data . 82

Example 6-9 Alternative Coding For Example 6-8 on page 82. 82

Example 6-10 Explicit Bit-Width Extension For Signed Data . 82

Example 6-11 Alternative Coding For Example 6-10 on page 82. 83

Example 6-12 Tight Bit-Width Control to Minimize Individual Operators 83

Example 6-13 Recommended Coding for Example 6-12 on page 83 83

Example 6-14 Alternative Recommended Coding for Example 6-12 on page 83 84

Example 6-15 Steps to Protect AWDP_ Modules From Being Dissolved. 85

Example 7-1 Sample Design for the report_resources Table . 91

Example 7-2 Sample Design for report_resources Table, Input . 95

Example 7-3 Sample Design for report_resources Table, Output 96

Example 7-4 Signed Arithmetic by Unsigned Operators . 97

Example 7-5 Unsigned Arithmetic by Signed Operators . 98

Example 7-6 Design Using a Verilog-DP Datapath Primitive . 99

Example 7-7 Design Where the Multiplier is Not Merged With the Adders 99

Example 7-8 Design Where the Multiplier is Merged With the Adders. 100

Example 7-9 Datapath Partition With Multiple Clusters . 101

Example 7-10 Example With the Architecture Pragma . 102
December 2003 10 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
List of Figures
Figure 1-1 Carrysave Transformation . 20

Figure 1-2 Operator Merging . 21

Figure 3-1 Typical Synthesis Design Flow . 28

Figure 4-1 Timing-driven Architecture Selection . 52

Figure 4-2 Timing-Driven Implementation Refinement with Uniform Arrival Time 53

Figure 4-3 Timing-Driven Implementation Refinement with Skewed Arrival Time 53

Figure 5-1 Operator Merging of Example 5-15 on page 71 if CSE is Turned Off 71

Figure 5-2 Operator Merging of Example 5-15 on page 71 if CSE is Turned On 72

Figure 5-3 Operators Inferred for Example 5-15 on page 71 if CSE is Turned Off 72

Figure 5-4 Operators Inferred for Example 5-15 on page 71 if CSE is Turned On 73

Figure 7-1 report_resources Table for Example 7-1 on page 91 . 93

Figure 7-2 report_resources Table for Example 7-2 on page 95 . 96

Figure 7-3 report_resources Table for Example 7-3 on page 96 . 96

Figure 7-4 Reporting Signed Operators for Signed Arithmetic by Unsigned Operators . . . 98

Figure 7-5 Reporting Unsigned Operators for Unsigned Arithmetic by Signed Operators . 98

Figure 7-6 Reporting a Verilog-DP Datapath Primitive . 99

Figure 7-7 report_resources Table for Example 7-7 on page 99. 100

Figure 7-8 report_resources Table for Example 7-8 on page 100. 100

Figure 7-9 Multiple-Cluster Partition With Carrysave Architecture 102

Figure 7-10 Reporting a Pragma-Prescribed Architecture . 102
December 2003 11 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
December 2003 12 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Preface

This preface contains the following sections:

■ About This Manual on page 13

■ Other Information Sources on page 13

■ Documentation Conventions on page 15

About This Manual

This manual describes the datapath features of BuildGates Synthesis and Cadence PKS.

Other Information Sources

For more information about related products, you can consult the sources listed here. The
documents you have vary depending on your product licenses.

■ AmbitWare Component Reference

■ BuildGates Synthesis User Guide

■ CeltIC User Guide

■ Command Reference for BuildGates Synthesis and Cadence PKS

■ Delay Calculation Algorithm Guide

■ Design for Test Using BuildGates Synthesis and Cadence PKS

■ Distributed Processing for BuildGates Synthesis

■ Global Variable Reference for BuildGates Synthesis and Cadence PKS

■ Glossary for BuildGates Synthesis and Cadence PKS

■ GUI Guide for BuildGates Synthesis and Cadence PKS

■ HDL Modeling for BuildGates Synthesis

■ Low Power for BuildGates Synthesis and Cadence PKS
December 2003 13 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Preface
■ Low Power Synthesis Tutorial

■ Migration Guide for BuildGates Synthesis and Cadence PKS

■ Modeling Generation for Verilog 2001 and the Verilog Datapath Extension

■ PKS User Guide

■ SDC Constraints Support Guide

■ Synthesis Place-and-Route Flow Guide

■ Common Timing Engine (CTE) User Guide

■ Verilog Datapath Extension Reference

■ VHDL Datapath Package Reference

■ Known Problems and Solutions in BuildGates Synthesis

■ Know Problems and Solutions in Cadence PKS

■ What’s New in Cadence PKS

■ What’s New in BuildGates Synthesis

BuildGates synthesis is often used with other Cadence® tools during various design flows.
The following documents provide information about these tools and flows. Availability of these
documents depends on the product licenses your site has purchased.

■ Cadence Timing Library Format Reference

■ Cadence Pearl Timing Analyzer User Guide

■ Cadence General Constraint Format Reference

The following books are helpful references, but are not included with the CD-ROM
documentation:

■ IEEE 1364 Verilog HDL LRM

■ TCL Reference, Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley
Publishing Company
December 2003 14 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Preface
Documentation Conventions

Text Command Syntax

The list below describes the syntax conventions used for the BuildGates Synthesis text
interface commands.

literal Nonitalic words indicate keywords that you must enter literally.
These keywords represent command or option names.

argument Words in italics indicate user-defined arguments or information
for which you must substitute a name or a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument.

[] Brackets denote optional arguments. When used with OR-bars,
they enclose a list of choices from which you can choose one.

{ } Braces are used to indicate that a choice is required from the list
of arguments separated by OR-bars. You must choose one from
the list.

{ argument1 | argument2 | argument3 }

... Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,
[argument]...), you can specify zero or more arguments. If
the three dots are used without brackets (argument...), you
must specify at least one argument, but can specify more.

The pound sign precedes comments in command files.

Using Menus

GUI commands can take one of three forms.

CommandName A command name with no dots or arrow executes immediately.

CommandName… A command name with three dots displays a form for choosing
options.
December 2003 15 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Preface
CommandName -> A command name with a right arrow displays an additional menu
with more commands. Multiple layers of menus and commands
are presented in what are called command sequences, for
example: File – Import – LEF. In this example, you go to the File
menu, then the Import submenu, and, finally, the LEF command.

Using Forms

… A menu button that contains only three dots provides browsing
capability. When you select the browse button, a list of choices
appears.

Ok The Ok button executes the command and closes the form.

Cancel The Cancel button cancels the command and closes the form.

Defaults The Defaults button displays default values for options on the
form.

Apply The Apply button executes the command but does not close the
form.
December 2003 16 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
1
Introduction

This chapter contains the following sections:

■ What Does Datapath Synthesis Do? on page 18

■ Who Benefits from Datapath Synthesis? on page 19

■ Basic Technical Background on page 19

■ Datapath Synthesis Features on page 22
December 2003 17 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
What Does Datapath Synthesis Do?

Cadence datapath synthesis starts from RTL code. The input is RTL code that infers datapath
operators. Both datapath logic and control logic of the design are described in the same RTL
code, which can be written in either Verilog (IEEE Std 1364) or VHDL (IEEE Std 1076).
BuildGates® Synthesis and Cadence PKS reads in the RTL code and synthesizes it down to
gates.

The datapath operators that are recognized by the software are:

■ +, -, unary minus, *, /, %,==, !=, <, <=, >, >=, <<, >>

■ Verilog 2001: <<< and >>>

■ VHDL: rol, ror, and abs

■ Verilog Datapath Extension (Verilog-DP) primitives: $blend, $compge, $lead0,
$lead1, $sat, $abs, $sgnmult, $rotatel, $rotater, $iroundmult,
$itruncmult, $round

■ VHDL Datapath Package (VHDL-DP) primitives: dp_blend, dp_compge, dp_lead0,
dp_lead1, dp_sat, dp_sgnmult, dp_iroundmult, dp_itruncmult, dp_round,
dp_rem, dp_mod.

The major characteristics of Cadence datapath synthesis are:

■ Known good datapath structures built into the tool

■ Combines datapath synthesis and mainstream logic synthesis in one tool

■ Reads industry standard design description languages

■ Works in the industry standard ASIC design flow

■ Minimizes manual effort needed to get high quality implementations for datapath
intensive designs

Considering all variations of datapath methodologies and various views of the datapath
problem, this datapath synthesis tool does not incorporate:

■ Bit slicing

■ Layout generation or regular placement (tiling)

■ Algorithm refinement or behavioral synthesis

Instead, it focuses on operator-level optimization, built-in datapath knowledge, standard ASIC
flow, and automation.
December 2003 18 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
Who Benefits from Datapath Synthesis?

The BuildGates and PKS datapath synthesis features are meant for design projects that:

■ Do datapath designs in RTL.

■ Have dedicated arithmetic operations on the chip because the performance or power
consumption goal cannot be met by using an embedded processor to perform all the on-
chip computation.

■ Requires advanced datapath features like truncation, rounding and interpolation.

For example, any chip design that does digital signal processing can benefit from the use of
BuildGates Synthesis and Cadence PKS datapath solution.

Basic Technical Background

Adder Architectures

When implementing an adder, a synthesis tool does not treat it as one big truth table and rely
on logic synthesis and logic optimization to implement that truth table. Instead, the tool
usually employs a known, pre-defined scheme to compose the adder. Such a scheme is
known as the architecture of an adder.

There are various kinds of adder architectures. For example, the ripple adder is well known
to be small but slow; the carry-lookahead adder is known to be faster but bigger than the
ripple adder.

Multiplier Architectures

The gate-level implementation of a multiplier often includes a section that generates partial
products, a section that adds up the partial products but leaves them in carrysave form, and
a section that resolves the final carry propagation.

Booth Encoding in Partial Product Generation

A multiplication operation is the multiplicand multiplied by the multiplier.

In its simplest form, a partial product is the multiplicand multiplied by one of the bits in the
multiplier. Booth encoding is one of the ways to implement the partial product generator. It
December 2003 19 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
looks at multiple bits in the multiplier while generating each partial product. At the cost of a
bigger and slower partial product generator, this leads to a smaller number of partial products.

Depending on the width of the multiplicand and the multiplier, as well as the underlying
technology library, Booth encoding may make the multiplier faster or smaller, or both.

Carrysave Arithmetic

The most straightforward way to add up a set of numbers is to employ an adder tree. Each
adder consumes two numbers and produces one. The adder at the root of the tree
generates the final sum. Alternatively, the carrysave transformation technique can be applied
to greatly improve both timing and area. Figure 1-1 on page 20 illustrates the carrysave
transformation technique.

Figure 1-1 Carrysave Transformation

The diagram on the right shows how a special carrysave block can be used to perform
carrysave addition. By taking in three input numbers and generating two output numbers,
such a block adds up three numbers without resolving the carry propagation. At the end,
when only two numbers are left, this pair of numbers is said to be the sum in a carrysave
form. The carrysave block does not incur the delay of carry propagation. Its delay is small,
and is independent of the width of the operands.

A carry-propagate adder is needed to add the two numbers to produce the final sum.

+ + +

+

+

y

fedcba

+

a b c d e f

y

Σ Σ

Σ

Σ

Carry-propagate Carrysave
December 2003 20 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
This carrysave concept is applicable in various scenarios, such as vector-sum, which adds
up a set of numbers, or the Wallace tree, which adds up partial products inside of a multiplier.

Carry-Propagate Adder

When a signal in the carrysave form needs to be transformed into one number, a carry-
propagate adder is needed. This adder propagates the carry from the LSB (least significant
bit) to the MSB (most significant bit), and it is often referred to as the carry-propagate
adder. It can be implemented by any adder architecture.

Operator Merging

Timing analysis on a multiplier or a vector sum often identifies the carry-propagate adder as
a significant portion of the critical path. Therefore, by employing a carrysave-like technique,
arithmetic operators can be merged to greatly improve timing and area. Figure 1-2 on
page 21 shows how this works on a block computing y = a * b + c * d.

Figure 1-2 Operator Merging

Figure 1-2 (a) shows an implementation using discrete operators, that is, without operator
merging. It takes two multipliers and one adder to implement this functionality. Traditionally,
the synthesis tool works hard to optimize each of these discrete operators individually, without
taking into account how they interact with each other. Each of these operators has a carry-
propagate adder, and two carry-propagate adders end up on the critical path.

Figure 1-2 (b) shows your view after operator merging. The tool looks at the design at the
operator level, and recognizes that this is a cluster of arithmetic operators that can be
merged. Instead of implementing three discrete components, the tool merges them as one

a b c d

y

* *

+

a * b + c * d

y

a b c d

(a) (b)
December 2003 21 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
larger complex operator, and it optimizes the entire merged operator. By doing so, there is
only one carry-propagate adder on the critical path.

Note: the merged operator is no longer a multiplier or an adder. It is a complex operator
computing a * b + c * d.

Architecture Selection

The best architecture for a datapath operator is a function of the design constraints and its
surrounding logic. The choice should not be uniform among all operators since each operator
has its own unique surrounding. Manually selecting an architecture for each individual
operator in the design is time consuming and error prone. Architecture selection is best left
to the software because it can perform accurate timing analysis and make precise decisions
based on the delay calculations.

Datapath Synthesis Features

Datapath Partitioning

The RTL code describes both the control portion and the datapath portion of the design. Right
after reading in the RTL code, the tool partitions the datapath portions of the design from the
non-datapath portions of the design. The datapath portions of the design are synthesized
using the datapath synthesis engine. The non-datapath portions of the design are
synthesized using the traditional logic synthesis engine.

Important

Partitioning happens as an automatic process. No manual intervention is required.

Operator Merging

As long as the original functionality is preserved, the tool merges operators to reduce the
number of carry-propagate adders in the design in order to improve timing and area. The tool
may keep some internal signals in carrysave form.

While operator merging and carrysave arithmetic are applied automatically, manual control is
still available.
December 2003 22 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
Implementation Selection

For each operator in the design, merged or isolated, the tool selects the best architecture.
Furthermore, the implementation of the selected architecture is refined to optimize the
overall quality of results. These architecture selection and implementation refinement
decisions are a function of timing constraints, surrounding control logic, and the target
technology library.

For each kind of operator (for example, adders, multipliers, and shifters), knowledge of
multiple architectures are built into the tool. There is no hard-coded assumption about
surrounding timing requirements, or any special datapath cells being available in the library.
The final implementation is based on actual bit-width of the design. There is no static library
of components of pre-defined bit-width.

Extended Language Interface

Tools in mainstream commercial RTL synthesis use Verilog (IEEE std 1346) and VHDL (IEEE
Std 1076) as their hardware description languages. These languages, however, do not
support description of advanced datapath designs. For example, there is no rotate operator
in Verilog.

To address this deficiency, BuildGates Extreme Synthesis and Cadence PKS support an
extended language interface. For VHDL, Cadence offers VHDL Datapath Package
(VHDL-DP), an extra datapath package. For Verilog, Cadence supports Verilog Datapath
Extension (Verilog-DP). This extension enables description of advanced datapath designs in
the mainstream ASIC design flow.

