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ABSTRACT

The widely-held view that Fitts' law expresses a
speed/accuracy trade-off is presumably correct, ibug
vague. We outline a simple resource-allocation mhexd
Fitts’ law in which movement time and error trade éach
other. The theory accounts quite accurately fordae of
Fitts’ (1954) seminal study, as well as some frdata of
our own. In both data sets we found the time/amnaxte-off

to obey a power law. Our data, which we could a®ly
more thoroughly than Fitts’, are consistent witlscaare-
root function with a single adjustable constant. $dggest
that the resource-allocation framework should help
combine information and energy considerations lowak
more complete account of Fitts' law.
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1. INTRODUCTION

This paper is about Fitts' law, the well-known tiela that
links the time it takes people to reach a targeg.(ea
graphical object) with a pointer and the accuratyheir
reaching action. We introduce a new formulationFufs’
law which specifies one sense in which the law lvasaid
to be a speed/accuracy trade-off, as traditioreumed in
HCI [12,13] as well as psychology [15,18]. A treoféis a
mutual dependency between two utilities that cohflvith
each other because they both draw on the samesdimit
resource pool: the better the performance on co,fthe
worse it is on the other [16,17]. Understanding hitws
concept applies in the context of Fitts tasks isgnal here.

A Fitts' law equation is an empirical regularityatirelates
mean movement timegir to an index of difficulty ID

computed as a simple mathematical transforr/¥, the
ratio of target distanc® to target widthW. Here are,
among many others [18], four well-known formulasoof
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the law:

Mr =a* log, (2D/W) +b Fitts (1954) [2] 1)
Mr =a* log, (D/W) +b Crossman (1956) [1] (2)
Hr =a*log,(D/W +1) b MacKenzie (1992) [12] 3)

pr =a* (D/W)®. Meyer et al. (1990) [15] (4)

Kt denotesaverage movement time (technically a mean or
possibly a median, at any rate a central-trendsttgt and
a and b stand for adjustable coefficient@>0). Most
popular within HCI is Eq. 3, known as the Shannersion
of Fitts' law [11,12]. The starting point of thigalysis is
that Egs. 1-4 dootdescribe a speed/accuracy trade-off.

2. THE BASIC MEASURES: TIME AND ERROR

2.1. Time Is Not Speed

First, ur, the dependent variable that stands on the le&fttha
side of Egs. 1-4, is a time measure. In generalorrelates
negatively with the average speed of a movement.
Nevertheless it is only in casual language that oae
tolerate confusion between a time measure, dimeabjo
[T], and a speed measure, dimensionally {1.19].

2.2. Accuracy: Neither Information Nor Difficulty

Second, how the quotient BfW, which determines thi®

on the right-hand side of Egs. 1-4, measures acgusa
unclear. In light of information theory [22], Fittf2]
assumed that the information conveyed by a movernsent
l0g,(2D/W), a formula which MacKenzie [11,12] corrected
to log(D/W+1). The information and the accuracy of
movements must be linked somehow, but to our kndgde
that link has not been clearly described.

Assuming that the mathematical transformsDdtW that
feature in Egs. 1-3 provide estimates of movement
difficulty rather than movement information does not take
us any closer to a measure of movement accuractheln
Shannonian Fitts-MacKenzie tradition, difficulty is
measured in bits and calculated, via Eqgs. 1-3, fiam
objective property of the target layout, namely tago of
lengthsD andW. But this is just information—for lack of
an operational definition of its own, it is hard $ee how
task difficulty might relate to accuracy.

If one wished to characterize difficulty asbjectiveeffort
[19], one would have the problem that none of theva
IDs bear a monotonic relationship with this effoithete is
no question that in the upper region of ik spectrum
(over 4 hits or so, using the Shanrbr), the higher théD,
the more difficult the task for participants. Batthe lower



region of thelD spectrum (below 2 bits or so), thewver

the ID, the more difficult the task: no matter their good means a more constraining framework for

will, participants will systematically fail to prode large
enough spreads of movement endpoints [1,4,12]. This
not too surprising. Since the kinetic-energy cost o
movements varies with the square of their velodtyitts
task becomes difficult not only with very high kaiso (in a
different sense of the word) with very loWDs. The
participants’ failure to comply with instructions low-ID
conditions just reflects their reluctance, or meability to
produce fast enough movements because of theissixee

energeticcost. This observation tends to be overlooked in

an approach exclusively based on Shannonian infisma

higher level of measurement for experimental vaeiab
testing
theoretical hypotheses [20]. For example, yetercept of
an empirical regression line is interpretable oifilyhe x
variable has a physically-anchored zero [8].

RTTis also preferable ovRTD for the statement of Fitts'
law because any measure of accuracy, whether absmiu
relative, should involve error as a component. derss
much more sensible to ground one’s characterizatibn
accuracy on a measure of tolerance (i.e., perméteok)
like RTTthan a measure of distance IRR&D.

