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Abstract

This paper addresses the issue of automatic emotion recognition in speech. We focus on a type of emotional manifestation which has
been rarely studied in speech processing: fear-type emotions occurring during abnormal situations (here, unplanned events where human
life is threatened). This study is dedicated to a new application in emotion recognition – public safety. The starting point of this work is
the definition and the collection of data illustrating extreme emotional manifestations in threatening situations. For this purpose we
develop the SAFE corpus (situation analysis in a fictional and emotional corpus) based on fiction movies. It consists of 7 h of recordings
organized into 400 audiovisual sequences. The corpus contains recordings of both normal and abnormal situations and provides a large
scope of contexts and therefore a large scope of emotional manifestations. In this way, not only it addresses the issue of the lack of cor-
pora illustrating strong emotions, but also it forms an interesting support to study a high variety of emotional manifestations. We define
a task-dependent annotation strategy which has the particularity to describe simultaneously the emotion and the situation evolution in
context. The emotion recognition system is based on these data and must handle a large scope of unknown speakers and situations in
noisy sound environments. It consists of a fear vs. neutral classification. The novelty of our approach relies on dissociated acoustic mod-
els of the voiced and unvoiced contents of speech. The two are then merged at the decision step of the classification system. The results
are quite promising given the complexity and the diversity of the data: the error rate is about 30%.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

One of the challenges of speech processing is to give com-
puters the ability to understand human behaviour. The com-
puter input is the signal captured by a microphone, i.e. the
low level information provided by audio samples. Closing
the gap between this low level data and understanding of
human behaviour, it is a scientific challenge. Consequently,
the issue now is not only to know what is said but also to
know the speaker’s attitude, emotion or personality.

This paper concerns the emerging research field of emo-
tion recognition in speech. We propose to investigate the
integration of emotion recognition in a new application,
namely automatic surveillance systems. This study comes
within the scope of the SERKET1 project, which aims to
develop surveillance systems dealing with dispersed data
coming from heterogeneous sensors, including audio sen-
sors. It is motivated by the crucial role played by the emo-
tional component of speech in the understanding of human
behaviour, and therefore in the diagnosis of abnormal
situation.
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Our audio-based surveillance system is ultimately
designed to consider the information conveyed by abnor-
mal non-vocal events such as gunshots (Clavel et al.,
2005), though we focus here on the part of the system deal-
ing with vocal manifestations in abnormal situations. We
look at things from the viewpoint of protecting human life
in the context of civil safety and we choose to focus on
abnormal situations during which human life is in danger
(e.g. fire, psychological and physical attack). In this con-
text, the targeted emotions correspond to a type of emo-
tional manifestation which has been so far rarely studied
– fear-type emotions occurring during abnormal situations.

The development of an emotion recognition system can
be broken down into four distinct steps: the acquisition of
emotional data, the manual annotation of the emotional
content, the acoustic description of the emotional content
and the development of machine learning algorithm. Given
that the emotional phenomenon is especially complex and
hard to define, these steps require the know-how of a set
of distinct disciplines such as psychology, social sciences,
biology, phonetic, linguistic, artificial intelligence, statis-
tics, acoustics and audio signal processing. In this introduc-
tion, we set out first to unravel the know-how of these
disciplines from an emotion recognition system point of
view and then to present the additional challenges implied
by the surveillance application.

1.1. Overview of emotion recognition systems

1.1.1. Acquisition of the emotional recordings

The basis of emotion research studies is the acquisition of
data that are recordings of emotional manifestations. More
precisely, data are required for the conception of emotion
recognition systems so that the machine can learn to differ-
entiate the acoustic models of emotion. In this case, the chal-
lenge is to collect a large number of recordings illustrating
emotions as they are expected to occur in application data.
In particular, data should be ideally representative of every-
day life if the application has to run in everyday life contexts
(Douglas-Cowie et al., 2003). Besides, not only the type of
collected emotions but also the type of pictured contexts
should be appropriate for the targeted application. The con-
text of emotion emergence concerns the situation (place,
triggering events), the interaction (human–human or
human–machine, duration of the interaction), the social
context (agent–customer for call centres), the speaker (gen-
der, age), the cultural context, the linguistic context (lan-
guage, dialect), and the inter-modal context (gesture and
speech for surveillance applications or speech alone for call
centres).

The HUMAINE network of excellence has carried out an
evaluation of the existing emotional databases.2 This evalu-
ation shows that one requirement is not adequately
addressed in existing databases: there is a lack of corpora

illustrating strong emotions with an acceptable level of real-
ism. Indeed specific real-life emotional data are difficult to
collect given their unpredictable and confidential nature.
That’s the reason why acted databases are still used to a
large extent in emotional speech studies: Juslin and Laukka
(2003) list 104 studies on emotions and estimate at 87% the
percentage of studies carried out on acted data. The diffi-
culty is greater when dealing with extreme emotions occur-
ring in real-life threat contexts and extreme emotions are
almost exclusively illustrated in acted databases (Mozzicon-
acci, 1998; Kienast and Sendlmeier, 2000; van Bezooijen,
1984; Abelin and Allwood, 2000; Yacoub et al., 2003;
McGilloway, 1997; Dellaert et al., 1996; Banse and Scherer,
1996; Banziger and Pirker, 2006).

