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Abstract

Musical instrument recognition is an important aspect of music information retrieval. In this work,

statistical pattern recognition techniques are utilized to tackle the problem in the context of solo musical

phrases. Ten instrument classes from different instrument families are considered. A large sound database

is collected from excerpts of musical phrases acquired from commercial recordings translating different

instrument instances, performers, and recording conditions. More than 150 signal processing features

are studied including new descriptors. Two feature selection techniques, Inertia Ratio Maximization with

Feature Space Projection and Genetic Algorithms are considered in a class pairwise manner whereby

the most relevant features are fetched for each instrument pair. For the classification task, experimental

results are provided using Gaussian Mixture Models (GMM) and Support Vector Machines (SVM). It

is shown that higher recognition rates can be reached with pairwise optimized subsets of features in

association with Support Vector Machine classification using a Radial Basis Function kernel.

Index Terms

Musical instrument recognition, Pairwise classification, Feature selection, IRMFSP, Genetic Algo-

rithms, GMM, SVM.

I. I NTRODUCTION

The need for multimedia content description has become a major issue as larger and larger digital

data has been made available for millions of both amateur and professional end-users. This has been

particularly scoped out by the light of MPEG-7 standardization effort [1]. As far as musical content is

concerned, it is desired to obtain score-like representations at a high level of description, which implies the

ability to extract characteristics such as genre, rhythm, melody, playing instruments, etc. One could then
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setup systems capable of executing requests such as ”find Hard-bop Sax solo played inC# in database”.

Thus, musical instrument recognition capability stands as a key feature of such systems. Knowing the

instruments involved in a given musical piece is in itself a useful information; but furthermore, it may

help discover other musical characteristics such as genre (a Piano, Double Bass and Drums trio is likely

to be a jazz trio) or played notes (multi-pitch detection or source separation could be easier knowing the

playing instruments).

However, identifying instruments from complex mixtures involving more than one playing at a time

remains a very difficult problem that has been addressed in a very few studies [2], [3], [4], [5], [6] with

often important restrictions regarding the musical content with respect to instruments involved and played

notes. Of course, such a goal is far more challenging, yet it is believed that a great deal of work still has

to be carried out in the so-called monophonic or solo context wherein only one instrument is played at a

time. In fact, it is considered as an essential effort in providing insights into musical instrument timbre

and a basis for handling real world polyphonic music as it may be conducted under the most realistic

conditions by using sound material excerpted from commercial recordings. Indeed, directions have been

proposed to extend the processing from mono-instrument to poly-instrument content either by means of

prior musical source separation (see [7] for example) or adapted classification strategies [8].

While describing the timbre of musical instruments has received early concern, especially in the musical

acoustics and psychoacoustics community [9], [10], [11], [12], [13], machine recognition of musical

instruments is a quite recent research area which came into act in the last decade. The majority of

studies handled the problem using sound sources consisting of isolated notes [14], [15], [16], [17], [18],

[19], [20], [21], [22]. There are two main advantages in such approaches. First, the simplification of

signal processing stages concerned with feature extraction, hence the ability to use more sophisticated

descriptors which are difficult to measure in the multi-note case (see section II). Second, several public

sound databases of isolated notes are available and can easily be used for such studies [23], [24], [25],

[26]. However, adopting these conditions imply the loss of note-to-note transition information which is

known to be a particularly important aspect of timbre. Moreover, it is still not very clear how to bring

such work to useful user applications since it is not practicable, given the current state of the art, to

proceed to note segmentation prior to instrument recognition; except for percussive instruments [27].

Fewer studies dealt with musical phrases from real solo performances [28], [14], [29], [30], [31],

[32], [33], [34], [35], [36]. Much effort was primarily dedicated to propose relevant features for musical
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instrument recognition including temporal, spectral and cepstral features as well as their variation and

statistics over a certain time or frequency horizon. The effect of combining features was studied [30], [37],

[33] and feature selection techniques were considered (for example, context dependent feature selection

in a hierarchical classification scheme in [14], Backward and Sequential Feature Generation in [19] or

Recursive selection based on Inertia Ratio Maximization in [38], [21]).

Various popular classification strategies were also studied [39]. K-Nearest Neighborhood (KNN) al-

gorithms were largely used in early work on isolated notes [40], [41], [14], [19], [42]. Discriminant

Analysis was used as pre-processing in [14] and for classification in [42]. In [21] Hierarchical Gaussian

Classifiers were exploited after a Box-Cox transformation had been applied to each feature. Neural

Networks were also examined in a number of studies (see [43] for example). Also, Multivariate Gaussian

models, Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM) were considered (see

[44], [19], [45], [20] for example). For recognition on solo phrases, GMM [29], [30], [32], HMM [31]

and Support Vector Machines (SVM) [46], [32], [33] were found successful.

In this work, the focus is put on musical instrument recognition on solo (unaccompanied) performance.

All effort is employed to enhance the different parts of the recognition system and our main contributions

are linked to:

• the sound database;a much larger and more varied sound database with respect to instrument

instances, recording conditions and players is used (compared to related studies),

• the features; a wide selection of features is considered, including new proposals, and their effi-

ciency studied through feature selection techniques, namely Inertia Ratio Maximization and Genetic

Algorithms,

• the classification schemes;both GMM and SVM are considered. For GMM, model orders are

assessed with a Bayesian Information Criterion (BIC). As for SVM, different types of kernels

are considered and their relative performance discussed. Moreover, the influence of the number

of consecutive temporal observations to be used for decision is studied.

Another contribution is that we argue that it is advantageous to address the task of instrument recog-

nition using a pairwise classification (one vs one) strategy. We show, through experimental work, that

performing instrument pairwise feature selection and classification results in better recognition accuracy

and enables better understanding of timbral differences.
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The outline of the paper is the following. In section 2, we give an overview of the feature set considered

for classification. Then, the feature selection algorithms used in this work are presented in section 3.

Following a concise description of the theoretical background related to GMM, SVM and classification

by pairwise coupling (section 4), we proceed to the experimental studies to assess the efficiency of our

recognition system (section 5). Finally, we suggest some conclusions in section 6.

