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Abstract 
Pointing has been conceptualized and implemented so 
far as the act of selecting pixels in bitmap displays. We 
show that the current technique, which we call bitmap 
pointing (BMP), is often sub-optimal as it requires 
continuous information from the mouse while the system 
often just needs the discrete specification of objects. The 
paper introduces object pointing (OP), a novel 
interaction technique based on a special screen cursor 
that skips empty spaces, thus drastically reducing the 
waste of input information. We report data from 1D and 
2D Fitts’ law experiments showing that OP outperforms 
BMP and that the performance facilitation increases with 
the task’s index of difficulty. We discuss the 
implementation of OP in current interfaces. 
Key words: Input and Interaction Technologies, 
Pointing, Fitts’ law. 

1    Introduction 
Since the advent, about two decades ago, of graphical 
user interfaces (GUIs), which led to the so-called WIMP 
paradigm (Windows, Icons, Menus, and Pointers) for 
human-computer interaction (HCI), sustained efforts 
have been made to optimize pointing, the key elemental 
act that permits selection among graphical objects such 
as icons, buttons, menu items, or hypertext links.  
HCI researchers realized only recently that interface 
designers can pursue a more ambitious goal than just 
making pointing to a graphical object as easy as pointing 
to a real-life object: the emerging challenge is to make 
pointing in GUIs easier than normal [4, 5, 8, 14, 17]. 
It has been known, from the beginning of the WIMP era 
[6] that target acquisition time (or movement time, MT) 
in GUIs is almost entirely determined by the ratio of 
target distance D and target width W, as stated by Fitts’ 
law [7, 15]:  
MT = a + b log2 (D/W +1),    (1) 

with a and b standing for empirically adjustable 
coefficients (b>0) and the expression log2(D/W +1) 
defining what Fitts termed the index of difficulty (ID). 
Equation 1 suggests two non-exclusive ways of facilita-
ting target acquisition in a GUI, both of which have been 
recently investigated in HCI research. One is to reduce 
D. If, as soon as the system detects cursor motion, it 
helps by shifting the set of objects that is likely to 
include the target toward the approaching cursor, the 
numerator of Equation 1 drops. This is the solution 
investigated in the Drag-and-Pop technique [4]. Second, 
the system may expand whatever object is being 
approached by the cursor, thus increasing W and hence 
reducing the ID. With this solution, implemented in the 
Mac OS X Dock,1 performance can be facilitated even if 
the expansion is very late [14,17]. 
Semantic pointing [5], a more recent treatment of the 
pointing facilitation problem, simultaneously attacks the 
numerator and the denominator of the D/W ratio. The 
display-control (DC) ratio linking cursor motion to 
mouse motion is made to depend on cursor position 
across the landscape of graphical objects: the default DC 
ratio being set to a high level, each object is surrounded 
by a ‘well’ of reduced DC ratio. Thus, while mouse 
amplitude is saved for large cursor motion toward 
objects (i.e., D is reduced), more amplitude is needed in 
the vicinity of the target (i.e., W increases). One 
attractive feature of semantic pointing is that, unlike 
previous attempts [4, 14], it facilitates performance 
without the cost of perturbing the visual display.  
The above solutions do have a potential for facilitating 
pointing, but they take it for granted that a screen cursor 
is a tool for pixel selection. Below we question this basic 
assumption.  

2    Input Information Waste in Current GUIs 
The present study was triggered by the observation that 
in current GUIs the amount of information received by 
the system is generally far less than that emitted by the 
mouse. Consider a graphical desktop with 40 icons, each 
20x30 pixel (px) large, on a 1600x1200px screen. 
Selecting one of these icons means selecting 600px 