2.4. Task Geometry vs. Movement Performance

But from the moment it is recognized that an aimed This section calls attention to an obvious distorctthat

movement involves not only bits of information, kalso
joules of energy, it becomes clear that moveméfitdity,
characterized as subjective effort, can only bedrshaped
relation with the variable known as thB in Fitts' law
research [7]. Information, as captured by &Dyestimate,
cannot be taken as an index of subjective difficult

Thus a typical Fitts' law equation expresses aioglanot

between movement speed and movement accuracy,
rather between movement time and a certain dimelesis
ratio whose relation with both accuracy and diftiguis

unclear. We now present some distinctions whichhirgk

useful to rephrase Fitts' law as an explicit tratfe-

2.3. Relative Target Distance
Tolerance W/D

When Fitts [2] (p. 266) introduced his index offidifilty,

he wrote ID= —log,(W/2D), rather thanlD=10g,(2D/W).
These are two different mathematical writings & game
thing, and so whether the independent variablegst. B-4

is D/W or W/D might be judged an idle question. In fact
that distinction is quite critical because the dgmts of
these two divisions designate different measureghan
physical world of experimentation. The quotientDdV is

a measure afelative targetdistance(RTD)—i.e., D scaled
to, or expressed in units Y. In contrastthe quotient of
W/D is a measure aklative targettolerance(RTT)—i.e.,
target tolerance scaled to, or expressed in urfit.b
Although it has been a tradition to formulate Fitsv as an
equation of the fornmu=f(D/W), there is reason to prefer
the inverse writingur=f(W/D) [8]. First, there is &cale of
measurementssue [26]: relative target distance DfW
lacks a true zero because the limiting case wber@ and
W>0, henceD/W=0, violates the very definition of a Fitts
task—if D=0, no movement is required [8]. In contrast,
relative target tolerance W/D does enjoy a true zero: the
limiting case whereW=0 and D>0, hence W/D=0,
corresponds to a zero-tolerance aiming task, whelkes
sense and has indeed been investigated [21]. Thlys o
RTT=W/D, and notRTD=D/W, runs on aratio (equal-
interval) scale of measurement [26]. This mattersaoise a

D/W vs. Relative Target

! This study requiring a number of non-conventiotiatinctions
and notations, we appended a glossary to the [§&petion 9).

has received little attention in the literature. @@ one
hand experimenters have full contmler D andW, two
systematic, deterministic variables that charanterihe
geometrical layout of targets atigiat serve to prescribe to
participants an average amplitude and a spread of
movement endpoints, respectively. On the other rarel
needs to characterize the participants’ actualoperdnce.
Here the elemental measures are movement duratiomd

bu}novement amplitud@,, from which an endpoint error can

be computed aE=A-D. Unlike D andW, variablesT and

A (as well a€) are random variables, reflecting the natural
variability of human performance. We need to digtiish

T, A and E, to be measured at the level of individual
movements, from central-trend statistics like mgangia,
andyg, to be calculated over samples of movements.

We deliberately wrote Egs. 1-4 abovegsf(D/W) rather
than p=f(A/W) as has been customary since Fitts [2],
because the latter notation is somewhat wobblyWif
unambiguously designates a property of the targgdut
(tolerance), it is always unclear whether the cotieaal
symbol A stands foD (thus referring to the target layout)
or Y (thus referring to the movement). The writing afd*
law becomes particularly ambiguous in this regahmV

is replaced byeffectivewidth W, to denote the tolerance
that, in retrospect, would have yielded a pre-dpgtierror
percentage, given a certain spread of endpointsellray
this variable as “target width” suggests one ikitgl task
geometry whilé\, is a random variable of the movement.

In fact the accuracy issue can be approached i3’ Fit
paradigm from two markedly different, though equall
legitimate, angles. In one approach, Fitts' lavalisabout
the dependency qfr upon the dimensionless rat@/D (or

its inverseD/W), as suggested in the formulations we chose
for Egs. 1-4. In this approagk is predicted from the task
geometry, and the problem of accuracy must be plras
terms ofD/W or W/D. In the alternative approach, Fitts' law
is all about the mutual dependency of two random
variables, movement time and relative variable refRYE
seems well represented by/pa, a regular coefficient of
variation in whicho, andp, denote the standard deviation
and the mean of movement amplitude [8]. Thus Hits'
can be formulated either gs=f(W/D), expressing the
causal dependency of a temporal random variable @o



systematically-varied geometrical variable, or ralgtively attention until recently [25], is mandatory in aagproach
as Ur=f(ca/Ha), expressing the mutual dependency of two to Fitts' law, including the information theoretipproach.

random variables. These are what we callgeemetrical 5. Resource allocation strategfaced by resource scarcity

vs. thestochastioversion of Fitts' law. in a Fitts task, participants can deliberately matiu the
HCI researchers, who often need to evaluate origired balance between their concurrent time-minimizatsord
pointing performance for certain target layoutsturelly error-minimization efforts. Quantifying that imbalze,

adopt the former approach, assuming that movementestimating its range of variation, and understamdits
performance is causally dependent on the targeutayt is dependency upon systematically manipulated expetihe
the alternative approach, however, that paves thefor a conditions—different target layouts in Fitts’ [2fgeriment
trade-off analysis. If one wants to formulate Filtsv as a (Section 4), different verbal instructions in oyfection
trade-off, one needs to write the law in the foriha outual 5)—constitute the second challenge of this analysis
dependency, with movement time depending on movemen
error and vice versa—it should not matter whethigts'F
law is writtenpur=f(oa/pa) or, reciprocallyoa/pta =g(ur).