Acted databases generally tend to reflect stereotypes that
are more or less far from emotions likely to occur in real-life
contexts. This realism depends on the speaker (professional
actor or not) and on the context or the scenario provided to
the speaker for emotion simulation. Most acted databases
are laboratory data produced under conditions designed
to remove contextual information. Some recent studies have
aimed to collect more realist emotional portrayals by using
acting techniques that are thought to stir genuine emotions
through action (Banziger and Pirker, 2006; Enos and Hirsh-
berg, 2006).

An alternative way to obtain realistic emotional manifes-
tations is to induce emotions without speaker’s knowledge,
such as with the eWIZ database (Aubergé et al., 2004), and
the SAL database (Douglas-Cowie et al., 2003). However,
the induction of fear-type emotions may be medically dan-
gerous and unethical, so that fear-type emotions are not
illustrated in elicited databases.

The third type of emotional database, real-life database,
illustrates, to a large extent, everyday life contexts in which
social emotions currently occur. Some real-life databases
illustrate strong emotional manifestations (Vidrascu and
Devillers, 2005; France et al., 2003) but the types of situa-
tional contexts are very specific (emergency call centre and
therapy sessions), which raises the matter of using dat-
abases illustrating a restricted scope of contexts (as defined
previously) for various applications.

1.1.2. Annotation of the emotional content

The second step consists of the emotional content anno-
tation of the recordings. The challenge is to define an anno-
tation strategy which is a good trade-off between genericity
(data-independent) and the complexity of the annotation
task. Annotated data are required not only to evaluate the
performance of the system, but also to build the training
database by linking recordings to their emotional classes.
The annotated data must therefore provide an acceptable
level of agreement. However, the emotional phenomenon
is especially complex and subjected to discord. According
to Scherer et al. (1980), this complexity is increased by the
two opposite effects push/pull implied in emotional speech:
physiological excitations ‘‘push” the voice in one direction2 http://emotion-research.net/wiki/Databases.
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and conscious attempts driven by cultural rules ‘‘pull” them
in an another direction.

The literature on emotion representation models has its
roots in psychological studies, and offers two major descrip-
tion models. The first one consists of representing the range
of emotional manifestation in abstract dimensions. Various
dimensions have been proposed and vary according to the
underlying psychological theory. The activation/evaluation
space is recently the one which is used the most frequently
and is known to capture a large range of emotional variation
(Whissel, 1989).

The second one consists of using categories for the emo-
tion description. A large amount of studies dedicated to
emotional speech use a short list of ‘basic’ (see the overview
of Orthony and Turner (1990)) or ‘primary’ (Damasio,
1994) emotion terms which differ according to the underly-
ing psychological theories. The ‘Big Six’ (fear, anger, joy,
disgust, sadness and surprise) defined by Ekman and Frie-
sen (1975) are the most popular. However fuller lists
(Ekman, 1999; Whissel, 1989; Plutchik, 1984) have been
established to describe ‘emotion-related states’ (Cowie
and Cornelius, 2003) and Devillers et al. (2005b) have
shown that emotions in real-life are rarely ‘basic emotions’
but complex and blended emotional manifestations. At a
cognitive level, this type of description involves drawing
frontiers in the perceptive space. Each emotional category
may be considered as a prototype – center of a class of
more or less similar emotional manifestations (Kleiber,
1990), which can be linked to other similar manifestations.
The difficulty of the categorization task strongly depends
on the emotional material. The majority of acted databases
aim to illustrate predefined emotional prototypes. All the
emotional manifestations illustrated by this type of corpus
are strongly convergent to the same prototype. By contrast,
emotions occurring in real-life corpora are uncontrolled.
They display unpredictable distances to their theoretical
prototype. This propensity to occur in different situations
through various manifestations engenders labelling chal-
lenges when one makes use of a predefined list of labels.
In addition, the complexity of emotional categorization is
increased by the diversity of the data.

Existing annotation schemes fall short of industrial
expectations. Noting this, which is closely akin to the moti-
vation of the EARL proposal3 by the W3C Emotion Incu-
bator Group, leads us to unravel the emotion description
task from an emotion recognition system point view.

1.1.3. Acoustic description of the emotional content

After the emotional material has been collected and
labelled, the next step is to extract from the speech record-
ings acoustic features characterizing the various emotional

manifestations. This representation of speech signal will be
used as the input of the emotion classification system. Exist-
ing representations are based on both high-level and low-
level features. High-level features, such as pitch or intensity,
aim at characterizing the speech variation accompanying
physiological or bodily emotional modifications (Picard,
1997; Scherer et al., 2001). First studies focus on prosodic
features which include typically pitch, intensity and speech
rate and are largely used in emotion classification systems
(Kwon et al., 2003; McGilloway, 1997; Schuller et al.,
2004) and stand out to be especially salient for fear charac-
terization (Scherer, 2003; Devillers and Vasilescu, 2003; Bat-
liner et al., 2003). Voice quality features which characterize
creaky, breathy or tensed voices have also recently been used
for emotional content acoustic representation (Campbell
and Mokhtari, 2003). Low-level features such as spectral
and cepstral features, were initially used for speech process-
ing systems, but can also be used for emotion classification
systems (Shafran et al., 2003; Kwon et al., 2003).

1.1.4. Classification algorithms

The final step consists in the development of classifica-
tion algorithms which aim to recognize one emotional class
among others or to classify emotional classes among them-
selves. The used emotional classes vary according to the
targeted application or the type of studied emotional data.

