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ABSTRACT 
The widely-held view that Fitts' law expresses a 
speed/accuracy trade-off is presumably correct, but it is 
vague. We outline a simple resource-allocation theory of 
Fitts’ law in which movement time and error trade for each 
other. The theory accounts quite accurately for the data of 
Fitts’ (1954) seminal study, as well as some fresh data of 
our own. In both data sets we found the time/error trade-off 
to obey a power law. Our data, which we could analyze 
more thoroughly than Fitts’, are consistent with a square-
root function with a single adjustable constant. We suggest 
that the resource-allocation framework should help 
combine information and energy considerations to allow a 
more complete account of Fitts' law. 
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1. INTRODUCTION 
This paper is about Fitts' law, the well-known relation that 
links the time it takes people to reach a target (e.g., a 
graphical object) with  a pointer and the accuracy of their 
reaching action. We introduce a new formulation of Fitts’ 
law which specifies one sense in which the law can be said 
to be a speed/accuracy trade-off, as traditionally assumed in 
HCI [12,13] as well as psychology [15,18]. A trade-off is a 
mutual dependency between two utilities that conflict with 
each other because they both draw on the same limited-
resource pool: the better the performance on one front, the 
worse it is on the other [16,17]. Understanding how this 
concept applies in the context of Fitts tasks is our goal here.  

A Fitts' law equation is an empirical regularity that relates 
mean movement time µT to an index of difficulty ID 
computed as a simple mathematical transform of D/W, the 
ratio of target distance D to target width W. Here are, 
among many others [18], four well-known formulations of 

the law: 

µµµµT = a * log2 (2D/W) +b      Fitts (1954) [2]                    (1) 

µµµµT = a * log2 (D/W) +b      Crossman (1956) [1]            (2) 

µµµµT = a * log2 (D/W +1) +b    MacKenzie (1992) [12]       (3) 

µµµµT = a * (D/W)b.                  Meyer et al. (1990) [15]        (4) 

µT denotes average movement time (technically a mean or 
possibly a median, at any rate a central-trend statistic), and 
a and b stand for adjustable coefficients (a>0). Most 
popular within HCI is Eq. 3, known as the Shannon version 
of Fitts' law [11,12]. The starting point of this analysis is 
that Eqs. 1-4 do not describe a speed/accuracy trade-off.  

2. THE BASIC MEASURES: TIME AND ERROR 

2.1. Time Is Not Speed 
First, µT, the dependent variable that stands on the left-hand 
side of Eqs. 1-4, is a time measure. In general µT correlates 
negatively with the average speed of a movement. 
Nevertheless it is only in casual language that one can 
tolerate confusion between a time measure, dimensionally 
[T], and a speed measure, dimensionally [LT -1] [9].  

2.2. Accuracy: Neither Information Nor Difficulty  
Second, how the quotient of D/W, which determines the ID 
on the right-hand side of Eqs. 1-4, measures accuracy is 
unclear. In light of information theory [22], Fitts [2] 
assumed that the information conveyed by a movement is 
log2(2D/W), a formula which MacKenzie [11,12] corrected 
to log2(D/W+1). The information and the accuracy of 
movements must be linked somehow, but to our knowledge 
that link has not been clearly described.  

Assuming that the mathematical transforms of D/W that 
feature in Eqs. 1-3 provide estimates of movement 
difficulty rather than movement information does not take 
us any closer to a measure of movement accuracy. In the 
Shannonian Fitts-MacKenzie tradition, difficulty is 
measured in bits and calculated, via Eqs. 1-3, from an 
objective property of the target layout, namely the ratio of 
lengths D and W. But this is just information—for lack of 
an operational definition of its own, it is hard to see how 
task difficulty might relate to accuracy.  

If one wished to characterize difficulty as subjective effort 
[19], one would have the problem that none of the above 
IDs bear a monotonic relationship with this effort. There is 
no question that in the upper region of the ID spectrum 
(over 4 bits or so, using the Shannon ID), the higher the ID, 
the more difficult the task for participants. But in the lower 
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region of the ID spectrum (below 2 bits or so), the lower 
the ID, the more difficult the task: no matter their good 
will, participants will systematically fail to produce large 
enough spreads of movement endpoints [1,4,12]. This is 
not too surprising. Since the kinetic-energy cost of 
movements varies with the square of their velocity, a Fitts 
task becomes difficult not only with very high but also (in a 
different sense of the word) with very low IDs. The 
participants’ failure to comply with instructions in low-ID 
conditions just reflects their reluctance, or mere inability to 
produce fast enough movements because of their excessive 
energetic cost. This observation tends to be overlooked in 
an approach exclusively based on Shannonian information. 
But from the moment it is recognized that an aimed 
movement involves not only bits of information, but also 
joules of energy, it becomes clear that movement difficulty, 
characterized as subjective effort, can only bear a U-shaped 
relation with the variable known as the ID in Fitts' law 
research [7]. Information, as captured by any ID estimate, 
cannot be taken as an index of subjective difficulty.  

Thus a typical Fitts' law equation expresses a relation, not 
between movement speed and movement accuracy, but 
rather between movement time and a certain dimensionless 
ratio whose relation with both accuracy and difficulty is 
unclear. We now present some distinctions which we think 
useful to rephrase Fitts' law as an explicit trade-off. 