4. FITTS' (1954) TAPPING DATA: EVIDENCE OF A
TIME/ERROR TRADE-OFF
This section aims to show that Fitts’ data can @idée

3. A SIMPLE RESOURCE-ALLOCATION THEORY OF reformulated explicitty as a trade-off between two
FITTS' LAW conflicting utilities. Focusing on the min-min tedff of
Below are listed a set of basic assumptions neéoied movement timeur and relative variable err®@VE= oa/pa,
resource-allocation theory of Fitts' law. Note ttia trade- we will introduce a Simp|e geometrica| method for
off under consideration is not between speed andracy,  characterizing quantitatively the size of the resepool as

but, strictly speaking, between mean or median mmeve well as the strategic imbalance.

time pir and relative variable errétVE At first sight, the suitability of Fitts’ experiméal protocol
1. Utility. Movement time and relative variable error are for a trade-off analysis of his data might seemstjoaable.
both negative utilities, that is, quantities that must be Fitts did not ask his participants to minimize monmnt
minimized—the shorter thgy, the better the performance; time and relative error concurrently—he asked thiem
the smaller th&VE the better the performance. minimize a single variablgir, under a number of different
2. Trade-Off The two minimization efforts conflict with ~ constraints of relative tolerance, and so it waystematic
each other: the less of one negative utility, th@erof the factor that stood for accuracy. One should beaniimd that
other. This is a trade-off of the min-min categdry. with such a protocol, still most popular todayoerctually
3. Limited Resource PoolThe trade-off results from the r.emains a negativg utility (i.'e., f[he less offils bette_r), just
fact that the two concurrent minimization effortsnd from I|ke_ '_“OVGmer_‘t t_|me. It is in order to ob'galn from
a common pool of resourceand this pool igimited. This partlmpar)ts _dlfferlng levels oRVE that ex_penmenters
assumption is the counterpart, within the trade-off d!splay d|ﬁgr|ng Ieve_ls ORTT' The mampulaﬂon of target
theoretical approach, of Fitts’ [2] limited-capacithannel display as n [2] and Instructions as in [4] maymwed as
assumption. We may designate the content of the WO alternative methods with the same goal. Inftrener

hypothetical pool, whose nature is unknown, asettfert option participants are to minimizer with a variety of
We just need to assume, using the usual econoralogyy ~ RVE constraints, while in the latter they are to jiyint
that some generic currency is convertible into dpgred/or ~ Minimize Wy and RVE under a variety of speed/accuracy
accuracy and that the available amount of thisenay is ~ compromises. But both methods boil down to instoms,
finite, being a characteristic of every individyshced in a  formulated visually and in words respectively, Segvto
given situation. Devising a method for estimatirtt manipulate the participants’ cognitive stance ia tace of

amount is our first important challenge here. the fundamental speed/accuracy dilemma.
4. Less-than-Total Resource Exploitatiom Fitts' law e will consider the data Fitts [2] obtained in Fasnous
experiments participants are instructed to conlstaho reciprocal tapping experiment, tabulated in hislé&ab (p.

their best —i.e., to invest 100% of their resourdésman 264, light-stylus data). The table reports movement times
effort, however, is subject to random fluctuatiansd so ~ averaged over 16 participants, for each of 16 coattun
the amount of resource actually available to aividdal at ~ ©f D and W. However, Fitts did not actually record the
a given point in time can be less—but never moreanth Position ~of ~movement endpoints, just tabulating
these 100%. The limited resource pool, in otherdspr ~Percentages of target misses. Capitalizing on’Higfsort
must be thought of as ampper bound We believe this  (P- 265) that undershoot and overshoot aiming emere
realistic assumption, which has escaped reseatchers@bout equally frequent in his light-stylus expemewe
assumedu,=D. We inferred endpoint spreads from error
rates using the technique described by MacKenz§ [1
(Section 2.5). For each combination Bf and W we

2 An example of anax-maxtrade-off is that between speed and computed effective widtW (for a fixed 4% error-rate
accuracy, both positive utilities: the faster ahd tmore accurate constrf’;unt, under the hypothesis of a Gaussianadpaé
the movement, the better the performance. endpoints) and then calculateg=W,/4.133.




Note that our analyses below separate the difféesels of
scale, characterized b® or p,, following the recom-
mendation of Guiard [6]. We assume that the formh toe
size of the target display are specified®yT=W/DandD,

respectively, and that the form and the size ofdimeed
movements are specified RWVEandp,, respectively.

4.1. A Power Relationship Between Movement Time and
Relative Variable Error
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Figure 1. The trade-off ofpr and RVE in Fitts’ tapping data.

As shown in Fig. 1, Fitts’ data is closely model&t, each
scale level, as a power function (.988«999):

Mr=q* RVE® )
wherep andq represent adjustable coefficiensQ, g>0).

Note that the logarithmic fitr{=.993 on average over the

four scales) was nearly as good as the powerrit496).