Emotion classification systems are essentially based on
supervised machine learning algorithms: Support Vector
Machines (Devillers and Vidrascu, 2007), Gaussian Mix-
ture Models (Schuller et al., 2004), Hidden Markov Models
(Wagner and Vogt, 2007), k nearest neighbors (Lee et al.,
2002), etc. It is rather difficult to compare the efficiency
of the various existing approaches, since no evaluation
campaign has been carried out so far. Performances are
besides not only dependent on the adopted machine learn-
ing algorithm but also on:

– the diversity of the tested data: contexts (speakers, situ-
ations, types of interaction), recording conditions;

– the emotional classes (number and type);
– the training and test conditions (speaker-dependent or

not) (Schuller et al., 2003);
– the techniques for acoustic feature extraction which are

more or less dependent of prior knowledge of the lin-
guistic content and of the speaker identity (normaliza-
tion by speaker or by phone, analysis units based on
linguistic content).

A first effort to connect existing systems has been carried
out with the CEICES (Combining Efforts for Improving
automatic Classification of Emotional user States) launched
in 2005 by the FAU Erlangen through the HUMAINE4 net-
work of excellence (Batliner et al., 2006).

3 Emotion Annotation and Representation Language, http://emotion-
research.net/earl/proposal. The W3C Emotion Incubator Group, after
one year of joint work involving several HUMAINE partners, has
published its Final Report and a paper in ACII 2007 (Schroeder et al.,
2007).

4 http://www5.informatik.uni-erlangen.de/Forschung/Projekte/
HUMAINE/?language=en.
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1.2. Contributions

It emerges from the previous overview that the develop-
ment of emotion recognition systems is a recent research
field and the integration of such systems in effective appli-
cations requires to raise new scientific issues. The first sys-
tem on laboratory emotional data was indeed carried out
recently by Dellaert et al. (1996). Although some emotion
recognition systems are now dealing with spontaneous
and more complex data (Devillers et al., 2005b), this
research field just begins to be studied with the perspective
of industrial applications such as call centres (Lee et al.,
1997) and human–robot interaction (Oudeyer, 2003). In
this context, our approach contributes to an important
challenge, since the surveillance application implies the
consideration of a new type of emotion and context –
fear-type emotions occurring during abnormal situations
– and the integration of new constraints.

1.2.1. The application: audio-surveillance

Existing automatic surveillance systems are essentially
based on video cues to detect abnormal situations: intru-
sion, abnormal crowd movement, etc. Such systems aim
to provide an assistance to human operators. The parallel
surveillance of multiple screens increases indeed the cogni-
tive overload of the staff and raises the matter of vigilance.

However audio event detection has only begun to be
used in some specific surveillance applications such as med-
ical surveillance (Vacher et al., 2004). Audio cues, such as
gun shots or screams (Clavel et al., 2005) typically, may
convey useful information about critical situations. Using
several sensors increases the available information and
strengthens the quality of the abnormal situation diagno-
ses. Besides audio information is useful when the abnormal
situation manifestations are poorly expressed by visual
cues such as gun-shot events or human shouts or when
these manifestations go out of shot of the cameras.

1.2.2. The processing of a specific emotional category:
fear-type emotions occurring during abnormal situations

Studies dedicated to the recognition of emotion in
speech commonly refer to a restricted number of emotions
such as the ‘Big Six’ (see Section 1.1.2) especially when they
are based on acted databases. Among the studied emo-
tions, fear-type emotions in their extreme manifestations
are not frequently studied in the research field of real-life
affective computing. Studies prefer to take into account
more moderate emotional manifestations which occur in
everyday life and which are shaped by politeness habits
and cultural behaviours. Indeed, a large part of applica-
tions is dedicated to improve the naturalness of the
human-machine interaction for everyday tasks (dialog
systems for banks and commercial services (Devillers and
Vasilescu, 2003), artificial agents (Pelachaud, 2005), robots
(Breazeal and Aryananda, 2002)). However, some applica-
tions, such as dialog systems for military applications
(Varadarajan et al., 2006; Fernandez and Picard, 2003) or

emergency call centres (Vidrascu and Devillers, 2005), deal
with strong fear-type emotions in specific contexts (see Sec-
tion 1.1.1).

The emotions targeted by surveillance applications
belong to the specific class of emotions emerging in abnor-
mal situations. More precisely fear-type emotions may be
symptomatic for threat situations where the matter of sur-
vival is raised. Here, we are looking for fear-type emotions
occurring in dynamic situations, during which the matter of
survival is raised. In such situations some expected emo-
tional manifestations correspond to primary manifestations
of fear (Darwin, 1872): they may occur as a reaction to a
threat. But the targeted emotional class includes also more
complex fear-related emotional states (Cowie and Corne-
lius, 2003) ranging from worry to panic.

Fear manifestations are indeed varying according to the
imminence of the threat (potential, latent, immediate or
past). For our surveillance application, we are interested
in the human assistance by detecting not only the threat
but also the threat emergence. There is therefore a strong
interest to consider all the various emotional manifesta-
tions inside the fear class.

1.2.3. The application constraints

From a surveillance application point of view, the emo-
tion recognition system has to:

– run on data with a high diversity in terms of number and
type of speakers,

– cope with more or less noisy environments (e.g. bank,
stadium, airport, subway, station),

– be speaker independent and cope with a high number of
unknown speakers,

– be text-independent, i.e. not rely on a speech recogni-
tion tool, as a consequence of the need to deal with
various qualities of the recorded signal in a surveillance
application.