                                                           
1 However, the Dock implementation of this technique fails to 

increase actual pointing tolerance [17]. 
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within a set of 1,920,000px, and this amounts to sending 
log2(1,920,000/600)=11.6 bits to the system. The 
system, however, just needs the specification of one icon 
among the 40 icons, that, log240=5.3 bits. So in this 
example, representative of many real HCI situations, the 
system will use hardly half of the information produced 
in pointing: a substantial proportion of the input infor-
mation is wasted. This waste amounts quantitatively to 
log2(Ss/So) - log2N, with Ss denoting the surface area of 
the screen and So the surface area of the objects 
(assumed to be all the same size), and with N denoting 
the number of displayed objects. 
Obviously, what is ignored by the system is unnecessary 
information. Consider the case in which the graphical 
desktop is entirely tiled with objects, leaving no empty 
spaces. In that limiting case, we have log2(Ss/So)=log2N. 
If, however, there are empty spaces, as is the case in 
many real displays, then the information emitted with the 
mouse will necessarily exceed that received by the 
system, and the larger the proportion of empty space in 
the display, the more bits wasted. So it is the information 
delivered by cursor motion through the voids of our 
graphical displays that the system (justly) ignores. 
Put differently, the continuous input from the hand 
contains a proportion of gratuitous information. As the 
cursor crosses an empty region of the display, the system 
keeps on updating the cursor position to reflect mouse 
motion. However, this is information just for the user—
not to the system, which has to keep waiting for some 
discrete selection. The gratuitous component of pointing, 
we believe, lies in the fact that current GUIs force the 
user to select pixels whereas the system, more often than 
not, just needs the selection of discrete objects.  
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Figure 1: Cursor motion in an elemental 1D pointing 
movement, using the current BMP mode. 
Our GUIs being based on bitmap graphics, let us call the 
current pointing mode bitmap pointing (BMP). Figure 1 
shows what happens when the cursor moves to some 
object to select it. Time elapses along the figure’s 

horizontal axis. For the sake of simplicity, assume 
pointing to take place on a 1D desktop, and so space can 
be represented on the vertical axis. Suppose that the 
desktop displays two targets, which occupy intervals 
[AB] and [CD], and the cursor’s target is object [CD]. 
The starting point is O. 
At first, suppose the cursor is stationary. At time t0, 
when the cursor starts to move upwards, anyone—and 
hence the software that controls onscreen cursor 
motion—could safely guess that the user is starting a 
movement that will end up in either object [AB] or 
object [CD]: the only uncertainty left at t0 is target 
identity (1 bit, ignoring pointing abortion).  
The system gains no information as the cursor crosses 
the empty space interval [OA]. At t1, when the cursor 
reaches the proximal boundary of the first object, this 
object gets highlighted (gray shading in the figure), 
signaling that if a click or an ENTER key press were to 
happen now, the system would activate that particular 
object. However, this is information from the system—
not to the system. What is occurring at t1 was trivially 
predictable from t0 because [AB] had to be reached 
anyway, regardless of whether or not it was the 
movement’s target. The message emitted by the user 
over the [t0, t1] interval is essentially redundant.  
In fact, the single bit of information the system has been 
waiting for since t0 is delivered at time t2, when the 
cursor crosses the upper boundary of target [AB]: at that 
moment, the cursor is moving rather fast (i.e., the slope 
of the trajectory is steep), so there is no doubt that the 
cursor is leaving the object—the probability that the 
cursor aims at target [CD] switches to 1. Had its velocity 
been low and its acceleration negative (braking) at t2, 
one would have been able to guess that the target was 
interval [AB] with an overshoot. At any rate, the 
remainder of cursor motion from t2 to t4 will deliver no 
information whatsoever. Yet the standard BMP 
technology demands that users carefully finish up their 
movement, even though the final deceleration of a 
targeted movement is known to be the most costly phase, 
in terms of time and control effort [16]. 

3   Object pointing 
We now introduce what we call object pointing (OP). 
The OP mode involves an extra cursor, which we call the 
‘timorous’ cursor (Tim) because it behaves on the screen 
as if it were ‘void’- phobic. Tim’s original feature is that 
it never visits empty regions of graphical space, thanks 
to an algorithm that uninterruptedly analyzes its 
kinematics. As soon as the algorithm detects that Tim 
has left an object, it identifies the current direction of 
Tim’s motion and makes it jump to the first object 
located in that direction. However, as long as Tim is 
within an object, it moves normally in parallel to the 
standard, continuous cursor. Note that in OP mode, the 
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usual system cursor is ineffective for object selection: 
only Tim’s visit to objects can cause their highlight.  