4.2. Amount of Resources
Eqg. 5 may be rewritten as

pr* RVE™P =¢ (6)
or, since we define relative variable erRWEasoa/|a, as
Hr * (Oa/la) ™" = 0. (7)

Eq. 7 is the statement of a constant product: widgach
scale condition, the product @ff and RVE raised to the

power  was conserved in Fitts’ experiment despite his

systematic change of the target layout and conseiguef
Kr. The conservation of quantityis illustrated in Fig. 2.
For each of the four scale conditions the slopethaf
regression line is virtually zero—as movement tivaeed
over a range of about 2:4 remained remarkably stable.

In light of the trade-off theory outlined in Secti®, it is

clear that the constamt specifies the average amount of

resources that was available to Fitts’ participaNiste that

the constang is indicative, not of an amount of resources,
but of resourcescarcity the smaller the product of the two

negative utilities, the better the performance.
The different elevations of the four flat curves Fif. 2

show that the amount of resources available tos'Fitt

participants was scale dependent. The constaeached a

minimum in theD=10.16cm condition, presumably a scale

optimum for Fitts’ particular task conditions.
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Figure 2. Conservation of the producig of Eq. 7 across the
variation of pr, for each scale condition.

Fig. 3 plots Eq. 7 forD=40.64cm, whose best fit is
Hr=0.1038RVE>*%°(r2=.9992, see Fig. 1). Notice that the
rectangle obtained by drawing straight horizontald a
vertical lines to the axes from any point of thervey
whether chosen within the actual rangexofalues like
points A, B, C, and D, or extrapolated along theveuike
point E, has a constant areay@#g/x, thenxy=q). This area
is no other than the coefficiegtof Eq. 7, whose estimate
in that particular scale condition is 0.1036s.

Scale condition D = 40.64cm

1.0

0.9
0.8 A
0.7 | B
0.6 1 C
Hr 0.5 - D
(s) 0.4
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0.2 {
0.1
0.0 : : : : : : :
0.0 01 02 03 04 05 06 07 08

(O ()
Figure 3. A plot of Eq. 7 for theD=40.64cm scale condition,
where exponentp is -0.3509. ABCD are Fitts’ actual four data
points, E is an arbitrary extrapolation along the airve. All
rectangular areas are equal.

4.3. Resource Allocation: Strategic Imbalance

If different points along the curve of Fig. 3 capend to
one and the same amount of resources, they specify
different degrees of imbalance between the timd-exror-
minimization effort. While the producty (the rectangular
surface area in the figure) is conserved all alihgcurve,
reflecting available resources, the rafia (the rectangle’s
aspect ratio) changes gradually, reflecting diffiere
resource-allocation options. For any data poirthefcurve
the actualstrategic imbalancgSl) of participants can be
guantitatively characterized by this aspect radtiatf is,

S =ur /RVE™, (8)



or, recalling that relative variable erf@VE= oa/pa,

Sl = Kt / (GA/uA) P, (9)
With this definition of the aspect ratio, which whose to
compute ag/x, the strategic imbalanc® decreases in Fig.
3 from left to right: the less cautious (and thetda) the
movement, the lower the index. ThuSl correlates
positively with—is an index of—the relative strehgif the
error-minimization component of the participantffod.
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Figure 4. TheSl as a function ofRTT in Fitts’ data.

Fig. 4 shows the dependency of the actual strabégitts’
participants, uponRTT, the characteristic of the target
layout that Fitts manipulated as an attempt to robritis
participants’ strategy. This dependency is highlgnn
linear, suggesting that the target-layout manipamat
technique that Fitts introduced in his 1954 studtually
provided him with mediocre control over the reseurc
allocation strategy of his participants. That mediy is
apparent in Fig. 5. Although Fitts rais®I'T up to the
point where his two targets touched each other, {iMeD
henceW/D=100%),RVEhardly exceeded 10%.

Back to Fig. 4, notice that Fitts’ participants haslo
different strategic stances in the face of fourfedént
movement scales. F&®®TT<30%, thex ranges covered by
the four curves substantially overlap, thus makiihg
possible to compar&ls for geometrically-similar target
layouts: Fitts’ participants had about the same cfet
strategic imbalances in the two larger-scale caoovtht
D=20cm and 40cm, but they apparently had anothere mo
cautious set of strategies in the two smaller-scatalitions
D=5cm and 10cm. The statistical reliability of tHiisding
cannot be tested for lack of individual data b fattern
seems impressively consistent. One conjecture wbeld

100%

productg=p*RVEP) of the rectangles of Fig. 3 are two
mathematically independent quantities.
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Figure 5.RVE as a function ofRTT. The dashed line
represents the theoretical equalityRVE=RTT.

4.4. Discussion

The foregoing confirms that the classic tappingdsdtFitts
(1954) can be satisfactorily interpreted as a teaftle
between two negative utilities, time and error. §hoot
only can we view Fitts' law as the demonstratioat th
throughput—the inverse of the law’'s slope, whose
dimensions are bits/s—is conserved as the lfask made
to vary, we can just as well view the law as evigethat a
certain pool of effort resources is conserved i people
across the variation of strategic imbalance. Badtle t
information theoretic approach and the trade-offrapch
may help us understand Fitts' law.

