

Object Pointing: A Complement to Bitmap Pointing in GUIs

Yves Guiard
a
 Renaud Blanch

b
 Michel Beaudouin-Lafon

b

a Laboratoire Mouvement et Perception

CNRS & U. de la Méditerranée, Marseille, France
guiard@laps.univ-mrs.fr

b LRI & INRIA Futurs
Université Paris-Sud, Orsay, France

{blanch, mbl}@lri.f

Abstract
Pointing has been conceptualized and implemented so
far as the act of selecting pixels in bitmap displays. We
show that the current technique, which we call bitmap
pointing (BMP), is often sub-optimal as it requires
continuous information from the mouse while the system
often just needs the discrete specification of objects. The
paper introduces object pointing (OP), a novel
interaction technique based on a special screen cursor
that skips empty spaces, thus drastically reducing the
waste of input information. We report data from 1D and
2D Fitts’ law experiments showing that OP outperforms
BMP and that the performance facilitation increases with
the task’s index of difficulty. We discuss the
implementation of OP in current interfaces.
Key words: Input and Interaction Technologies,
Pointing, Fitts’ law.

1 Introduction
Since the advent, about two decades ago, of graphical
user interfaces (GUIs), which led to the so-called WIMP
paradigm (Windows, Icons, Menus, and Pointers) for
human-computer interaction (HCI), sustained efforts
have been made to optimize pointing, the key elemental
act that permits selection among graphical objects such
as icons, buttons, menu items, or hypertext links.
HCI researchers realized only recently that interface
designers can pursue a more ambitious goal than just
making pointing to a graphical object as easy as pointing
to a real-life object: the emerging challenge is to make
pointing in GUIs easier than normal [4, 5, 8, 14, 17].
It has been known, from the beginning of the WIMP era
[6] that target acquisition time (or movement time, MT)
in GUIs is almost entirely determined by the ratio of
target distance D and target width W, as stated by Fitts’
law [7, 15]:
MT = a + b log2 (D/W +1), (1)

with a and b standing for empirically adjustable
coefficients (b>0) and the expression log2(D/W +1)
defining what Fitts termed the index of difficulty (ID).
Equation 1 suggests two non-exclusive ways of facilita-
ting target acquisition in a GUI, both of which have been
recently investigated in HCI research. One is to reduce
D. If, as soon as the system detects cursor motion, it
helps by shifting the set of objects that is likely to
include the target toward the approaching cursor, the
numerator of Equation 1 drops. This is the solution
investigated in the Drag-and-Pop technique [4]. Second,
the system may expand whatever object is being
approached by the cursor, thus increasing W and hence
reducing the ID. With this solution, implemented in the
Mac OS X Dock,1 performance can be facilitated even if
the expansion is very late [14,17].
Semantic pointing [5], a more recent treatment of the
pointing facilitation problem, simultaneously attacks the
numerator and the denominator of the D/W ratio. The
display-control (DC) ratio linking cursor motion to
mouse motion is made to depend on cursor position
across the landscape of graphical objects: the default DC
ratio being set to a high level, each object is surrounded
by a ‘well’ of reduced DC ratio. Thus, while mouse
amplitude is saved for large cursor motion toward
objects (i.e., D is reduced), more amplitude is needed in
the vicinity of the target (i.e., W increases). One
attractive feature of semantic pointing is that, unlike
previous attempts [4, 14], it facilitates performance
without the cost of perturbing the visual display.
The above solutions do have a potential for facilitating
pointing, but they take it for granted that a screen cursor
is a tool for pixel selection. Below we question this basic
assumption.

2 Input Information Waste in Current GUIs
The present study was triggered by the observation that
in current GUIs the amount of information received by
the system is generally far less than that emitted by the
mouse. Consider a graphical desktop with 40 icons, each
20x30 pixel (px) large, on a 1600x1200px screen.
Selecting one of these icons means selecting 600px

1 However, the Dock implementation of this technique fails to

increase actual pointing tolerance [17].

 Copyright is held by the author/owner Originally
published by the Canadian Human-Computer Communications Society
in the Proceedings of Graphics Interface 2004, May 17-19, London, Ontario.

Copyright is held by the author/owner originally published by the
Canadian Human-Computer Communications Society in the
Proceedings of Graphics Interface 2004, May 17-19, London, Ontario.