II. FEATURE EXTRACTION

Finding appropriate features to model the timbre of musical instruments has received much concern

towards obtaining a representation of humans’ perception of musical sound [47], [13]. Our approach

is more pattern-recognition oriented, in the sense that we examine an important number of low-level

features to be automatically processed by a feature selection algorithm in order to fetch the most efficient

in discriminating the musical instruments. Clearly, it can be then difficult to interpret some of the low-

level features obtained in terms of timbre modeling.

In marked contrast to other pattern recognition tasks such as speaker identification, there has been no

real consensus in choosing a set of features amenable to successful instrument recognition. Several studies

show that MFCC alone turn out to be inefficient for discriminating between certain instrument classes (see

[33] for example). In fact, many other features have been proposed [14], [19], [39], [48] describing various

sound qualities. Also, automatic generation of high-level music descriptors using Genetic Programming

was attempted [49]. A number of these features become quite difficult to extract when dealing with

musical phrases. Typically, note attack characteristics are not straightforward to evaluate since onset

detection is already intricate in our case1. Thus, a set of features which can be extracted in a quite simple

and robust manner was chosen. In the following, we present a brief description of the features used. All

of them are extracted on a frame basis.

A. Classical features

Temporal. They consist of

1note that onset detection for a differentiated transient/steady processing in the recognition process is tractable at the cost of

additional complexity in the signal processing and decision stages, see [50] for further details
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• Autocorrelation Coefficients (AC) which represent the overall trend of the spectrum [48], they were

reported to be useful in [51];

• Zero Crossing Rates (ZCR) which are useful for discriminating periodic signals (small ZCR values)

from noisy signals (high ZCR values).

Cepstral. Mel-Frequency Cepstral Coefficients (MFCC) are considered as well as their time first and

second derivatives which are estimated over a number of successive frames [52].

Spectral. These include a subset of features obtained from the statistical moments, namely the Spectral

Centroid (Sc), the Spectral Width (Sw), the Spectral Asymmetry (Sa) defined from the spectral skewness

and the Spectral Flatness (Sf) defined from the spectral kurtosis. These features have proven to be

successful for drum loop transcription [27] and for musical instrument recognition [33]. They are denoted

by Sx = {Sc, Sw, Sa, Sf}. Their time derivatives (δSx) are also computed in order to provide an insight

into spectral shape variation over time. It is worth to note thatδSc can be seen as a quality of the

vibrato playing technique since it embeds some frequency modulation information [19]. A more precise

description of the spectrum flatness is also used, namely MPEG-7 Audio Spectrum Flatness (ASF) [1]

which is processed over a number of frequency bands. Indeed, this feature subset was found to be

very useful for our task [33]. Moreover, frequency derivative of the constant-Q coefficients (describing

spectral ”irregularity” or ”smoothness”) are extracted as they were reported to be successful by Brown

[30]. Another useful feature consisted in a measure of the audio signal Frequency cutoff (Fc) (also called

frequency rolloff in some studies [48]). It is computed as the frequency below which 99% of the total

spectrum energy is accounted.

Amplitude Modulation features (AM) . These features are meant to describe the ”tremolo” when

measured in the frequency range 4-8 Hz, and the ”graininess” or ”roughness” of the played notes if

the focus is put in the range 10-40 Hz [19]. First, temporal amplitude envelopes are computed using a

low-pass filtering (10-ms half Hanning window) of signal absolute complex envelopes, then a set of six

coefficients is extracted as described in Eronen’s work [19], namely AM frequency, AM strength and AM

heuristic strength (for the two frequency ranges). Two coefficients are appended to the previous to cope

with the fact that an AM frequency is measured systematically (even when there is no actual modulation

in the signal); they are the product of tremolo frequency and tremolo strength, as well as the product of

graininess frequency and graininess strength.
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B. New features

Octave Band Signal Intensities (OBSI). The idea behind this new feature set is to capture in a

rough manner the power distribution of the different harmonics of a musical sound without recurring

to pitch-detection techniques. In fact, a precise measure of frequencies and amplitudes of the different

partials is not required for our task. One rather needs to represent the differences in harmonic structure

between instruments. This can be achieved by considering a proper filterbank, designed in such a way

that the energy captured in each subband vary for two instruments presenting different energy distribution

of partials. Thus, we consider an octave band filterbank with triangular frequency responses. Filter edges

are mapped to musical note frequencies starting from the lowest Piano note A1 (27.5 Hz). For each

octave subband the maximum of the frequency response is reached in the middle of the octave subband.

Important overlap is kept between adjacent channels (half octave). We then measure the log energy of each

subband (OBSI) and the logarithm of the energy Ratio of each subbandsb to the previoussb−1 (OBSIR).

As a result, the energy captured in each octave band as well as the energy ratio of one band to the

previous will vary for two instruments having different harmonic structures. Additionally, in most cases,

coarse locating of the fundamental frequency (f0) is achieved since its octave range can be deduced from

the first peak in the OBSI function. Figure II-B gives an illustration of this discussion with Alto Sax

and Bb Clarinet playing the same musical note A4. For example, one can easily observe that the Bb

Clarinet has more energy in the second subband appearing in the plot than the Alto Sax, while the Atlo

Sax has more energy than the Bb Clarinet in the third and forth subbands. In fact, it is known that the

Bb Clarinet is characterized by the prominence of its odd harmonics and OBSI/OBSIR attributes allow

us to describe such a characteristic.

III. F EATURE SELECTION TECHNIQUES

In many classification tasks, a very high number of potentially useful features can be considered. Often,

some of these features are “noisy” or redundant with others. Though it is sometimes practicable to use

all features for classification, it is clearly sub-optimal to do so, especially if comparable performance can

be achieved using a reduced set of features. Consequently, feature selection or transformation techniques

are classically utilized both to reduce the complexity of the problem (by reducing its dimensionality) and

to retain only the information that is relevant in discriminating the possible classes.
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Fig. 1. Amplitude spectrums of Alto Sax (a) and Bb Clarinet (b) playing the same note A4 and the octave band filterbank. In

the second subband, higher OBSI will be measured for the Bb Clarinet; in the third and forth subbands, higher OBSI for the

Alto Sax.

Feature transform techniques (typically Principal Component Analysis (PCA) [53]) present the incon-

venience of requiring that all candidate features be extracted at the stage of test (before the transform

found during training is applied to them). Additionally, the transformed features are difficult to interpret,

which is a major drawback if one expects to gain some understanding of the classes (here related to

musical timbre).