5. FRESH DATA ON THE TIME/ERROR TRADE-OFF
This section reports a simple experiment which asied
task instructions so as to induce a systematicatran of
the participants’ strategic imbalance in the fadette
concurrent time- and error-minimization efforts. Wment
amplitude was invariably a comfortable 150mm.

Among our motivations for running a fresh experitneas
the fact that Fitts’ [2] individual data are notadable.
From the standpoint of resource allocation theame
expects some quantities—notably the coefficigrdf Eq.
5—to behave as within-individual constants whiletlz
same time varying from participant to participafitso of
considerable interest is the variability of theattgic

that because high speeds cannot be attained ovalt Sm jjmpalance among and within individuals. Whether
amplitudes, a scale reduction might have encouragedeyperimenters manipulate the target layout, as been

participants to adopt a relatively more cautiouatstyy.

While the pattern is quite conspicuous in the ploFig. 4,

it is virtually undetectable in the classic plotof vs. ID.
Also note that it could not have been deduced fmm
previous observation that the resource pool wasnralXn
Fitts’ participants for 10cm movements (Fig. 2)—#spect
ratio (the quotient ofi;/RVEP) and the surface area (the

customary since Fitts, or speed/accuracy instraostithey
face human beings with idiosyncratic strategicestylNo
two participants will identically interpret instrigns to
move, say, as fast as possible. Nor will they sktimavsame
degree of flexibility in response to changing instions.

Our discussion of Fitts’ data above did not referdss-
than-total resource exploitation, assumption #4 of our
trade-off theory, whose illustration and testingjuiee



individual data. Below we will see that this asstimmp is
quite useful to estimate individual trade-offs.

There were two notable differences between ouropobt
and Fitts'. First, our aiming task walscrete rather than
reciprocal, our participants having to return tiixad home
position after each aimed movement. This option esak
possible to clarify the status of our temporal apatial
measures. Whereas in the reciprocal protpgas the time
it takes not only to carry out a movement, but also
evaluate the error inherited from the previous moset
and to prepare the next [3], in the discrete prmitqe:

point (left) and the target (right) of the movemeBbth
lines were 1-pixel thick and appeared in red cawoer a
white background. Also displayed was a mobile lepix
thick cross-hair cursor, black in color, whose miotivas
controlled by the stylus. The tablet being usealsolute
mode with a control-display gain of 1, the hand had
move 150mm from its home position for the crosshair
reach the target line.

The participant was seated at a table supportiagthcom
tablet and the screen, with a viewing distancebafua 50
cm. During warm-up trials the participants wer@watkd to

measures the duration of a pure movement-executionoptimize the orientation of the tablet in the horital plane
process. Furthermore the meaning of the movement'sto facilitate the executipn of the. required Ief{thht
endpoint spreads, is interpretable more safely in the movement, the tablet being often tilted counteckiaise.

discrete case, that variability being generated fysthe
execution of the movement, whereas in the reciproase
o, must also reflect, to some unknown extent,

variability of the start point [3]. Finally, mostomting
actions in real world HCI are discrete.

The other notable difference is that we did notuaily
specify toleranceN. We just specifiedd with two lines
indicating the start point and the desired endpointhe
movement, the target being thus displayed as deslimg.
We manipulated the balance between the two condurre
minimization efforts by means of different sets of
instructions that asked the participants to cokeirtwhole
spectrum of imbalances, from maximum speed (minirgiz
K1) to maximum accuracy (minimizingVe).

5.1. Method

the

Participants
Sixteen volunteers participated (all right-handetedian
age 27.5years, interquartile range 2.5years, Emiafe).

Speed/Accuracy Instructions

We used five sets of instructions: 1) Max speeds@Bed
emphasis, 3) speed/accuracy balance,
emphasis, and 5) max accuracy. In the max-speetitzon
the participants were to just minimize movementetirthe
only requirement regarding accuracy being to reffedm

committing a systematic error: no matter the disijoer of

movement endpoints, participants were just to martag
terminate their movements at about the tagyetverage
At the opposite extreme, the max-accuracy instoasti
asked participants to try to bring the cursor dyaitt the

target (zero pixel error), making as many correctsub-

movements and taking as much time as needed—but not,
more. These two extremes being defined, we simply

inserted three intermediate levels of instructiomsie
unbiased (speed/accuracy balance) and two biagpegds
emphasis, accuracy emphasis).

Apparatus and Setup

On the tablet was secured a horizontal 8-mm thiektjc
ruler, along which the stylus tip was to be sliipwing a
strictly one-dimensional hand movement. The rufésred
a mechanical stop at its left end so that the gi@sition of
the stylus was standardized to the nearest scligeh po
help initial positioning, an OK message appearecthan
screen when the crosshair coincided exactly with dtart
line.

We developed our own software, using Lib USB, &inét-
data acquisition, to minimize display latency refatto
tablet events and to exploit the full resolutionoofr input
device (5080dpi). The tablet coordinates were teded
into pixels using floating values to maximize vikua
feedback accuracy. The tablet sampling
approximately 100 Hz (in the range 85-125 Hz).

Procedure and Movement Measurement Algorithms

The experiment consisted of 25 blocks of 15 movemen
each block being run with a given set of instrutsioAll
five instructions were presented in one order, Bdicg or
descending, the order being reversed from one gajup
five blocks to the next. The experiment lasted akidumn

4) accuracyper participant, including 10min of warm up.