2.3. Relative Target Distance D/W vs. Relative Target 
Tolerance W/D 
When Fitts [2] (p. 266) introduced his index of difficulty, 
he wrote ID= – log2(W/2D), rather than ID= log2(2D/W). 
These are two different mathematical writings of the same 
thing, and so whether the independent variable of Eqs. 1-4 
is D/W or W/D might be judged an idle question. In fact 
that distinction is quite critical because the quotients of 
these two divisions designate different measures in the 
physical world of experimentation. The quotient of D/W is 
a measure of relative target distance (RTD)—i.e., D scaled 
to, or expressed in units of W. In contrast, the quotient of 
W/D is a measure of relative target tolerance (RTT)—i.e., 
target tolerance scaled to, or expressed in units of D.1 
Although it has been a tradition to formulate Fitts' law as an 
equation of the form µT=f(D/W), there is reason to prefer 
the inverse writing µT=f(W/D) [8]. First, there is a scale of 
measurement issue [26]: relative target distance or D/W 
lacks a true zero because the limiting case where D=0 and 
W>0, hence D/W=0, violates the very definition of a Fitts 
task—if D=0, no movement is required [8]. In contrast, 
relative target tolerance or W/D does enjoy a true zero: the 
limiting case where W=0 and D>0, hence W/D=0, 
corresponds to a zero-tolerance aiming task, which makes 
sense and has indeed been investigated [21]. Thus only 
RTT=W/D, and not RTD=D/W, runs on a ratio (equal-
interval) scale of measurement [26]. This matters because a 

                                                           
1 This study requiring a number of non-conventional distinctions 
and notations, we appended a glossary to the paper (Section 9).  

higher level of measurement for experimental variables 
means a more constraining framework for testing 
theoretical hypotheses [20]. For example, the y-intercept of 
an empirical regression line is interpretable only if the x 
variable has a physically-anchored zero [8]. 

RTT is also preferable over RTD for the statement of Fitts' 
law because any measure of accuracy, whether absolute or 
relative, should involve error as a component. It seems 
much more sensible to ground one’s characterization of 
accuracy on a measure of tolerance (i.e., permitted error) 
like RTT than a measure of distance like RTD. 

2.4. Task Geometry vs. Movement Performance 
This section calls attention to an obvious distinction that 
has received little attention in the literature. On the one 
hand experimenters have full control over D and W,  two 
systematic, deterministic variables that characterize the 
geometrical layout of targets and that serve to prescribe to 
participants an average amplitude and a spread of 
movement endpoints, respectively. On the other hand one 
needs to characterize the participants’ actual performance. 
Here the elemental measures are movement duration T and 
movement amplitude A, from which an endpoint error can 
be computed as E=A−D. Unlike D and W, variables T and 
A (as well as E) are random variables, reflecting the natural 
variability of human performance. We need to distinguish 
T, A and E, to be measured at the level of individual 
movements, from central-trend statistics like means µT, µA, 
and µE, to be calculated over samples of movements.  

We deliberately wrote Eqs. 1-4 above as µT=f(D/W) rather 
than µT=f(A/W) as has been customary since Fitts [2], 
because the latter notation is somewhat wobbly. If W 
unambiguously designates a property of the target layout 
(tolerance), it is always unclear whether the conventional 
symbol A stands for D (thus referring to the target layout) 
or µA (thus referring to the movement). The writing of Fitts' 
law becomes particularly ambiguous in this regard when W 
is replaced by effective width We to denote the tolerance 
that, in retrospect, would have yielded a pre-specified error 
percentage, given a certain spread of endpoints. Labeling 
this variable as “target width” suggests one is talking task 
geometry while We is a random variable of the movement. 

In fact the accuracy issue can be approached in Fitts’ 
paradigm from two markedly different, though equally 
legitimate, angles. In one approach, Fitts' law is all about 
the dependency of µT upon the dimensionless ratio W/D (or 
its inverse D/W), as suggested in the formulations we chose 
for Eqs. 1-4. In this approach µT is predicted from the task 
geometry, and the problem of accuracy must be phrased in 
terms of D/W or W/D. In the alternative approach, Fitts' law 
is all about the mutual dependency of two random 
variables, movement time and relative variable error. RVE 
seems well represented by σA/µA, a regular coefficient of 
variation in which σA and µA denote the standard deviation 
and the mean of movement amplitude [8]. Thus Fitts' law 
can be formulated either as µT=f(W/D), expressing the 
causal dependency of a temporal random variable upon a 



systematically-varied geometrical variable, or alternatively 
as µT=f(σA/µA), expressing the mutual dependency of two 
random variables. These are what we call the geometrical 
vs. the stochastic version of Fitts' law. 

HCI researchers, who often need to evaluate or predict 
pointing performance for certain target layouts, naturally 
adopt the former approach, assuming that movement 
performance is causally dependent on the target layout. It is 
the alternative approach, however, that paves the way for a 
trade-off analysis. If one wants to formulate Fitts' law as a 
trade-off, one needs to write the law in the form of a mutual 
dependency, with movement time depending on movement 
error and vice versa—it should not matter whether Fitts' 
law is written µT=f(σA/µA) or, reciprocally, σA/µA =g(µT). 

3. A SIMPLE RESOURCE-ALLOCATION THEORY OF 
FITTS' LAW 

Below are listed a set of basic assumptions needed for a 
resource-allocation theory of Fitts' law. Note that the trade-
off under consideration is not between speed and accuracy, 
but, strictly speaking, between mean or median movement 
time µT and relative variable error RVE.  