Therefore, feature selection is often preferred to feature transformation, both to avoid extracting

irrelevant features during testing and to be able to exploit the resulting descriptors in an intuitive way. By

feature selection (FS), a subset ofd features is selected from a larger set ofD candidates. The selected

subset is required to include the most relevant features,i.e. the combination yielding the best classification

performance. Several strategies have been proposed by the statistical machine learning community [54],

[55], [56] to tackle the problem. They can be classified into 2 major categories: the “filter” algorithms use

the initial set of features intrinsically, whereas the “wrapper” algorithms relate the FSA to the performance

of the classifiers to be used. The latter are more efficient than the former, but more complex. In this work,

we choose to exploit approaches that were proposed in previous work on musical instrument recognition,

namely Genetic Algorithms (GA) [41] and Inertia Ratio Maximization using Feature Space Projection

(IRMFSP) [21], [34]. The efficiency of GA for feature selection has been argued in several studies [57],

[58], [59], [60], [61], [62]. IRMFSP present the advantage of being a simple and intuitive approach.
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In the following, we present an overview of the IRMFSP algorithm and Genetic Algorithms. The

particularity of our approach is to proceed to class pairwise feature selection (see section III-C).

A. Inertia Ratio Maximization using Feature Space Projection (IRMFSP)

Feature selection is made iteratively with the aim to derive an optimal subset ofd features amongstD,

the total number of features. At each stepi, a subsetXi of i features is built by appending an additional

feature to the previously selected subsetXi−1. Let K be the number of classes,Nk the number of

feature vectors accounting for the training data from classk andN the total number of feature vectors

(N =
∑K

k=1 Nk).

Let xi,nk
be thenk

th feature vector (of dimensioni) from classk, mi,k andmi be respectively the mean

of the vectors of the classk (xi,nk
)1≤nk≤Nk

and the mean of all training vectors(xi,nk
)1≤nk≤Nk; 1≤k≤K .

Features are selected based on the ratiori (also known as the Fisher discriminant [63]) of the Between-

class inertiaBi to the ”average radius” of the scatter of all classesRi defined as:

ri =
Bi

Ri
=

∑K
k=1

Nk

N ‖mi,k −mi‖∑K
k=1

(
1

Nk

∑Nk

nk=1 ‖xi,nk
−mi,k‖

) (1)

The principle is quite intuitive as we would like to select features that enable good separation between

classes with respect to the within-class spreads. Thus, the selected additional feature corresponds to the

highest ratiori.

Using such a criterion may result in redundant feature subsets wherein the same signal properties are

embedded in a number of features still entailing highri-values. Then as described in [21], the algorithm

has been modified to take into account the non-redundancy constraint by introducing an orthogonalization

step at each feature selection iteration. In summary, at each iteration,

• the ratiori is maximized yielding a new feature subsetXi,

• the feature space spanned by all observations is made orthogonal toXi.

The algorithm stops when the ratiord measured at iterationd gets much smaller thanr1, i.e. when

rd

r1
< ε for a chosenε, which means that the gain brought by the last selected feature has become non-

significant. This provides a convenient means for implicitly selecting the number of useful features when

the size of the feature subset to be selected is not a constraint.
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B. Feature Selection with Genetic Algorithms (GAFS)

In this approach, the feature space is searched randomly under the guidance of a fitness function.

The randomization of the search enables the algorithm to look for the features to be selected in the

neighborhood of the optimal solution. Genetic Algorithms belong to the family of Evolutionary Strategies

(ES) highly inspired by natural processes [64], [65]. From an initial population of randomly generated

chromosomes (each chromosome representing a candidate subset of features), a GA simulates an evolution

process (which is actually a search) so that after a number of generations or iterations, the resulting

more evolved chromosomes correspond to near optimal subsets of features. Evolution is represented

by basic genetic operators which are fitness evaluation, selection and recombination. At each iteration,

the algorithm selects the best two parent chromosomes with respect to the chosen fitness criterion, for

recombination. New chromosomes are thus created and integrated to the initial population. This process

is repeated until some convergence condition is met. The different aspects of the algorithm we use are

further explained in the following.

1) Encoding and initialization:Chromosomes consist of binary digit strings (gene sequences) where

each bit codes for the selection of a particular feature (1 for feature selected and 0 for feature not selected).

The length of the chromosome is thus the total number of initial featuresD and each gene codes for

a specific feature. At the initialization stage, chromosomes are generated randomly. Alternatively, the

number of selected features can be controlled in the random generation process [62].

2) Fitness evaluation:This is a critical operation in GAFS, since the relevancy of features being

selected is measured at this stage. It is important to use fitness functions that best translate the potential

classification performance resulting from the selected features. Ideally, one would use the recognition

accuracies found with classification based on the considered chromosomes, but this would be compu-

tationally too expensive. The idea developed below is thus to consider more fit the feature subsets that

result in the most separable class probability densities. These densities will be assumed to be Gaussian

in our case.

For instance, in a 2-class situation, it is proposed to use for a chromosome C and corresponding feature

subsetXC = XC
1 ∪XC

2 , the fitness functionF defined by:

F (C) = J(XC) =
||µC

1 − µC
2 ||2√

|ΣC
1 |+|ΣC

2 |
2

, (2)
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where(µC
i )i=1,2 and(|ΣC

i |)i=1,2 are respectively the mean vectors and the determinants of the diagonal

covariance matrices of the multi-variate Gaussian distributions that we fit to the dataXC
1 andXC

2 . The

idea is thus to consider more fit the feature subsets that result in the most separable class probability

densities which are assumed to be Gaussian.

The selection of chromosomes is then performed thanks to this fitness measure, yet it is made using

probabilistic considerations. The algorithm selects the chromosomes that areprobably the most fit. The

concept is again inspired by natural processes where not necessarily the most evolved species survive

into next generations, some merely have the chance to persist. Thus, the actual selection is made by

the so-called rank-based roulette-wheel rule enabling the more fit chromosomes to be more probably

selected [65].