1.2.4. Approach and outline

In this paper, we tackle all the various steps involved in
the development of an emotion recognition system:

– the development of a new emotional database in
response to the application constraints: the challenge is
to collect data which illustrate a large scope of threat
contexts, emotional manifestations, speakers, and envi-
ronments (Section 2),

– the definition and development of a task-dependent
annotation strategy which integrates this diversity and
the evolution of emotional manifestations according to
the situation (Section 2),

– the extraction of relevant acoustic features for fear-type
emotions characterization: the difficulty relies in finding
speaker-independent and text-independent relevant
features (Section 3),

– the development of an emotion recognition system
based on machine-learning techniques: the system needs
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to be robust to the variability of the expected data and
to the noise environment (Section 3),

– the performance evaluation in experimental conditions
as close as possible to those of the effective targeted
application (Section 4).

2. Collection and annotation of fear-type emotions in

dynamic situations

2.1. Collection of audiovisual recordings illustrating

abnormal situations

Abnormal situations are especially rare and unpredict-
able and real-life surveillance data are often inaccessible
in order to protect personal privacy. Given these difficul-
ties, we chose to rely on a type of support hitherto unex-
ploited by emotional studies, namely the fiction. Our
fiction corpus (the SAFE Corpus – Situation Analysis in
a Fictional and Emotional corpus) consists of 400 audiovi-
sual sequences in English extracted from a collection of 30
recent movies from various genres: thrillers, psychological
drama, horror movies, movies which aim at reconstituting
dramatic news items or historical events or natural disas-
ters. The duration of the corpus totals 7 h of recordings
organized in sequences from 8 s to 5 min long. A sequence
is a movie section illustrating one type of situation – kid-
napping, physical aggression, flood, etc. The sequence
duration depends on the way of illustration and segmenta-
tion of the targeted situation in the movie. A majority –
71% – of the SAFE corpus depicts abnormal situations
with fear-type emotional manifestations among other emo-
tions, the remaining data consisting in normal situations to
ensure the occurence of a sufficient number of other emo-
tional states or verbal interactions.

The fictional movie support has so far rarely been
exploited for emotional computing studies.5 On the one
hand, fiction undoubtedly provides acted emotions and
audio recordings effects which cannot always reflect a true
picture of the situation. Furthermore, the audio and video
channels are often remixed afterward and are recorded
under better conditions than in real surveillance data. On
the other hand, we are here working on data very different
from laboratory data, which are taken out of context with
clean recording conditions, and which have been largely
studied in the past. The fiction provides recordings of emo-
tional manifestations in their environmental noise. It offers
a large scope of believable emotion portrayals. Emotions
are expressed by skilled actors in interpersonal interactions.
The large context defined by the movie script favours the
identification of actors with characters and tends to stir gen-
uine emotions. Besides, the emotional material is quite rel-
evant from the application point of view. Various threat
situations, speakers, and recording conditions are indeed

illustrated. This diversity is required for surveillance appli-
cations. But the two major contributions of such a corpus
are:

– the dynamic aspect of the emotions: the corpus illus-
trates the emotion evolution according to the situation
in interpersonal interactions.

– the diversity of emotional manifestations: the fiction
depicts a large variety of emotional manifestations
which could be relevant for number of applications
but which would be very difficult to collect in real life.

2.2. In situ description of the emotional content

We propose a task-dependent annotation strategy which
aims both to define the emotional classes that will be con-
sidered by the system and to provide information to help
understand system behaviours.

2.2.1. Annotation tools and strategy

The annotation scheme is defined via the XML for-
malism (eXtensive Mark-up Language) under ANVIL
(Kipp, 2001; Devillers et al., 2005a) which provides an
appropriate interface for multimodal corpora annotation
(see Fig. 1).

The audio content description is carried out ‘in situ’,
which means in the context of the sequence and with the
help of video support. It consists in the sequence descrip-
tion of both situational and emotional contents. The
sequence is split into audio-based annotation units – the
segments. These derive from the dialog and emotional
structure of the interpersonal interactions. The segment
corresponds to a speaker turn or a portion of speaker turn
with an homogeneous emotional content, that is without
abrupt emotional change, taking into account the following
emotional descriptors (categorical and dimensional). This
‘in situ’ description makes it possible to capture the evolu-
tion of the emotional manifestations occurring in a
sequence and to study its correlation with the evolution
of the situation.

2.2.2. Annotation tracks

The situation illustrated in the sequence is depicted by
various contextual tracks:

– The speaker track provides the genre of the speaker and
also its position in the interaction (aggressor, victim or
others).

– The threat track gives information about the degree of
imminence of the threat (no threat, potential, latent,
immediate or past threats) and its intensity. Besides, a
categorization of threat types is proposed by answering
the following step by step questions: If there is a threat,
is it known by the victim(s)? Do the victims know the
origin of the threat? Is the aggressor present in the
sequence? Is he/she a familiar of the victims?

5 We found only one paper (Amir and Cohen, 2007) which exploits
dialog extracted from an animated film to study emotional speech.

C. Clavel et al. / Speech Communication 50 (2008) 487–503 491



Author's personal copy

– The speech track stores the verbal and non-verbal (shouts,
breathing) content of speech according to the LDC6 tran-
scription rules. The type of audio environment (music/
noise) and the quality of speech are also detailed. The cat-
egories obtained via this annotation could be employed to
test the robustness of the detection methods to environ-
mental noise.