9

within a set of 1,920,000px, and this amounts to sending
log2(1,920,000/600)=11.6 bits to the system. The
system, however, just needs the specification of one icon
among the 40 icons, that, log240=5.3 bits. So in this
example, representative of many real HCI situations, the
system will use hardly half of the information produced
in pointing: a substantial proportion of the input infor-
mation is wasted. This waste amounts quantitatively to
log2(Ss/So) - log2N, with Ss denoting the surface area of
the screen and So the surface area of the objects
(assumed to be all the same size), and with N denoting
the number of displayed objects.
Obviously, what is ignored by the system is unnecessary
information. Consider the case in which the graphical
desktop is entirely tiled with objects, leaving no empty
spaces. In that limiting case, we have log2(Ss/So)=log2N.
If, however, there are empty spaces, as is the case in
many real displays, then the information emitted with the
mouse will necessarily exceed that received by the
system, and the larger the proportion of empty space in
the display, the more bits wasted. So it is the information
delivered by cursor motion through the voids of our
graphical displays that the system (justly) ignores.
Put differently, the continuous input from the hand
contains a proportion of gratuitous information. As the
cursor crosses an empty region of the display, the system
keeps on updating the cursor position to reflect mouse
motion. However, this is information just for the user—
not to the system, which has to keep waiting for some
discrete selection. The gratuitous component of pointing,
we believe, lies in the fact that current GUIs force the
user to select pixels whereas the system, more often than
not, just needs the selection of discrete objects.

B

A

Time

Continuous Cursor
Bitmap Pointing

t0 t1 t2 t3 t4

Amplitude

O

C

D

Figure 1: Cursor motion in an elemental 1D pointing
movement, using the current BMP mode.
Our GUIs being based on bitmap graphics, let us call the
current pointing mode bitmap pointing (BMP). Figure 1
shows what happens when the cursor moves to some
object to select it. Time elapses along the figure’s

horizontal axis. For the sake of simplicity, assume
pointing to take place on a 1D desktop, and so space can
be represented on the vertical axis. Suppose that the
desktop displays two targets, which occupy intervals
[AB] and [CD], and the cursor’s target is object [CD].
The starting point is O.
At first, suppose the cursor is stationary. At time t0,
when the cursor starts to move upwards, anyone—and
hence the software that controls onscreen cursor
motion—could safely guess that the user is starting a
movement that will end up in either object [AB] or
object [CD]: the only uncertainty left at t0 is target
identity (1 bit, ignoring pointing abortion).
The system gains no information as the cursor crosses
the empty space interval [OA]. At t1, when the cursor
reaches the proximal boundary of the first object, this
object gets highlighted (gray shading in the figure),
signaling that if a click or an ENTER key press were to
happen now, the system would activate that particular
object. However, this is information from the system—
not to the system. What is occurring at t1 was trivially
predictable from t0 because [AB] had to be reached
anyway, regardless of whether or not it was the
movement’s target. The message emitted by the user
over the [t0, t1] interval is essentially redundant.
In fact, the single bit of information the system has been
waiting for since t0 is delivered at time t2, when the
cursor crosses the upper boundary of target [AB]: at that
moment, the cursor is moving rather fast (i.e., the slope
of the trajectory is steep), so there is no doubt that the
cursor is leaving the object—the probability that the
cursor aims at target [CD] switches to 1. Had its velocity
been low and its acceleration negative (braking) at t2,
one would have been able to guess that the target was
interval [AB] with an overshoot. At any rate, the
remainder of cursor motion from t2 to t4 will deliver no
information whatsoever. Yet the standard BMP
technology demands that users carefully finish up their
movement, even though the final deceleration of a
targeted movement is known to be the most costly phase,
in terms of time and control effort [16].

3 Object pointing
We now introduce what we call object pointing (OP).
The OP mode involves an extra cursor, which we call the
‘timorous’ cursor (Tim) because it behaves on the screen
as if it were ‘void’- phobic. Tim’s original feature is that
it never visits empty regions of graphical space, thanks
to an algorithm that uninterruptedly analyzes its
kinematics. As soon as the algorithm detects that Tim
has left an object, it identifies the current direction of
Tim’s motion and makes it jump to the first object
located in that direction. However, as long as Tim is
within an object, it moves normally in parallel to the
standard, continuous cursor. Note that in OP mode, the

10

usual system cursor is ineffective for object selection:
only Tim’s visit to objects can cause their highlight.

3.1 Object Pointing in 1D space
Figure 2 illustrates OP in the case of the simple 1D
pointing task of Figure 1. We suppose the user is
initially in BMP mode. At time t0, with the standard,
continuous cursor still at rest, the user switches to the
OP mode. Tim could have popped up at the same
location as the standard cursor, but because it is not
within an object, it immediately jumps to the nearest
boundary of the nearest object, causing this object to
highlight. At t1, the mouse starts to move, causing the
two cursors, now in different locations, to move upward
in parallel, with Tim ‘safely’ within the object [AB]. At
t2, Tim reaches point B, the upper boundary of the
object, and hence jumps instantaneously to point C, the
proximal boundary of object [CD], in which it can
resume its continuous course parallel to the standard
cursor. Note that when Tim reaches point D, the mouse
is still pushing it upward (as revealed by the trajectory of
the other cursor), but there is nothing beyond object
[CD] and so Tim stays at D.