Note: Verilog-DP is a superset of Verilog-2001. Verilog-2001 is a superset of Verilog-1995.
This evolution is backward compatible because the extensions are purely additive.

AmbitWare Library Components

There are pre-defined components that can be instantiated in the RTL code, using either
Verilog or VHDL. Some of them are commonly used functions that cannot be conveniently
described in standard languages. Refer to AmbitWare Library Components on page 58 and
DesignWare Library Components on page 60 in Chapter 4 for a thorough list of these
supported components. For unsupported DesignWare components, manually substitute the
AmbitWare equivalent.

The AmbitWare components include arithmetic components like pipelined multiplier, multiply-
add, square and vector sum; logic components like leading zero counter, encoder, decoder,
and rotate; and sequential components like shift register with taps.
December 2003 23 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Introduction
For complete descriptions of the AmbitWare Components, see AmbitWare Component
Reference.
December 2003 24 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
2
Getting Started

This chapter contains the following sections:

■ Installation and Licensing on page 26

■ Datapath Library Requirements on page 26

■ Languages Supported by the Datapath Synthesis Feature on page 26
December 2003 25 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Getting Started
Installation and Licensing

Datapath synthesis is included in BuildGates Extreme Synthesis and Cadence PKS, and
requires no additional installation or license.

For more information, see the “Before You Begin” chapters of BuildGates® Synthesis User
Guide and PKS User Guide.

Datapath Library Requirements

The datapath synthesis feature uses the same ASIC library as logic synthesis in either the
.alf, .tlf, or .lib format. Datapath synthesis uses the same set of ASIC cells as logic
synthesis and does not rely on special datapath cells in the library although it can benefit from
them. Also, the design is able to benefit from special cells contained in the library.

Languages Supported by the Datapath Synthesis Feature

■ Verilog 1995, Verilog 2001

■ VHDL 1987, VHDL 1993
December 2003 26 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
The Datapath Synthesis Design Flow
3
The Datapath Synthesis Design Flow

This chapter contains the following sections:

■ The Datapath Synthesis Design Flow on page 28

■ Running Datapath Synthesis on page 28
December 2003 27 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
The Datapath Synthesis Design Flow
The Datapath Synthesis Design Flow

Datapath synthesis operations in BuildGates Synthesis and Cadence PKS are transparent
and occur automatically, as shown in Figure 3-1 on page 28.

Figure 3-1 Typical Synthesis Design Flow

For more information on the BuildGates Synthesis design flow, see BuildGates Synthesis
User Guide.

For more information on the PKS design flow, see PKS User Guide.

Running Datapath Synthesis

1. Read the design data.

read_verilog filename

or

read_vhdl filename

2. Load the alf, tlf, or lib technology library.

read_alf filename

Reading design data

Reading technology libraries

Building a generic netlist

Setting timing constraints

Optimizing the design

Generating reports

Generating the final netlist

Datapath Synthesis

Datapath Synthesis
December 2003 28 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
The Datapath Synthesis Design Flow
or

read_tlf filename

3. Build the generic netlist.

do_build_generic

During do_build_generic:

❑ Datapath partitioning is performed.

❑ Initial datapath synthesis is performed for each datapath partition. Similarly, initial
logic synthesis is performed for the logic portion of the design.

❑ Operator merging is performed.

4. Generate an initial report showing the arithmetic resources in the design (optional).

report_resources -hierarchical

This command reports the following:

❑ The datapath partitions created during partitioning of the datapath and control
elements.

❑ The initial architecture of each operator.

Using this command here helps examine datapath partitions and clusters. For more
information on the report_resources command, see Chapter 7, “Global Variables,
Pragmas, and Commands”.

5. Set the timing constraints.

After building the generic netlist, you can set the timing constraints on the design.

6. Optimize the design.

do_optimize

During do_optimize:

❑ Implementation selection is exercised for each datapath partition.

❑ Datapath synthesis and optimization of each datapath partition is performed
iteratively.

7. Generate a second report showing the arithmetic resources in the design (optional).

report_resources -hierarchical

Using the report_resources command after do_optimize helps examine the
selected architectures.

8. Generate the final netlist.
December 2003 29 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
The Datapath Synthesis Design Flow
December 2003 30 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
4
Datapath Synthesis Features

This chapter contains the following sections:

■ Datapath Partitioning on page 32

■ Operator Merging on page 32

■ Arithmetic Architectures on page 48

■ Implementation Selection on page 51

■ Extended Language Interface on page 56

■ Automatic Pipelining on page 58

■ AmbitWare Library Components on page 58

■ DesignWare Library Components on page 60
December 2003 31 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Datapath Partitioning

Automatic Partitioning

During do_build_generic, the tool identifies all of the datapath operators in the design
and partitions the datapath portions of the design from the control logic in the design.

In this process, the tool looks at how the operators (datapath and non-datapath) interact with
each other in the design, and identifies all datapath partitions, each being a group of datapath
operators that are connected to each other. In general, a datapath partition is a set of
operators that can be merged. On a timing path through a datapath partition of arithmetic
operators, there is only one carry propagate adder within a datapath partition.

Two datapath operators are said to be connected or interacting with each other if the output
of one feeds into the input of another.

A datapath partition does not span across hierarchical boundaries. A datapath partition is
always a subset of a certain module defined in the RTL code. Therefore, operators in different
modules can not be merged.

Artificial Design Hierarchy Within Modules

A level of hierarchy is created for each datapath partition, which becomes a module in the
netlist. If you are using Cadence PKS or BuildGates Extreme Synthesis, the name of such a
module always starts with AWDP_. If you are using BuildGates Synthesis, the name of such a
module always starts with AWACL_.

Operator Merging

Although operator merging is automatic by default, mechanisms are provided to give you
control as well.

Datapath Operators

The following datapath operators are recognized by the tool:

■ Arithmetic: +, -, unary minus, *, /, %, abs (VHDL only)

■ Relational: ==, !=, <, <=, >, >=
December 2003 32 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
■ Shift and Rotate: <<, >>, <<< (Verilog 2001 only), >>> (Verilog 2001 only), rol (VHDL
only), ror (VHDL only)

■ Verilog Datapath Extension (Verilog-DP) Primitives: $blend(), $compge(),
$lead0(), $lead1(), $sat(), $abs(), $sgnmult(), $rotatel(), $rotater(),
$iroundmult(), $itruncmult(), $round(), $rem(), $mod()

Note: These operators are referred to as mergeable operators in this chapter.

In general, operator merging is applicable to datapath operators whose isolated
implementation includes a carry propagate adder. This includes all arithmetic operators and
relational operators. When the output of one such operator feeds into another datapath
operator, it becomes a candidate for operator merging. When the output of one mergeable
operator feeds into the input of another mergeable operator, it becomes a candidate for
operator merging.

Among the datapath primitives in Verilog-DP, the following three are suitable for operator
merging:

■ $abs()

■ $blend()

■ $sgnmult()

Note: The rotate operator is not mergeable.

Merging Criteria

The guiding principal of operator merging is that there is no distortion of functionality.

A fundamental characteristic of operator merging is that the merged arithmetic implies full-
precision at intermediary signals. Inside a datapath partition, an intermediary signal comes
from an upstream datapath operator and goes into one or more downstream datapath
operators. If an intermediary signal is truncated before flowing downstream, merging its
upstream and downstream operators may distort the overall functionality. Sometimes
merging can be blocked by truncation implied by the RTL code, as illustrated by examples in
Chapter 5, “Datapath Coding Style”.

When a set of datapath operators is identified as a candidate for merging, the tool looks at
each intermediary signal between them, and examines whether it is equipped with an
appropriate bit range to carry the needed precision of its computation. Any disqualified
intermediary signal blocks the merging of its upstream operator and its downstream
operator(s).
December 2003 33 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
A truncation may or may not block merging. In the process of qualifying an intermediary signal
for operator merging, the tool looks into the intention behind the RTL code and analyzes the
information content it needs to carry. The qualifying or disqualifying decision is based on the
required precision, instead of the HDL-implied precision suggested by its source operator
alone.

Operator merging does not span across hierarchical boundary. The output ports of a module
are never made in carrysave form. Operator merging does not span across clock cycles. A
signal feeding a register is never made in carrysave form.

Typical Merging Scenarios

The tools’s datapath synthesis does as much operator merging as is possible, while
maintaining the original functionality of the design.

The tool merges datapath operators in the following scenarios:

■ vector-sum

■ sum-of-product

■ product-of-sum

■ any combination of the above three basic scenarios

■ a relational operator comparing one or two incidences of the above four scenarios

■ chains of identical shift operators

If one mergeable operator has multiple fan-out, and one or more of the downstream operators
are mergeable operators, this upstream operator can be merged with each individual
downstream mergeable operators.

For each merging candidate of any scenario, merging may or may not take place, depending
on whether original functionality can be preserved.

Vector-Sum and Sum-of-Product

The purpose of merging operators is to eliminate intermediary carry propagate adders. This
can be applicable to a set of datapath operators interacting with each other. The most typical
scenarios are sum of product, vector sum, or a combination of both.
December 2003 34 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Example 4-1 Typical Expressions That The Tool Will Merge

■ Vector-Sum

a + b + c

■ Multiply-Add

a * b + c

■ Sum-of-Product

a * b + c * d

■ Combination of the above

a * b + c * d + e - f

Merging is not limited to operators inferred in the same HDL statement. As illustrated in
Example 4-2 on page 35, both of the HDL code segments have signal y implemented using
a single merged operator.

Example 4-2 Merging Across HDL Statements

■ Operators across HDL statements

p = a * b;

q = c * d;

y = p + q;

■ Operators in the same HDL statement

y = a * b + c * d;

Comparator

Another popular operator merging scenario is the comparison of the result of arithmetic
expressions, as illustrated in Example 4-3 on page 35.

Example 4-3 Merging a Comparator with Arithmetic Operators
wire [15:0] a, b, c, d;

wire [16:0] p, q;

wire is_greater, is_equal;

assign p = a + b;

assign q = c + d;

assign is_greater = (p > q);

assign is_equal = (p == q);
December 2003 35 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Multiple-Fanout

A more challenging scenario is when one mergeable operator feeds into more than one
operators downstream, as illustrate in Example 4-4 on page 36, where the one multiplier
needs to be merged with each of the two downstream adders.

Example 4-4 Merging One Upstream Operator to Multiple Downstream Operators
cs = a * b;

x = cs + c;

y = cs + d;

In this case, the internal signal (cs) is kept in carrysave form, and the downstream clusters
(x and y) add them up. This effectively merges the upstream multiplier with each of the two
downstream adders. There is only one carry propagate adder from input to each output.
December 2003 36 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Product-of-Sum

A scenario not as commonly seen is product-of-sum, (a+b)*c, as illustrated in Example 4-5
on page 37.

Example 4-5 Merging product-of-sum
wire [13:0] a, b, c, d;

wire [15:0] cs /* ambit synthesis carrysave */ , p;

wire [31:0] q;

wire [32:0] y;

assign cs = a + b + c + d;

assign y = cs * p + q;

In this case, the internal signal (cs) is kept in carrysave form, and the downstream multiplier
is equipped with a special architecture that takes care of inputs in carrysave form. This
effectively merges the upstream adders with the downstream multiplier. There is only one
carry propagate adder from each input to output.

There is a trade-off, however; this special architecture cannot do Booth encoding, and will
therefore lose whatever timing benefit may come from Booth encoding.

Furthermore, merging product-of-sum may potentially lead to significant area increase. It is
worthwhile only if timing is critical.

By default, the tool avoids merging a product-of-sum. Therefore an input operand of a
multiplier is, by default, a boundary of operator merging. If you want to merge a particular
product-of-sum, you need to prescribe a carrysave pragma for the particular intermediary
signal that you want to keep in carrysave format. This facilitates merging of its upstream
carry-propagate adder and its downstream multiplier, as illustrated in Example 4-5 on
page 37.
December 2003 37 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Shift Operators

Chains of identical shift operators can also be merged, as illustrated in Example Example 4-6
on page 38.

Example 4-6 Merging identical shift operators
input signed [5:0] a, b;

input signed [2:0] c;

output signed [5:0] z0,z1,z2,z3;

...

assign z0 = a << b << c << 3’b011 << 123;

assign z1 = a >> b >> c >> 3’b011 >> 23;

assign z2 = b <<< a <<< a <<< c;

assign z3 = c >>> a >>> b >>> c;

...

Merging will produce one cluster for each output port (z0, z1, z2, z3). However, the shift
operators in the following example will not be merged:

...

assign s0 = 290 <<< a <<< b >>> c;

...

The above assign statement will result in two clusters.

Non-Mergeable Scenarios

There are various occasions where the design had multiple datapath operators with no
truncation, but the tool does not merge them. The following sections are some typical
examples where datapath operators cannot be merged:

■ Non-Inferred, Instantiated

■ Non-Inferred, Gate-Level Netlist

■ Non-Interacting Datapath Operators
December 2003 38 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Non-Inferred, Instantiated

Operator merging works on inferred operators, but not instantiated ones. There are two
reasons for this. First, an instantiated module is a user-defined design hierarchy, which the
tool must honor. The tool is not allowed to automatically dissolve a user-defined module for
the purpose of operator merging. Second, the tool does not blindly guess the arithmetic
functionality of a user-defined module by its module name, its input/output port names, or its
input/output bit widths. Without knowing what it does, the tool does not know how to merge it.

Example 4-7 Instantiated Operators Cannot Be Merged
module test (a, b, c, d);

input [7:0] a, b, c, d;

wire [15:0] p, q;

output [15:0] y;

AWARITH_MULT #(8, 8) U1 (.A(a), .B(b), .TC(1’b0), .Z(p));

AWARITH_MULT #(8, 8) U1 (.A(c), .B(d), .TC(1’b0), .Z(q));

AWARITH_VECTADD #(16, 2, 16) U1 (.A({p, q}), .TC(1’b0), .Z(y));

endmodule

Example 4-8 Inferred Operators Can Be Merged
module test (a, b, c, d);

input [7:0] a, b, c, d;

wire [15:0] p, q;

output [15:0] y;

assign p = a * b;

assign q = c * d;

assign y = p + q;

endmodule

Non-Inferred, Gate-Level Netlist

Operator merging works on inferred operators. The tool knows exactly what they do and how
they can be merged. The tool cannot merge operators represented by imported gate-level
netlists, for two reasons. First, as with an instantiated component, the tool has to respect the
user- defined design hierarchy. Second, as with an instantiated component, the tool does not
blindly guess the functionality of a user-defined module, and does not try to reverse-engineer
the hidden functionality in a gate-level representation. For example, the tool cannot determine
whether or not Example 4-9 on page 39 is adding three numbers.