1. Utility. Movement time and relative variable error are 
both negative utilities, that is, quantities that must be 
minimized—the shorter the µT, the better the performance; 
the smaller the RVE, the better the performance.  

2. Trade-Off. The two minimization efforts conflict with 
each other: the less of one negative utility, the more of the 
other. This is a trade-off of the min-min category.2 

3. Limited Resource Pool. The trade-off results from the 
fact that the two concurrent minimization efforts draw from 
a common pool of resources, and this pool is limited. This 
assumption is the counterpart, within the trade-off 
theoretical approach, of Fitts’ [2] limited-capacity channel 
assumption. We may designate the content of the 
hypothetical pool, whose nature is unknown, as the effort. 
We just need to assume, using the usual economic analogy, 
that some generic currency is convertible into speed and/or 
accuracy and that the available amount of this currency is 
finite, being a characteristic of every individual placed in a 
given situation. Devising a method for estimating that 
amount is our first important challenge here.  

4. Less-than-Total Resource Exploitation. In Fitts' law 
experiments participants are instructed to constantly do 
their best —i.e., to invest 100% of their resources. Human 
effort, however, is subject to random fluctuations and so 
the amount of resource actually available to an individual at 
a given point in time can be less—but never more—than 
these 100%. The limited resource pool, in other words, 
must be thought of as an upper bound. We believe this 
realistic assumption, which has escaped researchers’ 

                                                           
2 An example of a max-max trade-off is that between speed and 
accuracy, both positive utilities: the faster and the more accurate 
the movement, the better the performance. 

attention until recently [25], is mandatory in any approach 
to Fitts' law, including the information theoretic approach. 

5. Resource allocation strategy. Faced by resource scarcity 
in a Fitts task, participants can deliberately modulate the 
balance between their concurrent time-minimization and 
error-minimization efforts. Quantifying that imbalance, 
estimating its range of variation, and understanding its 
dependency upon systematically manipulated experimental 
conditions—different target layouts in Fitts’ [2] experiment 
(Section 4), different verbal instructions in ours (Section 
5)—constitute the second challenge of this analysis. 

4. FITTS’ (1954) TAPPING DATA: EVIDENCE OF A 
TIME/ERROR TRADE-OFF 

This section aims to show that Fitts’ data can indeed be 
reformulated explicitly as a trade-off between two 
conflicting utilities. Focusing on the min-min trade-off of 
movement time µT and relative variable error RVE = σA/µA, 
we will introduce a simple geometrical method for 
characterizing quantitatively the size of the resource pool as 
well as the strategic imbalance. 

At first sight, the suitability of Fitts’ experimental protocol 
for a trade-off analysis of his data might seem questionable. 
Fitts did not ask his participants to minimize movement 
time and relative error concurrently—he asked them to 
minimize a single variable, µT, under a number of different 
constraints of relative tolerance, and so it was a systematic 
factor that stood for accuracy. One should bear in mind that 
with such a protocol, still most popular today, error actually 
remains a negative utility (i.e., the less of it, the better), just 
like movement time. It is in order to obtain from 
participants differing levels of RVE that experimenters 
display differing levels of RTT. The manipulation of target 
display as in [2] and instructions as in [4] may be viewed as 
two alternative methods with the same goal. In the former 
option participants are to minimize µT with a variety of 
RVE constraints, while in the latter they are to jointly 
minimize µT and RVE under a variety of speed/accuracy 
compromises. But both methods boil down to instructions, 
formulated visually and in words respectively, serving to 
manipulate the participants’ cognitive stance in the face of 
the fundamental speed/accuracy dilemma. 

We will consider the data Fitts [2] obtained in his famous 
reciprocal tapping experiment, tabulated in his Table 1 (p. 
264, light-stylus data). The table reports movement times 
averaged over 16 participants, for each of 16 combination 
of D and W. However, Fitts did not actually record the 
position of movement endpoints, just tabulating 
percentages of target misses. Capitalizing on Fitts’ report 
(p. 265) that undershoot and overshoot aiming errors were 
about equally frequent in his light-stylus experiment, we 
assumed µA=D. We inferred endpoint spreads from error 
rates using the technique described by MacKenzie [10] 
(Section 2.5). For each combination of D and W we 
computed effective width We (for a fixed 4% error-rate 
constraint, under the hypothesis of a Gaussian spread of 
endpoints) and then calculated σA=We/4.133. 



Note that our analyses below separate the different levels of 
scale, characterized by D or µA, following the recom-
mendation of Guiard [6]. We assume that the form and the 
size of the target display are specified by RTT=W/D and D, 
respectively, and that the form and the size of the aimed 
movements are specified by RVE and µA, respectively.  

4.1. A Power Relationship Between Movement Time and  
Relative Variable Error 
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Figure 1. The trade-off of µµµµT and RVE in Fitts’ tapping data.  

As shown in Fig. 1, Fitts’ data is closely modeled, for each 
scale level, as a power function (.989<r²<.999):  

 µµµµT = q * RVE p               (5) 

where p and q represent adjustable coefficients (p<0, q>0). 
Note that the logarithmic fit (r²=.993 on average over the 
four scales) was nearly as good as the power fit (r²=.996). 