To begin each trial the participant immobilized gween
crosshair at the start line by positioning the stybn the
tablet at the ruler stop for a few seconds. Wheadygethe
participant moved the stylus to the target position
sliding it against the ruler, finishing up with avell, then
lifted the stylus and, after a few seconds resic@eded to
the next trial.

The movement start point corresponded to the péaak
instant where the crosshair left its home positiaile
xhibiting positive (rightward) acceleration. Deténation
of the movemenendpointin time and space is a more
subtle issue and detailed explanations about ofiinef
algorithm were part of the instructions received thg
participants. We used two different criteria, degirg on
the instructions condition. For the max-speed cioli

rate was

The experiment involved a 1280x1024-pixel (34.0 x where accuracy was irrelevant, the explanationtivaisour
27.1cm) screen and a Wacom Intuos3 digitizing table algorithm would take as the movement endpoint fifss
connected to a PC running Linux Ubuntu. The screen zeroing-out or zero-crossing of instantaneous vlothus
permanently displayed two vertical lines extendingm ignoring any subsequent episode of velocity, whethe
top to bottom, located 150mm apart, which markedstiart deliberate (a corrective sub-movement) or acciddptg.,



a mechanical rebound due to the elasticity of tine).aFor

dawdling particles, we simply assumed that therfomeers

the other four conditions the movement endpoint was and the dawdlers were the data points under andeathe

defined as the beginning of the last dwelling peifiio the
kinematic record, meaning that the algorithm wotdle
into account all corrective sub-movements, if afipe
criterion for dwell was the crosshair remainingtistaary

curve. If the resource pool is limited (AssumptiB) then
forerunners must have been constrained by a hald-wa
the very trade-off curve we are looking for, cortcefly
the borderline that separates in the graph themegi the

for at least 100ms at least 50mm away from the homedoable (above the curve) from the region of thiedoable

position.

5.2. Results and Discussion
Inspection of the distributions of movement timeseaaled

some skewness, especially in the max-speed congditio

hence our recourse below to median movement titile (s
notedplr) as our central-trend statistic, in place of tream

Systematic Error, Variable Error

On average over all participants the constant efpgr

150mm) was less than 1 screen pixel in all insioast
conditions but one: in the max-speed condition auntl a
significant 5.5mm overshoot errott;££4.50, p<.0005).
Whatever the reason for this very small (3.7%)pifigistent
effect, it is quite safe to say that it was thatigk variable
error oa/Ha, rather than the constant erqot-D, that was
influenced, along witluy, by our variation of instructions.

Effect of Instructions on Movement Time and RVE.
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Figure 6. The effect of instructions manipulation @ median
Mr and RVE, on average over our 16 participants. Error bars
are 95% confidence limits based on between-particgnt SDs.

With increasing emphasis on accurgeylengthened about

linearly andRVE decreased non-linearly (Fig. 6). Although
no constraint

the max-speed instructions imposed
whatsoever on the spread of movement endpoRY&:
hardly reached 0.08 (or 8%), a finding reminiscafitts’
data (see Fig. 5).

Convex Front of Performance

Fig. 7 illustrates the trade-off betwepp andRVE for one
representative participant. Panel A plots all thdipipant’'s
data points, one per trial block. The best fit igp@wver

(below). That hard wall must have prevented foreaig
from spreading any further in the South-West dicgctBut
there must be dawdlers (Assumption #4) affectedhay
hard-wall constraint to an attenuated extent. Th&ads
quite consistent with this view. As shown in FigB,7
restricting the fit to the subset of forerunnergpioved the
fit considerably (from .87 to .97 in this individua
example).

A Participant P3
1.6 15
1.4 1 All data points
1.2 y = 0.0634x 04724
Median 10 r?=.8721
movementg g |
time g |
© 04
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Relative variable error = galps (-)

Figure 7. Convex front of performance. Panel A: a pwer
curve is fitted to all the data points delivered bythe
participant, the data points under the curve (filled discs) are
then selected. Panel B: a new power curve is fitted the
selected subset.

An improved fit of the power equation after elintioa of
dawdlers was observed in all 16 participants (Stude
t15=8.83, p<.0001), ther2 increasing on average from .852

function, with quite some noise, hence a moderately to .972. We checked that, in contrast, restricting fit to
impressiver2 of .87. But let us see how assumption #4 of the data points resting above the first curve, (selecting

our resource-allocation theory, less-than-totalouese
exploitation, helped us exploit our data more thigidy.

The participants were to minimize andRVEin differing
proportions. Their data points may be likened pitinticles
attracted to the West and South by two magnetiddie
whose relative strengths are modulated by instosti

the dawdlers instead of the forerunners) did ngbrove
the fit whatsoever, the? changing on average over all
participants from .852 to .8584=0.03,p=.97).

The data points that form the South-West quadrénhe
scatter plot (shown as filled discs in Fig. 7A) aspecially
important: they characterize a participant’s bestfqr-

Viewing the scatter as a mixture of forerunning and mance. These data points must have had more thansot



their locations affected by resources limitatioimsthe rest
of this report we will focus on this particular sal, which
we call theconvex frontof performance, assumed to be the
most informative about the location of the trade-afrve
we are looking for.

