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ABSTRACT

In this paper, algorithms for tempo tracking from poly-
phonic music signals are introduced. These new meth-
ods are based on the association of a filter bank with ro-
bust pitch detection algorithms such as the spectral sum or
spectral product. These algorithms are further improved
by using an onset detector in each band. These algorithms
are then compared to two of the most reliable methods of
the literature using a small manually annotated database of
short sequences of music signals. It is shown that, despite
their simplicity, these new approaches are very efficient and
outperform the tested methods.

1. INTRODUCTION

The enormous amount of unstructured multimedia data avail-
able nowadays and the spread of its use as a data source
in many applications are introducing new challenges to re-
searchers in information and signal processing. The contin-
uously growing amount of this digital multimedia informa-
tion increases the difficulty of its access and management,
thus hampering its practical usefulness. As a consequence,
there is a clear need for content-based multimedia data in-
dexing, processing and retrieval techniques.

If multimedia and multimodal approaches represent es-
sential challenges, the more classical approach consisting
in building new analysis or indexing technologies on a given
media are still needed to overcome the current limitations
of today approaches.

For example in audio, numerous problems still exist to
extract high level descriptors directly from polyphonic mu-
sic signals. The tempo (or beat) is one of the most im-
portant descriptor since many applications can be derived
from the automatic recognition of the rhythmic structure of
a music signal:

• automatic rhythmic alignement of multiple instruments,
channels or musical pieces (for mixing orkaraoḱe)

• automatic indexing, segmentation and style classifi-
cation of music databases,

• beat driven computer graphics (virtual dancers, etc..)

Tempo or beat analysis of musical signals is a domain
of research that receives a growing interest as shown by the
variety of recent publications [8],[10],[1], [12], [6]. This
problem is apparently simple (most people even without
any musical knowledge have no difficulties to find the beat
of a musical performance). However, automatic recogni-
tion is more complex especially for music styles that do
not include strong rhythmic patterns (such as classical or
jazz music, for example).

If earlier approaches focused on MIDI signals (or sim-
ple real audio signals such as purely percussive signals [9]),
today approaches are directly dealing with polyphonic mu-
sic. Scheirer [8] proposed a method associating a filterbank
with a set of comb-filters. Simpler methods were intro-
duced by by Sepp̈annen [10] using sound onset detection
or by Tzanetakis [12] in the context of musical genre clas-
sification. Another approach was also proposed by Goto
[2] to infer the hierarchical beat structure. In most of these
works, the rhythm detection (or periodicity) is based on a
simple inter-onset time detection or on the traditional auto-
correlation method.

In this paper, several algorithms for tempo tracking are
introduced. These methods are based on the association of
a filter bank with robust pitch detection algorithms such as
the spectral sum or spectral products. The performances
of these algorithms are evaluated against some of the most
reliable algorithms of the literature using a small manually
annotated database of short sequences of music signals.

The paper is organized as follows: the next section de-
scribes our new algorithms including some minor improve-
ments of the original Scheirer’s algorithm. Results of these
algorithms compared to two methods of the literature are
given in section 3. Finally, in section 4 we suggest some
conclusions.

2. TEMPO ESTIMATION ALGORITHMS

Most of the algorithms designed to estimate the tempo of
musical pieces [8, 7, 3, 12] are based on the same basic
steps. In particular, they all process several frequency bands
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separately, combining the results in the end. According to
the experimental results found in [8], this assumption pre-
serves rhythm perception for most music signals, and have
prove to be efficient for many kinds of frequency bands de-
composition. These basic steps are described below:

1. subband decomposition of the signal, provided by a
filterbank,

2. onset detection in each subband.

3. estimation of the periodicity in each subband.

4. combination of the results to obtain the general tempo.

The differences between the algorithms found in the lit-
terature rely on the implementations of those steps. For
instance, the well-established Scheirer algorithm uses a six
band IIR filter bank for the first stage. Nevertheless we also
found a eight band filter bank in [7] and a 21 nearly critical
band filter bank in [4]. There are also different techniques
used to detect the onset times: based on a half wave or full
wave rectification, using the enveloppe or its squared value,
deriving the difference function or the relative difference
function, applying thresholding or not.
According to these descriptions, the structure of the whole
system would appear as sketched on the flow diagram of
the figure 1.
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Fig. 1. Proposed tempo estimation system flow diagram.

Our tempo estimation approach uses the general psychoa-
coustic simplification proposed by [8] and also adopted by
Paulus [7]. The input signal to the tempo estimation system
is first divided into eight non-overlapping frequency bands
using a filterbank of sixth-order butterworth filters. The
lowest band is obtained by lowpass filtering with a cutoff
frequency of 100 Hz, the seven higher bands are logarith-
mically distributed in frequency between 100 Hz and half

the sampling frequency (8000 Hz for our experiments), as
suggested by Paulus in [7]. We obtain the subband signals
xk(t), wherek = 0, . . . , 7.
Next, extraction of the signal’s envelope is carried out. This
is a fundamental step aiming at precisely finding the sound
onset points provided to the tempo estimation algorithms.
This task is accomplished using a system mostly based on
the onset detector proposed by Klapuri in [3, 4], a flow di-
agram is presented in Fig. 2.
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Fig. 2. Envelope extraction and onset detector flow dia-
gram.