4.2. Amount of Resources 
Eq. 5 may be rewritten as 
 µµµµT * RVE – p  = q                    (6) 

or, since we define relative variable error RVE as σA/µA, as 
 µµµµT * (σσσσA/µµµµA) – p  = q.                   (7) 
Eq. 7 is the statement of a constant product: within each 
scale condition, the product of µT and RVE raised to the 
power –p was conserved in Fitts’ experiment despite his 
systematic change of the target layout and consequently of 
µT. The conservation of quantity q is illustrated in Fig. 2. 
For each of the four scale conditions the slope of the 
regression line is virtually zero—as movement time varied 
over a range of about 2:1, q remained remarkably stable.  

In light of the trade-off theory outlined in Section 3, it is 
clear that the constant q specifies the average amount of 
resources that was available to Fitts’ participants. Note that 
the constant q is indicative, not of an amount of resources, 
but of resource scarcity: the smaller the product of the two 
negative utilities, the better the performance. 

The different elevations of the four flat curves of Fig. 2 
show that the amount of resources available to Fitts’ 
participants was scale dependent. The constant q reached a 
minimum in the D=10.16cm condition, presumably a scale 
optimum for Fitts’ particular task conditions. 
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Figure 2. Conservation of the product q of Eq. 7 across the 

variation of µµµµT, for each scale condition. 

Fig. 3 plots Eq. 7 for D=40.64cm, whose best fit is 
µT=0.1036/RVE 0.3509 (r²=.9992, see Fig. 1). Notice that the 
rectangle obtained by drawing straight horizontal and 
vertical lines to the axes from any point of the curve, 
whether chosen within the actual range of x values like 
points A, B, C, and D, or extrapolated along the curve like 
point E, has a constant area (if y=q/x, then xy=q). This area 
is no other than the coefficient q of Eq. 7, whose estimate 
in that particular scale condition is 0.1036s.  
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Figure 3. A plot of Eq. 7 for the D=40.64cm scale condition, 

where exponent p is -0.3509. ABCD are  Fitts’ actual four data 
points, E is an arbitrary extrapolation along the curve. All 

rectangular areas are equal. 

4.3. Resource Allocation: Strategic Imbalance 
If different points along the curve of Fig. 3 correspond to 
one and the same amount of resources, they specify 
different degrees of imbalance between the time- and error-
minimization effort. While the product xy (the rectangular 
surface area in the figure) is conserved all along the curve, 
reflecting available resources, the ratio y/x (the rectangle’s 
aspect ratio) changes gradually, reflecting different 
resource-allocation options. For any data point of the curve 
the actual strategic imbalance (SI) of participants can be 
quantitatively characterized by this aspect ratio, that is,  

 SI = µµµµT / RVE -p,               (8) 



or, recalling that relative variable error RVE = σA/µA,  

 SI = µµµµT / (σσσσA/µµµµA) -p.             (9) 

With this definition of the aspect ratio, which we chose to 
compute as y/x, the strategic imbalance SI decreases in Fig. 
3 from left to right: the less cautious (and the faster) the 
movement, the lower the index. Thus SI correlates 
positively with—is an index of—the relative strength of the 
error-minimization component of the participant’s effort.  
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Figure 4. The SI as a function of RTT in Fitts’ data. 
 

Fig. 4 shows the dependency of the actual strategy of Fitts’ 
participants, upon RTT, the characteristic of the target 
layout that Fitts manipulated as an attempt to control his 
participants’ strategy. This dependency is highly non-
linear, suggesting that the target-layout manipulation 
technique that Fitts introduced in his 1954 study actually 
provided him with mediocre control over the resource 
allocation strategy of his participants. That mediocrity is 
apparent in Fig. 5. Although Fitts raised RTT up to the 
point where his two targets touched each other (i.e., W=D 
hence W/D=100%), RVE hardly exceeded 10%.   

Back to Fig. 4, notice that Fitts’ participants had two 
different strategic stances in the face of four different 
movement scales. For RTT<30%, the x ranges covered by 
the four curves substantially overlap, thus making it 
possible to compare SIs for geometrically-similar target 
layouts: Fitts’ participants had about the same set of 
strategic imbalances in the two larger-scale conditions 
D=20cm and 40cm, but they apparently had another, more 
cautious set of strategies in the two smaller-scale conditions 
D=5cm and 10cm. The statistical reliability of this finding 
cannot be tested for lack of individual data but the pattern 
seems impressively consistent. One conjecture would be 
that because high speeds cannot be attained over small 
amplitudes, a scale reduction might have encouraged 
participants to adopt a relatively more cautious strategy. 

While the pattern is quite conspicuous in the plot of Fig. 4, 
it is virtually undetectable in the classic plot of µT vs. ID. 
Also note that it could not have been deduced from our 
previous observation that the resource pool was maximal in 
Fitts’ participants for 10cm movements (Fig. 2)—the aspect 
ratio (the quotient of µT/RVE-p) and the surface area (the 

product q=µT*RVE-p) of the rectangles of Fig. 3 are two 
mathematically independent quantities. 
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Figure 5. RVE as a function of RTT. The dashed line 
represents the theoretical equality RVE=RTT. 