Time

Continuous Cursor
Timorous Cursor

Amplitude

t0 t1 t2 t3 t4

B

A

O

C

D

Vector PointingObject Pointing

Figure 2. Tim’s jumping course in the OP mode, along
with the continuous trajectory followed by the standard
cursor.
This rather simple example in 1D space captures the
main properties and potentialities of OP, which still hold
in 2D or 3D space. One noteworthy property is that
neither of the two screen cursors need to be shown to the
user. Displaying the standard cursor in OP mode is
superfluous because this cursor is ineffective. As for
Tim, it is always in some object and that object is
highlighted, so at every single instant the user receives
the appropriate visual feedback, in the form of a
highlight that jumps from object to object as the mouse
moves.
The main advantage of the OP mode is that it makes
pointing work as though all the objects of the display
had been packed together as a compact keyboard.
Therefore distance as measured on the screen no longer

constrains the ID. The only distance Tim actually needs
to cover to reach its target is the sum of the widths of the
obstacles it may have to cross. Obviously this distance
depends on object density in the display, but it can only
be shorter than D. Compare in Figures 1 and 2 the
amplitudes covered by the continuous cursor, which in
either mode faithfully reflects mouse movements.
Second, if the target is the last object in the direction of
the motion, OP makes pointing tolerance infinite in this
direction. Thus, in Figure 2 the user slightly overshoots
object [CD], but this error has no impact on target
acquisition—after t3, Tim stays at the boundary of the
object, which therefore remains highlighted.
Kinematic Conditions for the Jump. The algorithm we
use for the control of Tim’s jumps in OP mode considers
not only Tim’s current position, but also its
instantaneous velocity and acceleration at the time it is
found to leave an object. As soon as Tim is found to
occupy a pixel that does not belong to some object, the
algorithm evaluates whether two kinematic conditions
are met. First, velocity must have reached a threshold: if
not, Tim returns to the object’s boundary it has just
left—so no jump will take place when Tim is just
wandering in the vicinity of some object. Second, Tim’s
current velocity must not be dropping too steeply: if Tim
is decelerating while leaving an object, it returns to the
boundary of the previous object—so no jump can take
place in the case of a mere overshoot during object
landing. If the above two kinematic conditions are met,
then the algorithm starts to evaluate if a jump is in order.

3.2 Object Pointing in 2D Space
The basic features of OP are essentially the same in 1D,
2D and 3D spaces. Below, we focus on the 2D case,
keeping in mind the importance of 2D displays in current
GUIs.
Identifying the Target Object. In 2D space the direction
of Tim’s motion must be analyzed in angular terms.
Provided the position, velocity and acceleration
requirements are met, our algorithm performs a simple
linear regression analysis using a small sample of xy
coordinates from the recent history of Tim’s positions
(e.g., the last five samples). Once the instantaneous
direction of Tim’s motion has been identi-fied, the
algorithm determines an angular sector centered around
Tim’s current direction to search for a new object. If the
search sector detects at least one object, Tim jumps to
the proximal boundary of the nearest object. If the
search is unsuccessful, the angular sector is incremented
and the search starts again, up to a certain maximum
angular sector. If the search fails to find any object in the
largest angular sector, then Tim returns to its departure
point.
Eye movements. One argument for the workability of OP
is the well-known behavioral fact that in pointing tasks

11

the gaze precedes the hand. Typically, the target
becomes the gaze fixation point before or at about the
time the cursor starts to move [1,12]. This means that in
OP mode, there should be no difficulty for the user to
follow the jumping motion of the highlight across the
layout of objects (regardless of whether or not Tim is
visible): the user’s task will be to move the highlight
from the periphery of the visual field to her/his current
point of fixation.

4 Experiment 1: Reciprocal Pointing in 1D Space
The goal of Exp.1 was to quantitatively assess OP vs.
BMP performance in a highly simplified laboratory task
so designed as to allow a rigorous experimental control
over a minimal number of relevant variables. We
investigated three pointing conditions: the standard BMP
mode (baseline) and two variants of the OP technique,
one with the timorous cursor permanently visible (OPc)
and the other with no cursor at all (the standard,
continuous cursor was never displayed).