3.1 Object Pointing in 1D space 
Figure 2 illustrates OP in the case of the simple 1D 
pointing task of Figure 1. We suppose the user is 
initially in BMP mode. At time t0, with the standard, 
continuous cursor still at rest, the user switches to the 
OP mode. Tim could have popped up at the same 
location as the standard cursor, but because it is not 
within an object, it immediately jumps to the nearest 
boundary of the nearest object, causing this object to 
highlight. At t1, the mouse starts to move, causing the 
two cursors, now in different locations, to move upward 
in parallel, with Tim ‘safely’ within the object [AB]. At 
t2, Tim reaches point B, the upper boundary of the 
object, and hence jumps instantaneously to point C, the 
proximal boundary of object [CD], in which it can 
resume its continuous course parallel to the standard 
cursor. Note that when Tim reaches point D, the mouse 
is still pushing it upward (as revealed by the trajectory of 
the other cursor), but there is nothing beyond object 
[CD] and so Tim stays at D. 
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Figure 2. Tim’s jumping course in the OP mode, along 
with the continuous trajectory followed by the standard 
cursor. 
This rather simple example in 1D space captures the 
main properties and potentialities of OP, which still hold 
in 2D or 3D space. One noteworthy property is that 
neither of the two screen cursors need to be shown to the 
user. Displaying the standard cursor in OP mode is 
superfluous because this cursor is ineffective. As for 
Tim, it is always in some object and that object is 
highlighted, so at every single instant the user receives 
the appropriate visual feedback, in the form of a 
highlight that jumps from object to object as the mouse 
moves. 
The main advantage of the OP mode is that it makes 
pointing work as though all the objects of the display 
had been packed together as a compact keyboard. 
Therefore distance as measured on the screen no longer 

constrains the ID. The only distance Tim actually needs 
to cover to reach its target is the sum of the widths of the 
obstacles it may have to cross. Obviously this distance 
depends on object density in the display, but it can only 
be shorter than D. Compare in Figures 1 and 2 the 
amplitudes covered by the continuous cursor, which in 
either mode faithfully reflects mouse movements.  
Second, if the target is the last object in the direction of 
the motion, OP makes pointing tolerance infinite in this 
direction. Thus, in Figure 2 the user slightly overshoots 
object [CD], but this error has no impact on target 
acquisition—after t3, Tim stays at the boundary of the 
object, which therefore remains highlighted.  
Kinematic Conditions for the Jump. The algorithm we 
use for the control of Tim’s jumps in OP mode considers 
not only Tim’s current position, but also its 
instantaneous velocity and acceleration at the time it is 
found to leave an object. As soon as Tim is found to 
occupy a pixel that does not belong to some object, the 
algorithm evaluates whether two kinematic conditions 
are met. First, velocity must have reached a threshold: if 
not, Tim returns to the object’s boundary it has just 
left—so no jump will take place when Tim is just 
wandering in the vicinity of some object. Second, Tim’s 
current velocity must not be dropping too steeply: if Tim 
is decelerating while leaving an object, it returns to the 
boundary of the previous object—so no jump can take 
place in the case of a mere overshoot during object 
landing. If the above two kinematic conditions are met, 
then the algorithm starts to evaluate if a jump is in order. 