Note that we do not constrain the final subset of features to have a pre-determined size. However, in

order to avoid too large feature-set solutions, the fitness is penalized such that the new functionF ′ is

given by,

F ′(C) = F (C)− P (C),

whereP (C) is zero if the size ofXC is still smaller than a maximum chosen number and else linearly

increasing with the extra number of features.

3) Crossover and mutation:Crossover allows information exchange between two potentially fit chro-

mosomes to give rise to a new one (an offspring) which is a hybrid version of the parents. This is how

new candidate features are explored in the search space. Another genetic operator, mutation, is used to

recover efficient features that could have been lost during the search. Mutation is performed with low

probability as in natural processes.

C. Class pairwise feature selection

Our main contribution to feature selection resides in that we perform it class pairwise. The idea is to

fetch the subsets of features which are the most effective in discriminating between all possible pairs of

classes. Subsequent classification is then to be performed in a one vs one scheme using as many 2-class

classifiers as instrument pairs based on different feature subsets.
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Not only is the approach more efficient in terms of recognition success, but also it is very convenient

from an analysis point of view. In fact, it makes the optimization of classification performance more

straightforward in the sense that it helps finding remedies to instrument confusions (see section V). For

example, if bad recognition accuracies are found for a given instrumenti because of frequent confusions

with instrumentj, it is reasonable to consider optimizing only the{i, j} classifier. In addition, better

understanding of instrument timbral differences is made possible in the form of interpretations such as

” Instrument i has characteristics A and B quite different from instrument j”, where ”characteristics A

and B” are deduced from the subset of features selected for the pair{i, j}.

The pairwise solution remains practicable even when a higher number of instruments are considered

since hierarchical classification, wherein instruments are grouped into families, is commonly used with

success in this case [14], [19], [21]. The number of combinations to be considered at a time is then

reduced to classes at the same level of taxonomy, which rarely exceed 4 classes.

Hereafter, we will denote classicK-class feature selection (K > 2) by 1-IRMFSP and use the notation

CK
2 -IRMFSP and CK2 -GAFS for pairwise feature selection. Note that in our study, genetic algorithms are

only used in the class pairwise approach.

IV. T HEORETICAL BACKGROUND ON CLASSIFICATION

A. Gaussian Mixture Models (GMM)

The Gaussian Mixture model (GMM) has been widely used in the speech/speaker community since

its introduction by Reynolds for text-independent speaker identification [66]. It was also successful for

musical instrument recognition [30], [19]. We give here a concise overview of the model since it is

well known in the literature. In such a model, the distribution of the P-dimensional feature vectors is

described by a Gaussian mixture density. For a given feature vectorx, the mixture density for the class

Ωk is defined as:

p(x|Ωk) =
M∑

m=1

wm,kbm,k(x), (3)

where the weighting factorswm,k are positive scalars satisfying
∑M

m=1 wm,k = 1. The probability

density is then a weighted linear combination ofM Gaussian component densitiesbm,k(x) with mean

vectorµm,k and covariance matrixΣm,k given by:
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bm,k(x) =
1

(2π)P/2|Σm,k|
1
2

e(−
1
2
(x−µm,k)′(Σm,k)−1(x−µm,k)) (4)

The parameters of the model for the classk, denoted byλk = {wm,k , µm,k ,Σm,k}m=1,...,M , are

estimated using the well-known Expectation-Maximization (EM) algorithm [67]. Classification is usually

made using the MaximumA posteriori Probability (MAP) decision rule which in virtue of Bayes rule,

can be written as

Ω̂ = arg max
1≤k≤K

L∑
t=1

log p(xt|Ωk) (5)

whereK is the number of possible classes,p(xt|Ωk) is given in (3),xt is the test feature vector observed

at time t, andL is the total number of observations considered.

B. Classification by pairwise coupling

When addressing aK-class classification problem through multiple 2-class classifications, one is

confronted with the problem of coupling the pairwise decisions at the stage of test. This issue was

addressed by Hastie & Tibshirani [68] who formalized a method to perform optimal coupling.

From the set of probabilitiesrij =Prob(Ωi|Ωi or Ωj) estimated for each pair{Ωi,Ωj}1≤i<j≤K at a

given observationxt, an estimate of the probabilitiesp(xt) = (p1(xt), p2(xt), ..., pK(xt)) is deduced

assuming forrij the model

µij =
pi

pi + pj
, (6)

wherepi =Prob(Ωi). The proposed algorithm findsp(xt) that minimizes the average weighted Kullback-

Leibler distancel(p) betweenrij andµij , i.e.

l(p) =
∑
i<j

nij

[
rij log(

rij

µij
) + (1− rij) log(

1− rij

1− µij
)
]

, (7)

with nij the number of training examples used to train the pair{Ωi,Ωj} classifier. This is done by

means of a gradient approach. Classification can then be made using the usual Maximuma posteriori

Probability (MAP) decision rule [63].

When considering GMM for classification with a pairwise strategy, we use the Hastie-Tibshirani

approach to couple the decisions obtained with every pair of GMM as follows. For a given test observation

xt, and a given class pair{Ωi,Ωj}, we compute the likelihood of each classp(Ωi|xt) andp(Ωj |xt), and
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computer̂ij = p(Ωi|xt)
p(Ωi|xt)+p(Ωj |xt)

and r̂ji = p(Ωj |xt)
p(Ωi|xt)+p(Ωj |xt)

. The previous method is then used to estimate

p(xt) assuming the model (6) for̂rij .

C. Support Vector Machines

Support Vectors Machines (SVM) have been used successfully for various classification tasks, including

speaker identification, text categorization, face recognition, etc. but also recently in musical instrument

recognition [46], [32], [33]. SVM are powerful classifiers arising from Structural Risk Minimization

Theory [69] with very interesting generalization properties [70]. Another advantage of these classifiers is

that they arediscriminativeby contrast togenerativeapproaches (such as GMM) assuming a particular

form for the data probability density which is often not consistent.

Considering two classes, SVM try to find the hyperplane that separates the features related to each

class with the maximum margin. Formally, the algorithm searches for the hyperplanew.x + b = 0 that

separates the training samplesx1, ...,xp which are assigned labelsy1, ..., yp (yi ∈ {−1, 1}) so that

yi(xi.w + b)− 1 ≥ 0,∀i (8)

under the constraint that the distance2||w|| between the hyperplane and the closest sample is maximal.