Example 4-9 Gate-Level Netlist Cannot Be Merged
 module add8 (y, a, b);
December 2003 39 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
 input [7:0] a, b;

 output [7:0] y;

 HA1 i0 (.A(a[0]), .B(b[0]), .CI(n0), .S(y[0]), .CO(n1));

 FA1 Ai1 (.A(a[1]), .B(b[1]), .CI(n1), .S(y[1]), .CO(n2));

 FA1 Ai2 (.A(a[2]), .B(b[2]), .CI(n2), .S(y[2]), .CO(n3));

 FA1 Ai3 (.A(a[3]), .B(b[3]), .CI(n3), .S(y[3]), .CO(n4));

 FA1 Ai4 (.A(a[4]), .B(b[4]), .CI(n4), .S(y[4]), .CO(n5));

 FA1 Ai5 (.A(a[5]), .B(b[5]), .CI(n5), .S(y[5]), .CO(n6));

 FA1 Ai6 (.A(a[6]), .B(b[6]), .CI(n6), .S(y[6]), .CO(n7));

 EO3 (.A(a[7]), .B(b[7]), .CI(n7), .S(y[7]));

 endmodule

 module test (y, a, b, c);

 input [7:0] a, b, c;

 wire [7:0] p;

 output [7:0] y;

 // assign y = a + b + c;

 add8 u0 (.a(a), .b(b), .y(p));

 add8 u1 (.a(p), .b(c), .y(y));

 endmodule

Non-Interacting Datapath Operators

There is often RTL code that has multiple datapath operators, but the software concludes that
they cannot be merged. Sometimes it is because these operators do not interact with each
other, as shown by the RTL code in Example 4-10 on page 40.

InExample 4-10 on page 40, the operators come from the same source. Their outputs go into
the same mux, although different pins. These operators are not interacting with each other.

Example 4-10 Non-Interacting Operators Cannot Be Merged
 case test (code)

 2’b00 : y = a + b;

 2’b01 : y = a - b;

 2’b10 : y = a * b;

 default : y = a + b;

 endcase
December 2003 40 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
User Control

By default, the operator merging operation is entirely automatic. However, global and local
user control is available through the use of global variables and pragmas.

Global User Control

Global user control can be applied by setting the values of the following global variables in
the TCL scripts.

■ set_global aware_merge_operators {true|false}

The default value is true.

■ set_global aware_carrysave_inferencing {true|false}

The default value is true.

aware_merge_operators masks aware_carrysave_inferencing. If
aware_merge_operators is set to false, aware_carrysave_inferencing treated
as false.

To be effective, these global variables must be set before do_build_generic.

Operator merging can be entirely turned off by using the following:

set_global aware_merge_operators false

Multiple-fanout scenarios can be specifically turned off by using the following:

set_global aware_carrysave_inferencing false

Local User Control

Local user control can be applied by adding the following pragmas in the RTL code.

■ ambit synthesis merge_boundary

■ ambit synthesis carrysave

■ ambit synthesis no_carrysave

These pragmas are used to force operator merging to be done in a specific way, to a particular
operator or signal. When added to the RTL code, they affect the operator or signal
immediately proceeding the pragma.
December 2003 41 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Operator merging can be forced to stop at an individual operator in the data flow, making it a
boundary of operator merging. This can be done by adding the synthesis directive (pragma),
merge_boundary, immediately following the operator in the RTL code. For example:

assign y = a * /* ambit synthesis merge_boundary */ b + c;

In the example above, the synthesis directive merge_boundary forces the tool to not merge
the * and the +. This synthesis directive tells the software to not merge the proceeding
operator with any operators it is driving. It does not prevent the proceeding operator from
being merged with operators driving it.

To force the tool to implement a specific signal in carrysave form, put a carrysave pragma
immediately after that signal in its declaration statement. For example:

wire [7:0] a, please_cs /* ambit synthesis carrysave */ , b;

To prohibit the tool from implementing a specific signal in carrysave form, put a
no_carrysave pragma immediately after that signal in its declaration statement. For
example:

wire [7:0] a, dont_cs /* ambit synthesis no_carrysave */ , b;

The carrysave pragma may or may not be honored, depending on whether the functionality
can be preserved. If not honored, a warning message is issued and that signal is not
implemented in carrysave form.

The no_carrysave pragma is effective only if it is annotating a signal that is the final output
of a set of operators in the sum-of-product scenario or the vector-sum scenario.

In VHDL, the carrysave related pragmas could be used as illustrated in the following
examples.

Carrysave Pragma Example
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity test is

port (

a,b,c,d,e : in signed(5 downto 0);

z0 : out signed(5 downto 0);

z1 : out signed(5 downto 0)

);

end;
December 2003 42 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
architecture A of test is

signal cs -- ambit synthesis carrysave

 : signed(5 downto 0);

begin

cs <= a+b+c+d;

z0 <= cs - e;

z1 <= cs + e;

end;

No Carrysave Pragma Example
library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity test is

port (

a,b,c,d,e : in signed(5 downto 0);

z0 : out signed(5 downto 0);

z1 : out signed(5 downto 0)

);

end;

architecture A of test is

signal cs -- ambit synthesis no_carrysave

 : signed(5 downto 0);

begin

cs <= a+b+c+d;

z0 <= cs - e;

z1 <= cs + e;

end;

Datapath Cluster

There are two scenarios where there can be multiple clusters in a partition:
December 2003 43 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
■ The product-of-sum scenario, where a carry propagate adder feeds into a multiplier, and
the intermediate signal is kept in carrysave form.

■ The multiple-fanout scenario, where a carry propagate adder fans out to multiple
arithmetic operators, and the intermediate signal is kept in carrysave form.

Hierarchical Relationship

A datapath cluster is a subset of a datapath partition, which is a subset of a design module.
A typical datapath partition usually has only one cluster. A datapath cluster consists of one or
more inferred datapath operators. When there are multiple datapath clusters in one datapath
partition, they are connected by way of carrysave signals.

Accessibility of Carrysave Words in RTL

Datapath synthesis in BuildGates Extreme allows you to access individual words of the
carrysave representation of a datapath signal in RTL. A signal represented in carrysave
format has two binary words in it, which give the binary representation of the signal when
added. The carrysave representation of a signal is often used during synthesis of datapath
computations to represent intermediate results. This helps to avoid the delays associated
with carry-propagation, which occurs when trying to compute the binary representation of
intermediate results. Any given binary signal has multiple (non-unique) carrysave
representations.

You may want to generate the intermediate signals (in RTL) in carrysave form and access
individual words of the carrysave representation in RTL. In this case, the designer wants to
separately manipulate individual words of the carrysave signal.

Note: Despite giving you more flexibility, accessing individual words of carrysave signals
creates the possibility of a non-unique netlist implementation. Since the carrysave
representation is non-unique and it is quite possible that different synthesis tools (or even
different modes of operation of the same tool) could lead to different values of the carrysave
representation of the same signal. Furthermore, there are verification complications if the
words of the carrysave signals are used to define the output of a design or a subblock of a
design.

For Verilog, BuildGates Extreme Synthesis provides a system carrysave function named
$carrysave with a single input and a single output. The input could be a single signal
name, constant, or an arithmetic expression. Based on the determined width of the input
(using Verilog’s rules for self determination of expression width), the width of the output will
be double the input width. Assuming that the input to the function is computed in carrysave
format, the output signal will be a concatenation of the two words of the carrysave result.
When the input to the function cannot be generated in carrysave format, the output value will
December 2003 44 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
be the concatenation of an all-zero signal with the binary value of the input, each being the
same width as the determined input width.

VHDL Carrysave for Datapath

For VHDL, BuildGates Extreme Synthesis provides a function called dp_carrysave as part
of the already available Cadence proprietary VHDL Datapath package named BASIC (See
the “Introduction” in the VHDL Datapath Package Reference). This function can be used
to access individual words of carrysave signals. The VHDL dp_carrysave function also
has a single input and a single output. The output width is twice the width of the input. The
input can be a single variable or signal name or constant or an expression representing
arithmetic operations. For those input situations, where generating the result is possible in
carrysave format, the output is the concatenation of the two words of the carrysave result. In
those situations where the input expression cannot produce the result in carrysave format,
the output is still twice as wide as the input; except for the fact that the left half of the output
is all 0 bits and right half of the output is the binary format equivalent of the result of the input
expression.

Note: To use the VHDL dp_carrysave function, you must include the BASIC package in
the RTL file with something like "use work.BASIC.all;" (See the VHDL Datapath Package
Reference for more information).

Example 4-11 Carrysave Words in Verilog
module testAdd (a, b, c, z0, z1);

input [3:0] a, b, c;

output [4:0] z0, z1;

wire [9:0] cs = $carrysave({1’b0,a} + {1’b0,b} + {1’b0,c});

assign z0 = cs[4:0];

assign z1 = cs[9:5];

endmodule

Output z0 and z1 contain the two words of the carrysave sum of inputs a, b, and c.

In the input expression of the carrysave, the width extension of the inputs is needed before
addition in order for the width of the expression to be 5. The addition will therefore be
computed to full precision. Without the explicit extension, the width of expression (a+b+c)
would be 4.

Example 4-12 Carrysave Words in VHDL
library ieee;

 use ieee.std_logic_1164.all;

 use ieee.numeric_std.all;
December 2003 45 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
 use work.BASIC.all;

 entity test is

 port (

 a,b,c,d : in signed(5 downto 0);

 z0 : out signed(5 downto 0)

);

 end;

 architecture A of test is

 signal cs0 : signed(11 downto 0);

 signal cs1 : signed(13 downto 0);

 signal tmpz1 : signed(5 downto 0);

 begin

 cs0 <= dp_carrysave(a+b+c+d);

 z0 <= cs0(11 downto 6) + cs0(5 downto 0);

 end;

Note: The $carrysave function is implemented as part of the VerilogDP extension of
Standard Verilog. For more information, see “Datapath Function Primitives” in the Verilog
Datapath Extension Reference. Therefore, its usage would require setting the
hdl_verilog_read_version global to dp (See HDL Globals chapter of the Global
Variable Reference Guide for more information on the global).

If the input expression cannot produce carrysave, then BuildGates Extreme Synthesis will
produce a warning and proceed. The output in such cases will still be double the input width:
The left half of the output vector will be all 0 bits and the right half will be the binary equivalent
of the resulting input.

Carrysave Error Reporting

BuildGates Extreme expects the designer to use the carrysave function to access individual
words of the carrysave signal and individually manipulate them. Therefore, BuildGates
Extreme does not produce a warning if the designer is working with individual vectors that
seem to contradict the common sense usage of individual carrysave vectors. The following
are Verilog scenerios where BuildGates Extreme Synthesis does not issue a warning. The
same situation applies for analogous RTL scenerios in VHDL.

■ BuildGates Extreme Synthesis will not issue the warning "Both the individual vector
signals must be signed type..." or "Both the individual vector signals must be of same
width..." if the RTL is like the following example:
December 2003 46 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
module foo(...);

...

wire [4:0] p_c;

wire signed [4:0] p_s;

wire [5:0] x;

wire [2:0] y;

...

assign {p_c,p_s} = $carrysave(a*b);

...

assign {x,y} = $carrysave(a*b);

...

endmodule

■ BuildGates Extreme will not issue the warning "Both the vectors of a carrysave signal
must be handled with identical operations", if the RTL is like the following example:

module foo(...);

...

wire [4:0] p_c;

wire signed [4:0] p_s;

...

assign {p_c, p_s} = $carrysave(a*b);

...

assign x_p_c = p_c << 5;

assign x_p_s = p_s + 10;

...

endmodule

■ BuildGates Extreme will not issue the warning "Vectors of a carrysave signal cannot be
used as module ports.", if the RTL is like the following example:

module foo(...);

...

wire [4:0] p_c;

wire signed [4:0] p_s;

...

assign {p_c, p_s} = $carrysave(a*b);

...

bar i_0(p_c, p_s, x, result);

...

endmodule
December 2003 47 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Arithmetic Architectures

In this book, adder architecture refers to the architecture of:

■ An adder or a subtractor

■ The final carry-propagate adder of a multiplier

■ The final carry-propagate adder of a merged operator

Multiplier encoding architecture refers to whether a Booth encoding scheme is employed
to generate the partial products inside of a multiplier. The construction of a multiplier is
affected by both its adder architecture and its multiplier encoding architecture.

Divider architecture refers to the radix divider employed for division. The available dividers
are:

■ radix_2

■ radix_4

Adder Architectures

Cadence PKS and BuildGates Extreme Synthesis support four carry-propagate adder
architectures that trade off between area and timing. Each architecture has its distinct
advantages as listed in Table 4-1 on page 48.
Table 4-1 Supported Adder Architectures

Architecture Description

fcla A fast carry look-ahead structure.

cla A carry look-ahead structure.

csel A carry select structure.

ripple A ripple-adder structure.

Provides a solution with the smallest area. A very dense structure
with the least total wire length.
December 2003 48 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Multiplier Encoding Architectures

When datapath synthesis synthesizes a multiplier, the partial product generator can be
implemented with or without using the Booth encoding scheme. Table 4-2 on page 49
summarizes these two choices.

Divider Architectures

When datapath synthesis synthesizes a divider, the number of stages employed is
determined by the divider type.

Table 4-2 Supported Multiplier Encoding Architectures

Architecture Description

non_booth A regular multiplier.

The number of partial products equals the number of bits in
multiplier.

booth A Booth-encoded multiplier.

The number of partial products equals half the number of bits in
multiplier. Partial product generation is bigger and slower. Carrysave
reduction is smaller and faster.

Table 4-3 Supported Divider Architectures

Architecture Description

radix_2 A regular divider.

The number of stages equals the number of bits in the
dividend.

radix_4 A higher radix divider.

The number of stages is half the number of bits in the
dividend. It is faster than the regular divider but has larger
area.
December 2003 49 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Default Setting

For inferred arithmetic operators:

■ The default initial adder architecture is fcla

■ The default initial multiplier encoding architecture is auto

■ The default divider architecture is radix_4.

auto means that for each individual multiplier, the tool makes a choice between booth and
non_booth, based on the size and sign of the operands and the library.

For instantiated arithmetic AmbitWare Components:

■ The default divider architecture is radix_4.

Global User Control

There are three global variables that affect (initial) architectures of arithmetic operators on a
global basis:

■ set_global aware_adder_architecture ripple|csel|cla|fcla

The default value is set to fcla.

■ set_global aware_multiplier_architecture auto|booth|non_booth

The default value is set to auto.

■ set_global aware_divider_architecture radix_2|radix_4

To control the adder/multiplier architectures using set_global in the TCL script, do it before
do_build_generic. For example:

....

set_global aware_adder_architecture fcla

set_global aware_multiplier_architecture booth

....

do_build_generic

....

Local User Control

There is one synthesis directive (pragma) that affects the architecture of individual arithmetic
operators:
December 2003 50 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
// ambit synthesis architecture = [ripple|csel|cla|fcla],[booth|non_booth]

Note: Any one pragma must not specify more that one adder architecture nor more than
one multiplier encoding architecture, in order to prevent conflict. One adder architecture
and one multiplier encoding architecture can exist in the same pragma.