Categorical and dimensional descriptors are used to
describe the emotional manifestations at the segment level.
Categorical descriptors provide a task-dependent descrip-
tion of the emotional content with various levels of accu-
racy. Indeed, it is especially difficult to accurately delimit
the emotional categories (in terms of perceived classes for
the annotation strategy and of acoustic models for the
detection system, see Section 1.1.2), when the data variabil-
ity is high, as it is the case here. In order to limit the num-
ber of emotion classes, we have selected four major
emotion classes: global class fear, other negative emotions,
neutral, positive emotions. Global class fear corresponds to
all fear-related emotional states and the neutral class corre-
sponds to non-negative and non-positive emotional speech

with a faint emotional activation, as defined in Devillers
(2006).7 These broad emotional categories are specified
by emotional subcategories which are chosen from a list
of emotions occurring in abnormal situations. This list con-
sists in both simple subcategories presented in Table 1 and
mixed subcategories obtained by combining the simple sub-
categories (e.g. stress–anger).

Dimensional descriptors are based on three abstract
dimensions: evaluation, intensity and reactivity. They are
quantified on discrete scales. Evaluation axis covers discrete
values from wholly negative to wholly positive (�3,�2,�1,
0,+1,+2,+3). The intensity and reactivity axes provide four
levels from 0 to 3. The intensity dimension is a variant of the
activation dimension defined in psychological theories
(Osgood et al., 1975) as the level of corporal excitation

Fig. 1. Annotation scheme under ANVIL.

6 Linguistic Data Consortium.

7 The concept of neutral emotion is ambiguous and needs to be clarified.
The perception of ‘‘neutral” emotion is speaker-dependent and varies
according to the ‘‘emotional intelligence” of the labellers (Clavel et al.,
2006a). In this work, the ‘‘neutral” emotion corresponds to the cases where
the judges could not perceive any emotion in the multimodal expression.
Indeed, we are here focusing on the expressive aspect of the emotional
phenomenon, that is one of the three aspects (cognitive, physiological, and
expressive) currently accepted as composing the emotional phenomenon
(Scherer, 1984). Harrigan et al. (2005) specify also this focus on the
expressive aspect of emotion to define neutral attributes for their study.
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expressed by physiological reactions such as heartbeat
increasing or transpiration. But we prefer to use the intensity
dimension as we estimate it more suitable for the description
of the oral emotional manifestations. For intensity and eval-
uation, the level 0 corresponds to neutral. The reactivity
value indicates whether the speaker seems to be subjected
to the situation (passive, level 0) or to react to it (active, level
3) and has been adapted to the application context from the
most frequently used third dimension – named the control
dimension (Russell, 1997). Besides this dimension is only
used for emotional manifestations occurring during threats.

Abstract dimensions allow the specification of the broad
emotional categories by combining the different levels of
the scaled abstract dimensions. The perceptual salience of
those descriptors and of the annotation unit was evaluated
at the beginning of our work and as a preliminary step in
validating the data acquisition and annotation strategy in
Clavel et al. (2004).

2.2.3. Annotation task of labellers

The segmentation and the first annotation of the corpus
were carried out by a native English labeller (Lab1). Two
other French/English bilingual labellers (Lab2 and Lab3)
independently annotated the emotional content of the
pre-segmented sequences. It would be interesting to carry
out further annotation exercises to strengthen the reliabil-
ity but the annotation task is especially costly.

The contextual and video support of the sequence com-
plicates the segment annotation and increases the annota-
tion time. Indeed, the annotation of the emotional
content in the pre-segmented sequences (7 h) takes about
100 h as the decision is taken by considering the context
and the several channels (audio, video). But this support
is crucial to strengthen the reliability of the annotations.
The segmentation process is also very costly, since the com-
plete segmentation and annotation task takes twice the
time of the simple annotation of the pre-segmented
sequences. Given the scale of this task we do not so far
have a validation protocol for the segmentation step and
for the other annotation tracks.

2.2.4. Evaluation of the reliability

When dealing with emotion computing, there are two
main aspects to handle: the diversity of emotional manifes-
tations and the subjectivity of emotion perception. We
attempt to deal with the first aspect by considering various

levels of accuracy in our annotation strategy. The second
aspect is here unraveled by a comparative in-depth analysis
of the annotations obtained by the three labellers (Lab1,
Lab2 and Lab3). The inter-labeller agreement is evaluated
using traditional kappa statistics (Carletta, 1996; Bakeman
and Gottman, 1997) for the four emotional categories, and
using Cronbach’s alpha measure (Cronbach, 1951) for the
three dimensions.

The kappa coefficient j corresponds here to the agree-
ment ratio taking into account the proportion of times that
raters would agree by chance alone:

j ¼ �po � �pe

1� �pe
;

where �po is the observed agreement proportion and �pe the
chance term. These two proportions are computed as fol-

lows: �po ¼ 1
N seg

PN seg

i¼1 psegi
and �pe ¼

PK
k¼1p2

clk
. pclk

corresponds

to the overall proportion of segments labelled with the class
k, and the proportion psegi

corresponds to the measure of

agreement on each segment i between the N ann labellers.
The kappa is at 0 when the agreement level corresponds
to chance, and at 1 when the agreement is total.