4.1 Dependent Variables
Movement time (MT), defined as the time elapsed
between two correctly located clicks, was the main
dependent variable. The other dependent variables were
the amplitude of on-screen cursor motion, the amplitude
of the hand movement, and the subjective rating of the
difficulty of pointing in the various conditions.

4.2 Independent Variables
Exp.1 was run in two parts (Table 1). Exp.1A served to
manipulate Task difficulty by just varying W at a
constant level of movement amplitude, with D set to a
constant 800px, to avoid any experimental confound
between the effects of difficulty and scale [10]. We used
three levels of ID: 3.0, 5.5, and 8.1 bits (i.e., W=114, 18,
and 3px, respectively).

Table 1. Task parameters for Exp.1. Underlined are the
values that were expected to be problematic for
participants.

Screen Space (pixels) Tablet Space (mm)
D W D W Ratio D /W ID (bit)

Exp. 1A 800 114 238.7 34.0 7 3.00
800 18 238.7 5.4 44 5.51
800 3 238.7 0.9 267 8.06

Screen Space (pixels) Tablet Space (mm)
D W D W Ratio D /W ID (bit)

Exp. 1B 10 1 3.0 0.3 10 3.46
250 25 74.6 7.5 10 3.46

1230 123 367.0 36.7 10 3.46

Task Difficulty

Task Difficulty

Exp.1B served to manipulate Task scale by varying D
and W proportionally, so that the ID was a constant 3.46
bits (see Table 1). We used three levels of scale. For the
lowest, D and W were set to 10 and 1px, respectively,
creating a miniaturized task—the problematic feature
was obviously W=1px, corresponding to 0.3mm on the

tablet. For the next scale level, D and W were set to a
comfortable 250 and 25px, corresponding on the tablet
to 75 and 7.5mm, respectively. In the third condition, D
and W were set to 1230 and 123px to force the puck to
cover a rather large 367mm amplitude on the tablet. This
extended scale range was expected to give rise, in the
baseline BMP condition, to an optimum, V-shaped,
relationship between MT and scale. Below, D identifies
task scale (but recall that in Exp.1B W always equaled
D/10).
Since display-control gain was a constant 3.35px/mm in
Exp.1, the scale manipulation of Exp.1B simultaneously
affected display size and movement amplitude on the
tablet (at least for BMP). We wished to evaluate OP in
situations that capture the properties of real-world
interfaces such as PDAs (resp. wall interfaces), which
miniaturize (resp. magnify) both the display and the
movement.

4.3 Hypotheses
Three working hypotheses were derived for Exp.1 from
our theoretical analysis of OP.
• Overall, pointing performance should be faster in
OP mode than in standard BMP mode, thanks to the
reduction of movement amplitude and—both targets of
the reciprocal pointing paradigm being peripheral—the
increase of target tolerance.
• In OP mode, the slope of Fitts’ law should be zero,
because the variations of D and W are handled with
immaterial time costs by the system. Since, in contrast,
MT is known to follow Fitts’ law in the standard BMP
mode, one predicts that the higher the ID, the larger the
superiority of OP over BMP (Exp.1A).
• In OP mode, MT should become scale-insensitive
for the same reason as above. Since both interface
miniaturization and magnification are known to impair
BMP performance [3], the larger the deviation from
optimal size in either direction, the larger the expected
superiority of OP over BMP (Exp.1B).

4.4 Methods
Equipment. Exp. 1 was run on a PC running UNIX with
a screen set to a 1600x1200 pixel resolution. The input
device was a puck to be moved on an A3 Intuos 12x18’
Wacom tablet programmed in relative mode.
Display and Task. We used Fitts’ (1954) classic 1D
reciprocal-pointing paradigm [7]. The participants had to
click back and forth on two dark-blue-colored vertical
strips that extended from the top to the bottom of the
screen, appearing in full-screen mode on a black
background. The pointing movement had to be
controlled exclusively along the left-right dimension.
The target turned light-red when it was reached by the
cursor, as if high-lighted—a necessary feature for the OP
mode to work in the absence of any visible cursor. The
cursor that controlled the highlight was a 1-pixel thick