Vectors for which the equality in (8) holds are called support vectors.

In order to allow the algorithm to find non-linear decision surfaces, the concept of kernel functions

was introduced. Then, SVM map theP -dimensional input feature space into a higher dimension space

where the two classes become linearly separable, using a Kernel functionK(xi,xj) such that

K(xi,xj) = Φ(xi).Φ(xj),

where Φ : RP 7−→ H is a map to the high dimension space H. A great advantage of the approach

resides in that one does not need to knowΦ explicitly, since one only needs to know how to compute

Φ(xi).Φ(xj); all computations can be made using the expression ofK(xi,xj) and the problem is still

solved in the low dimensional space. Interested readers are referred to [70] for further details.

SVM are by essence 2-class classifiers. Nonetheless, they can be used to performK-class classification

using either the one vs one or one vs all strategies. In this work, a one vs one strategy (or class pairwise

strategy) is adopted and classification is then performed using a ”majority vote” rule applied over all

possible pairs.
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V. EXPERIMENTAL STUDY

A major difficulty in the evaluation of automatic musical instrument recognition, and especially in

the case where solo phrases are considered, is the lack of publicly available sound databases. As a

consequence, the comparison between different proposed technologies is not straightforward. As a matter

of fact, each study uses specific experimental conditions and evaluation protocols. In particular, it is

important to avoid direct comparison with work on isolated notes which represents a significantly different

problem.

In our work, in order to assess the generalization capability of the recognition system, a great deal of

effort has been dedicated to obtain enough variation in sound material with regard to recording conditions,

performers and instrument instances.

This section presents a number of experiments to illustrate the adequacy of the feature selection

(IRMFSP vs Genetic algorithms), of the classification approach (GMM vs SVM) and classification

strategy (K-class vs pairwise comparison) to obtain a robust musical instrument recognition system.

In order to monitor the performance of our algorithm, a reference (or baseline) system has been built

(see section V-B).

A. Experimental parameters

1) Sound database for solo phrase recognition:Ten instruments are considered, namely, Alto Sax,

Bassoon, Bb Clarinet, Flute, Oboe, Trumpet, French Horn, Violin, Cello and Piano. This choice is made

so that all instrument families are represented. Moreover, potentially similar instruments (within the same

family) are used so as to avoid simplification of the problem as it is much easier to discriminate the Harp

from the Alto Sax than discriminate the Bb Clarinet from the Alto Sax, for example.

Sound samples were excerpted from Compact Disc (CD) recordings mainly obtained from personal

collections. The content consisted of classical music and jazz from both studio and live performance,

or educative material for music teaching. Additionally, Alto Sax, Bb Clarinet and Trumpet solo phrases

performed by three amateur players were recorded at Télécom Paris studio. The selection of recording

excerpts used in the training set was randomly made under the constraint that at least 15 minutes of data

could be assembled. Whenever this was not possible, at least 2 minutes of data were kept for testing

(in the worst case) and the rest was used for training in order to provide tight confidence ranges on the

estimation of recognition accuracies. Ideally, never would the same CD-recording provide excerpts for

both training and test sets, but in some cases, it was not possible to do so without lacking of material
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Total train (s) Sources Tracks Frame nbr Total test (s)

Alto Sax 523 10 19 19800 310

Bassoon 176 5 9 8280 130

Bb Clarinet 756 10 26 31140 488

Flute 606 8 24 44190 692

Oboe 1074 8 24 71310 1117

French Horn 261 5 13 7050 110

Trumpet 1158 9 73 66960 1049

Cello 1101 7 20 65490 1026

Violin 1325 11 31 59790 937

Piano 1203 8 15 45870 719

TABLE I

SOUND DATABASE - Sources, TracksAND Frame nbrARE RESPECTIVELY THE TOTAL NUMBER OF DISTINCT

SOURCES, THE TOTAL NUMBER OF TRACKS FROMCDS AND THE NUMBER OF32-MS TEST FRAMES USED FOR

TEST; Total train AND Total testARE THE TOTAL DURATIONS OF RESPECTIVELY TRAIN AND TEST MATERIAL IN

SECONDS.

either for training or testing. However, it was made sure that samples used for testing were never extracted

from tracks whose any part was included in the training set. Table I sums up the properties of the data

used in our experiments. The diversity of the sound database properties used in studies on instrument

recognition on solo phrases (including ours) is illustrated in table II which highlights the difficulty to

directly compare their respective performances.

2) Signal processing:Previous work on instrument recognition has shown that a 32-kHz sampling

frequency is not penalizing for classification performance [30], which led us to down-sample the input

signal to this frequency in order to reduce the computational load. Additionally, the signal was centered

with respect to its temporal mean and its amplitude was normalized with respect to its maximum value.

The analysis was performed over sliding overlapping windows. The frame length was 32 ms and the

hop size was 16 ms for the extraction of all features except tremolo and roughness. Longer analysis

length (960 ms and 480-ms hopsize) was used for the latter so as to measure the AM features properly.

All spectra were computed with a FFT after Hamming windowing. Frames consisting of silence signal
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Classes Sources Train (s) Test(s)

Brown [30] 4 - 54 - 330 60 - 240

Martin [14] 11 2 - 8 12 - 2130 54 - 2130

Marques [46] 8 2 - 2 205 - 205 20 - 20

Miravet [31] 6 3 - 9 1818 - 2044 945 - 1136

This work 10 5 - 11 176 - 1325 110 - 1117

TABLE II

SOUND DATABASE - ClassesIS THE NUMBER OF INSTRUMENT CLASSES STUDIED(WHEN AT LEAST 2 INSTANCES WERE

AVAILABLE ) SourcesIS THE NUMBER OF DISTINCT SOURCES USED; Train AND TestARE RESPECTIVELY THE TOTAL LENGTH

OF THE TRAINING DATA, AND TOTAL LENGTH OF TEST DATA, IN SECONDS; MINIMUM AND MAXIMUM DURATIONS ARE

GIVEN.

were detected thanks to a heuristic approach based on power thresholding then discarded from both train

and test data sets. The frequency ratio for the constant-Q transform was 1.26. A total of 160 feature

coefficients were considered including elements from all feature subsets described earlier.