Cronbach’s alpha is another measure of inter-labeller
reliability, more suitable than kappa for labels on a numer-
ical scale. It is computed by the following formula:

a ¼ N ann � �r
1þ ðN ann � 1Þ � �r ;

where �r is the average intercorrelation between the label-
lers. The higher the score, the more reliable the generated
scale is. The widely-accepted social science cut-off is that al-
pha values at .70 or higher correspond to an acceptable
reliability coefficient but lower thresholds are sometimes
used in the literature (Nunnaly, 1978).

The Cronbach’s alpha and the kappa statistics com-
puted on the SAFE Corpus between the three labellers’
annotations are presented in Table 2.

The kappa score obtained for the agreement level of the
four emotional categories between the three labellers is
0.49, which is an acceptable level of agreement for subjec-
tive phenomena such as emotions (Landis and Koch,
1977). Indeed, the use of global emotional categories allows
us to obtain an acceptable level of agreement for the devel-
opment of an automatic emotion recognition system.
Moreover, this choice has been adopted by other studies

Table 1
Emotional categories and subcategories

Broad categories Subcategories

Fear Stress, terror, anxiety, worry, anguish, panic, distress,
mixed subcategories

Other negative
emotions

Anger, sadness, disgust, suffering, deception,
contempt, shame, despair, cruelty, mixed subcategories

Neutral –
Positive

emotions
Joy, relief, determination, pride, hope, gratitude,
surprise, mixed subcategories

Table 2
Kappa score and Cronbach’s alpha coefficient computed between the three
labellers computed on the 5275 segments of the SAFE corpus

Kappa Cronbach

Categories (four categories) 0.49 –
Lab1 vs. Lab2 0.47 –
Lab1 vs. Lab3 0.54 –
Lab2 vs. Lab3 0.48 –
Intensity (four levels) 0.26 0.77
Evaluation (seven levels) 0.32 0.86
Reactivity (four levels) 0.14 0.55

C. Clavel et al. / Speech Communication 50 (2008) 487–503 493



Author's personal copy

(Douglas-Cowie et al., 2003; Shafran et al., 2003; Devillers
et al., 2005b).

On the other hand, the kappas obtained for the three
labellers are indeed much lower than for global categories.
The kappa used here is the same as the one used for the cat-
egories and is dedicated to measure the level of strict agree-
ment between the dimensional levels. The best kappa value
is at 0.32 and is obtained for the evaluation axis from which
the categories are derived. It shows that the level of strict
agreement is poor and not sufficient to use the dimensions
as distinct classes for the system. However the labellers’
annotations according to the dimensions come out as corre-
lated especially for intensity and evaluation, as illustrated by
the high Cronbach’s alpha values in Table 2. Each labeller
seems to use his own reference scale on the dimension axis.
However, this dimensional annotation provides interesting
information to analyse the discrepancies between the label-
lers’ annotations such as done in Clavel et al. (2006a).

For the system presented in this work, we make use of
the annotation in global categories. For each category,
we keep the data annotated as this category by the two
labellers who have shown the highest disagreement on the
entire corpus (the couple of labellers who has the lowest
kappa). Segments for which these two labellers disagree
are not considered for the system. This choice corresponds
to a trade-off between the quantity and the reliability of the
data considered for the training. Indeed, we did not choose
to consider for the system the three annotations because
the quantity of data where the three annotations converge
is insufficient to build Gaussian mixture models. The inter-
section of two annotations allows us to obtain more data
and the consideration of the two most divergent labellers
(with the lowest kappa) ensures that on the data, where
they agree, someone else would more probably also agree.8

2.3. SAFE corpus content

2.3.1. Global content

Table 3 describes the SAFE corpus content in terms of
sequences and segments. The segment duration depends
on dialog interactions and on emotional variations in a
speaker’s turn. It follows that the segment duration is
highly variable. The 5275 segments of the SAFE corpus
represent 85% of the total duration of the corpus, and cor-
respond to 6 h of speech. The remaining 15% correspond to
portions of recordings without speech, that is with silence
or noise only.

2.3.2. Sound environments

In most movies, recording conditions tend to mirror
reality: speaker movements implying a natural variation
in voice sound level are thus respected. However, the prin-
cipal speaker will be audible more often in a fictional con-

text. We can hypothesize that this is not systematically the
case in real recording conditions. Overall, the sound envi-
ronments are strongly dependent on the movie and may
vary inside a movie and also inside a sequence. They
depend on the type of situations depicted and their
evolution.

The first diagram (Fig. 2) indicates the segment distribu-
tion according to their sound environment (N = noise only,
M = music only, N&M = noise and music, clean = with-
out neither noise nor music) and the second diagram
(Fig. 3) according to speech quality (Q0 = bad quality to
Q3 = good quality). Seventy-eight percent of the segments
present an acceptable level of speech quality (Q2 or Q3)
even though clean segments are not the majority part
(21%) of the corpus. It shows that, despite the strong pres-
ence of noise or music, the speech quality is quite good.
The corpus provides therefore a high number of exploitable
segments. As presented further (see corpus SAFE_1 in Sec-
tion 4.1), we select, for the system development and evalu-
ation, segments with an acceptable level of speech quality.

2.3.3. Speakers

The surveillance application needs to cope with a high
number of unknown speakers. With this in mind, the

8 Another solution to obtain a trade-off between the quantity and the
reliability is to consider the segments where at least two of the evaluators
agree. This configuration could be tested in a future work.