3.2    Object Pointing in 2D Space 
The basic features of OP are essentially the same in 1D, 
2D and 3D spaces. Below, we focus on the 2D case, 
keeping in mind the importance of 2D displays in current 
GUIs.  
Identifying the Target Object. In 2D space the direction 
of Tim’s motion must be analyzed in angular terms. 
Provided the position, velocity and acceleration 
requirements are met, our algorithm performs a simple 
linear regression analysis using a small sample of xy 
coordinates from the recent history of Tim’s positions 
(e.g., the last five samples). Once the instantaneous 
direction of Tim’s motion has been identi-fied, the 
algorithm determines an angular sector centered around 
Tim’s current direction to search for a new object. If the 
search sector detects at least one object, Tim jumps to 
the proximal boundary of the nearest object. If the 
search is unsuccessful, the angular sector is incremented 
and the search starts again, up to a certain maximum 
angular sector. If the search fails to find any object in the 
largest angular sector, then Tim returns to its departure 
point.  
Eye movements. One argument for the workability of OP 
is the well-known behavioral fact that in pointing tasks 
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the gaze precedes the hand. Typically, the target 
becomes the gaze fixation point before or at about the 
time the cursor starts to move [1,12]. This means that in 
OP mode, there should be no difficulty for the user to 
follow the jumping motion of the highlight across the 
layout of objects (regardless of whether or not Tim is 
visible): the user’s task will be to move the highlight 
from the periphery of the visual field to her/his current 
point of fixation.  

4    Experiment 1: Reciprocal Pointing in 1D Space 
The goal of Exp.1 was to quantitatively assess OP vs. 
BMP performance in a highly simplified laboratory task 
so designed as to allow a rigorous experimental control 
over a minimal number of relevant variables. We 
investigated three pointing conditions: the standard BMP 
mode (baseline) and two variants of the OP technique, 
one with the timorous cursor permanently visible (OPc) 
and the other with no cursor at all (the standard, 
continuous cursor was never displayed). 

4.1    Dependent Variables 
Movement time (MT), defined as the time elapsed 
between two correctly located clicks, was the main 
dependent variable. The other dependent variables were 
the amplitude of on-screen cursor motion, the amplitude 
of the hand movement, and the subjective rating of the 
difficulty of pointing in the various conditions. 

4.2    Independent Variables 
Exp.1 was run in two parts (Table 1). Exp.1A served to 
manipulate Task difficulty by just varying W at a 
constant level of movement amplitude, with D set to a 
constant 800px, to avoid any experimental confound 
between the effects of difficulty and scale [10]. We used 
three levels of ID: 3.0, 5.5, and 8.1 bits (i.e., W=114, 18, 
and 3px, respectively).  
 
Table 1. Task parameters for Exp.1. Underlined are the 
values that were expected to be problematic for 
participants.  

Screen Space (pixels) Tablet Space (mm)
D W D W Ratio D /W ID  (bit)

Exp. 1A 800 114 238.7 34.0 7 3.00
800 18 238.7 5.4 44 5.51
800 3 238.7 0.9 267 8.06

Screen Space (pixels) Tablet Space (mm)
D W D W Ratio D /W ID  (bit)

Exp. 1B 10 1 3.0 0.3 10 3.46
250 25 74.6 7.5 10 3.46

1230 123 367.0 36.7 10 3.46

Task Difficulty

Task Difficulty

 
 
Exp.1B served to manipulate Task scale by varying D 
and W proportionally, so that the ID was a constant 3.46 
bits (see Table 1). We used three levels of scale. For the 
lowest, D and W were set to 10 and 1px, respectively, 
creating a miniaturized task—the problematic feature 
was obviously W=1px, corresponding to 0.3mm on the 

tablet. For the next scale level, D and W were set to a 
comfortable 250 and 25px, corresponding on the tablet 
to 75 and 7.5mm, respectively. In the third condition, D 
and W were set to 1230 and 123px to force the puck to 
cover a rather large 367mm amplitude on the tablet. This 
extended scale range was expected to give rise, in the 
baseline BMP condition, to an optimum, V-shaped, 
relationship between MT and scale. Below, D identifies 
task scale (but recall that in Exp.1B W always equaled 
D/10).  
Since display-control gain was a constant 3.35px/mm in 
Exp.1, the scale manipulation of Exp.1B simultaneously 
affected display size and movement amplitude on the 
tablet (at least for BMP). We wished to evaluate OP in 
situations that capture the properties of real-world 
interfaces such as PDAs (resp. wall interfaces), which 
miniaturize (resp. magnify) both the display and the 
movement.  