For an adder or a subtractor, the adder architecture can be prescribed by the above pragma.
For example:

// ambit synthesis architecture = csel

For a multiplier, the adder architecture or multiplier encoding architecture can be prescribed
by this pragma. For example:

// ambit synthesis architecture = csel

// ambit synthesis architecture = booth

// ambit synthesis architecture = non_booth,fcla

Note: The architecture pragma does not take auto as a prescription.

To control the adder or multiplier architecture of an individual operator using a synthesis
directive in the RTL code, do it immediately following that operator in the RTL code. For
example:

assign y = a + b + /* ambit synthesis architecture = cla */ c;

assign y = a * /* ambit synthesis architecture = booth,cla */ b + c;

Implementation Selection

The best architecture for a datapath operator is a function of the design constraints plus its
surrounding logic. The choice should not be uniform among all operators since each operator
has its own unique surroundings. Manually selecting an architecture for each individual
operator in the design is time consuming and error prone. Architecture selection is best left
to the software because it can perform accurate timing analysis and make precise decisions
based on the delay calculations.

For each datapath partition, the software selects the best implementation based on the
overall timing constraints, the surrounding logic, the design context, and the cells available in
the target library. The implementation selection process is timing-driven as well as context-
driven. During each iteration in the optimization process for each datapath block, the software
re-evaluates the timing context and may change its architecture as well as refine its detailed
implementation.

Although Implementation selection is automatic by default, user control mechanisms are
provided.
December 2003 51 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Context-Driven Architecture Selection

Part of the criteria affecting implementation selection is the design context. For example, if
there is a constant multiplier, the software will automatically do a shift-and-add. The tool will
not implement a full-blown multiplier as a starting point and use constant propagation to
optimize it. Another example is the partial product encoding scheme inside of a multiplier. The
tool chooses between the booth and non_booth architectures based on the size and
signedness of the operands and the library.

Target Library-Based Architecture Selection

Architecture selection is affected by the target library, as well. During the set up stage, the tool
develops its architecture preference based on what cells are available in the library, as well
as the timing and area characteristics of those cells. A good example is the choice between
booth and non_booth encoding schemes.

Timing-Driven Architecture Selection

If an operator sits on the critical path, you want a fast architecture. If an operator sits off the
critical path, you want a small architecture that meets timing. The tool always tries to honor
timing with the smallest possible area.

Figure 4-1 on page 52 is a simplified scenario of timing-driven architecture selection. The
adder at the upper half of the figure is more timing critical and may be implemented using a
faster architecture like cla. The adder at the lower half of the figure has more slack, and can
be implemented using a smaller architecture like ripple. The tool evaluates the situation
during every iteration of optimization and may change the architecture at any time if it helps
timing or area.

Figure 4-1 Timing-driven Architecture Selection

+

+

*

cla

ripple

critical path
December 2003 52 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Timing-Driven Implementation Refinement

Figure 4-2 on page 53 is a simplified scenario of timing-driven implementation refinement. To
simplify the example, assume there was no operator merging. If all inputs have the same
arrival time, the software may implement what is shown in Figure 4-2 on page 53. This
reduces the levels of logic from input to output and should lead to the best timing. However,
if the input arrival time is skewed, as shown in Figure 4-3 on page 53, the software adjusts
the order of addition accordingly, from iteration-to-iteration, to achieve the best timing.

Figure 4-2 Timing-Driven Implementation Refinement with Uniform Arrival Time

Figure 4-3 Timing-Driven Implementation Refinement with Skewed Arrival Time

If this adder tree is part of a bigger design and the input skew must be derived from the
surrounding logic, it is hard to manually predict the skew and decide the configuration and
order of the adder tree. An adder tree like this can be found as part of the carrysave reduction
tree inside of a multiplier, where timing from the surrounding logic is very difficult to calculate
manually. The software is better equipped for the job because it can calculate the timing
information dynamically.

The ripple architecture is available for magnitude comparators (AWGT,AWLT, AWGE, AWLE).
It is similar to the ripple architecture for adders. The default architecture of magnitude

input port arrival time

a 0.0 ns

b 0.0 ns

c 0.0 ns

d 0.0 ns

e 0.0 ns

f 0.0 ns

input port arrival time

a 0.2 ns

b 3.5 ns

c 0.4 ns

d 1.6 ns

e 0.3 ns

f 0.4 ns

a
b

c
d

e
f

y

+
+

+

+

+

a
e

c
f

d
b y

+

+
+

+

+

December 2003 53 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
comparators is cla. Generally, a comparator implemented with the ripple architecture is
smaller but slower when compared to the cla implementation. During the component
implementation selection, the tool can change the architectures of the comparators that are
off the critical path from cla to ripple in order to save area provided that the timing
constraints are still honored.

Dynamic Generation

Generation of the datapath block happens dynamically.

All of these architecture selection and implementation selection procedures occur during
optimization. The actual implementation of a datapath block may change from iteration to
iteration based on the changing relationship with the current state of the surrounding logic.
There is no built-in static architecture or implementation. There is no simplified assumption
about surrounding timing profile.

User Control

Although the tool automatically chooses the best implementation for the design, user control
is available to manually do the following:

■ Globally turn on and off implementation selection

■ Globally specify initial adder architecture

■ Globally specify initial multiplier encoding scheme

■ Individually specify architecture of an individual operator

Global User Control

■ To control implementation selection globally, use the following command:

set_global aware_implementation_selection [true|false]

The default value is set to true. Implementation selection can be entirely turned off by
setting the value to false before do_optimize.

■ To control initial adder architectures, use the following command:

set_global aware_adder_architecture [ripple|csel|cla|fcla]

■ To control initial multiplier encoding architectures, use the following command:

set_global aware_multiplier_architecture [auto|booth|non_booth]
December 2003 54 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
■ If your design contains AmbitWare AWARITH_PIPEMULT components which could
potentially go through implementation selection during optimization, please keep in mind
that the implementation selection of such components may interact with scan chains that
may have been inserted in the design during the early stage of optimization. Since it is
essential to reconfigure scan chains after optimization, use the following global to set the
scan chain connection mode to tieback prior to initial optimization:

set_global dft_scan_path_connect tieback

This will ensure that no chains exist when the pipelined multiplier is undergoing
optimization by implementation selection.

You also need to use the do_xform_connect_scan command to reinsert or
reconfigure scan chains after optimization of the pipelined multiplier is completed.

The following is a typical DFT flow for a design containing a pipelined multiplier:

...

<read library>

<read design>

do_build_generic

<set design and timing constraints>

<set dft constraints>

check_dft_rules

set_global dft_scan_path_connect tieback

do_optimize ...

set_global dft_scan_path_connect chain

do_xform_connect_scan

...

Local User Control

To control implementation selection locally, add pragmas to the RTL code. The pragma that
affects architecture of individual arithmetic operators is:

// ambit synthesis architecture = [ripple|csel|cla|fcla],[booth|non_booth]

An operator that is annotated with an architecture pragma is exempt from the architecture
selection process because the tool honors user-prescribed architecture. However, it still goes
through implementation refinement.

Note: A side effect of using this architecture pragma is that the operator becomes a boundary
of operator merging. To honor the user-specified architecture, the tool does not merge it with
any operator it drives.
December 2003 55 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Extended Language Interface

To enable description and synthesis of advanced datapath designs, BuildGates and Cadence
PKS supports an extended language interface. For Verilog, the tool supports a datapath
extension to the Verilog-2001 standard, called Verilog Datapath Extension (Verilog-DP). For
VHDL, the tool adds a datapath package, called VHDL Datapath Package (VHDL-DP), for this
purpose.

This extended language interface enables concise description of advanced, complex
datapath designs, and makes possible the integration of advanced datapath synthesis and
logic synthesis in one tool.

Verilog-DP

To enable advanced datapath designs using Verilog, BuildGates Synthesis and Cadence
PKS support a datapath extension of the Verilog standard, called Verilog-DP. Verilog-DP is a
superset of Verilog-2001. Verilog-2001 is a superset of Verilog-1995. This evolution is
backward compatible because the extensions are purely additive.

■ The major Verilog-DP features are:

■ Enhanced signal attributes and querying functions.

■ Attribute inheritance.

■ Explicit replication and conditional compilation.

■ Array signals and operations.

■ Enhanced datapath primitives.

Table 4-4 on page 56 lists the 12 datapath primitives in Verilog-DP.
Table 4-4 Verilog-DP Primitives

Syntax Function

$blend() Alpha blender

$abs() Absolute values

$sgnmult() If (s) then -X else X

$compge() Compare, equal and greater

$lead0() Counting leading 0

$lead1() Counting leading 1
December 2003 56 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
For more information about Verilog-DP, see Verilog®Datapath Extension Reference.

VHDL-DP

To enable advanced datapath designs using VHDL, BuildGates Synthesis and Cadence PKS
support a special datapath package, called VHDL-DP. VHDL-DP offers exactly the same
capability as Verilog-DP.

Table 4-5 on page 57 lists the 9 datapath primitives in VHDL-DP.

For more information about VHDL-DP, see VHDL Datapath Package Reference.

$sat() Saturation

$rotatel() Rotate left

$rotater() Rotate right

$round() Rounding

$iroundmult() Mult with internal rounding

$itruncmult() Mult with internal truncation

Table 4-5 VHDL-DP Primitives

Syntax Function

dp_blend Alpha blender

dp_sgnmult If (s) then -X else X

dp_compge Compare, equal and greater

dp_lead0 Counting leading 0

dP_lead1 Counting leading 1

dp_sat Saturation

dp_round Rounding

dp_iroundmult Mult with internal rounding

dp_itruncmult Mult with internal truncation

Table 4-4 Verilog-DP Primitives, continued

Syntax Function
December 2003 57 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Automatic Pipelining

The tool can pipeline a block of logic, datapath or non-datapath. It takes a block of
combinational gates plus the needed number of stages of registers. The tool automatically
moves the registers to the right location in the cloud of combinational gates, creating a
pipelined block.

For more information about automatic pipelining, see BuildGates Synthesis User Guide.

AmbitWare Library Components

The following AmbitWare library components are included with BuildGates Synthesis and
Cadence PKS:
Table 4-6 AWARITH Arithmetic AmbitWare Components

Component Name Functionality

AWARITH_ABS Absolute Value

AWARITH_ADD Adder

AWARITH_ADDSUB Adder-Subtractor

AWARITH_BLEND Blender

AWARITH_COMP6 6-Function Comparator

AWARITH_COMPGE 2-Function Comparator

AWARITH_DEC Decrementer

AWARITH_DIV Divider

AWARITH_EXTEND Arithmetic Extension

AWARITH_INC Incrementer

AWARITH_INCDEC Incrementor-Decrementor

AWARITH_MULT Multiplier

AWARITH_MULTADD Multiplier-Adder

AWARITH_OVFDET Overflow Detector

AWARITH_PIPEMULT Pipelined Multiplier

AWARITH_PIPEREG Pipeline Register/Delay Line

AWARITH_ROUND Rounder
December 2003 58 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
AWARITH_SATURATE Saturater

AWARITH_SQUARE Squarer

AWARITH_SUB Subtracter

AWARITH_SUMPROD Generalized Sum of Products

AWARITH_VECTADD Vector Adder

Table 4-7 AWLOGIC Logic AmbitWare Components

Component Name Functionality

AWLOGIC_ASHIFTR Arithmetic Shift Right

AWLOGIC_BINENC Binary Encoder

AWLOGIC_DECODE Decoder

AWLOGIC_LSHIFTL Logical Shift Left

AWLOGIC_LSHIFTR Logical Shift Right

AWLOGIC_LOGICOP Logical Operation

AWLOGIC_LZCOUNT Leading Zero Counter

AWLOGIC_MUX Generalized Multiplexer

AWLOGIC_NORM0 Leading 0 Normalizer

AWLOGIC_NORM1 Leading 1 Normalizer

AWLOGIC_PRIENC Priority Encoder

AWLOGIC_ROTATEL Rotate Left

AWLOGIC_ROTATER Rotate Right

AWLOGIC_SHIFTDIR Three Function Shifter

Table 4-6 AWARITH Arithmetic AmbitWare Components, continued

Component Name Functionality
December 2003 59 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
For component specifications, refer to AmbitWare Component Reference.

For more information on how the AmbitWare components function in the BuildGates
synthesis framework, refer to Introduction to Ambitware.

DesignWare Library Components

The following DesignWare library components are automatically recognized by BuildGates
and Cadence PKS:

Table 4-8 AWSEQ Sequential AmbitWare Components

Component Name Functionality

AWSEQ_FF Flip-Flop

AWSEQ_FFEN Flip-Flop with Load Enable

AWSEQ_FFRST Flip-Flop with Synchronous Reset

AWSEQ_FFRSTEN Flip-Flop with Synchronous Reset &
Enable

AWSEQ_FFTAPS Shift Register with Taps

AWSEQ_FFTAPSEN Shift Register with Taps and Load Enable

Table 4-9 Arithmetic Components

Component Name Functionality

DW01_absval Absolute Value

DW01_add Adder

DW01_addsub Adder-Subtractor

DW01_cmp2 Two-function Comparator

DW01_cmp6 Six-function Comparator

DW01_dec Decrementer

DW_div Combinational Divider with
Quotient and Remainder

DW01_inc Incrementer

DW01_incdec Incrementer-Decrementer
December 2003 60 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
DW02_mac Multiplier-Accumulator

DW02_mult Multiplier

DW02_mult_2_stage Two-stage Pipelined Multiplier

DW02_mult_3_stage Three-stage Pipelined multiplier

DW02_mult_4_stage Four-stage Pipelined multiplier

DW02_mult_5_stage Five-stage Pipelined multiplier

DW02_mult_6_stage Six-stage Pipelined multiplier

DW02_prod_sum Generalized Sum of Products

DW02_prod_sum1 Multiplier-Adder

DW_square Integer Squarer

DW01_sub Subtractor

DW02_sum Vector Adder

Table 4-10 Logic Components

Component Name Functionality

DW01_ash Arithmetic Shifter

DW01_binenc Binary Encoder

DW01_bsh (Rotate Left) Barrel Shifter

DW01_decode Decoder

DW01_mux_any Universal Multiplexer

DW01_prienc Priority Encoder

Table 4-9 Arithmetic Components

Component Name Functionality

DW01_absval Absolute Value

DW01_add Adder
December 2003 61 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Synthesis Features
Table 4-11 Sequential Components

Component Names Functionality

DW03_pipe_reg Pipeline Register

DW03_reg_s_pl Register with Synchronous Reset and Enable

DW03_shftreg Shift Register
December 2003 62 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
5
Datapath Coding Style

This chapter contains the following sections:

■ Upper-Bit Truncation on page 64

■ Lower-Bit Truncation on page 66

■ Self-Determined Bit Width on page 67

■ Common Sub-Expression Sharing and Operator Merging on page 71

■ Inference versus Instantiation on page 73
December 2003 63 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Immediately after reading in the RTL code, the tool separates datapath computations from
control-related logic and creates one datapath partition for each set of merged datapath
operators. When examining opportunities to merge operators, the highest priority is to
preserve the original functionality. More merging usually leads to better QOR. Based on a set
of intelligent rules, the tool performs as much operator merging as possible.

