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ABSTRACT
Model selection is a central topic in Bayesian machine learning,
which requires the estimation of the marginal likelihood of the data
under the models to be compared. During the last decade, con-
ventional model selection methods have lost their charm as they
have high computational requirements. In this study, we propose
a computationally efficient model selection method by integrating
ideas from Stochastic Gradient Markov Chain Monte Carlo (SG-
MCMC) literature and statistical physics. As opposed to conven-
tional methods, the proposed method has very low computational
needs and can be implemented almost without modifying existing
SG-MCMC code. We provide an upper-bound for the bias of the
proposed method. Our experiments show that, our method is 40
times as fast as the baseline method on finding the optimal model
order in a matrix factorization problem.

Index Terms— Bayesian model selection, Markov Chain
Monte Carlo, Non-negative matrix factorization

1. INTRODUCTION

Model selection is an important topic in various fields. The aim in
this problem is to choose the best model that describes the data from
a collection of models. In Bayesian statistics, model selection is
formulated as computing the Bayes factor which requires to compute
the marginal likelihood of the data under the models to be compared,
that is given as follows:

p(x|m) =

∫
p(x|θ,m)p(θ|m)dθ (1)

where x ≡ {xn}Nn=1 is the observed data whose elements are as-
sumed to be independent and identically distributed (i.i.d.), m ∈
{1, . . . ,M} denotes different models, and θ is a latent variable.
Here, p(x|θ,m) is the likelihood function of model m and p(θ|m)
is the prior distribution of θ. In Bayesian model selection, we aim to
find the model with the highest marginal likelihood:

m? = arg max
m

∫
p(x|θ,m)p(θ|m)dθ (2)

where we need to evaluate the marginal likelihood for each model.
A canonical example for model selection can be given as finding
the optimal model order in a polynomial regression problem while
avoiding over-fitting, where m would correspond to different de-
grees of polynomials (e.g., linear, quadratic, cubic, etc.).
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For notational simplicity, we drop the model variable m and
consider the following equation: p(x) =

∫
p(x|θ)p(θ)dθ. Comput-

ing the marginal likelihood requires to integrate the joint distribution
over all model parameters, which turns out to be intractable except
for very few special cases. Therefore, in practice approximate meth-
ods are utilized for estimating the marginal likelihood.

Markov Chain Monte Carlo (MCMC) techniques are one of the
most popular approaches that are used in marginal likelihood esti-
mation [1–3]. However, despite their well known advantages, these
methods have lost their charm in various machine learning appli-
cations especially during the last decade, as they are perceived to
be computationally very demanding. Indeed, the conventional ap-
proaches require passing over the whole data set at each iteration,
which makes the methods impractical even for mediocre N . Re-
cently, alternative approaches, under the name of stochastic gradi-
ent MCMC (SG-MCMC), have been proposed, aiming to develop
computationally efficient MCMC methods that can scale up to large-
scale regime [4–11]. Unlike conventional MCMC methods, these
methods require to ‘see’ only a small subset of the data per iteration,
which enables the methods to handle large datasets.

Even though SG-MCMC techniques are easily applicable to a
wide variety of probabilistic models, it is not straightforward to de-
velop model selection algorithms that are based on these methods.
Therefore, the majority of the current literature focuses on improv-
ing the prediction accuracy of these methods in various large-scale
applications, whereas efficient model selection algorithms based on
SG-MCMC are yet to be explored.

In this study, we propose a novel marginal likelihood estimation
method, namely Stochastic Thermodynamic Integration (STI), by in-
tegrating ideas from SG-MCMC literature and thermodynamic inte-
gration; a family of marginal likelihood estimation methods com-
monly used in statistical physics. As opposed to conventional model
selection methods, STI has very low computational requirements
thanks to data subsampling and it can be implemented almost with-
out modifying existing SG-MCMC code as we will describe in detail
in the following sections, where we also provide an upper-bound for
the bias induced by STI. Our experiments on a speech enhancement
application show that STI is able to find the optimal model order in
a matrix factorization model in 9 minutes on a standard laptop com-
puter, whereas the baseline method requires 6 hours for the same
problem.