Logarithmic, Exponential, and Power Fits

We tested the simple two-coefficient models thah ca
accommodate the convex-down curvature evidentl ioual

MUr vs. RVE trade-off functions, the logarithmic, the
exponential, and the power equation. Fitting theedh
candidate models to the full individual data sets,(to the
25 pairs of measures originating from the full eétrial
blocks) resulted in the power model doing bestOrcases
(meanr2=.853 over all participants), the exponential mode
doing best in four cases (meg#*.803) and the log model
in two (meanr2=.803). In general, the log and (most
blatantly) the exponential equation failed duenuifficient
curvature. Fitting the three models again to thavea-
front data, the power model turned out to provide best
fit for all but one of our 16 participants, namé&lgrticipant
#11 (P11), with the2 now ranging between .923 and .992
(on average2=.972, to be compared witt#=.937 for the
log andr2=.880 for the exponential model). Therefore we
retained the power equatiqr = g*RVE (i.e., Eq. 5) for
modeling the trade-offs.

A Closer Look at Individual Exponents: Evidence for a One-
Coefficient SQRT Relation

Thus, a simple power relation turned out to descghite
accurately the time/error trade-off in both Fittsta and
our own, despite our different experimental protostost
interestingly, the exponenp of the best-fitting power
model was similar, considering the two scales domth of
Fitts’ study that approximately corresponded tosoun
Fitts’ data the exponent was -0.54 9+10cm and -0.38
for D=20cm (Fig. 1); in our data, witib=15cm, the
exponent was -0.47 on average. We further inquinéal
this issue by asking how the exponent varied with t
goodness of fit and with the value taken dpythe other
adjustable coefficient of Eq. 5 (see Fig. 8).

To reiterate, any individual participant producemiature
of good and poor performance (assumption #4), lirretis
an infinity of ways of performing poorly and in pdiple
only the best (convex-front) performance of thatipgant
is informative. It should be realized that as ométches
from a within- to a between-individual logic thisgament
works just the same. Different individuals beingequally
able (or willing) to fully concentrate on a repeft
movement task, there is every reason to focus @nlda of

the best performers in one’'s quest for a consistent

% The Ut vs. RVE relation involves two random variables neither
of which is ‘dependent’ or ‘independent’. In suclcase the so-
called standard major axis method of curve fitii¢xnown to be
preferable over traditional linear regression, Whimeasures
errors only along the vertical axis [23]. Here both methods
yielded nearly identical estimates (not surprigingiven the very
high correlations found in log-log plot betwegpandRVE[23]),
and so we did not depart from the ordinary leastasg method.

guantitative law. Bearing this in mind, a remarleabl
suggestion emerges from the data: first, the b#t&fit of
the power model, the closer the exponent to -1i@. @A);
second, the smaller the value of the participasa&stficient

g (i.e., the better the performer, as explained écti&n
4.2), the closer the exponent to -1/2 (Fig. 8B).reEh
individual estimates of the exponent diverged agipidy
from -1/2, namely those delivered by participané P8,
and P11 1§=-0.60, -0.34, and -0.32, respectively), but these
happened to be the sample’s least credible esEm&e
and P8 were participants for whom the power fit was
distinctively worse than average (see Fig. 8A)fasP11,

we can see in Fig. 8B that he ranked"/16 for
performance, next to P8, who ranked last—a funtbason

to moderately trust P8’s data.
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Figure 8. The exponenp of Eq. 5 plotted (A) against the? of
the power fit and (B) against the value of coeffieint g. Each

data point corresponds to an individual participant

Thus, focusing on théest performancdi.e., the convex
front of performance) of owrest performergactually 13 of
our 16 participants), we found that the trade-dffup and
RVE can be satisfactorily modeled in our data by aasgu
root equation with a single adjustable constant:

Mr=q*RVE™ or

Hr =g/ SQRT(@a/HA) (10)
where the multiplicative constaqtis information about the
amount of resources invested by the participant.

Constant Resource Pool and Variable Strategic Imbalance

An immediate implication of Eqg. 10 is that the gtitynq =
Ur*SQRT(0A/Ha) is conserved as the participants modulate
their speed/accuracy strategy (Section 4.2). Bus th
strategic imbalance can be quantified quite simafythe
variable ratidSI = u/SQRTOA/a) (see Section 4.3).

Fig. 9, which uses data from the same represeatativ
participant as Fig. 7, shows examples of the fitawted
with the one-coefficient model of Eg. 10 and of thiéhin-
individual conservation aoff across the variation qf;. The
orderly pattern of panel A was the rule. On averager
our best 13 performers, Eq. 10 yielded.964 (.889« <
.986). This was significantly less than te.967 obtained
with Eq. 5 €,=3.61, p=.002, one tailed), but the?
reduction (.003) was impressively small, given sherifice

of one of the two free coefficients of Eq. 5.



Panel B displays a scatter plot showing no evideriany
correlation betweeq andp, Despite a considerable 7-fold
variation, yr failed to exert any consistent influence on
coefficientq. Indeed, considering our 13 reliable data sets,
the slope of this relation (-0.0034s on average) mibt
significantly depart from zerot(=-1.42, p=.182, two-
tailed).
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Figure 9. A representative example of (A) the fit bthe one-
free-coefficient model of Eq. 10 angB) the approximate
conservation ofq across a seven-fold variation oftr.
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Figure 10. Comparing two individual trade-off curves.