12

vertical line drawn in white from top to bottom. In the
BMP condition the line cursor could be moved
continuously across screen space. In contrast, in the two
OP conditions the line cursor—which could be moved
continuously within a target— could only jump from one
target to the other. The cursor was displayed in the OPc
condition but not in the OP condition. Note that a miss,
being ineffective, had to be immediately corrected,
simply resulting in an increased MT: error rate, a
constant 0%, can be ignored.
Design and Procedure. Exp.1A involved three pointing
modes (BMP, OPc with Tim visible, and OP with Tim
invisible) and three IDs, yielding a nine-cell within-
participant experimental design, which we recycled in
Exp.1B with scale replacing the ID (Table 1).
Twelve unpaid volunteers participated in the experiment.
However, due to errors in handling log files, we were
left with a sample of 9 participants (Exp.1A) and 8
participants (Exp.1B) to assess the performances. Each
participant ran two sets of 27 blocks of trials, the first set
for Exp.1A and the second for Exp.1B. Each block
comprised 10 movements, and so Exp.1 totaled 540
target acquisitions per participant. Within each set of 27
blocks, order effects were counterbalanced over
conditions with Latin squares. The two sets, separated by
a comfortable rest, made up a session that lasted
approximately one and a half hour.

4.5 Results and Discussion
Performance Speed. Figure 3 shows mean MT as a
function of task difficulty for each pointing condition.

0.0

0.5

1.0

1.5

2.0

0 2 4 6 8 10

ID e (bit) = log2(A e/W e + 1)

MT
(s)

OP

OPc

BMP

Lin. reg.
BMP

Figure 3. Effect of effective task difficulty on movement
time, for each pointing technique (Exp.1A). Error bars
on the Y axis represent α=.05 confidence limits based
on between-participant standard deviations (SD).
The variable on the x axis is the effective ID,
IDe=log2(Ae/We +1), where Ae denotes effective
amplitude (the average amplitude of cursor motion) and
We denotes effective target width (the value of W which,
given the observed dispersion of clicks, would have
yielded 4% errors). Recourse to the IDe, computed on a

participant-by-participant and block-by-block basis
before averaging, makes it possible to assess Fitts’ law
satisfactorily even if the correlation between movement-
endpoints dispersion and prescribed W is less than
perfect [15]. Note, however, that this technique amounts
to expressing Fitts’ law as a scatter plot linking two
dependent measures, MT on the y axis and IDe on the x
axis. Unlike the nominal (i.e., prescribed) value of ID, a
systematic variable (i.e., a ‘factor’), IDe is a stochastic
variable, which precludes the use of the analysis of
variance to evaluate the impact of task difficulty. Note
that the ID was computed identically for BMP and OP
from onscreen length measurements.
Figure 3 shows that performance was always much faster
for OP (mean MT=0.331s) than standard BMP (mean
MT=1.274s), a 74% time-saving effect which the
confidence limits show to be highly reliable. Second,
whereas MT faithfully obeyed Fitts’ law for BMP (for
the best-fitting equation, MT=0.246 IDe - 0.081), it no
longer did for OP, where the mean slopes were 0 and -
0.01s/bit. Finally, Tim’s visibility had no incidence on
OP performance.

0.0

0.5

1.0

1.5

2.0

0 500 1000 1500
D (px)

MT (s)
BMP
OP
OPc

Figure 4. Effect of task scale on movement time, for
each pointing technique (Exp.1B).
Figure 4 shows mean MT as a function of task scale for
each pointing condition, as measured in Exp.1B. Again,
OP yielded considerably faster performance than BMP
overall, the mean time saving amounting to 76% of MT.
Note the interaction between scale and pointing mode
(p<.0001): whereas for BMP performance speed was
scale dependent, exhibiting the expected V-shaped
relationship, for OP no scale effect was apparent.
Newman-Keuls pair-wise comparisons revealed that for
BMP both task miniaturization and task magnification
significantly impaired performance (p<.05). For OP or
OPc, in contrast, neither pair-wise difference approached
significance.
Tablet Amplitudes vs. Screen Distances. The data of
Exp.1B, which contrasted very small and very large task
scales on the screen, are well suited to illustrate the way
in which the participants actually managed in tablet

13

space to cover screen-space distances. Figure 5 shows,
for the three pointing techniques, how the amplitude
actually covered by the puck on the tablet varied with
the distance separating the two targets on the screen.
Although a slight scale effect was still observed with OP,
the amplitude of the puck movement required in OP
mode to handle the three levels of D remained very
short, in comparison with the BMP mode, revealing a
drastic input-device footprint reduction.

0

100

200

300

400

0 500 1000 1500
Onscreen Target Distance (px)

Puck
Amplitude
on Tablet

(mm)

BMP

OP

OPc

Figure 5. Puck amplitude on the tablet as a function of
onscreen target distance, for each pointing technique.
Subjective Difficulty Scores. The rating, on a 5-point
scale, of the difficulty experienced at pointing in Exp.1
was about the same for the two variants of OP (1.42 and
1.47). But pointing was judged far less difficult with the
OP technique (mean±SD=1.44±0.74) than the usual
BMP technique (3.55±0.44). All but one participant
(who equally scored OP and BMP), assigned a reduced
score of difficulty to OP (sign test p<.001, one-tailed).