4.3    Hypotheses 
Three working hypotheses were derived for Exp.1 from 
our theoretical analysis of OP.  
• Overall, pointing performance should be faster in 
OP mode than in standard BMP mode, thanks to the 
reduction of movement amplitude and—both targets of 
the reciprocal pointing paradigm being peripheral—the 
increase of target tolerance.  
• In OP mode, the slope of Fitts’ law should be zero, 
because the variations of D and W are handled with 
immaterial time costs by the system. Since, in contrast, 
MT is known to follow Fitts’ law in the standard BMP 
mode, one predicts that the higher the ID, the larger the 
superiority of OP over BMP (Exp.1A).  
• In OP mode, MT should become scale-insensitive 
for the same reason as above. Since both interface 
miniaturization and magnification are known to impair 
BMP performance [3], the larger the deviation from 
optimal size in either direction, the larger the expected 
superiority of OP over BMP (Exp.1B).  

4.4    Methods 
Equipment. Exp. 1 was run on a PC running UNIX with 
a screen set to a 1600x1200 pixel resolution. The input 
device was a puck to be moved on an A3 Intuos 12x18’ 
Wacom tablet programmed in relative mode.  
Display and Task. We used Fitts’ (1954) classic 1D 
reciprocal-pointing paradigm [7]. The participants had to 
click back and forth on two dark-blue-colored vertical 
strips that extended from the top to the bottom of the 
screen, appearing in full-screen mode on a black 
background. The pointing movement had to be 
controlled exclusively along the left-right dimension. 
The target turned light-red when it was reached by the 
cursor, as if high-lighted—a necessary feature for the OP 
mode to work in the absence of any visible cursor. The 
cursor that controlled the highlight was a 1-pixel thick 
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vertical line drawn in white from top to bottom. In the 
BMP condition the line cursor could be moved 
continuously across screen space. In contrast, in the two 
OP conditions the line cursor—which could be moved 
continuously within a target— could only jump from one 
target to the other. The cursor was displayed in the OPc 
condition but not in the OP condition. Note that a miss, 
being ineffective, had to be immediately corrected, 
simply resulting in an increased MT: error rate, a 
constant 0%, can be ignored. 
Design and Procedure. Exp.1A involved three pointing 
modes (BMP, OPc with Tim visible, and OP with Tim 
invisible) and three IDs, yielding a nine-cell within-
participant experimental design, which we recycled in 
Exp.1B with scale replacing the ID (Table 1).  
Twelve unpaid volunteers participated in the experiment. 
However, due to errors in handling log files, we were 
left with a sample of 9 participants (Exp.1A) and 8 
participants (Exp.1B) to assess the performances. Each 
participant ran two sets of 27 blocks of trials, the first set 
for Exp.1A and the second for Exp.1B. Each block 
comprised 10 movements, and so Exp.1 totaled 540 
target acquisitions per participant. Within each set of 27 
blocks, order effects were counterbalanced over 
conditions with Latin squares. The two sets, separated by 
a comfortable rest, made up a session that lasted 
approximately one and a half hour. 
 

4.5 Results and Discussion 
Performance Speed. Figure 3 shows mean MT as a 
function of task difficulty for each pointing condition.  
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Figure 3. Effect of effective task difficulty on movement 
time, for each pointing technique (Exp.1A). Error bars 
on the Y axis represent α=.05 confidence limits based 
on between-participant standard deviations (SD). 
The variable on the x axis is the effective ID, 
IDe=log2(Ae/We +1), where Ae denotes effective 
amplitude (the average amplitude of cursor motion) and 
We denotes effective target width (the value of W which, 
given the observed dispersion of clicks, would have 
yielded 4% errors). Recourse to the IDe, computed on a 