All features were rescaled in order to homogenize the highly varying dynamics of the different feature

subsets in such a way that all coefficients were confined in the range [0,1]. This is done by normalizing

the features with respect to scale factors deduced from their “ceiled” maximum values (estimated during

training). Such a pre-processing has proven to be successful for better classification [34].

B. Baseline system

The Baseline system follows a classic K-class GMM approach where the model ordersMk for each

class k vary in the set{8, 16, 32, 64, 128, 256} and are selected using a Bayesian Information Criterion

(BIC) [71]. For this reference system, 1-IRMFSP was used for feature selection and a MAP criterion used

for decision. Scoring was performed as follows: for each test signal, a decision regarding the instrument

classification was taken everyT = 0.47 seconds (L = 30 overlapping frames of 32-ms duration). The

recognition success rate is then, for each instrument, the percentage of successful decisions over the total

number ofT -second test segments.
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The results of this baseline system obtained on our database are given in column 2 of table IV. The

average accuracy is 75%. Although acceptable results are obtained for some instruments as the Violin

for example (89%), the recognition of others remains unsatisfactory (as for the French Horn successfully

classified only 55% of the time). We will show that the average accuracy can be improved with our

approach.

C. Experiment 1, Feature selection

1) K-class feature selection:An overview of the different feature subsets used in our experiments is

presented in table III together with the 19 features selected through the 1-IRMFSP approach (column 3)

using a convergence condition determined byε = 10−5. The efficiency of the OBSI/OBSIR attributes

is confirmed since they are largely represented in the subset of selected features. Features describing

the spectral shape (Sc, Sw, Sa, Sf) as well as ASF coefficients were found very useful. Only the first 4

MFCCs were selected.

2) K-class feature selection and pairwise classification:Column 3 of table IV provides the recognition

accuracies obtained with 1-IRMFSP and a one vs one GMM classification (as described in section IV-B).

It can be noticed that the pairwise classification does not bring any significant improvement compared

to the reference system.

3) Pairwise feature selection and pairwise classification:Recognition accuracies obtained with one

vs one GMM classification based on C10
2 -IRMFSP are given in column 4 of table IV. Substantial

improvement in recognition accuracy (up to +22% for the French Horn) is achieved with C10
2 -IRMFSP

for all instruments except the Bassoon. The average improvement is 7 percentage points.

Note that, for C10
2 -IRMFSP, a different model is computed for the same instrument classCi with

respect to the instrument classCj it is confronted with, since a specific subset of features is selected

for the pair(Ci, Cj). The model orderMij of each GMM is also assessed using a BIC approach with

Mij ∈ {8, 16, 32, 64, 128, 256}.

Pairwise IRMFSP was performed (with the same convergence criterionε = 10−5). On average the

same number of features (19) is selected. While the same feature subsets (OBSI/OBSIR, Sc, Sw, Sa, Sf,

ASF) remain the most efficient, more features are selected by the algorithm for specific pair combinations

where more attributes are necessary for better discrimination. Spectral ”irregularity” coefficients (Si) were
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Feature subset Size Selected

AC=[AC1,...,AC49] 49 -

ZCR 1 -

MFCC=[C1,..,C10]+δ+δ2 30 C1,...,C4

Sx=[Sc,Sw,Sa,Sf]+δ+δ2 12 Sc,Sw,Sa,Sf

ASF=[A1,...,A23] 23 A22,A23

Si=[S1,...,S21] 21 -

Fc 1 -

OBSI=[O1,...,O8] 8 O4,...,O8

OBSIR=[OR1,...,OR7] 7 OR4,...,OR7

AM=[AM1,...,AM8] 8 -

TABLE III

FEATURE SUBSETS AND THEIR CODES(COLUMN 1); FEATURE SUBSET SIZES(COLUMN 2); FEATURES SELECTED USING

1-IRMFSP (COLUMN3).

considered particularly useful for combinations involving the Bb Clarinet vs another wind instrument and

otherwise rarely selected. AM features were particularly consistent when dealing with wind instruments,

especially with the Bb Clarinet and the French Horn. A maximum of 4 autocorrelation coefficients (among

49) were selected for the pair Bb Clarinet/Flute. Zero Crossing Rate was selected 18 times (out of 45)

and Frequency cutoff 21 times. As for delta-cepstrum attributes, only energy temporal variation (δC0) and

energy acceleration (δ2C0) were found efficient for only a few combinations. On the contrary, in other

cases, a number of features are found not useful for given instrument pairs, hence they are not selected.

This results in sizes of selected feature subsets ranging from 9 (for the Piano/Violin pair, for which only

the 3 first MFCC, the spectral moments and the fifth and eighth OBSI coefficients were selected) to 44

(for Bb Clarinet versus Flute). Examples of class pairwise feature selection results are presented in table

V. All selected feature subsets were posted on the web [72] for interested readers to look into it in depth.

4) Genetic Algorithms for feature selection:A tentative to improve feature selection was made using

Genetic Algorithms also performed in a pairwise fashion (denoted by C10
2 -GAFS). We use the fitness

measure described in section III-B. Two variants are tested: a classic one with totally random initialization

and an alternative approach with assisted initialization where we introduce an evolved chromosome in

the initial population, among the randomly generated other initial chromosomes, in order to obtain a set
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1-IRMFSP, 10-class 1-IRMFSP, 1 vs 1 C10
2 -IRMFSP, 1 vs 1

Alto Sax 61 62 73

Bassoon 68 68 60

Bb Clarinet 71 73 79

Flute 80 80 88

Oboe 75 75 78

French Horn 55 55 76

Trumpet 82 83 85

Cello 88 88 94

Violin 89 88 90

Piano 82 82 98

Average 75 75 82

TABLE IV

BASELINE SYSTEM: 10-CLASS GMM CLASSIFICATION WITH 1-IRMFSP (COLUMN 2); ONE VS ONEGMM CLASSIFICATION

WITH 1-IRMFSP (COLUMN 3) AND C10
2 -IRMFSP (COLUMN 4)

of features more fit than the IRMFSP one. This is achieved by introducing at the initialization stage a

chromosome constructed with genes obtained with the C10
2 -IRMFSP algorithm findings (withε = 10−5).