However, the tool does not understand the overall design specification behind the RTL code.
There are scenarios where RTL coding style affects merging activities, and therefore affects
QOR. In these scenarios, the RTL coding style imposes more restrictions on operator
merging than necessary. The following sections discuss some typical coding scenarios which
interfere with or support maximum merging of operators.

Unless the designer has reasons to prevent it, Cadence encourages the RTL coding styles
discussed in this chapter that allow maximum operator merging.

Upper-Bit Truncation

Truncation potentially prevents merging. Upper-bit truncation is often subtle or unintentional,
but inadvertently affects QOR.

Example 5-1 on page 64 shows a scenario where implied upper-bit truncation does not hurt
operator merging.

Example 5-1 Operator Merging is Allowed if Truncation Does Not Affect Final Outcome
wire [7:0] a, b, c, d; // operators merged

wire [7:0] p, q;

wire [7:0] y;

assign p = a + b; // implied upper-bit truncation

assign q = c + d; // implied upper-bit truncation

assign y = p + q; // implied upper-bit truncation

However, since the final output, y, requires a precision of only 8 bits, the intermediate implied
truncations in generating p and q do not cause any loss of information. Therefore, the three
additions are mergeable in spite of implied upper-bit truncation.

Example 5-2 on page 64 carries full precision everywhere, allowing the three adders to be
merged without introducing any mathematical error:

Example 5-2 Arithmetic With Full Precision Facilitates Operator Merging
wire [7:0] a, b, c, d; // operators merged

wire [8:0] p, q;

wire [9:0] y;
December 2003 64 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
assign p = a + b; // full precision

assign q = c + d; // full precision

assign y = p + q; // full precision

Note that adding two 8-bit numbers with full precision leads to a 9-bit sum. Similarly, adding
two 9-bit numbers leads to a 10-bit sum.

Example 5-3 on page 65 contains both implied upper-bit truncation and full precision. The
calculation of p and q throws away the carry-out. The calculation of y accommodates the
carry-out. If the three adders are merged, the calculation of p and q are treated as full
precision, without throwing away the carry-out. This would make the merged operator
mathematically different from the original design. This is a case where the operators cannot
be merged.

Example 5-3 Mixture of Implied Upper-Bit Truncation and Full Precision Arithmetic
May Hurt Operator Merging

wire [7:0] a, b, c, d; // operators not merged

wire [7:0] p, q;

wire [9:0] y;

assign p = a + b; // implied upper-bit truncation

assign q = c + d; // implied upper-bit truncation

assign y = p + q; // full precision

Example 5-4 on page 65 shows another scenario where it is safe to merge the three additions
as one operator.

Example 5-4 Mixture of Implied Upper-Bit Truncation and Full-Precision Arithmetic
May Still Allow Operator Merging

wire [7:0] a, b, c, d; // merged as one cluster

wire [8:0] p, q;

wire [7:0] y;

assign p = a + b; // full precision, no truncation

assign q = c + d; // full precision, no truncation

assign y = p + q; // implied upper-bit truncation

Recommendation: Be aware of implied upper-bit truncation in addition and subtraction.
When there is a sequence of computation by addition, subtraction, or multiplication, unless
disallowed in the algorithm, keep full precision until the end of the data flow. Do truncation at
the end of the sequence. This facilitates the most operator merging and usually leads to the
best QOR.
December 2003 65 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Lower-Bit Truncation

Truncation at lower bits may block merging as well. Lower-bit truncation is very common in
digital signal processing designs. For example, if a design is processing 16-bit numbers and
has multiplication in the algorithm, it is a common practice to trim the product back to 16-bit
wide for further processing. The practice of truncating the product, however, prevents this
multiplication from being merged with downstream operators.

The following examples highlight the point of truncation-before-addition versus truncation-
after-addition.

Example 5-5 on page 66 truncates p and q before adding them up for y. All bits at p[7:0]
and q[7:0] are discarded.

Example 5-5 Arithmetic With Lower-Bit Truncation, Truncation Before Addition
wire [15:0] a, b, c, d;

wire [16:0] p, q;

wire [17:8] y;

assign p = a + b;

assign q = c + d;

assign y = p[16:8] + q[16:8]; // operators not merged

Example 5-6 on page 66, however, adds up p and q before truncating away bits [7:0]. By
doing so, there is potentially a carry-out from bit 7 to bit 8 while adding p[7:0] and q[7:0].
Therefore, functions implemented by Example 5-5 on page 66 and Example 5-6 on page 66
are not mathematically equivalent. Depending on the algorithm, this difference can be
tolerated in some situations of fixed point arithmetic computations.

In Example 5-5 on page 66, merging the three adders would mean doing the same math as
Example 5-6. To avoid distortion of the functionality, the three adders in Example 5-5 on
page 66 are not merged. In contrast, the three adders in Example 5-6 on page 66 are safely
merged.

Example 5-6 Arithmetic With Lower-Bit Truncation, Truncation After Addition
wire [15:0] a, b, c, d;

wire [16:0] p, q;

wire [17:0] r;

wire [17:8] y;

assign p = a + b;

assign q = c + d;

assign r = p + q;

assign y = r[17:8]; // the three operators are merged
December 2003 66 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Example 5-7 on page 67 and Example 5-8 on page 67 show how to maintain the potential for
operator merging while at the same time accomplishing the same truncation needs.

Example 5-7 on page 67 truncates away p[15:0] and prohibits the multiplier from being
merged with the two adders:

Example 5-7 Arithmetic With Lower-Bit Truncation, Truncation Before Addition
wire [15:0] a, b, c, d;

wire [31:0] p;

wire [15:0] y;

assign p = a * b; // multiplier not merged with adders

assign y = p[31:16] + c + d;

Example 5-8 on page 67 enables operator merging with no area penalty.

Example 5-8 Arithmetic With Lower-Bit Truncation, Truncation After Addition
wire [15:0] a, b, c, d;

wire [31:0] p, q;

wire [15:0] y;

assign p = a * b; // multiplier merged with adders

assign q = p + {c, 16’b0} + {d, 16’b0};

assign y = q[31:16];

Recommendation: Be aware of the difference between truncation-before-addition and
truncation-after-addition. Minimizing the width of every individual operator is not always the
best practice. If using a wider signal facilitates more operator merging, do it. This often leads
to both faster timing and smaller area.

Self-Determined Bit Width

When manipulating fixed-point arithmetic algorithms, full precision calculation is often
assumed:

■ If doing an addition such as y = a + b, assume

width(y) = max (width(a), width(b)) + 1.

The extra bit accommodates the carry if the addition overflows.

■ If doing a subtraction such as y = a - b, assume

width(y) = max(width(a), width(b)) + 1.

The extra bit accommodates the borrow if the subtraction underflows.
December 2003 67 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
■ If doing a multiplication such as y = a * b, assume

width(y) = width(a) + width(b).

However, when the RTL code falls into the self-determined bit-width rules defined in Verilog
LRM (IEEE Std 1364-1995) Section 4.4.1 Table 4-21, the width of y is as shown in Table 5-1
on page 68. This can have a negative impact on overall QOR.

The following examples highlight the impact of self-determined rules.

Example 5-9 on page 68 is a design that relies on the self-determined bit-width rule for the
two adders in the comparison. According to the LRM rule, Example 5-9 on page 68 is
equivalent to Example 5-10 on page 68. The three operators here (two adders and one
comparator) are not merged.

Many times, the needed functionality can be implemented by either Example 5-10 on page 68
or Example 5-11 on page 69. However, Example 5-11 on page 69 is more inclined to facilitate
operator merging and will lead to a better QOR.

Example 5-9 Design That Triggers the Self-Determined Rule of Addition
wire [7:0] a, b, c, d; // operators not merged

reg [7:0] y;

always @ (a or b or c or d)

begin

if (a + b == c + d)

y <= a & b;

else

y <= a | b;

end

Example 5-10 LRM Interpretation Example 5-9 on page 68
wire [7:0] a, b, c, d; // operators not merged

reg [7:0] p, q; // implied upper-bit truncation

reg [7:0] y;

Table 5-1 Rules of Self-determined Bit-Width in Verilog LRM

Expression Bit-width according
to Verilog LRM

Bit-width needed
for full precision

i + j Max (L(i), L(j)) Max (L(i), L(j)) + 1

i - j Max (L(i), L(j)) Max (L(i), L(j)) + 1

i * j Max (L(i), L(j)) L(i) + L(j)
December 2003 68 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
always @ (a or b or c or d or p or q)

begin

p <= a + b;

q <= c + d;

if (p == q)

y <= a & b;

else

y <= a | b;

end

Example 5-11 Merging-Inclined Variation of Example 5-9 on page 68
wire [7:0] a, b, c, d; // three operators merged

reg [8:0] p, q; // full precision

reg [7:0] y;

always @ (a or b or c or d or p or q)

begin

p <= a + b;

q <= c + d;

if (p == q)

y <= a & b;

else

y <= a | b;

end

Example 5-12 on page 69 is a design that relies on the self-determined bit-width rule for the
two multipliers in the comparison. According to the LRM rule, Example 5-12 on page 69 is
equivalent to Example 5-13 on page 70. The three operators here (two multipliers and one
comparator) are not merged.

Many times, the needed functionality can be implemented by either Example 5-13 on page 70
or Example 5-14 on page 70. However, Example 5-14 on page 70 is more inclined to facilitate
operator merging and will lead to a better QOR.

Example 5-12 Design That Triggers the Self-Determined Rule of Multiplication
wire [7:0] a, b, c, d; // operators not merged

reg [7:0] y;

always @ (a or b or c or d)

begin

if (a * b >= c * d)

y <= a & b;

else
December 2003 69 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
y <= a | b;

end

Example 5-13 LRM Interpretation Example 5-12 on page 69
wire [7:0] a, b, c, d; // operators not merged

reg [7:0] p, q; // implied upper-bit truncation

reg [7:0] y;

always @ (a or b or c or d or p or q)

begin

p <= a * b;

q <= c * d;

if (p >= q)

y <= a & b;

else

y <= a | b;

end

Example 5-14 Merging-Inclined Variation of Example 5-12 on page 69
wire [7:0] a, b, c, d; // three operators merged

reg [15:0] p, q; // full precision

reg [7:0] y;

always @ (a or b or c or d or p or q)

begin

p <= a * b;

q <= c * d;

if (p >= q)

y <= a & b;

else

y <= a | b;

end

Recommendation: Be aware of the LRM self-determined bit-width rules. Avoid the self-
determined rules by explicitly declaring width of intermediary signals. As long as functionality
allowed, facilitate as much operator merging as possible.
December 2003 70 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Common Sub-Expression Sharing and Operator Merging

By default, the common sub-expression sharing feature is turned on. To turn it off, use the
following global command before do_build_generic:

set_global hdl_common_subexpression_elimination false

In the design in Example 5-15 on page 71, the x-tree and y-tree are both doing the same
computation of a * b:

Example 5-15 Design That Triggers Both Operator Merging and Common
Subexpression Elimination

1 module test (x, y, a, b, c, d, e, f);

2 input [7:0] a, b, c, d, e, f;

3 output [15:0] x, y;

4 assign x = a * b + c * d;

5 assign y = a * b + e * f;

6 endmodule

With hdl_common_subexpression_elimination set to false, the tool will implement
the design in Figure 5-1 on page 71.

Figure 5-1 Operator Merging of Example 5-15 on page 71 if CSE is Turned Off

When hdl_common_subexpression_elimination is left at the default setting of true,
the tool shares the two identical computations of a * b, and implements the design seen in
Figure 5-2 on page 72.

mult1

mult2

add1

add2

mult3

mult4

c
d

a
b

a
b

e
f

y

mode

*

*

*

*

+

+

December 2003 71 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Figure 5-2 Operator Merging of Example 5-15 on page 71 if CSE is Turned On

Figure 5-3 Operators Inferred for Example 5-15 on page 71 if CSE is Turned Off
 +---+

 | Arithmetic Resources |

 |---|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 4 | 16u | 16ux16u |

 | on_0 | | | | | | | |

 | | | | non_booth | * | 4 | 16u | 8ux8u |

 | | | | non_booth | * | 4 | 16u | 8ux8u |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 5 | 16u | 16ux16u |

 | on_1 | | | | | | | |

 | | | | non_booth | * | 5 | 16u | 8ux8u |

 | | | | non_booth | * | 5 | 16u | 8ux8u |

 +---+

mult1

add1

add2

mult2

mult3

c
d

a
b

e
f

y

mode

*

*

*

+

+

December 2003 72 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Figure 5-4 Operators Inferred for Example 5-15 on page 71 if CSE is Turned On
 +--+

 | Arithmetic Resources |

 |--|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+------------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 4 | 16u | 16ux16u |

 | on_0 | | | | | | | |

 | | | | non_booth | * | 4 | 16u | 8ux8u |

 | | | 2 | carrysave/ | * | 4 | 16u | 8ux8u |

 | | | | non_booth | | | | |

 | | | 3 | fcla | + | 5 | 16u | 16ux16u |

 | | | | non_booth | * | 5 | 16u | 8ux8u |

 +--+

When you compare both Figure 5-1 on page 71 and Figure 5-2 on page 72, in both cases,
there is only one carry propagate adder from any input to the output. However, there is a
subtle difference:

■ If CSE is turned off, as shown in Figure 5-1 on page 71 and Figure 5-3 on page 72,
mult1,mult2, and add1 are truly merged as one operator, and while mult3, mult4, and
add2 are truly merged as one operator. Doing a * b twice costs area. True merging may
lead to a better timing.

■ If CSE is turned on, as shown in Figure 5-2 on page 72 and Figure 5-4 on page 73, a *
b is done once only. Output of mult2 is kept in carrysave form, and is fed into both add1
and add2. In other words, mult1 and mult2 are not truly merged and mult2 and mult3 are
not truly merged. This saves area. but depending on the timing constraints, this may
potentially lead to worse timing.

Recommendation: Combining common subexpression elimination and operator merging
allows you to make trade-offs between area and timing. Pay attention to the
report_resources listing, and make sure that you are making the best trade-off.

Inference versus Instantiation

When the desired functionality can be described by procedural RTL code that infers datapath
operators, Cadence recommends that you avoid instantiation of AmbitWare components.
December 2003 73 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Datapath Coding Style
Instantiate only when you cannot infer. This recommendation applies to the following
components:

Note: If you are not using Cadence PKS or BuildGates Extreme Synthesis, an instantiated
AmbitWare component becomes a black box.