participant-by-participant and block-by-block basis 
before averaging, makes it possible to assess Fitts’ law 
satisfactorily even if the correlation between movement-
endpoints dispersion and prescribed W is less than 
perfect [15]. Note, however, that this technique amounts 
to expressing Fitts’ law as a scatter plot linking two 
dependent measures, MT on the y axis and IDe on the x 
axis. Unlike the nominal (i.e., prescribed) value of ID, a 
systematic variable (i.e., a ‘factor’), IDe is a stochastic 
variable, which precludes the use of the analysis of 
variance to evaluate the impact of task difficulty. Note 
that the ID was computed identically for BMP and OP 
from onscreen length measurements. 
Figure 3 shows that performance was always much faster 
for OP (mean MT=0.331s) than standard BMP (mean 
MT=1.274s), a 74% time-saving effect which the 
confidence limits show to be highly reliable. Second, 
whereas MT faithfully obeyed Fitts’ law for BMP (for 
the best-fitting equation, MT=0.246 IDe - 0.081), it no 
longer did for OP, where the mean slopes were 0 and -
0.01s/bit. Finally, Tim’s visibility had no incidence on 
OP performance.  
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Figure 4. Effect of task scale on movement time, for 
each pointing technique (Exp.1B). 
Figure 4 shows mean MT as a function of task scale for 
each pointing condition, as measured in Exp.1B. Again, 
OP yielded considerably faster performance than BMP 
overall, the mean time saving amounting to 76% of MT. 
Note the interaction between scale and pointing mode 
(p<.0001): whereas for BMP performance speed was 
scale dependent, exhibiting the expected V-shaped 
relationship, for OP no scale effect was apparent. 
Newman-Keuls pair-wise comparisons revealed that for 
BMP both task miniaturization and task magnification 
significantly impaired performance (p<.05). For OP or 
OPc, in contrast, neither pair-wise difference approached 
significance.  
Tablet Amplitudes vs. Screen Distances. The data of 
Exp.1B, which contrasted very small and very large task 
scales on the screen, are well suited to illustrate the way 
in which the participants actually managed in tablet 
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space to cover screen-space distances. Figure 5 shows, 
for the three pointing techniques, how the amplitude 
actually covered by the puck on the tablet varied with 
the distance separating the two targets on the screen. 
Although a slight scale effect was still observed with OP, 
the amplitude of the puck movement required in OP 
mode to handle the three levels of D remained very 
short, in comparison with the BMP mode, revealing a 
drastic input-device footprint reduction. 
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Figure 5. Puck amplitude on the tablet as a function of 
onscreen target distance, for each pointing technique.  
Subjective Difficulty Scores. The rating, on a 5-point 
scale, of the difficulty experienced at pointing in Exp.1 
was about the same for the two variants of OP (1.42 and 
1.47). But pointing was judged far less difficult with the 
OP technique (mean±SD=1.44±0.74) than the usual 
BMP technique (3.55±0.44). All but one participant 
(who equally scored OP and BMP), assigned a reduced 
score of difficulty to OP (sign test p<.001, one-tailed). 

5    Experiment 2: Serial Pointing in 2D Space 
This experiment aimed at evaluating OP in 2D space, 
using a more realistic simulation of a GUI. Because the 
results of Exp.1 had confirmed that the visibility of Tim 
was superfluous, in Exp.2 the pointing-mode variable 
became binary, contrasting BMP vs. the variant of OP 
that never displays Tim. Pointing mode was crossed with 
another factor, onscreen target density, with the display 
exhibiting 6, 12, or 60 objects. 
5.1  Methods  
Equipment and Display. The input device consisted of 
the same A3-format tablet as in Exp.1, but the puck was 
replaced by a standard mouse on which a stylus had been 
fixed. The mouse served to control onscreen cursor 
motion in relative mode, so that not only position, but 
also direction were defined in the ‘egocentric’ frame of 
reference of the hand. However, the attached stylus 
allowed the tablet to track the hand’s absolute position 
so as to allow footprint measurements.  
The screen resolution was set to 1024x768 pixels. The 
layout of the 6, 12, or 60 objects, all identical (32x32 
pixel icons), was randomly drawn by the program on a 
black background. By default, the displayed objects 