The GAFS algorithm often introduced autocorrelation coefficients (AC) in the subset of the most

relevant features. These were hardly selected by IRMFSP. The average number of selected features is 33.

To test the performance of feature selection algorithms, basic linear SVM classification is used.

Recognition accuracies thus found are presented in table VI. Note that these results are to be compared

intrinsically rather than with table IV. IRMFSP is tested with two stop criteria,ε = 10−5 (column 2,

denoted by IRMFSP(10−5)) resulting in an average of 19 selected features andε = 10−6 (column 3,

denoted by IRMFSP(10−6)) for 38 selected features on average. Results obtained with classic GAFS and

GAFS with assisted initialization are given respectively in columns 4 and 5. As expected, IRMFSP(10−6)

provides the best overall performance since more features are selected on average. The average improve-

ment in recognition accuracies is 4% compared to IRMFSP(10−5). Although the average recognition rate

is 73% with features selected using GAFS with random initialization, this algorithm remains less efficient
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Bb Clarinet/Alto Sax Bb Clarinet/Bassoon Bb Clarinet/Flute Bb Clarinet/French Horn

C1,..,C3,C6,..,C8,δC0

Sw,Sa,Sf, A5, A9, A10

A12, A15, A19,

A20, A21, A22, A23,

AM fr x st 4-8Hz

AM fr 10-40Hz,

AM st 10-40Hz,

Fc, OR2, OR5, OR6,

OR7, S8, S14

C1,..,C4

Sc, Sw, Sa

A21, A22, A23

OR5, OR6, OR7

S12, S18

C1, C2, C3, C6, δ2C0, Sc, δ2Sc,

Sa, Sf, A5, A9, A10, A18,

A20, A22, A23, AM fr 10-40Hz,

AC5, AC10, AC23, AC42, Fc,

ZCR, O1, O2, O3, O4,

O5, O6, O7, O8, OR1, OR2,

OR3, OR4, OR5, OR6, OR7,

S7, S8, S15, S16, S18, S19

C1, C2, C3, C4, C5, C6,

Sc, Sw, Sa, Sf, A2, A3, A5,

A6, A9, A10, A14, A18, A20, A23,

AM fr 4-8Hz, AM st 4-8Hz,

AM heur st 4-8Hz, AM st 10-40Hz,

Fc, ZCR, OR5, OR6,

S9, S13, S14, S15, S16, S20.

Bb Clarinet/Trumpet Bb Clarinet/Cello Bb Clarinet/Violin Bb Clarinet/Piano Bb Clarinet/Oboe

C2, C3, Sw, Sa, Sf,

AC8, O1, O5, O6,

O7, OR5, OR7,

S15, S16, S19,

C1, C2, C3,

Sw, Sa, Sf,

A22, AM fr 4-8Hz,

AC1, O5, OR1, S19

C1, C2, C3,

Sw, Sa, Sf,

A20, A22, A23, Fc,

O4, O5

C1, C2, C3, C4,

Sw, Sa,

A13, A18, A20, A22, A23,

AM frequency 4-8Hz, AC1, Fc,

O2, O6, O7, O8,

OR6, OR7.

C2, C3, C4, C5, C7,

Sc, Sw, Sa, A22,

AC1, AC8, AC18,

O2, O4, O6, O7, O8, OR5,

OR7, S11, S14

TABLE V

FEATURES SELECTED BY THEC10
2 -IRMFSPALGORITHM FOR A FEW EXAMPLES. ’ FR’ STANDS FOR

FREQUENCY AND ’ ST’ FOR STRENGTH.

than IRMFSP(10−6) except for the recognition of the Oboe, the Trumpet and the Violin. When testing

GAFS with assisted initialization, some improvement is often observed compared to IRMFSP(10−5) yet

more features are selected and this approach performs better than IRMFSP(10−6) only for Alto Sax. It is

believed that the used fitness measure was not always optimal because it is based on the assumption that

the data has Gaussian distribution (see section III-B.2). As a result, the selected set of features, although

fit with respect to the chosen fitness function, do not satisfy the properties we are requiring. This confirms

the importance of a judicious choice of the fitness function to be used in GAFS. A promising candidate,

that is being studied, is theξα estimate of the SVM classifier success [73].

5) Optimization of feature selection by fusion:This situation allows us to show the flexibility of the

pairwise classification approach. A major advantage is that we can still exploit only the improved feature

subsets in order to optimize a classification system performing better than the one using IRMFSP(10−6),

by altering only a few classifiers among all the pairs. The following example is illustrating the procedure.
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IRMFSP(10−5) IRMFSP(10−6) GAFS GAFS(init+)

Alto Sax 43 50 40 54

Bassoon 51 59 35 52

Bb Clarinet 81 86 73 82

Flute 76 84 63 80

Oboe 76 78 78 74

French Horn 71 75 69 66

Trumpet 84 86 88 86

Cello 94 95 92 88

Violin 91 94 94 93

Piano 99 99 98 97

Average 77 81 73 77

TABLE VI

CLASSIFICATION PERFORMANCE WITHC10
2 -IRMFSP (COLUMNS 2 AND 3), C10

2 -GAFS (COLUMNS 4 AND 5).

Looking at the confusions made by the classification based on C10
2 -GAFS and C102 -IRMFSP(10−6) (given

in table VII), one can work out that the Alto Sax was confused with the Violin 35% of the time with

IRMFSP, and only in 31% of the cases using GAFS.

Thus we replace the feature subset found by IRMFSP by the one found with GAFS for the discrimina-

tion between the pair (Alto Sax, Violin) which results in smaller confusion between these two instruments

compared to the results with IRMFSP (Alto Sax is now confused with Violin 29% of the time). The

same process is repeated for all situations where GAFS provides better discrimination between a pair of

instruments, yielding a hybrid set of features consisting of pairwise chosen subsets compiled from the

best of C10
2 -GAFS and C10

2 -IRMFSP. Preliminary results, found using the same test set, show that some

improvement of the recognition accuracy (compared to the original found by C10
2 -IRMFSP) can thus be

achieved2 The optimization is not always successful since all confusions should be optimized jointly.