Table 5-2 Recommended Components to Instantiate if You Cannot Infer

Component Name Functionality

AWARITH_ADD Adder

AWARITH_SUB Subtracter

AWARITH_INC Incrementer

AWARITH_DEC Decrementer

AWARITH_MULT Multiplier

AWARITH_MULTADD Multiplier-Adder

AWARITH_SQUARE Square

AWARITH_VECTADD Vector Adder

AWARITH_SUMPROD Generalized Sum of Products

AWLOGIC_ASHIFTR Arithmetic Shift Right

AWLOGIC_LSHIFTR Logical Shift Right

AWLOGIC_LSHIFTL Logical Shift Left
December 2003 74 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
6
General RTL Coding Recommendations

This chapter contains the following sections:

■ Starting From RTL on page 76

■ Importing the Gate-Level Netlist on page 76

■ Design Hierarchy on page 76

■ Handcrafted Datapath Modules on page 78

■ Carrysave Arithmetic on page 78

■ Constant Multiplication on page 79

■ Signed Arithmetic on page 80

■ Signed Constant Multiplication on page 81

■ Explicit Bit-Width Extension Techniques on page 82

■ Tight Bit-Width Control on page 83

■ Inference versus Instantiation on page 84

■ IAWDP_ Modules on page 85
December 2003 75 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Starting From RTL

Always start from RTL. The tool prefers RTL code that infers arithmetic operators like adders,
subtractors, and multipliers. This way, the tool acquires a high-level view of the design,
enabling it to exercise operator-level optimization, which provides more quality of results
(QOR) benefits than gate-level optimization.

Importing the Gate-Level Netlist

Sometimes designers may use a special datapath module generator to generate a gate-level
netlist for arithmetic operators. The netlist is then fed into the logic synthesis tool, along with
the RTL code of the non-datapath portion of the design. This may lead to an overall QOR that
is worse than what the tool can accomplish. Importing a gate-level netlist of an arithmetic
operator limits the tool to doing only gate-level logic optimization on the given netlist. None of
the built-in datapath techniques can be exercised.

BuildGates® Synthesis does not reverse-engineer the arithmetic functionality of a given
netlist. The tool cannot perform operator merging on the netlist. It cannot change the
architecture of the operators or refine the implementation of the operators to pursue a more
dramatic QOR improvement.

Recommendation: Do not import a gate-level netlist for Arithmetic operators. Instead, infer
them.

Design Hierarchy

A great deal of RTL code keeps an adder, subtractor, or multiplier in a module by itself, for
various reasons.

Operator merging respects user-defined design hierarchies, and does not merge across
hierarchical boundaries. Therefore, a standalone operator inside a module cannot be merged
with other operator in other modules, and overall QOR suffers.

Note: Dissolving a hierarchy does not help since operator merging decisions are done during
do_build_generic, and dissolving cannot be done before do_build_generic.

Recommendation: If two arithmetic operators are directly interacting with each other, keep
them at the same level of hierarchy, that is, in the same module.

For instance, instead of using the design in Example 6-1 on page 77, use the design in
Example 6-2 on page 77 or Example 6-3 on page 77:
December 2003 76 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Example 6-1 Keeping Operators in Separate Levels of the Design Hierarchy
module mult (y, a, b);

input [7:0] a, b;

output [15:0] y;

assign y = a * b;

endmodule

module add (y, a, b);

input [15:0] a, b;

output [15:0] y;

assign y = a + b;

endmodule

module test (y, a, b, c);

input [7:0] a, b;

input [15:0] c;

output [15:0] y;

wire [15:0] p;

mult U1 (p, a, b);

add U2 (y, p, c);

endmodule

Example 6-2 Inferring Operators at the Same Level of Design Hierarchy
module test (y, a, b, c);

input [7:0] a, b;

input [15:0] c;

output [15:0] y;

wire [15:0] p;

assign p = a * b;

assign y = p + c;

endmodule

Example 6-3 Inferring Operators at the Same Level of Design Hierarchy
module test (y, a, b, c);

input [7:0] a, b;

input [15:0] c;

output [15:0] y;

assign y = a * b + c;

endmodule
December 2003 77 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Handcrafted Datapath Modules

Designers often handcraft arithmetic operators. For example, instead of inferring a multiplier,
the designer may choose to devise a certain architecture for the multiplier and describe its
implementation in detail, including Booth encoding, partial product generation, carrysave
reduction, and so on. Sometimes, some part of the architecture may be described at an
abstraction level as low as logic equations.

Note: Although at quite a low level, this is still called RTL coding since it does not directly
instantiate gates in the target library.

Handcrafting of a multiplier prevents the tool from recognizing it as a multiplier, therefore, the
tool cannot use a better architecture to implement the multiplier. The tool cannot refine this
given architecture, and cannot merge this multiplier with other arithmetic operators.
Handcrafting hurts overall QOR.

If you consider the performance of an individual adder, subtractor, or multiplier, the
architectures built into the datapath engine are usually as good as what can be accomplished
by handcrafting. However, when you consider overall QOR, operator merging becomes the
differentiator between inferring and handcrafting.

Recommendation: Infer adders, subtractors, or multipliers. Do not create them yourself.

Carrysave Arithmetic

Carrysave arithmetic is usually implemented using handcrafted arithmetic operators because
of the need to save the carry-propagate addition until later in the dataflow and the lack of a
carrysave data type in standard HDL syntax.

This practice of handcrafting arithmetic operators does work, but it limits the tool to the
architecture and the implementation described in the RTL code. It also makes the RTL code
difficult to read and maintain.

When using datapath synthesis, it is no longer necessary to handcraft arithmetic operators.
Each merged operator has only one final carry-propagate adder on the critical path. Plus, for
each merged operator, the tool selects the best architecture based on overall QOR
constraints. It also fine-tunes the implementation dynamically.

Recommendation: Do not handcraft the carrysave technique. Let the tool apply the
carrysave technique (through operator merging) automatically.
December 2003 78 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Constant Multiplication

The traditional method to synthesize constant multiplication is to start from a full multiplier and
later let logic optimization remove all of the redundant logic.

A better way is to decompose the multiplier to a sequence of shift-and-add operations. Many
designers do this manually in the RTL code, which is another form of handcrafted multipliers.

Just like other handcrafting, this manual shift-and-add approach hurts operator merging.
Datapath synthesis does shift-and-add whenever it helps QOR. Handcrafted shift-and-add is
no longer needed.

Recommendation: Do not do manual shift-and-add for a constant multiplication. Just infer
a multiplier.

The following is a typical shift-and-add described in Verilog-1995:

wire [15:0] a;

wire [23:0] a6;

wire [23:0] a3;

wire [23:0] a2;

wire [23:0] y;

assign a6 = {2’b0, a[15:0], 6’b0}; // (a * 2**6)

assign a3 = {5’b0, a[15:0], 3’b0}; // (a * 2**3)

assign a2 = {6’b0, a[15:0], 2’b0}; // (a * 2**2)

assign y = a6 + a3 + a2;

By giving up unnecessary bit-width control, you can make it more concise:

wire [15:0] a;

wire [21:0] a6;

wire [18:0] a3;

wire [17:0] a2;

wire [23:0] y;

assign a6 = (a << 6);

assign a3 = (a << 3);

assign a2 = (a << 2);

assign y = a6 + a3 + a2;

Recommended Coding

To give the tool more freedom to optimize, the recommended coding is as follows:

wire [15:0] a;
December 2003 79 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
wire [23:0] y;

assign y = a * 8’b01001100; // i.e. a * 76

Note that 8’b01001100 is an unsigned constant.

Signed Arithmetic

Verilog-1995 does not support a signed data type. Any design that needs signed arithmetic
must do so by using an unsigned data type, and therefore, unsigned operators. A unique
feature of the tool is that it performs behavioral analysis and understands the signed nature
and intention behind the RTL code, and applies all suitable optimization accordingly.

Although this practice does not lead to any degradation in runtime or QOR, it still carries the
following risks:

■ Using unsigned operators to perform signed arithmetic necessitates a lot of explicit,
manual sign-extension, resulting in lengthy and abstruse RTL code.

■ The tool faithfully follows every piece of details defined in the Verilog standard, including
how to interpret the RTL code with mixed signed and unsigned data and operators.
Under various scenarios, this practice potentially may lead to confusion if the RTL code
is not examined carefully.

BuildGates and Cadence PKS supports Verilog-2001, which has signed data type and
associated signed operators.

Recommendation: It does not hurt runtime or QOR to use unsigned operator, plus manual
sign-extension, to perform singed arithmetic. However, if confusion arises, use signed data
type for signed arithmetic.

Example Example 6-4 on page 80 and Example 6-5 on page 80 both work. When in doubt,
use Example 6-5 on page 80.

Example 6-4 Signed Addition in Verilog-1995
wire [7:0] a, b; // to be used as signed

wire [8:0] y; // to be used as signed

assign y = {a[7], a} + {b[7], b}; // infers an 8x8 signed adder

Example 6-5 Signed Addition in Verilog-2001
wire signed [7:0] a, b;

wire signed [8:0] y;

assign y = a + b; // infers an 8x8 signed adder
December 2003 80 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Example 6-6 on page 81 and Example 6-7 on page 81 both work. When in doubt, use
Example 6-7 on page 81.

Example 6-6 Signed Multiplication in Verilog-1995
wire [6:0] a; // to be used as signed

wire [8:0] b; // to be used as signed

wire [15:0] y; // to be used as signed

wire [15:0] ax = {9{a[6]}, a};

wire [15:0] bx = {7{b[8]}, b};

wire [15:0] y = ax * bx; // infers a 7x9 a 7x9 unsigned multiplier

Example 6-7 Signed Multiplication in Verilog-2001
wire signed [6:0] a;

wire signed [8:0] b;

wire signed [15:0] y;

assign y = a * b; // infers a 7x9 signed multiplier

Signed Constant Multiplication

IWith Verilog-1995, a shift-and-add sequence is typically described like:

wire [15:0] a; // to be used as signed

wire [23:0] a6; // to be used as signed

wire [23:0] a3; // to be used as signed

wire [23:0] a2; // to be used as signed

wire [23:0] y; // to be used as signed

assign a6 = {{2{a[15]}}, a[15:0], 6’b0}; // signed (a * 2**6)

assign a3 = {{5{a[15]}}, a[15:0], 3’b0}; // signed (a * 2**3)

assign a2 = {{6{a[15]}}, a[15:0], 2’b0}; // signed (a * 2**2)

assign y = a6 + a3 + a2;

Using Verilog-2001, you can make it more concise:

wire signed [15:0] a;

wire signed [21:0] a6;

wire signed [18:0] a3;

wire signed [17:0] a2;

wire signed [23:0] y;

assign a6 = (a << 6);

assign a3 = (a << 3);

assign a2 = (a << 2);

assign y = a6 + a3 + a2;
December 2003 81 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Recommended Coding

To give the tool more freedom to optimize, the recommended coding is:

wire signed [15:0] a;

wire signed [23:0] y;

assign y = a * 8’sb01001100; // i.e. a * 76

Note that 8’sb01001100 is a signed constant. This helps keep everything signed.

Explicit Bit-Width Extension Techniques

Bit-width extension is popular in RTL coding of real-world designs. This could be zero-
extension for unsigned data or sign-extension for signed data. Sometimes it is done simply
because the designer wants to explicitly specify the growth of bit-width to produce a full
precision result.

The tool performs behavioral analysis and understands the real intention behind the
concatenation. However, when it comes to explicit manual sign-extension, there is the
potential to create a scenario of mixed signed and unsigned operands. If this happens, using
the intended sign type can be a better practice.

Recommendation: It does not hurt QOR to do explicit bit-width extension. However, if
confusion arises, use the intended sign type and rely on the implicit bit-width extension
inherent to the arithmetics whenever possible.

Example 6-8 on page 82 and Example 6-9 on page 82 both work:

Example 6-8 Explicit Bit-Width Extension For Unsigned Data
wire [7:0] a, b; // to be used as unsigned

wire [8:0] s; // to be used as unsigned

assign s = {1’b0, a} + {1’b0, b};

Example 6-9 Alternative Coding For Example 6-8 on page 82
wire [7:0] a, b; // unsigned

wire [8:0] s; // unsigned

assign s = a + b;

Example 6-10 on page 82 and Example 6-11 on page 83 both work:

Example 6-10 Explicit Bit-Width Extension For Signed Data
wire [7:0] a, b; // to be used as signed
December 2003 82 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
wire [8:0] s; // to be used as signed

assign s = {a[7], a} + {b[7], b};

Example 6-11 Alternative Coding For Example 6-10 on page 82
wire signed [7:0] a, b; // signed

wire signed [8:0] s; // signed

assign s = a + b;

Tight Bit-Width Control

Often the output of an arithmetic operator is truncated to minimize the size of the next
operator in the signal flow. It helps QOR when each operator is optimized individually.
Unfortunately, this may hurt operator merging, and therefore overall QOR.

With operator merging techniques, a general rule is to facilitate operator merging as much as
possible. By doing so, sometimes it may look like you are inferring arithmetic operators larger
than absolutely necessary. However, with operator merging, this is often the way to get both
better timing and better area.

Recommendation: Do not always try to minimize the size of every individual operator. As
long as it is still functionally correct, find ways to get the most operator merging.

Instead of Example 6-12 on page 83, use Example 6-13 on page 83 or Example 6-14 on
page 84:

Example 6-12 Tight Bit-Width Control to Minimize Individual Operators
wire [7:0] a, b, c;

wire [15:0] p;

wire [7:0] q, y;

assign p = a * b; // will not merge mult and add

assign q = p[15:8];

assign y = q + c; // 8-bit adder

Example 6-13 Recommended Coding for Example 6-12 on page 83
wire [7:0] a, b, c;

wire [15:0] p, r;

wire [7:0] y;

assign p = a * b; // will merge mult and add

assign r = p + {c, 8’b0}; // 16-bit adder

assign y = r[15:8];
December 2003 83 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
Example 6-14 Alternative Recommended Coding for Example 6-12 on page 83
wire [7:0] a, b, c;

wire [15:0] p, cx, r;

wire [7:0] y;

assign p = a * b; // will merge mult and add

assign cx = c << 8;

assign r = p + cx; // 16-bit adder

assign y = r >> 8;

Inference versus Instantiation

Using traditional synthesis tools, for various reasons designers sometime instantiate a
previously-built component for a single arithmetic operator, instead of inferring it in the RTL
code. For example, an AmbitWare datapath component is a previously-built component.

An instantiated component is a module by itself and cannot be merged with other operators.
This hurts QOR. Inferring a component gives the tool more room to exercise.

Recommendation: When an operator can be implemented either by inferring it or by
instantiating an AmbitWare component, infer it. Inference is always preferred over
instantiation if the desired functionality can be accomplished by either technique.

The rule applies to shift operators as well, including all four shift operators in Verilog-2001:
<<, >>, <<<, and >>>.
December 2003 84 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
IAWDP_ Modules

There are designers who explicitly dissolve the entire hierarchy of their design. This does not
cause any problems in the tool’s logic synthesis because the software is designed to handle
flattened designs. However, when using the datapath feature, flattening or dissolving the
entire hierarchy of a design may hurt the QOR of the datapath partitions. This, in turn, would
hurt the overall QOR because implementation selection will not be done on the dissolved
partitions.