were dark blue, but the object that was the current 
pointing target was shown in a more conspicuous light-
green color. Highlighting of the currently visited object, 
whether light-green or dark-blue, was obtained by 
surrounding this object with a white outline that enlarged 
the object to 52x52 pixels. 
Task. The pointing paradigm was serial, but no longer 
reciprocal in the sense of a back and forth (stationary) 
movement. To track the green target, which every 
successful click made to jump to another unpredictably 
determined object, the participant had to produce a 
series of clicks to follow the path dictated by the 
program across graphical objects. This task was 
designed to mimic a rather common situation in GUIs 
(e.g., reaching and clicking the FILE menu, then the 
OPEN item, then browsing a tree, etc.). Within each 
display, 11 successive clicks had to be made, yielding 
blocks of 10 measurements of MT. If a target object was 
missed by the click, it remained the target, waiting for a 
correct click, and so a 0% error rate was imposed on all 
participants. 
Participants and Procedure. Twelve new unpaid 
volunteers participated. Each of the 6 cells of the design 
(2 modes x 3 object densities) was explored 6 times for 
each participant, yielding a set of 36 blocks each 
including 10 movements overall, with possible order 
effects being counterbalanced with Latin squares. The 
experiment was completed in a single session that lasted 
about 40 minutes. 

5.2    Results and Discussion 
Performance Speed. Figure 6 shows the effect of 
movement difficulty on MT for BMP and OP. The two 
curves were computed by averaging the coefficients of 
Fitts’ law estimated in each participant. Above 3.6 bits 
(the abscissa of the intersection between the curves), the 
more difficult the task, the better OP relative to BMP.  
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Figure 6. Movement time in Exp.2 as a function of 
effective task difficulty for the OP and BMP modes. 
However, the curve intersection that specifies the critical 
level of difficulty above which OP began to surpass 
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BMP depended on object density: the abscissa of this 
intersection (for the current version of our OP algorithm) 
was 2.7, 3.5, and 7.0 bits for the 6, 12, and 60 object 
condition, respectively. So, in keeping with our expec-
tations, the less dense the display and the more difficult 
the task, the greater the benefit brought about by OP.  
Mouse Footprint. We obtained an estimate of the mouse 
footprint for the BMP and the OP mode by computing 
on the x and y axis the SD of the absolute mouse 
coordinates delivered by the tablet. Since, with a normal 
spread of hand positions in both dimensions, a rectangle 
with its vertical and horizontal sides equal to 2 SD 
should include about 96% x 96% = 92% of all positions, 
mouse footprint can be estimated as the length of the 
rectangle’s diagonal, as SQRT(2 SDx²+ 2 SDy²), or as the 
rectangle’s surface area, as 2 SDx * 2 SDy. Even though 
this method can occasionally lead to overestimations of 
the foot print in case of a gross repositioning of the 
mouse, it ought not bias the OP vs. BMP footprint 
comparison. Using the rectangle’s diagonal, mouse 
footprint was 23.8% for OP relative to BMP 
(mean±SD=37±0.6mm vs. 155±23mm). In terms of 
surface area, footprint in OP amounted to a minute 6.2% 
of BMP (695±234mm² vs. 11,192±3,191mm²). 
Satisfaction Scores. Overall, all three object densities 
mixed, OP and BMP scored about the same in terms of 
satisfaction concerning ease of use (12.8 vs. 12.3, 
respectively, t(11)=0.53, p>.1), but the scores depended 
on the density, in keeping with the speed data. No 
significant differences were found for the intermediate 
and higher density conditions. In the low-density 
condition, however, OP scored 15.8 and BMP 10.8 
(t(11)=4.46, p<.001, one tailed), with all individual 
judgments, save a tie, favoring OP over BMP. 

6    Overview 
To sum up, input flows in current GUIs suffer a serious 
waste of information because users are always asked to 
select pixels regardless of the fact that the system, more 
often than not, needs just the specification of a discrete 
object. We have introduced OP, a new pointing mode 
that dispenses the user of producing redundant cursor 
moves across the voids of graphical displays. With 
formal experiments in 1D and 2D space, we have shown 
that OP indeed facilitates target acquisition, both 
objectively and subjectively. The data corroborate our 
hypotheses that the benefit of OP increases (1) as 
pointing becomes more difficult—either because of a 
higher ID or because of a more marked departure, in 
either direction, from optimal interface size—and (2) as 
object density in graphical space decreases.  

7    Implications for HCI Design  
OP shares with semantic pointing [5] a valuable charac-
teristic: it reduces the difficulty of target acquisition 
without perturbing the layout of graphical objects. 