2these results are considered as preliminary since we unfortunately lack a development set to be used to perform the

optimization of the features selected. This led us to exploit, in the optimization, the confusions found over the test set, to

illustrate the proposed procedure.
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Alto Sax Bb Clarinet Violin Trumpet

Alto Sax 54 - 50 (56) 6 - 6 (6) 31 - 35 (29) 4 - 3 (4)

Bb Clarinet 0 - 0 (0) 82 - 86 (87) 1 - 2 (2) 4 - 3 (3)

Violin 3 - 3 (2) 1 - 2 (2) 94 - 94 (94) 2 - 1 (1)

Trumpet 0 - 3 (1) 0 - 1 (1) 3 - 3 (4) 88 - 86 (87)

TABLE VII

PARTIAL CONFUSION MATRICES FOR CLASSIFICATIONS, FROM LEFT TO RIGHT BASED ONC10
2 -GAFS - C10

2 -IRMFSPAND

(OPTIMIZED FEATURE SETS). READ ROW CONFUSED WITH COLUMN.

In fact, a given feature subset may result in instrumenti being less confused with instrumentj and at

the same timej being more confused withi (see the confusions for the pair (Alto Sax, Trumpet) for

example). Nonetheless, substantial improvement is achieved for individual instrument classes using an

optimization that is not practicable in a 10-class classification scheme wherein a unique set of features

is used that cannot be altered without changing all recognition accuracies.

D. Experiment 2, SVM Kernels

For all the following experiments, we keep unchanged the features selected pairwise in the previous

experiments (those compiled from C10
2 -GAFS and C102 -IRMFSP(10−6) in section V-C.5) to study aspects

related to classification.

We examine here the efficiency of SVM classification for musical instrument recognition on solo

phrases using different kernels. Three types of kernel are examined, linear (or no kernel), polynomial

and Radial Basis Function (RBF). The used polynomial kernel has the form

K(x,y) = (s x.y + c)d.

As for the RBF kernel, it is given by

K(x,y) = exp
(
−γ||x− y||2

)
.

The recognition accuracies obtained with the different kernels are given in table VIII. The RBF kernel

is the most successful with an average accuracy of 87%. When using the polynomial kernel, increasing

the degree from 2 to 4 results in increased performance. A degree greater than 4 is not efficient since the

August 22, 2005 DRAFT



ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING 22

Linear Poly(d=2) Poly(d=3) Poly(d=4) Poly(d=5) RBF

Alto Sax 56 61 64 64 64 70

Bassoon 59 66 66 67 66 66

Bb Clarinet 87 91 93 94 94 96

Flute 84 88 89 90 90 92

Oboe 79 81 82 82 82 83

French Horn 74 78 78 78 78 81

Trumpet 87 88 89 89 89 90

Cello 95 96 96 96 96 96

Violin 94 96 96 96 96 96

Piano 99 100 100 100 100 100

Average 81 84 85 85 85 87

TABLE VIII

CLASSIFICATION RESULTS WITHSVM USING LINEAR, POLYNOMIAL (d = 2, ..., 5) AND RBF KERNELS WITH OPTIMIZED

FEATURE SUBSETS. BEST SCORES ARE GIVEN IN BOLD

performance remains unchanged for increased computational load. The forth-degree polynomial kernel

is the most interesting polynomial kernel as it results in the best individual and average accuracies and

performs better than the RBF kernel for the recognition of the Bassoon. It is worth to note that the

Piano is very easily discriminated from other instruments since its recognition accuracy is already 99%

without any kernel. Finally, note that GMM were more successful for the recognition of the Alto Sax

(73% with GMM). The previous thus suggests combining the different classifiers [74] for better overall

performance.

E. Experiment 3, changing the decision length

The last experiment is concerned with the influence of the decision length on the recognition accuracy.

So far,L=30 successive overlapping 32-ms frames have been considered in classifying a given test signal

i.e., the decision length has been 0.47s. Table IX presents the recognition accuracies obtained using longer

decision lengths.

We considered the casesL=60 (≈ 1s) andL=320 (≈5s). High accuracies are found. The average is
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L≈0.5s (30) L≈1s (60) L≈5s (320)

Alto Sax 70 73 82

Bassoon 66 67 82

Bb Clarinet 96 98 100

Flute 92 92 95

Oboe 83 84 83

French Horn 81 84 94

Trumpet 90 91 93

Cello 96 96 98

Violin 96 96 99

Piano 100 100 100

Average 87 88 93

TABLE IX

CLASSIFICATION PERFORMANCE FOR DIFFERENT DECISION LENGTHS USING THE OPTIMIZED FEATURE SUBSETS ANDSVM

WITH A RBF KERNEL.

88% with 1s segments (L=60) and 93% with 5s segments (L=320). The recognition of the Piano is

always successful from 0.5-second decision lengths on and so it is for the Bb Clarinet with 5-second

decisions.

VI. CONCLUSION

Machine recognition of musical instruments on solo performance has been addressed. A number of

potentially useful signal processing features have been studied. New features were proposed, namely

Octave Band Signal Intensities and Octave Band Signal Intensity Ratios that prove highly efficient for

the recognition task. Inertia Ratio Maximization using Feature Space projection and Genetic Algorithms

have been considered for feature selection.

Moreover, we have shown that it is very advantageous to perform feature selection class pairwise,

looking for the subsets of features that enable the best discrimination between any possible pair of

instrument classes. It entails much better recognition accuracies and allows us to optimize simple 2-class

schemes for better overall performance. Furthermore, it is an interesting starting point for studying timbral
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differences between instruments. In fact, it guides one to natural formulations of the relations existing

among them by establishing simple binary comparisons. Nevertheless, some higher-level characterisation

of the selected low-level features is needed to gain better understanding of these relations.

Two types of classifiers were studied, GMM and SVM, that were exploited in a one vs one scheme.

SVM with a RBF kernel gave the best results (on average 12% improvement was achieved compared

to our baseline system). Further improvement of the recognition accuracies was obtained using a larger

number of observations for decisions, which resulted in high recognition performance (93%).

Future work will consider alternative feature selection techniques better adapted to SVM classification.

Furthermore, hierarchical classification wherein instruments are grouped into families will be envisaged.

The recognition of typical instrumental ensembles (solos, duets, trios, etc.) will be introduced at a high

level of taxonomy. As for classification, probabilistic outputs for SVM will be considered together with

a time dynamic approach.
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