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ABSTRACT isfactory results. Nevertheless, there is a tendency towards
splitting the signal in a logarithmic scale [1, 2,5]. Next, ex-
: . . . traction of subband onsets is carried out. As for the previous
analysis, especially for the automatic processing of large : :
. . . stage, there are different approaches to solve this problem.
amounts of musical data. In this paper, a novel idea to en- C : .
o ; . . : In [3,4] onset detection is performed independently in clus-
hance the estimation of the tempo in musical pieces is de- ; . .
. . . o . ters of frequency bins directly from the spectrogram, in the
scribed, based on an harmonic/noise decomposition. This. : . . . .
i . ) e .first case using the first-order difference function and in the
separation of the signal into a deterministic and a stochastic

. o . . . second case using a tailored-made function. In [1, 2, 5] on-
partis perfqr med by projecting the S|gnal ontoits noise sub- sets are detected by computing the bandwise temporal enve-
space. B_e5|des, the proposed ?"go”thm shares various elelbpe (the signal is rectified, lowpass filtered and decimated)
ments with other tempo estimation methods. On a database . ' . .
composed of 54 excerpts from many musical genres our aI—.and then callculatmg the first-order d.n‘fer-ence funct!on as
gorithm scored a success rate of 96% in [1], or a.shght va}r|at|on of tr_]e relative first-order differ-

' ence function [2,5] introduced in [6]. Although the envelope
extraction is rather similar in most systems, there is a large
1. INTRODUCTION variety of methods employed to estimate subband periodic-
ity. For example, in [1] the author uses a filterbank of comb
Despite the apparent simplicity of the foot-tapping or beat- fiiter resonators which oscillate at integer multiples of their
tracking skill compared to other musical ones, computer- characteristic frequencies, [2] uses a fundamental frequency
based tempo estimation has remained a difficult work for estimation method (called YIN) which is a more robust re-
processing a wide range of musical genres. The tempo, alsglacement of the autocorrelation function, [3] uses a four
known as théeat is an important rhythmic property of mu-  component Gaussian mixture model to express the likeli-
sic. In this paper, an algorithm is described, that determiHEShood of onset locations, others compute in each frequency
the period between two musical motifs or beats and finds pand an inter onset interval (I01) histogram to determine the
the rate in beats per minute (BPM) at which they occur. tempo [4] or thetatunt? [5].
There exist numerous examples of applications: musical In this paper, we assume that the tempo of the audio

analysis, automatic rhythm alignment of multiple musical gy is constant over the duration of the analysis window.

instruments, audio content analysis for automatic indexing o proposed system aims at estimating the tempo for a va-
and retrieval, beat driven special effec"ts, musical educatio'n,riety of musical genres. Its performance was tested using an
etc. So far, some of the tempo tracking systemsbf(_)und N experimental manually annotated data base comprising ex-
the literature focus on finding the tempo of strong bed- ot from rock, latin (cuban/salsa), pop music, jazz, clas-
nals [1,3,4]. Some are more general, but are often chal-gjca| and traditional songs. The paper is organized as fol-
lenged by orchestral classical music, mainly because of the s section 2 provides a detailed description of the pro-

weakness of the attgck; and tempo variations [2, 5]. . posed system, except for the noise subspace projection al-
~ Many tempo estimation algorithms share the same prin- 4 qrithm which is described in section 3. Next, in section
ciple. First, they decompose the input signal into a number 4 o5t5 results are provided and compared to other exist-
of frequency bands by means of a filter bank [1, 2, 5] or by jn4 methods, issues about the sensitivity and robustness of
grouping frequency bins in the DFT of the signal [3,4]. NO {he presented method are also addressed. Finally, section
consensus has been established about an optimal frequengy g, mmarizes the main achievements of the presented algo-

decomposition and according to experimental results pre-yisym and gives some possible directions for future research.
sented in [1], many frequency decompositions lead to sat-

Tempo estimation plays a fundamental role in music

1According to [1], regardless of their melodic complexity strong beat 2The term "tatum” has been derived froremporal atomand is the
signals bear a straightforward, perceptually simple rhythm. smallest time interval between successive notes in a rhythmic phrase.
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x(t) severely reduced. Therefore, prior to further processing it is
| necessary to refilter those signals in order to eliminate noise
l i components outside the desired frequency range. The next
H,y(z) - Hy(z) three diagram blocks concern the envelope extraction. To
compute the subband noise envelapét), the noise sig-
Xo(1) l xu(t)l nal ex(t) is half-wave rectified and low-pass filtered using
moise moise a 100 ms decreasing half-Hanning window. The narrow-
subspace o subspace band output signal is then decimated by a factor 16 for the
projection projection

purpose of reducing the computational burden. To find the

“f? l e“(t)l onset points imy (¢), the first order relative difference func-

onset ... onset tion wy(t) proposed in [6] is used. This function gives the
detection getestion amount of change in the signal in relation to its absolute
n_[o(r)l 11,,(2) l level. This is equivalent to differentiating the logarithm of
periodicity periodicity the subband noise envelope, as given by Eq. (1).
estimation ot estimation
d
- wi(t) = - (log(aw(t) +1)) (@

The first order relative difference function is a psychoacous-

ek Tempo estimation tically relevant measure, since the perceived increase in sig-
processing [—> nal amplitude is in relation to its level, the same amount of
increase being more prominent in signals with a low dynam-
ical range [6]. Hence, we find onset points by a peak picking
operation, which looks for peaks above a given threshold.
An adequate threshold value was found experimentally to
be nearl.5 oy, , whereo,,, stands for the standard devia-
tion of wy(t).