Table 3
SAFE Corpus Content

Unit Minimum Maximum Mean

Segments Number of segments per
sequence

1 53 13

Duration 40 ms 80 ms 4 ms
Total number and duration 5275–6 h

Sequences Duration 8 s 5 min 1 min
Total number and duration 400–7 h

Fig. 2. Segment division according to the sound environment.

Fig. 3. Segment division according to speech quality.
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SAFE Corpus contains about 400 different speakers. The
distribution of speech duration according to gender is as
follows: 47% male speakers, 31% female speakers, 2% chil-
dren. The remaining 20% of spoken duration consists in
overlaps between speakers, including oral manifestations
of the crowd (2%). We are aware of the need to process
all the various types of spoken manifestations including
overlaps for the ultimate application. However, the current
work, given its exploratory character, does not take into
account the 20% of the spoken duration consisting in over-
laps (see corpus SAFE_1 in Section 4.1), as the acoustic
modelling of fear is much harder in this case (e.g concur-
rent sources for pitch estimation).

2.3.4. Emotions

In this paper we emphasize the main features character-
izing the emotional content of the SAFE corpus, that is the
presence of extreme fear as illustrated by abstract dimen-
sion intensity and the relationship between the emotion
label and context (threat). The emotional content is pre-
sented by considering the percentage of attributions for
each label by the three labellers, so that the three annota-
tions are taken into account.9 The attribution percentage
of the four emotional categories is thus the following:
32% for fear, 31% for other negative emotions, 29% for
neutral, and 8% for positive emotions.

The attribution percentages of the various levels of the
three dimensions is presented in the Table 4. The reactivity
is only evaluated on segments occurring during abnormal
situations (71% of the segments) (see Section 2.2.2). In this
context, the emotional manifestations are more majority
associated with a low reactivity of the speaker to the threat.
Very few segments are evaluated as positive on the evalua-
tion axis (8% of positive emotions) and almost none of
them is evaluated as level 3. Another specificity of our cor-
pus consists in the presence of intense emotional manifesta-
tions: 50% of the segments are evaluated as level 2 or 3 on
the intensity axis.

Fear-type emotions are perceived as more intense than
other emotions. 85% of fear segments are labelled as level
2 or 3 on the intensity scale while the major part of other
emotions are labelled level 1. Besides, the presence of cries
(139) seems to be associated with the presence of extreme
fear.

2.3.5. Emotional manifestations and threat

The correlation of categorical descriptions of emotions
with the threat provides a rich material to analyse the var-
ious emotional reactions to a situation. Fig. 4 shows the
distribution of each emotional category (fear, other nega-
tive emotions, neutral, positive emotions) as a function of
the threat imminence. Fear is the major emotion during

latent and immediate threats. By contrast fear is not very
much in evidence during normal situations. Normal situa-
tions include a major part of neutral segments and also
negative and positive emotions. Latent and past threats
seem to cause a large part of other negative emotions than
fear, which suggests that emotional reactions against a
threat may be various.

Table 5 illustrates the segment distribution (%) accord-
ing to each fear sub-category for each degree of imminence.
The subcategory anxiety has almost never been selected by
the labellers. Therefore we choose to merge the two subcat-
egories worry and anxiety. The three last columns corre-
spond to the most frequent mixed categories (see Section
2.2.2). Taken as a whole, the sub-categories which are the
most represented are thus anxiety–worry, panic and stress.
During immediate threats, the major emotional sub-cate-
gory is panic (31.8%). By contrast, normal situations
include a major part of anxiety–worry but neither distress
nor fear mixed with suffering, and very little terror and
stress during normal situations. These sub-categories are
almost exclusively present during immediate or latent
threats. Otherwise, it is worth noting that fear frequently
occurs mixed with other emotions such as anger (mostly),
surprise, sadness and suffering.

During past threats, the subcategories anxiety–worry
and panic are in the majority. The past threats which are
depicted in the SAFE corpus are indeed threats occurring
at the end of a sequence, and they occur just after immediate
threats. It explains the presence of similar emotional mani-
festations as those occurring during immediate threats, yet
with a higher proportion of anxiety caused by the threat.

9 We do not use the majority voting because there are more possible
annotation choices than labellers. So there are segments where the three
labellers may have three distinct annotations and which could therefore
not be taken into account for the corpus description.

Table 4
SAFE corpus content: attribution percentage of emotional dimensions

Dimensions Levels

�3 �2 �1 0 1 2 3

Intensity (%) – – – 29 21 30 20
Evaluation (%) 9 34 20 29 5 3 0
Reactivity (%) – – – 6 36 19 10
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Fig. 4. Segment distribution according to emotional categories for each
degree of threat imminence.
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3. Carrying out an audio-based fear-type emotion recognition

system

The fear-type emotion detection system focuses on dif-
ferentiating fear class from neutral class. The audio stream
has been manually pre-segmented into decision frames
which correspond to the segments as defined in Section
2.2. The system is based on acoustic cues and focuses as
a first step on classifying the predefined emotional
segments.

3.1. Acoustic features extraction, normalization and

selection

The emotional content is usually described in terms of
global units such as the word, the syllable or the ‘chunk’
(Batliner et al., 2004; Vidrascu and Devillers, 2005) by
computing statistics. Alternatively, some studies use
descriptions at the frame analysis level (Schuller et al.,
2003). Here, we propose a new description approach which
integrates various units of description that are at both the
frame analysis level and the trajectory level. A trajectory
gathers successive frames with the same voicing condition
(see Fig. 5). These two temporal description levels have
the advantage of being automatically extracted.