2. TECHNICAL BACKGROUND

2.1. Stochastic Gradient Langevin Dynamics

An important attempt for scaling up MCMC techniques was made by
Welling and Teh [4], where the authors combined the ideas from sta-
tistical physics and stochastic optimization, and developed a scalable
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MCMC framework called the stochastic gradient Langevin dynam-
ics (SGLD). SGLD exploits the assumption that the data samples xn
are i.i.d. and it asymptotically generates a sample θ(k) from the pos-
terior distribution p(θ|x) ∝ p(θ)p(x|θ) by iteratively applying the
following update equation [4]:

θ(k) = θ(k−1) + ε(k)
( N
Ns

∑
n∈S(k)

∇ log p
(
xn|θ(k−1))

+∇ log p
(
θ(k−1)))+ η(k) (3)

where S(k) ⊂ {1, . . . , N} is a random data subsample that is drawn
with or without replacement, Ns = |S(k)| is the number of data
points in S(k), ε(k) is the step-size, and η(k) is Gaussian noise:
η(k) ∼ N (η(k); 0, 2ε(k)I) where I stands for the identity matrix.
The step-size can be fixed or decreasing. A typical choice for de-
creasing step-size is ε(k) = (aε/k)bε , where aε > 0 and bε ∈
(0.5, 1]. Several extensions of SGLD have been proposed [5–11].

2.2. Thermodynamic Integration

In this study, we consider a particular family of methods for estimat-
ing the marginal likelihood, called path sampling or thermodynamic
integration (TI) [1]. TI forms a continuous path between two un-
normalized densities, say q0(θ) and q1(θ) by introducing a temper-
ature parameter t ∈ [0, 1]. A typical choice is forming a geometric
path [1, 3], that is given as follows:

q(θ|t) = q0(θ)1−tq1(θ)t (4)

where q(θ|t = 0) = q0(θ) and q(θ|t = 1) = q1(θ). The main
approach in TI is to choose q0(θ) in such a way that its normaliz-
ing constant z0 =

∫
q0(θ)dθ is known and to choose q1(θ) as the

distribution whose normalizing constant z1 =
∫
q1(θ)dθ is to be

estimated.
In this study, we consider power posteriors [3], where q0(θ) is

selected as the prior distribution p(θ) and q1(θ) is selected as the
unnormalized posterior p(x|θ)p(θ). This choice imposes a specific
form on q(θ|t) that is called the power posterior:

q(θ|t) = p(θ)p(x|θ)t. (5)

Since we choose q0(θ) as the prior distribution, we know that z0 =∫
p(θ)dθ = 1, and z1 =

∫
p(x|θ)p(θ)dθ = p(x) is the marginal

likelihood that we would like to compute. It is easy to verify that the
following identity holds [3]:

log p(x) = log
z1
z0

=

∫ 1

0

〈
log p(x|θ)

〉
p(θ|t) dt (6)

where
〈
f(θ)

〉
π(θ)

=
∫
f(θ)π(θ)dθ denotes the expectation of

f(θ) under π(θ), p(θ|t) = [1/z(t)]p(θ)p(x|θ)t with z(t) =∫
p(θ)p(x|θ)tdθ. Several approaches can be devised for approxi-

mately computing Eq. 6 [1]. One possible approach would be using
numerical techniques for approximating the integration over t and
MCMC simulations for approximating the expectations. In this
study, we consider the approach given in [3], which approximates
Eq. 6 by first discretizing t as 0 = t0 < t1 < · · · < tT = 1
and using a trapezoidal rule for numeric integration, yielding the
following equation: (∆ti = ti+1 − ti)

log p(x) ≈
T−1∑
i=0

∆ti

〈
log p(x|θ)

〉
p(θ|ti+1)

+
〈
log p(x|θ)

〉
p(θ|ti)

2
(7)

where the expectations are computed by using MCMC:

〈
log p(x|θ)

〉
p(θ|t) ≈

1

K

K∑
k=1

N∑
n=1

log p(xn|θ(t,k)) (8)

Here, θ(t,k) denotes samples drawn from p(θ|t).

3. STOCHASTIC THERMODYNAMIC INTEGRATION

Even though MCMC inference has been made much more efficient
with the incorporation of stochastic gradients, marginal likelihood
estimation methods that are based on MCMC still suffer from high
computational complexity since they typically require the likelihood
to be computed on the whole dataset for each sample (see Eq.8).