5 Experiment 2: Serial Pointing in 2D Space
This experiment aimed at evaluating OP in 2D space,
using a more realistic simulation of a GUI. Because the
results of Exp.1 had confirmed that the visibility of Tim
was superfluous, in Exp.2 the pointing-mode variable
became binary, contrasting BMP vs. the variant of OP
that never displays Tim. Pointing mode was crossed with
another factor, onscreen target density, with the display
exhibiting 6, 12, or 60 objects.
5.1 Methods
Equipment and Display. The input device consisted of
the same A3-format tablet as in Exp.1, but the puck was
replaced by a standard mouse on which a stylus had been
fixed. The mouse served to control onscreen cursor
motion in relative mode, so that not only position, but
also direction were defined in the ‘egocentric’ frame of
reference of the hand. However, the attached stylus
allowed the tablet to track the hand’s absolute position
so as to allow footprint measurements.
The screen resolution was set to 1024x768 pixels. The
layout of the 6, 12, or 60 objects, all identical (32x32
pixel icons), was randomly drawn by the program on a
black background. By default, the displayed objects

were dark blue, but the object that was the current
pointing target was shown in a more conspicuous light-
green color. Highlighting of the currently visited object,
whether light-green or dark-blue, was obtained by
surrounding this object with a white outline that enlarged
the object to 52x52 pixels.
Task. The pointing paradigm was serial, but no longer
reciprocal in the sense of a back and forth (stationary)
movement. To track the green target, which every
successful click made to jump to another unpredictably
determined object, the participant had to produce a
series of clicks to follow the path dictated by the
program across graphical objects. This task was
designed to mimic a rather common situation in GUIs
(e.g., reaching and clicking the FILE menu, then the
OPEN item, then browsing a tree, etc.). Within each
display, 11 successive clicks had to be made, yielding
blocks of 10 measurements of MT. If a target object was
missed by the click, it remained the target, waiting for a
correct click, and so a 0% error rate was imposed on all
participants.
Participants and Procedure. Twelve new unpaid
volunteers participated. Each of the 6 cells of the design
(2 modes x 3 object densities) was explored 6 times for
each participant, yielding a set of 36 blocks each
including 10 movements overall, with possible order
effects being counterbalanced with Latin squares. The
experiment was completed in a single session that lasted
about 40 minutes.

5.2 Results and Discussion
Performance Speed. Figure 6 shows the effect of
movement difficulty on MT for BMP and OP. The two
curves were computed by averaging the coefficients of
Fitts’ law estimated in each participant. Above 3.6 bits
(the abscissa of the intersection between the curves), the
more difficult the task, the better OP relative to BMP.

All Object Densities

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1 2 3 4 5 6 7
ID e (bit)

MT (s)

BMP

OP

Figure 6. Movement time in Exp.2 as a function of
effective task difficulty for the OP and BMP modes.
However, the curve intersection that specifies the critical
level of difficulty above which OP began to surpass

14

BMP depended on object density: the abscissa of this
intersection (for the current version of our OP algorithm)
was 2.7, 3.5, and 7.0 bits for the 6, 12, and 60 object
condition, respectively. So, in keeping with our expec-
tations, the less dense the display and the more difficult
the task, the greater the benefit brought about by OP.
Mouse Footprint. We obtained an estimate of the mouse
footprint for the BMP and the OP mode by computing
on the x and y axis the SD of the absolute mouse
coordinates delivered by the tablet. Since, with a normal
spread of hand positions in both dimensions, a rectangle
with its vertical and horizontal sides equal to 2 SD
should include about 96% x 96% = 92% of all positions,
mouse footprint can be estimated as the length of the
rectangle’s diagonal, as SQRT(2 SDx²+ 2 SDy²), or as the
rectangle’s surface area, as 2 SDx * 2 SDy. Even though
this method can occasionally lead to overestimations of
the foot print in case of a gross repositioning of the
mouse, it ought not bias the OP vs. BMP footprint
comparison. Using the rectangle’s diagonal, mouse
footprint was 23.8% for OP relative to BMP
(mean±SD=37±0.6mm vs. 155±23mm). In terms of
surface area, footprint in OP amounted to a minute 6.2%
of BMP (695±234mm² vs. 11,192±3,191mm²).
Satisfaction Scores. Overall, all three object densities
mixed, OP and BMP scored about the same in terms of
satisfaction concerning ease of use (12.8 vs. 12.3,
respectively, t(11)=0.53, p>.1), but the scores depended
on the density, in keeping with the speed data. No
significant differences were found for the intermediate
and higher density conditions. In the low-density
condition, however, OP scored 15.8 and BMP 10.8
(t(11)=4.46, p<.001, one tailed), with all individual
judgments, save a tie, favoring OP over BMP.