4.4. Discussion 
The foregoing confirms that the classic tapping data of Fitts 
(1954) can be satisfactorily interpreted as a trade-off 
between two negative utilities, time and error. Thus, not 
only can we view Fitts' law as the demonstration that 
throughput—the inverse of the law’s slope, whose 
dimensions are bits/s—is conserved as the task ID is made 
to vary, we can just as well view the law as evidence that a 
certain pool of effort resources is conserved in the people 
across the variation of strategic imbalance. Both the 
information theoretic approach and the trade-off approach 
may help us understand Fitts' law.  

5. FRESH DATA ON THE TIME/ERROR TRADE-OFF  
This section reports a simple experiment which only varied 
task instructions so as to induce a systematic variation of 
the participants’ strategic imbalance in the face of the 
concurrent time- and error-minimization efforts. Movement 
amplitude was invariably a comfortable 150mm. 

Among our motivations for running a fresh experiment was 
the fact that Fitts’ [2] individual data are not available. 
From the standpoint of resource allocation theory, one 
expects some quantities—notably the coefficient q of Eq. 
5—to behave as within-individual constants while at the 
same time varying from participant to participant. Also of 
considerable interest is the variability of the strategic 
imbalance among and within individuals. Whether 
experimenters manipulate the target layout, as has been 
customary since Fitts, or speed/accuracy instructions, they 
face human beings with idiosyncratic strategic styles. No 
two participants will identically interpret instructions to 
move, say, as fast as possible. Nor will they show the same 
degree of flexibility in response to changing instructions. 

Our discussion of Fitts’ data above did not refer to less-
than-total resource exploitation, assumption #4 of our 
trade-off theory, whose illustration and testing require 



individual data. Below we will see that this assumption is 
quite useful to estimate individual trade-offs. 

There were two notable differences between our protocol 
and Fitts’. First, our aiming task was discrete, rather than 
reciprocal, our participants having to return to a fixed home 
position after each aimed movement. This option makes it 
possible to clarify the status of our temporal and spatial 
measures. Whereas in the reciprocal protocol µT is the time 
it takes not only to carry out a movement, but also to 
evaluate the error inherited from the previous movement 
and to prepare the next [3], in the discrete protocol µT 
measures the duration of a pure movement-execution 
process. Furthermore the meaning of the movement’s 
endpoint spread σA is interpretable more safely in the 
discrete case, that variability being generated just by the 
execution of the movement, whereas in the reciprocal case 
σA must also reflect, to some unknown extent, the 
variability of the start point [3]. Finally, most pointing 
actions in real world HCI are discrete.  

The other notable difference is that we did not visually 
specify tolerance W. We just specified D with two lines 
indicating the start point and the desired endpoint of the 
movement, the target being thus displayed as a single line. 
We manipulated the balance between the two concurrent 
minimization efforts by means of different sets of 
instructions that asked the participants to cover their whole 
spectrum of imbalances, from maximum speed (minimizing 
µT) to maximum accuracy (minimizing RVE).  

5.1. Method 

Participants 
Sixteen volunteers participated (all right-handed, median 
age 27.5years, interquartile range 2.5years, four female). 

Speed/Accuracy Instructions 
We used five sets of instructions: 1) Max speed, 2) speed 
emphasis, 3) speed/accuracy balance, 4) accuracy 
emphasis, and 5) max accuracy. In the max-speed condition 
the participants were to just minimize movement time, the 
only requirement regarding accuracy being to refrain from 
committing a systematic error: no matter the dispersion of 
movement endpoints, participants were just to manage to 
terminate their movements at about the target on average. 
At the opposite extreme, the max-accuracy instructions 
asked participants to try to bring the cursor exactly to the 
target (zero pixel error), making as many corrective sub-
movements and taking as much time as needed—but not 
more. These two extremes being defined, we simply 
inserted three intermediate levels of instructions, one 
unbiased (speed/accuracy balance) and two biased (speed 
emphasis, accuracy emphasis). 

Apparatus and Setup 
The experiment involved a 1280x1024-pixel (34.0 x 
27.1cm) screen and a Wacom Intuos3 digitizing tablet 
connected to a PC running Linux Ubuntu. The screen 
permanently displayed two vertical lines extending from 
top to bottom, located 150mm apart, which marked the start 

point (left) and the target (right) of the movement. Both 
lines were 1-pixel thick and appeared in red color over a 
white background. Also displayed was a mobile 1-pixel 
thick cross-hair cursor, black in color, whose motion was 
controlled by the stylus. The tablet being used in absolute 
mode with a control-display gain of 1, the hand had to 
move 150mm from its home position for the crosshair to 
reach the target line.  

The participant was seated at a table supporting the Wacom 
tablet and the screen, with a viewing distance of about 50 
cm. During warm-up trials the participants were allowed to 
optimize the orientation of the tablet in the horizontal plane 
to facilitate the execution of the required left-to-right 
movement, the tablet being often tilted counter-clockwise. 
On the tablet was secured a horizontal 8-mm thick plastic 
ruler, along which the stylus tip was to be slid, allowing a 
strictly one-dimensional hand movement. The ruler offered 
a mechanical stop at its left end so that the start position of 
the stylus was standardized to the nearest screen pixel. To 
help initial positioning, an OK message appeared on the 
screen when the crosshair coincided exactly with the start 
line.  

We developed our own software, using Lib USB, for tablet-
data acquisition, to minimize display latency relative to 
tablet events and to exploit the full resolution of our input 
device (5080dpi). The tablet coordinates were translated 
into pixels using floating values to maximize visual-
feedback accuracy. The tablet sampling rate was 
approximately 100 Hz (in the range 85-125 Hz). 