Figure 1:Overview of the system.

2. DESCRIPTION OF THE ALGORITHM

Our tempo estimation algorithm shares a number of features SRR .
with other systems found in the literature. The main differ- *:"band - Halfwave :
ence is that we estimate the tempo from the residual com- signal > Hi(2) | reciification LPE ;
ponent of a harmonic plus noise modelisation, in order to W

highlight the attacks in the musical signal.

: subband
The General overviewof the tempo estimation system is § L’ i M d Thres— | i onsefs
presented in Figure 1. The algorithm works as follows: the i llostay) holding

input audio signak(t) is first decomposed into twelve uni- R PR O RO RR :
form non-overlapping subbands using a cosine modulated ) ) )
filterbank where the prototype filter is implemented using Figure 2:Onset detection flow diagram.

a 200th order FIR filter with 80 dB of rejection in the stop

band. _Usmg a highly ;elec_:twe f||ter_|s |mportanF _because Periodicity estimation. The signallll (¢) at the output
the noise subspace projection stage is very sensitive to spu- : . .
rious sinusoids in the stop band. The filterbank output sig- of the onsetgetfectmn stag.e IS & train pulse(.j_ It can be seen
nalszy(t), wherek = 0, ..., 11, are then projected onto the as composed of two parts: one corresponding to a quas-

. K - : periodic pulse signal, bearing theatof z(¢), and an addi-
noise subspacef; section 3), providing the corresponding . : | ianal. T h iodici o f
residualse (£). tive noisy pulse signal. To ease the periodicity estimation o

the train pulse, the signdll, (¢) is convolved with a 75ms
The subband onset detections the next stage, once the odd-length Hanning window. This leads to a smooth quasi-
bandwise noise signats. (t) have been calculated. A com- periodic signalz;(¢). The method we employed to deter-
pound system is used, which combines the schemes promine the periodicity ofz;(¢) was motivated by the work
posed in [6, 8]. Figure 2 depicts the flow diagram of this presented in [8], which is a very efficient model in time-
onset detector. The role of the filtéf; (z) is described as  domain pitch analysis, and is based on the summary auto-
follows. After substracting the harmonic components from correlation function (SACF). First, the signal(¢) is cen-

the subband signaly (¢) the energy ratio between the pass tered €x(t) = zx(t)—zx) and then the autocorrelation func-
band and the stop band for the noise sigralg) has been  tion (ACF) is calculated, as shown in Eq. (2)
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window [t — L + 1,¢] can be computed via a singular or
re(7) = Z Zr(t + 7)2k(t) 2 eigenvalue decomposition of a data or a covariance matrix,
t or via subspace tracking methods [9]. Then, a noise vec-
where0 < ¢ < W — 1, andW stands for the analysis 1O €x(t) = [ex(t — L + 1),ex(t — L +2),...,ex(t)]
window length. Finally, the ACFs;, are summed across Can be obtained by applying the noise subspace projector

bands to form the summary ACF (SACF). I,-U(t)Uji(t)" tothe subbagfj vectar (t) = [z (t—
We suppose that the tempo lies between 60 and 200L + 1), zk(t — L +2),..., zx ()]
BPM, without loss of generality since any other value can _ 7S ST
be mapped into this range. Hence, during the SACF calcu- ex(t) = i (t) — Ug () Uy (1) i (t). ©)
|ati0n, itis merely necessary to shiftwithin the 300 ms to The noise part of the whole subband Signa' can be com-

1,000 ms time range. To find the periodicity of the subband pyted by an overlap-add method:

envelope signalsy(7), we look for the three most salient

peaks in the SACF. To ensure a more robust and accurate 1. the analysis windot — L + 1, ] is recursively time-
tempo extraction, a multiplicity relationship between them shifted (in practice, we chose an overlagBdf/4),

is extensively searched via a numerical algorithm. If no
multiplicity relation is found among the detected peaks, the
time lag of the most salient one is taken as the beat period.