At each subband, the input signal is first half-wave rec-
tified and squared. Then, amplitude envelopes,Ak(t), at
each frequency channel are calculated by convolving the
subband signals with a 100 ms descending half-Hanning
window (linear phase lowpass filter) and then the output
of each band is decimated in order to reduce the computa-
tional burden of the following stages, the decimation factor
being 16. For the bandwise onset detection we use the first
order relative difference functionWk(t), which gives the
amount of change in the signal in relation to its absolute
level. This is equivalent to differentiating the logarithm of
the amplitude envelope, as given by Eq. (1).

Wn(t) =
d

dt
(log(An(t))) (1)

The relative difference function is a psychoacoustically rel-
evant measure, since the perceived increase in signal am-
plitude is in relation to its level, the same amount of in-
crease is more prominent in a quiet signal [3, 4]. Hence,
we detect onset components by a peak picking operation,
which looks for peaks above a given threshold. The thresh-
old value was found experimentally to be around1.5σWk

,
whereσWk

stands for the standard deviation of the signal
Wk(t).
Until this point, two of the proposed tempo estimation sys-
tems (spectral and summary autocovariance function) fol-
low the same principle. From here on they will be treated
separately, thus one of them takes place in the frequency
domain while the other in the time domain.

2.1. Spectral methods

Due to their strong relationship, two different spectral tempo
estimation methods are presented: theharmonic spectral

2



4 COST 276 Workshop March 31, April 1, 2003

sumand theharmonic spectral product. Both of these meth-
ods come from traditional pitch determination techniques.
At the output of the onset detection block, subband sig-
nals have the appearance of a quasi-periodic train pulse. In
order to find the bandwise fundamental frequency of such
train pulses, the Fourier transform of the subband signals,
Xk(ejωn), is calculated. Prior to the FFT calculation, sub-
band signals are zero padded to have a sizelx given by:

lx = 2blog2(length(xk(t))c+2 (2)

whereb·c stands forthe integer part of.

2.1.1. Spectral Sum

The spectral sum is a reliable pitch determination tech-
nique. It’s principle lies on the assumption that the power
spectrum of the signal is formed of strong harmonics lo-
cated at integer multiples of the signal’s fundamental fre-
quency. For the purpose of finding this frequency, the power
spectrum is compressed by a factorl, then the obtained
spectra are added. In normalized frequency, this is indi-
cated by Eq. (3).

Sk(ejωn) =
M∑

l=1

|Xk(ejlωn)|2 for ωn <
π

M
(3)

Consequently, the signal’s fundamental frequency is stron-
gly reinforced. In addition, all subband spectral sums are
added together, this strengthens even more the fundamen-
tal frequency which is shown in the form of an easily de-
tectable prominent peak, as depicted in Fig. 3 for a particu-
lar music signal. There, we can clearly see the most salient
peak located roughly at a frequency of 1.05 Hz, which cor-
responds to a beat rate of 63 Beat Per Minute (BPM).
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Fig. 3. Spectral sum of a music signal.

In our implementationM was set to 6 and the fundamen-
tal frequency search was carried out in the interval ranging
from 5/6 to 5 Hz, which corresponds to a beat rate between
50 and 300 BPM.

2.1.2. Spectral Product

As briefly mentioned, another method for pitch estimation
closely related to the spectral sum is the spectral product,
in normalized frequency it is defined by Eq. (4).

Sk(ejωn) =
M∏

l=1

|Xk(ejlωn)|2 for ωn <
π

M
(4)

In a similar way to the preceeding method, for the spec-
tral product implementationM was set to 6 and the funda-
mental frequency search was performed within the same
frequency interval. Fig. (4) depicts the result for the afore-
said signal. Once again, we can see the most salient peak
located at about the same frequency of 1.05 Hz. Note,
however, that the spectral product method shows a much
higher prominent peak relatively to the other secondary
peaks compared to the spectral sum method.
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Fig. 4. Spectral product of a music signal.

2.2. Summary Autocovariance Function

The conception of this method was suggested by the work
done in the multipitch detection field by [11]. The band-
wise train pulse like signals at the output of the sound onset
detector are convolved with a 100 ms odd length Hanning
window. Then, the autocovariance function,Γk(τ), of the
subband signals is computed, as given by Eq. (5).

Γk(τ) =
∑

t

[xk(t + τ)− xk][xk(t)− xk] (5)

Then, the bandwise autocovariance functions are added to-
gether to form thesummary autocovariance function,
SACVF(τ), obtained by Eq. (6).