Procedure and Movement Measurement Algorithms 
The experiment consisted of 25 blocks of 15 movements, 
each block being run with a given set of instructions. All 
five instructions were presented in one order, ascending or 
descending, the order being reversed from one group of 
five blocks to the next. The experiment lasted about 40mn 
per participant, including 10min of warm up.  

To begin each trial the participant immobilized the screen 
crosshair at the start line by positioning the stylus on the 
tablet at the ruler stop for a few seconds. When ready, the 
participant moved the stylus to the target position by 
sliding it against the ruler, finishing up with a dwell, then 
lifted the stylus and, after a few seconds rest, proceeded to 
the next trial.  

The movement start point corresponded to the place and 
instant where the crosshair left its home position while 
exhibiting positive (rightward) acceleration. Determination 
of the movement endpoint in time and space is a more 
subtle issue and detailed explanations about our offline 
algorithm were part of the instructions received by the 
participants. We used two different criteria, depending on 
the instructions condition. For the max-speed condition, 
where accuracy was irrelevant, the explanation was that our 
algorithm would take as the movement endpoint the first 
zeroing-out or zero-crossing of instantaneous velocity, thus 
ignoring any subsequent episode of velocity, whether 
deliberate (a corrective sub-movement) or accidental (e.g., 



a mechanical rebound due to the elasticity of the arm). For 
the other four conditions the movement endpoint was 
defined as the beginning of the last dwelling period in the 
kinematic record, meaning that the algorithm would take 
into account all corrective sub-movements, if any. The 
criterion for dwell was the crosshair remaining stationary 
for at least 100ms at least 50mm away from the home 
position.  

5.2. Results and Discussion 
Inspection of the distributions of movement times revealed 
some skewness, especially in the max-speed condition, 
hence our recourse below to median movement time (still 
noted µT) as our central-trend statistic, in place of the mean. 

Systematic Error, Variable Error 
On average over all participants the constant error (µΑ -
150mm) was less than 1 screen pixel in all instructions 
conditions but one: in the max-speed condition we found a 
significant 5.5mm overshoot error (t15=4.50, p<.0005). 
Whatever the reason for this very small (3.7%) if consistent 
effect, it is quite safe to say that it was the relative variable 
error σΑ/µA, rather than the constant error µA-D, that was 
influenced, along with µT, by our variation of instructions. 

Effect of Instructions on Movement Time and RVE.  
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Figure 6. The effect of instructions manipulation on median 
µµµµT and RVE, on average over our 16 participants. Error bars 
are 95% confidence limits based on between-participant SDs.  

With increasing emphasis on accuracy, µT lengthened about 
linearly and RVE decreased non-linearly (Fig. 6). Although 
the max-speed instructions imposed no constraint 
whatsoever on the spread of movement endpoints, RVE 
hardly reached 0.08 (or 8%), a finding reminiscent of Fitts’ 
data (see Fig. 5).  

Convex Front of Performance 
Fig. 7 illustrates the trade-off between µT and RVE for one 
representative participant. Panel A plots all the participant’s 
data points, one per trial block. The best fit is a power 
function, with quite some noise, hence a moderately 
impressive r² of .87. But let us see how assumption #4 of 
our resource-allocation theory, less-than-total resource 
exploitation, helped us exploit our data more thoroughly.  

The participants were to minimize µT and RVE in differing 
proportions. Their data points may be likened with particles 
attracted to the West and South by two magnetic fields 
whose relative strengths are modulated by instructions. 
Viewing the scatter as a mixture of forerunning and 

dawdling particles, we simply assumed that the forerunners 
and the dawdlers were the data points under and above the 
curve. If the resource pool is limited (Assumption #3) then 
forerunners must have been constrained by a hard wall—
the very trade-off curve we are looking for, conceptually 
the borderline that separates in the graph the region of the 
doable (above the curve) from the region of the undoable 
(below). That hard wall must have prevented forerunners 
from spreading any further in the South-West direction. But 
there must be dawdlers (Assumption #4) affected by the 
hard-wall constraint to an attenuated extent. The data is 
quite consistent with this view. As shown in Fig. 7B, 
restricting the fit to the subset of forerunners improved the 
fit considerably (from .87 to .97 in this individual 
example).  
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Figure 7. Convex front of performance. Panel A: a power 
curve is fitted to all the data points delivered by the 

participant, the data points under the curve (filled discs) are 
then selected. Panel B: a new power curve is fitted to the 

selected subset.  

An improved fit of the power equation after elimination of 
dawdlers was observed in all 16 participants (Student 
t15=8.83, p<.0001), the r² increasing on average from .852 
to .972. We checked that, in contrast, restricting the fit to 
the data points resting above the first curve (i.e., selecting 
the dawdlers instead of the forerunners) did not improve 
the fit whatsoever, the r² changing on average over all 
participants from .852 to .853 (t15=0.03, p=.97). 

The data points that form the South-West quadrant of the 
scatter plot (shown as filled discs in Fig. 7A) are especially 
important: they characterize a participant’s best perfor-
mance. These data points must have had more than others 



their locations affected by resources limitations. In the rest 
of this report we will focus on this particular subset, which 
we call the convex front of performance, assumed to be the 
most informative about the location of the trade-off curve 
we are looking for.   