2. the signal subspace ba&ig (¢) is tracked by means
of the Sequential iteration EVD algorithif®],

3. the vectok(t) is computed according to Eq. (3),

3. NOISE SUBSPACE PROJECTION 4. finally, the consecutive noise vectors are multiplied
by a Hanning window and added to the noise subband

The noise subspace projection stage is processed indepen- signal

dently in each subband. It is based on thegonentially
Damped SinusoiddEDS) model [9]: The overall computational cost of the subspace projec-
) ) tion process for each analysis block is that of step 2, which
* Theharmonicpart of the sound is modeled as a SUM g the most computationally demanding. As shown in [9], its
of n sinusoids, vyh|ch may have an exponential de- complexity isO(Ln(n + log(L))). Note that theSequen-
cay. In order to include polyphonic sounds, the fre- 5 jteration EVD algorthmcan be replaced by a subspace

quencies of these sinusoids are not constrained to b&,cker of lower complexityd.g. that presented in [11]).
evenly distributed.

e The noisepart is defined as the difference between 4. SIMULATION RESULTS

the original signal and the harmonic part. o )
The proposed tempo estimation system was tested using a

The estimation of multiple sinusoids in noise has been data base of 54 excerpts taken from commercial recordings.
extensively investigated in signal processing literature [10]. These musical pieces were chosen in order to cover the fol-
Among the various approaches, subspace-based techniqudewing characteristics: various tempi, wide range of instru-
are of major interest because they overcome the resolutiorments, male/female vocals, with/without percussions. They
limit of the Fourier analysis, they are robust to high noise were also selected to represent a variety of musical genres:
levels, and they can be used with short analysis windows. classical music (23% of the data base); rock, modern or pop

Consecutive snapshot vectors of lendtlare extracted  music (33%); traditional songs (12%); latin/cuban music
from the signal. The subspace analysis consists in split-(12%) and jazz (20%). From each of the selected record-
ting the L-dimensional space which contains those vectors ings, an excerpt of 10 seconds long having a constant tempo
into thesignal subspacand thenoise subspaceThe sig- was extracted and converted to a monophonic signal sam-
nal subspace characterizes theinusoids; its dimensionis  pled at 16 kHz. In addition, the beat in each excerpt was
p = 2n < L. On the opposite, the noise subspace only meticulously manually annotated by skilled musicians.

contains noise; its dimension Is— p. In practice,L must Due to the somewhat ambiguous beat definition, peo-
be much larger thapto enhance the robustness of the algo- ple tend to tap at different metrical levels. For instance, if
rithm. a given track has a tempo of BPM, some people might

The most interesting property of these methods for our say that the tempo &« BPM, or viceversa. For evaluation
concern is that the estimation / substraction of the sinu- purposes, the tempo estimatidf.) provided by the algo-
soids is not even required: the noise part can be directly ob-rithm is labeled as correct if it disagrees less than 5% from
tained by projecting the subband signal onto the noise sub-the manually annotated temp®)( i.e.,0.95aT < T, <
space. More precisely, an orthonormal bdsig(t) span- 1.05aT with a € {},1,2}. Table 1 summarizes the re-
ning the signal subspace in thé" subband in the time  sults obtained with our new method, our implementation of
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Method Correct estimation
Scheirer 76%
Paulus 74% [1]
SACF 87%
Spectral Sum 87%
Spectral product 89% [2]
Noise Sub. Proj, 96%

[3]

Table 1:Tempo estimation performances.

Scheirer [1], Paulus [2], and three other methods already[4]
presented in [7].

Despite the limited size of the database used for testing,
simulation results indicate that the proposed method out-
performs the previously mentioned algorithms. It must be 5]
pointed out that all simulations were computed using the
same set of parameters. The minimal size of the analysis[6]
window () to achieve a success score of 96% is 6 seconds.
Lower window size values reduce the system’s performance
for rhythmically complex signals, even though for strong
beat pieces it makes no difference. The algorithm failed in [7]
2 out of 54 excerpts, one of them is classical music excerpt
and the tempo found differed by 5.8% from the estimated
one. In the second case, transients were properly detecte
but the estimated tempo was erroneous because of the te
poral irregularity of the onsets. During the harmonic/noise
decomposition stage, several values for the numbmrex-
tracted sinusoids per subband were carefully testedrnand
was finally set td. If too many sinusoidal components are
extracted, the analyzed signal is whitened and thus it is no
longer possible to detect signal attacks. If too few sinusoids [10]
are used, signal attacks are not enhanced, making onset de-
tection more difficult. For the harmonic/noise analysis, the
observation window () was set to 300 samples, which ap-
proximately corresponds to 19ms.

8]

[9]

[11]

5. CONCLUSIONS

In this paper we have presented a new tempo estimation al-
gorithm based on the harmonic/noise decomposition using
noise subspace projections. Beat detection is carried out in
the noise component of the signal via subband decomposi-
tion and bandwise periodicity detection. The performance
of the proposed system was tested using 54 musical excerpts
from several musical genres. The rate of success for tempo
estimation was 96%. Future work will include an evaluation
of this method using a larger database, a window size which
adapts to the rhythmic complexity, and an adaptive estima-
tion of the number of sinusoids. A real-time implementation
is being considered.
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