6 Overview
To sum up, input flows in current GUIs suffer a serious
waste of information because users are always asked to
select pixels regardless of the fact that the system, more
often than not, needs just the specification of a discrete
object. We have introduced OP, a new pointing mode
that dispenses the user of producing redundant cursor
moves across the voids of graphical displays. With
formal experiments in 1D and 2D space, we have shown
that OP indeed facilitates target acquisition, both
objectively and subjectively. The data corroborate our
hypotheses that the benefit of OP increases (1) as
pointing becomes more difficult—either because of a
higher ID or because of a more marked departure, in
either direction, from optimal interface size—and (2) as
object density in graphical space decreases.

7 Implications for HCI Design
OP shares with semantic pointing [5] a valuable charac-
teristic: it reduces the difficulty of target acquisition
without perturbing the layout of graphical objects.

However, the two techniques differ. Whereas semantic
pointing affects the law’s intercept, with the whole curve
being shifted downward, OP affects the slope of Fitts’
law, virtually canceling it. This means that, regardless of
the spatial arrangement of objects in the display, OP
makes pointing about as easy as though all objects were
tightly packed together, thus forming a soft keyboard.
Since pointing is a basic building block of all our GUIs,
the potential implementation scope of the OP mode
seems to be fairly broad. Our demonstration that the
advantage of OP over the current BMP technology is
enhanced when pointing difficulty increases is obviously
important—indeed, it is for difficult tasks that we need
pointing optimization. Current trends in HCI technology
raise two major challenges that seem tailored to the OP
technique. First, with the spread, sooner or later, of high-
resolution screens, pointing difficulty will tend to
increase in the future. The other challenge arises from
the current broadening of the range of interface scale.
Since interface scale is known to dramatically affect the
bandwidth of the interaction [11], the OP technique
seems particularly promising in the face of dramatically
miniaturized and magnified displays.
One spectacular characteristic of the OP mode is a
considerable reduction of input device footprint. This
feature may be useful for standard users, if only because
desks are often cluttered, or touchpad area is limited.
But it should be of special help to disabled users for
whom the production of normal amplitude movements is
a problem. OP makes it possible to control cursor
motion in normal, zero-order mode (e.g., with a standard
mouse) with strongly reduced hand moves.
The OP technique is more than a mouse counterpart of
the keyboard direction keys. One important difference is
that the definition of the jumping direction with OP is far
finer than up, down, left, and right, making it possible to
move one’s selection, not simply through rows and
columns, but through any arbitrary layout of objects.
Moreover, unlike the set of direction keys on a
keyboard, OP does not require a time consuming switch
from one input device to another.
Rather than an alternative to BMP, OP should be viewed
as an optional mode made available to users beside the
usual BMP mode. One should be allowed to switch
opportunistically from BMP to OP, via some simple
mouse command, to occasionally cope with pixels (e.g.,
in a drawing task). So the interface should provide the
user with some convenient means to switch back and
forth between OP and BMP.
Obviously, OP does not yield any benefit for selection
within display regions that are tiled with graphical
objects, because such regions offer no voids. For
example, following a horizontal path to reach the next

15

hierarchical level in a cascading menu costs time [2], but
for little or no gain: the probability that the cursor aims
at the next (previous) level of the hierarchy when it starts
moving to the right (left) is about 1. One solution is to
make the menu highlight jump by discrete steps
depending on the initial direction of cursor motion [13].
Facilitating pointing across tiled spaces with such a
technique might nicely complement OP.

8 Future Work
One problem that remains to be addressed is the design
of an appropriate command to switch back and forth
between OP and BMP. Among the possibilities, we may
think of a combination of mouse-button presses or a
brief oscillation of the cursor. The latter option seems
particularly worth examining. Quick, small amplitude
oscillations of the hand, very easy to produce [9], might
usefully enrich the vocabulary of input commands.
One possible development would be to also allow, in OP
mode, the object highlight to switch from objects in the
active window to objects hosted by surrounding
windows, perhaps by setting different velocity thresholds
for jumping within and between windows.
Our preliminary investigation used a newborn version of
the OP algorithm for 2D space, with presumably sub-
optimal parameter settings. So, although OP already
worked better than BMP, its efficiency can certainly be
improved. One feature that will require special care is
the setting of the initial value and the expansion
dynamics of the angular sector that serves in OP mode to
detect the target of current cursor motion.
Exp.2 is likely to have underestimated the performance
benefit of OP, as novel techniques are inevitably
penalized in evaluation experiments: OP was far less
familiar to our participants than BMP. So more
evaluation work is needed not only to optimize OP, but
also to reevaluate the technique with practiced users.