Logarithmic, Exponential, and Power Fits 
We tested the simple two-coefficient models that can 
accommodate the convex-down curvature evident in all our 
µT vs. RVE trade-off functions, the logarithmic, the 
exponential, and the power equation. Fitting the three 
candidate models to the full individual data sets (i.e., to the 
25 pairs of measures originating from the full set of trial 
blocks) resulted in the power model doing best in 10 cases 
(mean r²=.853 over all participants), the exponential model 
doing best in four cases (mean r²=.803) and the log model 
in two (mean r²=.803). In general, the log and (most 
blatantly) the exponential equation failed due to insufficient 
curvature. Fitting the three models again to the convex-
front data, the power model turned out to provide the best 
fit for all but one of our 16 participants, namely Participant 
#11 (P11), with the r² now ranging between .923 and .992 
(on average r²=.972, to be compared with r²=.937 for the 
log and r²=.880 for the exponential model). Therefore we 
retained the power equation µT = q*RVEp (i.e., Eq. 5) for 
modeling the trade-offs.3  

A Closer Look at Individual Exponents: Evidence for a One-
Coefficient SQRT Relation 
Thus, a simple power relation turned out to describe quite 
accurately the time/error trade-off in both Fitts’ data and 
our own, despite our different experimental protocol. Most 
interestingly, the exponent p of the best-fitting power 
model was similar, considering the two scales conditions of 
Fitts’ study that approximately corresponded to ours. In 
Fitts’ data the exponent was -0.54 for D=10cm and -0.38 
for D=20cm (Fig. 1); in our data, with D=15cm, the 
exponent was -0.47 on average. We further inquired into 
this issue by asking how the exponent varied with the 
goodness of fit and with the value taken by q, the other 
adjustable coefficient of Eq. 5 (see Fig. 8).  
To reiterate, any individual participant produces a mixture 
of good and poor performance (assumption #4), but there is 
an infinity of ways of performing poorly and in principle 
only the best (convex-front) performance of that participant 
is informative. It should be realized that as one switches 
from a within- to a between-individual logic this argument 
works just the same. Different individuals being unequally 
able (or willing) to fully concentrate on a repetitive 
movement task, there is every reason to focus on the data of 
the best performers in one’s quest for a consistent 

                                                           
3 The µT vs. RVE relation involves two random variables neither 
of which is ‘dependent’ or ‘independent’. In such a case the so-
called standard major axis method of curve fitting is known to be 
preferable over traditional linear regression, which measures 
errors only along the vertical y axis [23]. Here both methods 
yielded nearly identical estimates (not surprisingly, given the very 
high correlations found in log-log plot between µT and RVE [23]), 
and so we did not depart from the ordinary least-square method. 

quantitative law. Bearing this in mind, a remarkable 
suggestion emerges from the data: first, the better the fit of 
the power model, the closer the exponent to -1/2 (Fig. 8A); 
second, the smaller the value of the participant’s coefficient 
q (i.e., the better the performer, as explained in Section 
4.2), the closer the exponent to -1/2 (Fig. 8B). Three 
individual estimates of the exponent diverged appreciably 
from -1/2, namely those delivered by participants P6, P8, 
and P11 (p=-0.60, -0.34, and -0.32, respectively), but these 
happened to be the sample’s least credible estimates: P6 
and P8 were participants for whom the power fit was 
distinctively worse than average (see Fig. 8A); as for P11, 
we can see in Fig. 8B that he ranked 15th/16 for 
performance, next to P8, who ranked last—a further reason 
to moderately trust P8’s data. 
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Figure 8. The exponent p of Eq. 5 plotted (A) against the r² of 
the power fit and (B) against the value of coefficient q. Each 

data point corresponds to an individual participant. 

Thus, focusing on the best performance (i.e., the convex 
front of performance) of our best performers (actually 13 of 
our 16 participants), we found that the trade-off of µT and 
RVE can be satisfactorily modeled in our data by a square 
root equation with a single adjustable constant: 

 µµµµT = q * RVE -1/2    or    

 µµµµT = q / SQRT(σσσσA/µµµµA)    (10) 

where the multiplicative constant q is information about the 
amount of resources invested by the participant. 

Constant Resource Pool and Variable Strategic Imbalance  
An immediate implication of Eq. 10 is that the quantity q = 
µT*SQRT(σA/µA) is conserved as the participants modulate 
their speed/accuracy strategy (Section 4.2). But this 
strategic imbalance can be quantified quite simply, as the 
variable ratio SI = µT/SQRT(σA/µA) (see Section 4.3). 

Fig. 9, which uses data from the same representative 
participant as Fig. 7, shows examples of the fit obtained 
with the one-coefficient model of Eq. 10 and of the within-
individual conservation of q across the variation of µT. The 
orderly pattern of panel A was the rule. On average over 
our best 13 performers, Eq. 10 yielded r²=.964 (.889<r < 
.986). This was significantly less than the r²=.967 obtained 
with Eq. 5 (t12=3.61, p=.002, one tailed), but  the r² 
reduction (.003) was impressively small, given the sacrifice 
of one of the two free coefficients of Eq. 5.   

A B 



Panel B displays a scatter plot showing no evidence of any 
correlation between q and µT. Despite a considerable 7-fold 
variation, µT failed to exert any consistent influence on 
coefficient q. Indeed, considering our 13 reliable data sets, 
the slope of this relation (-0.0034s on average) did not 
significantly depart from zero (t12=-1.42, p=.182, two-
tailed).  
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Figure 9. A representative example of (A) the fit of the one-
free-coefficient model of Eq. 10 and (B) the approximate 

conservation of q across a seven-fold variation of µµµµT.  
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Figure 10. Comparing two individual trade-off curves. 