Inspired by the ideas from stochastic gradient MCMC and path
sampling methods, in this study, we propose a novel method for
marginal likelihood estimation that is based on data subsampling,
called Stochastic Thermodynamic Integration (STI). STI follows al-
most the same derivations as we described in Section 2.2; however,
instead of evaluating the log-likelihood on the whole dataset, it uses
an unbiased estimator of the log-likelihood that is computed on a
subsample of the data S(t,k), given as follows:

〈
log p(x|θ)

〉
p(θ|t) ≈

1

K

N

Ns

K∑
k=1

∑
n∈S(t,k)

log p(xn|θ(t,k)). (9)

Since STI is based on random subsamples, it can be easily integrated
with any subsample-based MCMC method for generating the sam-
ples θ(t,k). In this study, for simplicity we choose SGLD for gen-
erating the samples θ(t,k), whereas SGLD can be replaced with any
proper SG-MCMC method [9]. The SGLD update rule for generat-
ing samples from the power posteriors is almost identical to Eq. 3
and given as follows:

θ(t,k) = θ(t,k−1) + ε(t,k)
( N
Ns

t
∑

n∈S(t,k)

∇ log p
(
xn|θ(t,k−1))

+∇ log p
(
θ(t,k−1)))+ η(t,k). (10)

Having SGLD in its core, STI yields a very simple yet powerful
algorithm, where a sample is generated by using Eq. 10 and the log-
likelihood is immediately evaluated by using Eq. 9. These estimates
are then used in Eq. 7 for computing the marginal likelihood. A
useful property of STI is that the same subsample S(t,k) can be used
both for generating the random sample θ(t,k) and evaluating the log-
likelihood, which increases the efficiency of the method and makes
the method suitable for large-scale distributed problems.

Since we have multiple sources of stochasticity, it is not imme-
diately clear how much bias is induced by STI. In fact, it is not even
clear whether the estimates provided in Eq. 9 would converge to true
expectations. However; fortunately, by the law of total expectation,
we can still show that the estimates obtained via Eq. 9 converge to
the true expected values (see [10, 12, 13]), since STI makes use of
an unbiased estimator of the log-likelihood . Based on this observa-
tion, we provide the following theorem which forms a bound for the
overall bias induced by STI with fixed step-size.

Theorem 1. Let L ,
∫ 1

0
f(t)dt be the log-marginal likelihood

(Eq. 6) with f(t) ,
〈
log p(x|θ)

〉
p(θ|t) and L̂ be the estimator

obtained via STI (Eqs. 7 and 9). Assume that {xn}Nn=1 is i.i.d.,
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Fig. 1. Results of the synthetic data experiments conducted on the
simple Gaussian model. The vertical lines show the true value of R.

log p(x, θ) is differentiable, f(t) is twice differentiable and its sec-
ond derivative is uniformly bounded, i.e., |f ′′(t)| < U for t ∈ [0, 1]
and for some U > 0. The domain of the temperature variable t is
uniformly discretized, i.e., ∆ti = (1/T ) for all i = 0, 1, . . . , T − 1,
and θ(t,k) is generated by an SG-MCMC method [9] with constant
step-size ε (Eq.10). We further assume that log p(x|θ) satisfies the
conditions given in Assumption 1 described in [10]. Then, the bias
of STI can be bounded as:∣∣∣〈L̂〉− L∣∣∣ = O

( 1

Kε
+ ε+

1

T 2

)
. (11)

The proof is given in the supplementary document [14]. Note
that the theorem applies to the general case of STI, i.e., it covers any
proper SG-MCMC method that can be used within STI (see [9,10]),
whereas SGLD appears as a special case.

4. EXPERIMENTS

4.1. Experiments on Synthetic Data

4.1.1. Gaussian Additive Model

In this section, we evaluate STI on a simple model whose marginal
likelihood is analytically available. The model is given as follows:

θr ∼ N (θr;µθ, σ
2
θ), xn|θ ∼ N (xn;

∑R

r=1
θr, σ

2
x) (12)

where θ = {θr}Rr=1 is the collection of the latent variables and x =
{xn}Nn=1 denotes the observations. Here, each observation xn is
generated from a Gaussian distribution whose mean is the sum of
R i.i.d. Gaussian latent variables. We consider the case where R is
not known a-priori. Therefore, in order to determine the best R, we
estimate the marginal likelihood of the data for M different values
of R: p(x|Rm) =

∫
p(x|θ)p(θ|Rm)dθ for all m ∈ {1, . . . ,M}.

In these experiments, for several true R values, we generate θ
and x by using the generative model. Then, we estimate the marginal
likelihood for differentR values by using STI and compare these es-
timates with the true marginal likelihood. Here, we set µθ = 5,
σ2
θ = 3, σ2

x = 5, and N = 5000. For t, we discretize the interval
[0, 1] into T = 10 points in a regular fashion: ti − ti−1 = ti+1 − ti
for all admissible i. At each epoch, we use only Ns = 250 obser-
vations for drawing samples and evaluating the log-likelihood. We
generate K = 3000 samples at each SGLD run where we discard
the first 1000 samples as burn-in. For the step-size of SGLD, we set
aε = 10−8 and bε = 0.51, and keep the step-size fixed after burn-in.