SACVF(τ) =
7∑

k=0

Γk(τ) (6)
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As in the spectral methods case, we’re only interested in de-
tecting the periodicities of the subband signalsxk(t) who
correspond to the most salient peaks in SACVF(τ). In ad-
dition, we are only concerned about finding a beat rate be-
tween 50 and 300 BPM. Thus, the time lagτ varies only
within the range of 200 to 1250 ms. For our SACVF im-
plementation this result is shown in Fig. (5), where the
foresaid signal has a dominant periodicity, depicted by the
most salient peak, at lag of approximately 950 ms, which
nearly corresponds to a fundamental frequency of 1.05 Hz.
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Fig. 5. Summary autocovariance funcion of a music signal.

Finally, to ensure a better tempo extraction, the three most
salient peaks are detected and a relation of multiplicity be-
tween them is searched via a simple numerical algorithm.
For instance, in Fig. (5) the first, second and fourth peaks
are the most prominent and they bear a strong relationship
between them. The second peak is located at lag practically
twice that of first one and the fourth peak is located at a lag
nearly four times that of the first one. This allows to have a
more robust decision. If no relation of multiplicity is found
among the detected peaks, the most salient one is taken as
the right tempo.

2.3. Bank of resonators

An alternate method dedicated to the determination of the
tempo is given in [8] and [5]. In order to estimate the onset
periodicity (pulse) in each subband, a so-called bank of res-
onators is used. These resonators are simply oversampled
versions of autoregressive filters of order 1. For instance,
the kth filter has a z-transfer function of the kind:

H(z) =
βk

1− αkz−Tk
(7)

The principle of the method is the following. The im-
pulse response of this filter is zero unless for the time in-
dices multiples of the oversampling factorTk. When it re-
ceives a periodic pulse train of periodTk, the output sam-
ples cumulate and the output level is increased.

The factorsTk are set as integer numbers of samples in
order to cover the whole range of the analysed tempi, from
T1 to TM . According to the principle described above, the
βk andαk coefficients are chosen constant for all filters in
order to be able to compare the non-zero outputs. For a
Tk-periodic pulse train, the transient time of the kth filter is
thus of the order of

τk = − 3Tk

ln α

In our implementation,α is set to ensure the maximum
transient timeτM to be far less than the length of the anal-
ysis window. The tempo is determined following the main
steps:

1. computation of the responsesyk(t) of each filter to
the centered amplitude envelopes,

2. estimation the mean powerσ2
k of yk,

3. extraction of the time indicesti, i = 1, . . . , Nk such
asyk(ti) > 3σk, and computation of the mean power

Pk = 1/Nk

Nk∑
i=1

yk(ti)2,

4. Extraction of the tempo corresponding to the factor
Tu with u = argk maxPk

3. SIMULATION RESULTS

3.1. Sound database

The database used for evaluation is constituted of 55 short
segments of musical signals (each of 10 seconds long). The
short musical excerpts were chosen in order to represent
different styles : Classical music (23 % of the database),
Rock or modern pop music (33 %), traditional songs (12
%), Latin/cuban music (12%) and jazz (20 %). All signals
are sampled at 16kHz. This sound database has been man-
ually annotated by skilled musicians. The procedure for
manually estimating the tempo is the following:

• the musician listens to a musical segment using head-
phones (sometimes several times in a row to be ac-
customed with the tempi),

• while listening, he/she taps the tempo,

• the tapping signal is recorded and tempo is automat-
ically extracted from it,

• all tempo are finally manually checked, however due
to the impulsiveness nature of the tapping signals, no
errors was found after the automatic extraction.
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Method Pourcentage of correct estimation
Scheirer 76

Scheirer Modified 85
Autocovariance 87

Paulus 74
Spectral Sum 87
Spectral prod 89

Table 1. Performances obtained for several tempo tracking
algorithms

3.2. Results

This section gives the results of several algorithms on the
database described in the previous section. Despite the lim-
ited size of our database, this test gives good indication of
the performances of each algorithm. The estimation pro-
vided by an algorithm is labelled as correct when it differs
from less than 5% from the original tempo without count-
ing errors of doubling or halving. An estimated tempoTe

is then labelled correct if:

0.95 αT < Te < 1.05 αT (8)

whereα = 0.5 or α = 2, and whereT is the valid
(manually measures) tempo.

The table 1 gives the results obtained for five algorithm:
the original Scheirer algorithm [8], a modified version of it
taking into account a new resonator bank, (see section 2.3),
the approach introduced by Paulus [7], the autocovariance
method, the spectral sum and the spectral product methods.

If there is no significant differences between the four
best methods, the approaches introduced in this paper out-
perform the classical approach of Scheirer and the recently
introduced method by Paulus. It is though important to
notice that the database used is small and that it will be
important to conduct complementary tests on an extended
database to confirm these initial results.

4. CONCLUSION

This paper has proposed several new algorithms for tempo
tracking and has compared them to a number of methods
described in the literature. Although the dataset used for
evaluation is rather limited, it is seen that the methods intro-
duced are very accurate. Future work will include an evalu-
ation of these algorithms on a larger dataset, the extension
of our best algorithm for real-time tracking of tempo and
its adaptation to small size analysis windows. Finally re-
trieval experiments will be conducted based solely on the
rhythmic pattern.
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