Fig. 10 shows the trade-off curves of two individual 
participants whose q coefficients took distinctively 
different values. It is easy to see that P12 invested more 
resources in the task than did P13 (q=0.0425 and 0.0621, 
respectively). But the graph, by exhibiting different 
distributions of data points along their respective curves, 
also reveals that P12 and P13 had different strategic 
preferences for resource allocation. In response to our max-
accuracy instructions P13 climbed his curve higher than 
P12 did his (SImax=22.5 vs. 18.9), while in response to our 
max-speed instructions he did not explore his curve as far 
down as P12 did his (SImin= 1.07 vs. 0.35). Thus the 

comparison delivers two separate pieces of evidence: 
beside the fact that P12 invested more resources than P13, 
he was more speed-biased. 

IMPLICATIONS FOR HCI AND BASIC RESEARCH  
In this paper we have tried to formulate with some rigor 
one specific sense in which Fitts' law is a speed/accuracy 
trade-off. The data show that indeed the law can be recast 
as a trade-off between two random variables, the time it 
takes to reach a target and the relative spread of movement 
endpoints. Note that the trade-off we have described 
involves time and inaccuracy, rather than speed and 
accuracy. Whether Fitts' law can be recast, strictly 
speaking, in terms of speed and accuracy remains an open 
question, with some non-trivial difficulties given the 
multiple possible definitions of each of these two terms.  

One potentially important outcome of this research is the 
suggestion that the mathematical description of Fitts' law 
can be simplified, without sacrificing much modeling 
precision, to a square-root equation with a single adjustable 
constant. For both basic-researchers and practitioners, the 
fewer the free coefficients of a model, the better. Based on 
our work currently in progress, our conjecture is that it is 
only for optimal scales of pointing movement that Fitts' law 
can be this much simplified.  

The resource-allocation approach to Fitts' law helps 
understand that to obtain a complete understanding of 
target-acquisition performance we need both an intensive 
and a qualitative characterization. If the intensive aspect is 
explicitly addressed by the throughput, it seems that the 
information-theoretic framework has little to say about the 
qualitative aspect. The fact that the speed/accuracy balance 
is variable has been considered a worrisome complication 
calling for a certain correction—the substitution of 
effective to nominal width [1,12]—so as to end up with a 
single synthetic measure of performance. The correction 
being done, the throughput is quite insensitive to 
substantial variations of the speed/accuracy imbalance 
[4,13]. But the fact that the throughput (just like the 
coefficient q of our trade-off analysis) is conserved through 
SI variations does not mean that the latter are 
unimportant—a conclusion that a rapid reading of [13] 
might suggest. The cognitive stance controlled by 
speed/accuracy instructions, which strongly modulates the 
balance of movement times and endpoint spreads, is indeed 
an important factor, which does not influence throughput, 
but does influence another aspect of performance, the SI. 

Reducing the data of a Fitts' law experiment to just a 
throughput measure, as recommended in [24], is indeed 
convenient for a Fitts' law practitioner but there is a cost. 
Suppose that, comparing two interaction techniques A and 
B, one finds more throughput with technique A in the 
presence of more errors. Assuming an appropriate 
adjustment for errors, the conclusion that A outperforms B 
may be correct but a full half of the story has been erased 
by the adjustment procedure. In some research contexts, 
especially those where safety matters critically, it may be 



very useful to not ignore that different interface 
arrangements or interaction techniques may induce 
different speed/accuracy imbalances in their users.  

The resource allocation and the information theoretic 
approaches are certainly not incompatible with each other, 
as recognized in practice by Fitts and Radford [4], who 
(although they did not theorize on strategic imbalance) did 
manipulate speed/accuracy instructions. The right-hand 
side of Eq. 10 rewritten as log2(µT) less a constant = -½ 
log2(σA/µA) can be viewed to display bits of information. 
But the left-hand side of this equation, as already hinted 
above, is likely to call for a model involving joules of 
energy. Thus, one intriguing outcome of the present 
analysis is the suggestion that information theory should 
certainly participate in, but probably will not suffice to 
wholly account for Fitts' law. 
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9. APPENDIX: GLOSSARY OF BASIC VARIABLES  

Physical

     Task Geometry Dimension Unit (*)

D Target distance [L] (cm)

W Target tolerance or width [L] (cm)

D/W Relative target distance (RTD) [-]

W/D Relative target tolerance (RTT) [-] (%)

     Elemental Movement Measures

T Movement time [T] (s)

A Movement amplitude [L] (cm)

E = A - D Endpoint error [L] (cm)

     Statistical Movement Measures

µT Mean or median movement time [T] (s)

µA Mean or median movement amplitude [L] (cm)

µA – D Constant error [L] (cm)

σA SD of mov. amplitude = variable error [L] (cm)

µA/σA Relative movement amplitude (RMA) [-]

σA/µA Relative variable error (RVE) [-]  (%)  
(*) Note. W being much smaller than D, it is convenient to express RTT, 
but not its inverse RTD, as a percentage. Likewise, σA being much smaller 
than µA, it is convenient to express RVE, but not RMA, as a percentage [8].  

 