Fig.1 shows the results. We can observe that, in all cases, the
mode of the marginal likelihood coincides with the true value of R
and the estimates provided by STI are very accurate especially when
Rm is close to the mode. These results show that, as opposed to the
conventional methods that need to use the whole data set for gen-
erating samples and evaluating the likelihoods, STI provides very

Subsample 1 Subsample 2 Subsample 3

X W H X W H X W H

⇡ ⇡ ⇡

Fig. 2. Illustration of PSGLD. Given the blocks in a subsample, the
corresponding blocks in W and H become conditionally indepen-
dent, as illustrated in different textures.

accurate estimations with much less computational needs. The com-
putational advantage will be illustrated more clearly in the sequel.

4.1.2. Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [15] is an important mod-
eling tool in data analysis and has been shown to be useful in var-
ious domains, such as recommender systems, audio processing, fi-
nance, computer vision, and bioinformatics [16–18]. The aim of the
NMF model is to decompose an observed non-negative data matrix
X ∈ RI×J+ into the form: X ≈ WH , where W ∈ RI×R+ and
H ∈ RR×J+ are the non-negative factor matrices, typically known
as the dictionary and the activation matrices, respectively. In this
study, we consider a particular NMF model that has the following
probabilistic generative model [19]:

Wir ∼ E(Wir;λw), Hrj ∼ E(Hrj ;λh)

Xij |Wi:, H:j ∼ PO
(
Xij ;

∑R

r=1
WirHrj

)
(13)

where E and PO denote the exponential and Poisson distributions,
respectively. In this context, we have x = {Xij}i,j with N =
IJ and θ = {W:r, Hr:}Rr=1. Here R determines the rank of the
factorization, which is typically unknown and determined manually.

In this section, we evaluate STI on the estimation of the rank
variable R in Poisson NMF. For matrix factorization models, the
computational complexity of STI can be reduced even more by mod-
ifying SGLD in such a way that the update rule given in Eq. 10 can be
run in parallel [20–22]. In this study, we make use of Parallel SGLD
(PSGLD) [20] that exploits the conditional independence structure
of the matrix factorization models. The main idea in PSGLD is that
it utilizes a biased subsampling schema where the data is carefully
partitioned into mutually disjoint blocks and the latent factors are
also partitioned accordingly. This approach is illustrated in Figure 2.
At each iteration, PSGLD subsamples multiple blocks from X , in
such a way that these blocks do not ‘touch’ each other in any dimen-
sion of X . This biased subsampling schema enables parallelism,
since given a subsample, the SGLD updates can be applied to differ-
ent blocks of the latent factors in parallel.

We use an experimental setting similar to that we described in
Section 4.1.1: we generate W , H , and X by using the generative
model for two different values of R. Then, we estimate the marginal
likelihood for different R values by using STI. We set I = 100,
J = 75, λw = λh = 5. For inference, we choose T = 5 and
we generate K = 10000 samples at each PSGLD run where we use
the last 2000 samples for computing the expectations. We partition
X into 5 × 5 blocks (i.e., Ns = IJ/5) and set aε = 10−5 and
bε = 0.51, and keep the step-size fixed after burn-in. .

Unfortunately, the marginal likelihood of the Poisson NMF
model is analytically not available. Therefore, we compare STI with
a popular marginal likelihood estimation algorithm, namely Chib’s
method [2]. This method estimates the marginal likelihood by using
the samples obtained from a Gibbs sampler and has been shown
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Fig. 3. Results of the synthetic data experiments conducted on the
NMF model. The vertical lines show the true value of R.

to be useful for matrix and tensor factorization models [19, 23]. In
order be able to obtain the full conditional distributions that are
required by the Gibbs sampler, we need to introduce an auxiliary
tensor and augment the model in Eq. 13 as follows [19, 24]:

Cijr|Wir, Hrj ∼ PO(Cijr;WirHrj), Xij =
∑R

r=1
Cijr,

where the prior distributions remain unchanged. For Chib’s method,
we first generate 9000 samples with the Gibbs sampler, where we
discard the first 7000 of them as burn-in. Then, we generate 5000
more samples for certain computations required by the method.
These experiments are conducted on a standard laptop computer
with 2.5GHz Quad-core Intel Core i7 CPU. The methods are im-
plemented in C, where we use GSL and BLAS for the matrix
operations, and OpenMPI for parallel computing.