Acknowledgments
Thanks to Matthieu Langet, who did the software
development and kindly helped us run the experiments.

References
1 Abrams, R.A., Meyer, D.A., & Kornblum, S.

(1989). Speed and accuracy of saccadic eye movements:
Characteristics of impulse variability in the oculomotor
system. J. Exp. Psychol.: HPP, 15, 529-543.

2 Accot, J. & Zhai, S. (1997). Beyond Fitts' law:
Models for trajectory-based HCI tasks. Proc. of CHI’97,
pp. 295-302.

3 Accot, J. & Zhai, S. (2001). Scale effects in steering
law tasks. Proc. of CHI’01, pp. 1-8.

4 Baudisch, P., Cutrell, E., Robbins, D., Czerwinski,
M., Tandler, P., Bederson, B., & Zierlinger, A. (2003).
Drag-and-Pop and Drag-and-Pick: Techniques for
accessing remote screen content on touch- and pen-
operated systems. Proc. of INTERACT'03, pp. 57-64.

5 Blanch, R., Guiard, Y., & Beaudouin-Lafon, M. (in
press). Semantic pointing: Improving target acquisition
with control-display ratio adaptation. Proc. of CHI’04.

6 Card, S.K., English, W.K., and Burr, B.J. (1978).
Evaluation of mouse, rate-controlled isometric joystick,
step-keys, and text keys for text selection on a CRT.
Ergonomics, 21, 301-613.

7 Fitts, P.M. (1954). The information capacity of the
human motor system in controlling the amplitude of
movement. J. Exp. Psychol., 47, 381-391.

8 Gutwin, C. Improving focus targeting in interactive
fisheye views. Proc. of CHI’02, pp. 267-274.

9 Guiard, Y. (1993). On Fitts' and Hooke's laws :
simple harmonic movement in upper-limb cyclical
aiming. Acta Psychologica, 82, 139-159.

10 Guiard Y. (2001). Disentangling relative from
absolute movement amplitude in Fitts’ law experiments.
Ext. Abstracts of CHI’01, pp. 315-316.

11 Guiard, Y., Beaudouin-Lafon, M., Bastin, J.,
Pasveer, D., & Zhai, S. (in press). View size and
pointing difficulty in multi-scale navigation. Proc. of
AVI 04. Gallipoli (Italy), May 25-28, 2004.

12 Jacob, R.J.K. (1991). The use of eye movements in
human-computer interaction techniques: What you look
at is what you get. ACM Transactions on Information
Systems 9(3), 152-169.

13 Kobayashi, M. & Igarashi, T. (2003). Considering
the direction of cursor movement for efficient traversal
of cascading menus. Proc. of UIST’03, pp. 91-94.

14 McGuffin, M. & R. Balakrishnan, R. (2002).
Acquisition of Expanding Targets. Proc. of CHI’02, pp.
57-64.

15 MacKenzie, I.S. (1992). Fitts’ law as a research and
design tool in human-computer interaction. Human-
Computer Interaction, 7, 91-139.

16 Welford, A. T. (1968). Fundamentals of skills.
London: Methven.

17 Zhai, S., Conversy, S., Beaudouin-Lafon, M., &
Guiard Y. (2003). Human on-line response to target
expansion. Proc. of CHI’2003, pp. 177-184.

16

	1 Introduction
	2 Input Information Waste in Current GUIs
	3 Object pointing
	3.1 Object Pointing in 1D space
	3.2 Object Pointing in 2D Space

	4 Experiment 1: Reciprocal Pointing in 1D Space
	4.1 Dependent Variables
	4.2 Independent Variables
	4.3 Hypotheses
	4.4 Methods
	Results and Discussion

	5 Experiment 2: Serial Pointing in 2D Space
	This experiment aimed at evaluating OP in 2D space, using a more realistic simulation of a GUI. Because the results of Exp.1 had confirmed that the visibility of Tim was superfluous, in Exp.2 the pointing-mode variable became binary, contrasting BMP vs.
	Methods
	Equipment and Display. The input device consisted of the same A3-format tablet as in Exp.1, but the puck was replaced by a standard mouse on which a stylus had been fixed. The mouse served to control onscreen cursor motion in relative mode, so that not o

	5.2 Results and Discussion

	6 Overview
	7 Implications for HCI Design
	8 Future Work
	Acknowledgments
	References