Recommendation: If you are going to flatten, or dissolve, the entire hierarchy of your
design, Cadence recommends that you maintain the hierarchies of the AWDP_ modules.

For instance, use the TCL commands in Example 6-15 on page 85 to protect the AWDP_
modules:

Example 6-15 Steps to Protect AWDP_ Modules From Being Dissolved
set_current_module $module_to_be_flattened

set_dont_modify -hier [find -module AWDP_*]

do_dissolve_hierarchy -hier

reset_dont_modify -hier [find -module AWDP_*]
December 2003 85 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
General RTL Coding Recommendations
December 2003 86 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
7
Global Variables, Pragmas, and
Commands

This chapter contains the following sections:

■ Datapath-Related Global Variables on page 88

■ Datapath-Related Pragmas on page 90

■ Datapath-Related Commands on page 91
December 2003 87 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Datapath-Related Global Variables

■ aware_adder_architecture

■ aware_carrysave_inferencing

■ aware_implementation_selection

■ aware_merge_operators

■ aware_multiplier_architecture

■ hdl_resource_sharing

■ hdl_tree_height_reduction

These global variables must be set before do_build_generic to be effective.

For more information on the use of these global variables, see the Global Command
Reference for BuildGates Synthesis and Cadence PKS.

aware_adder_architecture

Values: ripple | csel | cla | fcla

Default Value: fcla

Functionality: Controls the initial adder architecture.

Example: set_global aware_adder_architecture "fcla"

aware_carrysave_inferencing

Values: true | false

Default Value: true

Functionality: If set to true, it turns on operator merging in multi-fanout scenarios. If
it is set to false, it turns off operator merging in multi-fanout scenarios.

Example: set_global aware_carrysave_inferencing true
December 2003 88 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
aware_implementation_selection

Values: true | false

Default Value: true

Functionality: If set to true, it turns on implementation selection entirely. If set to
false, it turns off implementation selection entirely.

Example: set_global aware_implementation_selection true

aware_merge_operators

Values: true | false

Default Value: true

Functionality: If set to true, it turns on operator merging entirely. If set to false, it
turns off operator merging entirely.

Example: set_global aware_merge_operators true

Note: If aware_merge_operators is set to false,
aware_carrysave_inferencing is treated as false.

aware_multiplier_architecture

Values: auto | booth | non_booth

Default Value: auto

Functionality: Controls the initial multiplier encoding scheme.

Example: set_global aware_multiplier_architecture "booth"

hdl_resource_sharing

Values: true | false

Default Value: true

Functionality: Lets the software collect information for sharing. Enter this command
before entering the do_build_generic command. During the do_optimize phase, set the
global resource sharing command to false to disable resource sharing, or it will attempt
to reclaim area after timing optimizations.
December 2003 89 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
hdl_tree_height_reduction

Values: true | false

Default Value: on

Functionality: Reduces the height of an expression tree by balancing its subtrees. Tree
height reduction improves performance by reducing the critical path. Tree height
reduction is performed during the do_build_generic phase of the HDL synthesis
flow.

Datapath-Related Pragmas

■ architecture

■ merge_boundary

■ carrysave

■ no_carrysave

An architecture or merge_boundary pragma applies only to the operator immediately
preceding the pragma in the expression in the HDL code.

A carrysave or no_carrysave pragma applies only to the signal immediately preceding
the pragma in the declaration statement in the HDL code.

A side effect of using the architecture pragma is that the operator becomes a boundary
of operator merging. To honor the user-specified architecture, the tool cannot merge it with
any operator it drives.

architecture

Values: ripple|csel|cla|fcla|booth|non_booth

Usage: Place immediately after an operator in an expression in the RTL code.

Effect: Tells the tool exactly what architecture(s) to be used to implement this operator.

Examples:
assign y = a + b + /* ambit synthesis architecture = cla */ c;

assign y = a * /* ambit synthesis architecture = non_booth */ b + c;

assign y = a * /* ambit synthesis architecture = booth,cla */ b + c;
December 2003 90 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
merge_boundary

Usage: Place immediately after an operator in an expression in the RTL code.

Effect: Tells the tool to treat this operator as a boundary of operator merging, and to not
merge this operator with any downstream operators.

Example: assign y = a * /* ambit synthesis merge_boundary */ b + c;

carrysave

Usage: Place immediately after a signal in its declaration statement in the RTL code.

Effect: Tells the tool to try its best to make this signal in carrysave form.

Example: wire [7:0] a, please_cs /* ambit synthesis carrysave */,
b;

no_carrysave

Usage: Place immediately after a signal in its declaration statement in the RTL code.

Effect: Tells the tool to try its best to not implement this signal in carrysave form.

Example: wire [7:0] a, dont_cs /* ambit synthesis no_carrysave*/,
b;

Datapath-Related Commands

■ report_resources -hier

For optimum results, Cadence recommends that the report_resources -hier command
be executed after both the do_build_generic command and the do_optimize
command.

Explanation of the report_resources Table

The table in Figure 7-1 on page 93 is shown when the report_resources -hier
command is used for the sample design in Example 7-1 on page 91:

Example 7-1 Sample Design for the report_resources Table
1 module test (x, y, a, b, c, d);
December 2003 91 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
2 input [15:0] a, b, c, d;

3 wire [31:0] p, q;

4 output [15:0] x, y;

5 assign p = a * b + c * d;

6 assign q = a * c + b * d;

7 assign x = (p > q) ? p[31:16] : q[31:16];

8 assign y = a + b + c + d;

9 endmodule
December 2003 92 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Figure 7-1 report_resources Table for Example 7-1 on page 91
 +---+

 | Arithmetic Resources |

 |---|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 5 | 32u | 32ux32u |

 | on_2 | | | | | | | |

 | | | | non_booth | * | 5 | 32u | 16ux16u |

 | | | | non_booth | * | 5 | 32u | 16ux16u |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 6 | 32u | 32ux32u |

 | on_1 | | | | | | | |

 | | | | non_booth | * | 6 | 32u | 16ux16u |

 | | | | non_booth | * | 6 | 32u | 16ux16u |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_GT_3 | test.v | 1 | --- | > | 7 | 1u | 32ux32u |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 8 | 16u | 16ux16u |

 | on_0 | | | | | | | |

 | | | | | + | 8 | 16u | 16ux16u |

 | | | | | + | 8 | 16u | 16ux16u |

 +---+

The report_resources listing has the following columns:

■ Module Name (Module)

■ Cluster Number (C)

■ File Name and Line Number (File and Line)

■ Architecture (Arch)

■ Operator Type (Op)

■ Input and Output Format (In and Out)

Module Name (Module)

The Module column contains the module name of every datapath partition, which always
starts with AWDP_ or AWACL_. If the datapath features are turned on, you see AWDP_
modules. If the datapath features are not turned on, you see AWACL_ modules.
December 2003 93 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
The module names are machine-generated and cannot be predicted in advance.

Partitions are separated by dashed lines in the report.

File Name and Line Number (File and Line)

The File and Line columns are used together and tell you where in the RTL code an
operator is inferred.

In VHDL, where packages and composite data type are commonly used, the line numbers
can be less than straightforward. In general, file name plus line number points you to the root
of a user-defined data type in a user-defined package. It does not go into standard packages
that come with the tool installation. It does not simply point to the highest level of abstraction.

Cluster Number (C)

The C column shows the cluster number, which is unique within the partition. The purpose of
this column is to identify cluster boundaries around the operators in a partition. Whenever
there is a cluster number on the row, it is the beginning of a new cluster.

A cluster is part of a partition.

Architecture (Arch)

The Arch column shows the selected architecture of an operator. Before do_optimize, you
see the initial architecture. After do_optimize, you see the individually selected
architecture.

More details and examples about the Arch column can be found in the Use Model section
below.

Operator Type (Op)

The Op column shows the functionality of the inferred operator.

An operator can either be:

■ A native datapath operator like *, +, -, and so on.

■ A Verilog-DP datapath primitive like $lead0(), $sgnmult(), $sat(), and so on.
December 2003 94 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
If a native operator is inferred by Verilog code, it is shown in Verilog notation. If a native
operator is inferred by VHDL code, it is shown in VHDL notation.

More details and examples about the Op column can be found in the Use Model section
below.

Input and Output Format (In and Out)

The In column presents the bit width and sign type of the input operands fed into the
operator. The Out column reports the bit-width and sign type of the discrete datapath
operator inferred in the RTL code.

Input

■ There is only one input operand if the operator is a unary minus.

■ There are three input operands if the operator is, for example, an addition with a one-bit
carry-in.

Output

■ There is always one output operand.

Each operand is represented by a number showing its bit width followed by a character
showing its sign type. For sign type, u means unsigned, and s means two’s-complement
signed.

Operands are separated by the character x.

Example 7-2 Sample Design for report_resources Table, Input
 1 module test (w, x, y, a, b, c, d, carry_in);

 2 input [7:0] a, b, c, d;

 3 input carry_in;

 4 output [8:0] w;

 5 output [8:0] x;

 6 output [8:0] y;

 7 assign w = -a;

 8 assign x = a + b;

 9 assign y = c + d + carry_in;

 10 endmodule

With Example 7-2 on page 95, the report_resources command will create the report
shown in Figure 7-2 on page 96.
December 2003 95 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Figure 7-2 report_resources Table for Example 7-2 on page 95
 +--+

 | Arithmetic Resources |

 |--|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+------+---------+------+-----+----------+

 | AWDP_MINUS_0 | test.v | 1 | --- | unary - | 7 | 9s | 8u |

 +--------------+--------+---+------+---------+------+-----+----------+

 | AWDP_ADD_1 | test.v | 1 | fcla | + | 8 | 9u | 8ux8u |

 +--------------+--------+---+------+---------+------+-----+----------+

 | AWDP_ADD_2 | test.v | 1 | fcla | + | 9 | 9u | 8ux8ux1u |

 +--+

Example 7-3 Sample Design for report_resources Table, Output
 1 module test (x, y, a, b, c, d);

 2 input [7:0] a, d;

 3 input [9:0] b, c;

 4 output [11:0] x;

 5 output [19:0] y;

 6 assign x = a * b;

 7 assign y = c * d;

 8 endmodule

With Example 7-3 on page 96, the report_resources command will create the report
shown in Figure 7-3 on page 96.

Figure 7-3 report_resources Table for Example 7-3 on page 96
 +--+

 | Arithmetic Resources |

 |--|

 | Module | File | C | Arch | Op | Line | Out | In |

 +-------------+--------+---+----------------+----+------+-----+--------+

 | AWDP_MULT_0 | test.v | 1 | fcla/non_booth | * | 6 | 12u | 8ux10u |

 +-------------+--------+---+----------------+----+------+-----+--------+

 | AWDP_MULT_1 | test.v | 1 | fcla/non_booth | * | 7 | 18u | 10ux8u |

 +--+

At line 7, the computation can be accomplished by a multiplier with 18-bit output, which is
extended to 20-bit wide when being fed into its output operand.
December 2003 96 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
At line 6, the RTL code implies that a multiplier with 18-bit output is inferred, and that bits
[17:12] out of the multiplier are discarded since the output operand has no room for them. In
such a case, the tool only needs to implement a multiplier that produces output at bits [11:0].

Use Model

The report_resources -hier command is usually used for three purposes:

■ Identifying Datapath Operators

■ Examining How Operators are Merged

■ Examining the Selected Architectures

Identifying Datapath Operators

The report_resources command reports all of the identified datapath operators in the
design. The report_resources command provides the following information about each
operator:

■ Identified by file name and line number where in the RTL code the operator gets inferred.

■ The functionality of the operator (+, -, *, >>, <<, >>>, <<<, ==, !=, <, <=, >, >=).

■ The bit width and sign type of the operator.

■ The bit width and sign type of input operands of the operator.

The sign type of an operator shown in this table may not be the same as its sign type defined
in the RTL code. The tool analyzes the computational intention behind the HDL statements,
and implements what is really needed. For example, unsigned operators in Example 7-4 on
page 97 are reported as signed operators shown in Figure 7-4 on page 98. Signed operators
in Example 7-5 on page 98 are reported as unsigned ones in Example 7-5 on page 98.

Example 7-4 Signed Arithmetic by Unsigned Operators
 1 module test (y, a, b, c);

 2 input [6:0] a;

 3 input [8:0] b;

 4 input [11:0] c;

 5 wire [15:0] p;

 6 output [16:0] y;

 7 assign p = {{9{a[6]}}, a} * {{7{b[8]}}, b};

 8 assign y = {{1{p[15]}}, p} + {{5{c[11]}}, c};
December 2003 97 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
 9 endmodule

Figure 7-4 Reporting Signed Operators for Signed Arithmetic by Unsigned Operators
 +---+

 | Arithmetic Resources |

 |---|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 8 | 17s | 16sx12s |

 | on_0 | | | | | | | |

 | | | | non_booth | * | 7 | 16u | 7sx9s |

 +---+

Example 7-5 Unsigned Arithmetic by Signed Operators
 1 module test (y, a, b, c);

 2 input signed [6:0] a;

 3 input signed [8:0] b;

 4 input signed [11:0] c;

 5 wire signed [15:0] p;

 6 output signed [16:0] y;

 7 assign p = {9’b0, a} * {7’b0, b};

 8 assign y = {1’b0, p} + {5’b0, c};

 9 endmodule

Figure 7-5 Reporting Unsigned Operators for Unsigned Arithmetic by Signed
Operators
 +---+

 | Arithmetic Resources |

 |---|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 8 | 17u | 16ux12u |

 | on_0 | | | | | | | |

 | | | | non_booth | * | 7 | 16u | 8ux10u |

 +---+

A Verilog-DP datapath primitive shows as an operator as well, as seen in Example 7-6 on
page 99 and Figure 7-6 on page 99.
December 2003 98 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Example 7-6 Design Using a Verilog-DP Datapath Primitive
 1 module test (y, a, sh);

 2 input [15:0] a;

 3 input [3:0] sh;

 4 output [15:0] y;

 5 assign y = $rotatel (a, sh);

 6 endmodule

Figure 7-6 Reporting a Verilog-DP Datapath Primitive
 +--+

 | Arithmetic Resources |

 |--|

 | Module | File | C | Arch | Op | Line | Out | In |

 +-------------+--------+---+------+------------+------+-----+--------+

 | AWDP_LROT_0 | test.v | 1 | mx | $rotatel() | 5 | 16u | 16ux4u |

 +--+

Examining How Operators are Merged

The report_resources command presents datapath information in three levels of
hierarchy: partition, cluster, and operator. A module may have zero, one, or more datapath
partitions. A datapath partition accommodates one or more datapath clusters. A datapath
cluster is a collection of one or more datapath operators.

By examining how operators are grouped into clusters and partitions, it is possible to figure
out how the datapath operators are merged. This can help identify any coding-style problems
that may be hurting operator merging.