Fig. 3 shows the results. It can be seen that the estimates ob-
tained by both methods are similar, especially near the mode. Sim-
ilarly to the previous set of experiments, the discrepancy between
these estimates becomes larger at the tails. We can assume that
Chib’s method is more accurate at these regions given that it uses
the whole data set at each epoch and enjoys the conjugacy of the
model. Nevertheless, the shapes of the estimations are quite similar;
the modes of the marginal likelihood coincide with the true values
of R, which is crucial for model selection applications.

The key advantage of STI over Chib’s method appears in the
computation time. Even though the number of samples generated by
STI is 3 times the number of samples generated by Chib’s method,
thanks to the usage of the subsamples, STI is 6 times as fast as Chib’s
method: even for these rather simple problems, Chib’s method takes
835 seconds to compute the marginal likelihood for 10 different val-
ues of R, whereas STI finishes all the computations in 137 seconds.
Besides, since the Gibbs sampler requires generatingN multinomial
random variables of size R at each epoch, Chib’s method becomes
even more impractical for large R. On the other hand, STI is also
more efficient than Chib’s method in terms of space complexity:
Chib’s method requires most of the samples to be stored whereas
STI only needs to store the latest sample.

4.2. Experiments on Audio

In this section, we evaluate STI on a speech enhancement applica-
tion, where the aim is to recover the clean speech signal, given a
noisy speech signal. Here, we consider a semi-supervised approach
and model the magnitude spectrogram of the noisy mixture as:

Xij |· ∼ PO
(
Xij ;

∑Rsp

r=1
W sp
irH

sp
rj +

∑Rno

r=1
W no
irH

no
rj

)
(14)

where i denotes frequencies, j denotes time-frames, ‘sp’ denotes
speech, and ‘no’ denotes noise. In this setting, the usual approach
is to train the dictionary matrix W sp on a clean speech corpus by
using the model given in Eq.13 and to fix it during denoising time,
in which all the other variables are estimated. Since the noise signals
usually do not have much variation, in practice it is sufficient to set
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Fig. 4. Results of the speech enhancement experiments. In the first
three plots, different colors represent different mixing SNRs.

Rno to a small value. However, it is known that the enhancement
performance heavily relies on the rank of the speech dictionary [25].
In this section, we evaluate STI on automatic determination of Rsp.

We conduct our experiments on NOIZEUS noisy speech corpus
[26]. This dataset contains 30 sentences that are uttered by 3 female
and 3 male speakers (i.e. 5 sentences per speaker). These sentences
are corrupted by using 8 different real noise signals at 4 different
signal-to-noise ratio (SNR) levels. We analyze the signals by using
the short-time Fourier transform with a Hamming window of length
512 samples and 50% overlap. We follow a speaker- and gender-
independent approach, and use the first 20 clean speech signals (2
female, 2 male) as the training corpus, which yields a matrix X of
size 257×1661. Then, we estimate the marginal likelihood by using
STI for 5 different values of Rsp: 25, . . . , 29. We set T = 5 and
generate K = 1250 samples at each PSGLD run where we use the
last 500 samples for the computations. We partition X into 8 × 8
blocks and set aε = 5× 10−7, bε = 0.51, and λw = λh = 0.0004.

We compare the performance of STI with oracle results: we
first train W sp using the Expectation-Maximization (EM) algorithm
[15,19] for eachRsp value. Then, by fixingW sp and settingRno = 5,
we evaluate the models on the noisy mixtures that are obtained by
corrupting clean speech signals that are not used during training. The
quality of the enhancement is measured by the signal-to-distortion
ratio (SDR), signal-to-interference ratio (SIR), and signal-to-artifact
ratio (SAR) that are computed with BSSEVAL version 3.0 [27].

Fig. 4 shows the results. We can observe that the quality of
the enhancement increases as we increase Rsp up to 256, and after
that point, increasing Rsp does not improve the enhancement perfor-
mance. This outcome is correctly captured by STI; the mode of the
marginal likelihood increases until Rsp = 256, then increasing Rsp

results in lower marginal likelihood. As opposed to conventional
cross-validation methods that require training and testing for each
Rsp, STI is able to find the correct model order without needing a val-
idation set. On the other hand, STI computes the marginal likelihood
for 5 different Rsp values in only 9 minutes, whereas Chib’s method
becomes impractical for this problem since it requires approximately
6 hours for generating 1250 samples for 5 different values of Rsp.

5. CONCLUSION

In this study, we proposed STI, a novel method for marginal likeli-
hood estimation by integrating ideas from SG-MCMC literature and
statistical physics. STI has very low computational needs and can be
implemented almost without modifying existing code. We provided
a bound for the bias of STI. We showed that STI is 40 times as fast as
the baseline method on finding the optimal model order in a matrix
factorization problem.
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