Fig. 10 shows the trade-off curves of two individua
participants whoseq coefficients took distinctively
different values. It is easy to see that P12 ireashore
resources in the task than did PH3@.0425 and 0.0621,

respectively).

preferencedor resource allocation. In response to our max-

But the graph, by exhibiting diffete
distributions of data points along their respectougves,
also reveals that P12 and P13 had differstmategic

accuracy instructions P13 climbed his curve higtiem

P12 did his $ka=22.5 vs. 18.9), while in response to our

max-speed instructions he did not explore his cawvedar
down as P12 did hisS{,,= 1.07 vs. 0.35). Thus the

comparison delivers two separate pieces of evidence
beside the fact that P12 invested more resouraes P13,
he was more speed-biased.

IMPLICATIONS FOR HCI AND BASIC RESEARCH

In this paper we have tried to formulate with soriger
one specific sense in which Fitts' law is a spe=uiia@acy
trade-off. The data show that indeed the law camebast
as a trade-off between two random variables, thee tit
takes to reach a target and the relative spreatogEment
endpoints. Note that the trade-off we have desdribe
involves time andinaccuracy, rather than speed and
accuracy. Whether Fitts' law can be recast, gyrictl
speaking, in terms of speed and accuracy remairgpan
question, with some non-trivial difficulties givethe
multiple possible definitions of each of these teoms.

One potentially important outcome of this researchhe
suggestion that the mathematical description ok'Haw
can be simplified, without sacrificing much modeglin
precision, to a square-root equation with a siraglgistable
constant. For both basic-researchers and praaitsorihe
fewer the free coefficients of a model, the betBased on
our work currently in progress, our conjecturehattit is
only for optimal scales of pointing movement thits~law
can be this much simplified.

The resource-allocation approach to Fitts' law $elp
understand that to obtain a complete understandiihg
target-acquisition performance we need both amgive
and a qualitative characterization. If the inteesaspect is
explicitly addressed by the throughput, it seenst the
information-theoretic framework has little to sayoat the
qualitative aspect. The fact that the speed/acguralance

is variable has been considered a worrisome coatjuit
calling for a certain correction—the substitutionf o
effective to nominal width [1,12]—so as to end ujhwa
single synthetic measure of performance. The ctiorec
being done, the throughput is quite insensitive to
substantial variations of the speed/accuracy inmuala
[4,13]. But the fact that the throughput (just likke
coefficientq of our trade-off analysis) is conserved through
Sl variations doesnot mean that the latter are
unimportant—a conclusion that a rapid reading d][1
might suggest. The cognitive stance controlled by
speed/accuracy instructions, which strongly moaslahe
balance of movement times and endpoint spreadsjésd

an important factor, which does not influence tigtgout,
but does influence another aspect of performahes it

Reducing the data of a Fitts' law experiment ta jas
throughput measure, as recommended in [24], isehde
convenient for a Fitts' law practitioner but thésea cost.
Suppose that, comparing two interaction techniquesd

B, one finds more throughput with technique A ire th
presence of more errors. Assuming an appropriate
adjustment for errors, the conclusion that A ouftgens B
may be correct but a full half of the story hasrbeeased

by the adjustment procedure. In some research xisnte
especially those where safety matters criticallynay be



very useful to not ignore that different interface
arrangements or interaction techniques may
different speed/accuracy imbalances in their users.

The resource allocation and the information théoret
approaches are certainly not incompatible with eattier,
as recognized in practice by Fitts and Radford o
(although they did not theorize on strategic imbetg did
manipulate speed/accuracy instructions. The rigimsh
side of Eq. 10 rewritten as lg@r) less a constant = -%
log,(0oa/Ma) can be viewed to display bits of information.
But the left-hand side of this equation, as alrehthyed
above, is likely to call for a model involving jad of

energy. Thus, one intriguing outcome of the present

analysis is the suggestion that information thesinguld
certainly participate in, but probably will not §gé to
wholly account for Fitts' law.
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9. APPENDIX: GLOSSARY OF BASIC VARIABLES

Physical

Task Geometry Dimension Unit’
D Target distance [L] (cm)
w Target tolerance or width [L] (cm)
DIW Relative target distanc&{D) [-]
W/D Relative target toleranc®TT) [-] (%)

Elemental Movement Measures
T Movement time m (s)
A Movement amplitude [L] (cm)
E=A-D Endpoint error [L] (cm)

Statistical Movement Measures
Hr Mean or median movement time [T] (s)
Ha Mean or median movement amplitude [L] (cm)
Ha—D Constant error [L] (cm)
Oa SD of mov. amplitude = variable error [L] (cm)
HalOA Relative movement amplitud®KA) [-]

Oaltia Relative variable erroRVE) [-] (%)

(*) Note W being much smaller thab, it is convenient to expre$®TT,
but not its invers®TD, as a percentage. Likewis®, being much smaller
thanp,, it is convenient to expre®VE but notRMA as a percentage [8].