However, the two techniques differ. Whereas semantic 
pointing affects the law’s intercept, with the whole curve 
being shifted downward, OP affects the slope of Fitts’ 
law, virtually canceling it. This means that, regardless of 
the spatial arrangement of objects in the display, OP 
makes pointing about as easy as though all objects were 
tightly packed together, thus forming a soft keyboard.  
Since pointing is a basic building block of all our GUIs, 
the potential implementation scope of the OP mode 
seems to be fairly broad. Our demonstration that the 
advantage of OP over the current BMP technology is 
enhanced when pointing difficulty increases is obviously 
important—indeed, it is for difficult tasks that we need 
pointing optimization. Current trends in HCI technology 
raise two major challenges that seem tailored to the OP 
technique. First, with the spread, sooner or later, of high-
resolution screens, pointing difficulty will tend to 
increase in the future. The other challenge arises from 
the current broadening of the range of interface scale. 
Since interface scale is known to dramatically affect the 
bandwidth of the interaction [11], the OP technique 
seems particularly promising in the face of dramatically 
miniaturized and magnified displays.  
One spectacular characteristic of the OP mode is a 
considerable reduction of input device footprint. This 
feature may be useful for standard users, if only because 
desks are often cluttered, or touchpad area is limited. 
But it should be of special help to disabled users for 
whom the production of normal amplitude movements is 
a problem. OP makes it possible to control cursor 
motion in normal, zero-order mode (e.g., with a standard 
mouse) with strongly reduced hand moves. 
The OP technique is more than a mouse counterpart of 
the keyboard direction keys. One important difference is 
that the definition of the jumping direction with OP is far 
finer than up, down, left, and right, making it possible to 
move one’s selection, not simply through rows and 
columns, but through any arbitrary layout of objects. 
Moreover, unlike the set of direction keys on a 
keyboard, OP does not require a time consuming switch 
from one input device to another. 
Rather than an alternative to BMP, OP should be viewed 
as an optional mode made available to users beside the 
usual BMP mode. One should be allowed to switch 
opportunistically from BMP to OP, via some simple 
mouse command, to occasionally cope with pixels (e.g., 
in a drawing task). So the interface should provide the 
user with some convenient means to switch back and 
forth between OP and BMP. 
Obviously, OP does not yield any benefit for selection 
within display regions that are tiled with graphical 
objects, because such regions offer no voids. For 
example, following a horizontal path to reach the next 
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hierarchical level in a cascading menu costs time [2], but 
for little or no gain: the probability that the cursor aims 
at the next (previous) level of the hierarchy when it starts 
moving to the right (left) is about 1. One solution is to 
make the menu highlight jump by discrete steps 
depending on the initial direction of cursor motion [13]. 
Facilitating pointing across tiled spaces with such a 
technique might nicely complement OP.  

8    Future Work 
One problem that remains to be addressed is the design 
of an appropriate command to switch back and forth 
between OP and BMP. Among the possibilities, we may 
think of a combination of mouse-button presses or a 
brief oscillation of the cursor. The latter option seems 
particularly worth examining. Quick, small amplitude 
oscillations of the hand, very easy to produce [9], might 
usefully enrich the vocabulary of input commands. 
One possible development would be to also allow, in OP 
mode, the object highlight to switch from objects in the 
active window to objects hosted by surrounding 
windows, perhaps by setting different velocity thresholds 
for jumping within and between windows. 
Our preliminary investigation used a newborn version of 
the OP algorithm for 2D space, with presumably sub-
optimal parameter settings. So, although OP already 
worked better than BMP, its efficiency can certainly be 
improved. One feature that will require special care is 
the setting of the initial value and the expansion 
dynamics of the angular sector that serves in OP mode to 
detect the target of current cursor motion.  
Exp.2 is likely to have underestimated the performance 
benefit of OP, as novel techniques are inevitably 
penalized in evaluation experiments: OP was far less 
familiar to our participants than BMP. So more 
evaluation work is needed not only to optimize OP, but 
also to reevaluate the technique with practiced users.  
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