For example, by examining Example 7-7 on page 99 and Figure 7-7 on page 100, you will see
that the multiplier is not merged with the adders. With a little change in the coding style, as
seen in Example 7-8 on page 100, the multiplier is merged with the adders, as shown in
Figure 7-8 on page 100.

Example 7-7 Design Where the Multiplier is Not Merged With the Adders
 1 module test (y, a, b, c, d);

 2 input [15:0] a, b, c, d;

 3 wire [31:0] p;

 4 output [15:0] y;

 5 assign p = a * b;

 6 assign y = p[31:16] + c + d;

 7 endmodule
December 2003 99 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Figure 7-7 report_resources Table for Example 7-7 on page 99
 +--+

 | Arithmetic Resources |

 |--|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+----------------+----+------+-----+---------+

 | AWDP_MULT_1 | test.v | 1 | fcla/non_booth | * | 5 | 32u | 16ux16u |

 +--------------+--------+---+----------------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 6 | 16u | 16ux16u |

 | on_0 | | | | | | | |

 | | | | | + | 6 | 16u | 16ux16u |

 +--+

Example 7-8 Design Where the Multiplier is Merged With the Adders
 1 module test (y, a, b, c, d);

 2 input [15:0] a, b, c, d;

 3 wire [31:0] p, q;

 4 output [15:0] y;

 5 assign p = a * b;

 6 assign q = p + {c, 16’b0} + {d, 16’b0};

 7 assign y = q[31:16];

 8 endmodule

Figure 7-8 report_resources Table for Example 7-8 on page 100
 +---+

 | Arithmetic Resources |

 |---|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | fcla | + | 6 | 32u | 32ux32u |

 | on_0 | | | | | | | |

 | | | | | + | 6 | 32u | 32ux32u |

 | | | | non_booth | * | 5 | 32u | 16ux16u |

 +---+

Each datapath partition is one merged operator. In the synthesized netlist, there is at most
one carry propagate adder from its input to its output.

The datapath partitions are sorted by file names and line numbers. The two partitions in
Figure 7-7 on page 100 is a simple example.
December 2003 100 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
The datapath operators inside of clusters are sorted by connectivity among the operators in
the cluster, from output to input. The three operators in Figure 7-8 on page 100 is a simple
example.

Examining the Selected Architectures

Each cluster in the report is accompanied by an architecture.

After do_build_generic, every operator, merged or isolated, is shown with its initial
architecture.

After do_optimize, each cluster has a different architecture, which was selected by the tool
during do_optimize.

As shown in Figure 7-7 on page 100, a multiplier has both a multiplier encoding architecture
and an adder architecture. In Figure 7-8 on page 100, however, the multiplier is shown with
only a multiplier encoding architecture, without an adder architecture. This is because after
merging with the downstream adders, its carry propagate adder has been eliminated.

Should there be multiple clusters in one datapath partition, an inter-cluster signal, internal to
the partition is marked carrysave, to indicate the fact that they are internally implemented in
carrysave form. In case you would like to explore a carrysave or no_carrysave scheme
that is different from what the tool does for you, this carrysave sign helps you to identify the
operators whose operands you may want to annotate with a carrysave or no_carrysave
pragma.

Example 7-9 Datapath Partition With Multiple Clusters
 1 module test (x, y, a, b, c, d, e, f);

 2 input [15:0] a, b, c, d, e, f;

 3 wire [17:0] p;

 4 output [18:0] x, y;

 5 assign p = a + b + c + d;

 6 assign x = p + e;

 7 assign y = p + f;

 8 endmodule
December 2003 101 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Figure 7-9 Multiple-Cluster Partition With Carrysave Architecture
 +---+

 | Arithmetic Resources |

 |---|

 | Module | File | C | Arch | Op | Line | Out | In |

 +--------------+--------+---+-----------+----+------+-----+---------+

 | AWDP_partiti | test.v | 1 | carrysave | + | 5 | 18u | 18ux16u |

 | on_0 | | | | | | | |

 | | | | | + | 5 | 18u | 17ux16u |

 | | | | | + | 5 | 17u | 16ux16u |

 | | | 2 | fcla | + | 6 | 19u | 19ux16u |

 | | | 3 | fcla | + | 7 | 19u | 19ux16u |

 +---+

If the architecture of an operator is prescribed by an architecture pragma in the RTL code, it
is annotated by (P) in this table. This is to remind you that it is a pragma-prescribed
architecture, and not an architecture that has been selected by the tool.

Example 7-10 Example With the Architecture Pragma
 1 module test (y, a, b, c);

 2 input [15:0] a, b, c;

 3 wire [31:0] p;

 4 output [31:0] y;

5 assign p = a * /* ambit synthesis architecture = "booth,cla" */ b;

 6 assign y = p + c;

 7 endmodule

Figure 7-10 Reporting a Pragma-Prescribed Architecture
 +--+

 | Arithmetic Resources |

 |--|

 | Module | File | C | Arch | Op | Line | Out | In |

 +-------------+--------+---+-------------------+----+------+-----+---------+

 | AWDP_MULT_1 | test.v | 1 | cla (P)/booth (P) | * | 5 | 32u | 16ux16u |

 +-------------+--------+---+-------------------+----+------+-----+---------+

 | AWDP_ADD_0 | test.v | 1 | fcla | + | 6 | 32u | 32ux16u |

 +--+
December 2003 102 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
Auto-dissolved AWDP and AWACL Modules

When comparing the report_resources listing created after do_build_generic and
the listing created after do_optimize, there will often be fewer datapath partitions in the
latter listing. This is because during do_optimize, the tool automatically dissolves any
AWDP or AWACL modules that are smaller than a certain threshold. For example, a one-bit
comparison inferred by a simple if-statement in the RTL code becomes a datapath operator
in the design. Such a comparator is often surrounded by control logic, and therefore becomes
a datapath partition by itself. With its small size, such a partition often gets automatically
dissolved during do_optimize.

The threshold can be adjusted by changing the value of the global variable
aware_dissolve_width.
December 2003 103 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Global Variables, Pragmas, and Commands
December 2003 104 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
Index
Symbols
$abs() 56
$blend() 56
$compge() 56
$iroundmult() 57
$itruncmult() 57
$lead() 56
$lead1() 56
$rotatel() 57
$rotater() 57
$round() 57
$sat() 57
$signmult() 56

A
adder

architecture 19, 48
cla 48
csel 48
fcla 48
ripple 48

carry-propagate 21
AmbitWare library components 23, 58

AWARITH 58
AWLOGIC 59
AWSEQ 60

architecture
divider 49
multiplier 49
selection 22

ambit synthesis architecture
(pragma) 51

default setting 50
global user control 50
local user control 50

architecture (pragma) 90
arithmetic

architectures 48
carrysave 20
signed 80

Auto-dissolved AWDP and AWACL
Modules 103

automatic

partitioning 32
pipelining 58

AWACL_ 32
aware_adder_architecture 50, 88
aware_carrysave_inferencing 41, 88
aware_dissolve_width 103
aware_divider_architecture 50
aware_implementation_selection 89
aware_merge_operators 41, 89
aware_multiplier_architecture 50, 89
AWDP_ 32

B
bit width growth

addition 67
multiplication 68
subtraction 67

booth
encoded multiplier 49
encoding 19

C
carry

look-ahead adder 48
propagate adder 21
select adder 48

carrysave
accessibility 44
arithmetic 20
form 20
pragma 91

choosing best implementation 54
cla 48
clusters 43
commands 91

report_resources 91
common sub-expression sharing 71

hdl_common_subexpression_eliminatio
n 71

comparator scenario 35
constant multiplication 79
context-driven architecture selection 52
December 2003 105 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
criteria for merging 33
csel 48

D
datapath

basic technical background 19
characteristics of 18
clusters 43
design flow 28
features 22

AmbitWare library components 23
implementation selection 23
operator merging 22
partitioning 22

library requirements 26
operators 32

non-interacting 40
partition 32
partitioning 32
synthesis 18

running 28
default architecture

adder 50
multiplier encoding 50

design
flow 28
hierarchy 32

divider
radix_2 49
radix_4 49

dp_blend 57
dp_compge 57
dp_iroundmult 57
dp_itruncmult 57
dp_lead0 57
dp_lead1 57
dp_round 57
dp_sat 57
dp_sgnmult 57

F
fcla 48

G
global

user control
architecture selection 50
implementation selection 54
operator merging 41

variables
aware_adder_architecture 88
aware_carrysave_inferencing 88
aware_implementation_selection 8

9
aware_merge_operators 89
aware_multiplier_architecture 89

H
hdl_common_subexpression_elimination

71
hierarchy 32, 44

I
implementation refinement

timing-driven 53
implementation selection 23, 51

architecture selection
context-driven 52
target library based 52
timing-driven 52

aware_implementation_selection 54
global user control 54
local user control 55

inference versus instantiation 73
initial architecture

adder 50
divider 50
mutliplier encoding 50

installation 26

L
library

based architecture selection 52
library requirements 26
local user control

architecture selection 50
implementation 55
operator merging 41
pragma 50

lower-bit truncation 66
December 2003 106 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
M
mergable operator 33
merge_boundary (pragma) 91
merging

criteria 33
operator 21, 32
scenarios 34

comparator 35
multiple-fanout 36
product-of-sum 37
sum-of-product 34
vector-sum 34

multiple-fanout scenario 36
multiplier

encoding architecture 19
booth 49
non_booth 49

N
no_carrysave (pragma) 91
non_booth 49
non-mergable scenarios 38

gate-level netlist 39
instantiated component 39
non-interacting operators 40

O
operator

datapath 18
merging 21, 22, 32

carrysave 44
criteria 33
scenarios 34

comparator 35
multiple-fanout 36
product-of-sum 37
sum-of-product 34
vector-sum 34

user control
global 41
local 41

P
partitioning 22, 32
pragmas (synthesis directives) 90

architecture 90
carrysave 91
local user control 50
merge_boundary 91
no_carrysave 91

product-of-sum scenario 37

R
refinement

timing-driven implementation 53
report_resources 91

examining how operators are
merged 99

examining the selected
architectures 101

identifying datapath operators 97
table listing 93

architecture (Arch) 94
cluster number (C) 94
file name (File) 94
input format (In) 95
line number (Line) 94
module name (Module) 93
operator type (Op) 94
output format (Out) 95

use model 97
ripple adder 48
RTL 18
running datapath synthesis 28

S
selection

architecture 22
context-driven architecture 52
implementation 51
library-based architecture 52
timing-driven architecture 52

self-determined bit width 67
signed arithmetic 80
sum-of-product scenario 34
synthesis

datapath 18
December 2003 107 Product Version 5.0.13

Datapath for BuildGates Synthesis and Cadence PKS
directives (pragmas)
user control 50

T
target library-based architecture

selection 52
timing-driven

architecture selection 52
implementation refinement 53

truncation
after addition 66, 67
before addition 66, 67
lower-bit 66
upper-bit 64

turning on/off
implementation selection 54
operator merging 41

U
upper-bit truncation 64
user control 41

choosing best implementation 54
global

architecture selection 50
implementation selection 54
operator merging 41

local
architecture selection 50
implementation selection 55
operator merging 41

specify adder architecture 54
specify multiplier encoding scheme 54

V
vector-sum scenario 34
Verilog

1995 26
2001 26
Datapath Extension (Verilog-DP) 33,

56
primitives 33, 56

$abs() 56
$blend() 56
$compge() 56
$iroundmult() 57

$itruncmult() 57
$lead0() 56
$lead1() 56
$rotatel() 57
$rotater() 57
$round() 57
$sat() 57
$sgnmult() 56

VHDL
1987 26
1993 26
Datapath Package (VHDL-DP) 57

primitives 57
dp_blend 57
dp_compge 57
dp_iroundmult 57
dp_itruncmult 57
dp_lead0 57
dp_lead1 57
dp_round 57
dp_sat 57
dp_sgnmult 57
December 2003 108 Product Version 5.0.13

	Contents
	List of Tables
	List of Examples
	List of Figures
	Preface
	About This Manual
	Other Information Sources
	Documentation Conventions
	Text Command Syntax
	Using Menus
	Using Forms

	Introduction
	What Does Datapath Synthesis Do?
	Who Benefits from Datapath Synthesis?
	Basic Technical Background
	Adder Architectures
	Multiplier Architectures
	Operator Merging
	Architecture Selection

	Datapath Synthesis Features
	Datapath Partitioning
	Operator Merging
	Implementation Selection
	Extended Language Interface
	AmbitWare Library Components

	Getting Started
	Installation and Licensing
	Datapath Library Requirements
	Languages Supported by the Datapath Synthesis Feature

	The Datapath Synthesis Design Flow
	The Datapath Synthesis Design Flow
	Running Datapath Synthesis

	Datapath Synthesis Features
	Datapath Partitioning
	Automatic Partitioning
	Artificial Design Hierarchy Within Modules

	Operator Merging
	Datapath Operators
	Merging Criteria
	Typical Merging Scenarios
	Non-Mergeable Scenarios
	User Control
	Datapath Cluster
	Hierarchical Relationship
	Accessibility of Carrysave Words in RTL
	VHDL Carrysave for Datapath

	Arithmetic Architectures
	Adder Architectures
	Multiplier Encoding Architectures
	Divider Architectures
	Default Setting
	Global User Control
	Local User Control

	Implementation Selection
	Context-Driven Architecture Selection
	Target Library-Based Architecture Selection
	Timing-Driven Architecture Selection
	Timing-Driven Implementation Refinement
	Dynamic Generation
	User Control

	Extended Language Interface
	Verilog-DP
	VHDL-DP

	Automatic Pipelining
	AmbitWare Library Components
	DesignWare Library Components

	Datapath Coding Style
	Upper-Bit Truncation
	Lower-Bit Truncation
	Self-Determined Bit Width
	Common Sub-Expression Sharing and Operator Merging
	Inference versus Instantiation

	General RTL Coding Recommendations
	Starting From RTL
	Importing the Gate-Level Netlist
	Design Hierarchy
	Handcrafted Datapath Modules
	Carrysave Arithmetic
	Constant Multiplication
	Signed Arithmetic
	Signed Constant Multiplication
	Explicit Bit-Width Extension Techniques
	Tight Bit-Width Control
	Inference versus Instantiation
	IAWDP_ Modules

	Global Variables, Pragmas, and Commands
	Datapath-Related Global Variables
	aware_adder_architecture
	aware_carrysave_inferencing
	aware_implementation_selection
	aware_merge_operators
	aware_multiplier_architecture
	hdl_resource_sharing
	hdl_tree_height_reduction

	Datapath-Related Pragmas
	architecture
	merge_boundary
	carrysave
	no_carrysave

	Datapath-Related Commands
	Explanation of the report_resources Table
	Module Name (Module)
	File Name and Line Number (File and Line)
	Cluster Number (C)
	Architecture (Arch)
	Operator Type (Op)
	Input and Output Format (In and Out)
	Use Model

	Index