Emotions in abnormal situations are accompanied by a
strong body activity, such as running or tensing, which
modifies the speech signal, in particular by increasing the
proportion of unvoiced speech. Therefore some segments

in the corpus do not contain a sufficient number of voiced
frames. The information conveyed by the voiced content of
the segment is therefore insufficient to deduce whether it is
a fear segment or not. Such segments occur less frequently
in everyday speech than in strong emotional speech. Here,
16% of the collected fear segments against 3% of the neu-
tral segments contain less than 10% of voiced frames.
The voiced model is not able to exploit those segments.
Given the frequency of unvoiced portions and in order to
handle this deficiency of the voiced model, a model of the
emotional unvoiced content needs to be built. The studies
which take the unvoiced portions into account consist of
global temporal level descriptions (Schuller et al., 2004),
by computing for example the proportion of unvoiced por-
tions in a ‘chunk’. Our approach is original because it sep-
arately considers:

– the voiced content traditionally analysed and which cor-
responds to vowels or voiced consonants such as ‘‘b” or
‘‘d” and,

– the unvoiced content which is a generic term for both
articulatory non voiced portions of the speech (for
example obstruants) and portions of non-modal speech
produced without voicing (for example creaky, breathy
voice, murmur).

The speech flow of each segment is divided into succes-
sive frames of 40 ms with a 30 ms overlap. The voicing
strength of the frame is evaluated under Praat (Boersma
and Weenink, 2005) by comparing the autocorrelation
function to a threshold in order to divide the speech flow
into voiced and unvoiced portions. Features are first com-
puted frame by frame. In order to model the temporal
evolution of the features, their derivatives and statistics
(min, max, range, mean, standard deviation, kurtosis,
skewness) are then computed at the trajectory level such
as illustrated in Fig. 5. Some features (the jitter, the shim-
mer and the unvoiced proportion) are computed at the
segment level.

The computed features allow us to characterize three
types of acoustic content, and can be sorted into three fea-
ture groups:

– the prosodic group which includes features relating to
pitch (F0), intensity contours, and the duration of the

Table 5
Segment distribution (%) according to each fear sub-category for each imminence degree

Threat Emotion

anx. wor. stress ang. distr. pan. terr. fear–anger fear–suffering fear–surprise

Norm. 64.1 4.3 5.4 0.0 12.0 7.6 3.3 0.0 2.2
Pot. 61.2 4.1 6.1 0.0 10.2 6.1 10.2 0.0 2.0
Lat. 50.9 9.7 8.3 5.5 17.3 4.2 3.1 0.0 0.0
Imm. 25.2 13.7 6.7 6.0 31.8 8.1 3.5 2.7 0.8
Past 42.0 4.0 4.0 8.0 22.0 6.0 6.0 0.0 0.0

Pot. = potential, Lat. = latent, Imm. = immediate, Norm. = normal situation, anx. = anxiety, wor. = worry, ang. = anguish, distr. = distress, pan. = -
panic, terr. = terror.

Fig. 5. Feature extraction method which separately considers the voiced
and unvoiced content and integrates various temporal levels of
description.
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voiced trajectory, which are extracted with Praat. Pitch
is computed using a robust algorithm for periodicity
detection based on signal autocorrelation on each frame.
Pitch and duration of the voiced trajectory are of course
computed only for the voiced content;

– the voice quality group which includes the jitter (pitch
modulation), the shimmer (amplitude modulation), the
unvoiced rate (corresponding to the proportion of
unvoiced frames in a given segment) and the harmonic
to noise ratio (ratio of signal periodic part to non-har-
monic part computed here using the algorithm developed
in Yegnanarayana et al. (1998)). The HNR allows us to
characterize the noise contribution of speech during the
vocal effort. The perceived noise is due to irregular oscil-
lations of the vocal cords and to additive noise. The algo-
rithm relies on the substitution degree for harmonics by
noise.

– the spectral and cepstral features group consisting of the
first two formants and their bandwidths, the Mel Fre-
quency Cepstral Coefficients (MFCC), the Bark band
energy (BBE) and the spectral centroid (Cs).

A total of 534 features are thus calculated for the voiced
content and 518 for the unvoiced content.

Acoustic features are not varying exclusively with the
emotional content. They are also dependent on the speaker
and on the phonetic content. It is typically the case for
pitch-related features and for the first two formants. To
handle this difficulty most of the studies use a speaker
normalization for pitch-related features and a phoneme
normalization for the first two formants. However the
speaker normalization may be judged as inadequate to
the surveillance, since the system needs to be speaker inde-
pendent and has to cope with a high number of unknown
speakers. The SAFE corpus provides about 400 different
speakers for this purpose. The phoneme normalization is
here also not performed as it relies on the use of a speech
recognition tool in order to be able to align the transcrip-
tion and the speech signal. The recording conditions of
the speech signal in a surveillance application require to
develop a text-independent emotion detection system
which does not rely on a speech recognition tool. As a pre-
liminary solution, we choose to use a min–max normaliza-
tion which consists in the scaling of the features between
�1 and 1. However, in future work, we plan to test more
complex normalization techniques such as those used for
speaker recognition (e.g. feature warping) and which might
improve robustness to the mismatch of sound recordings
and to noise.

The feature space is reduced by selecting the 40 most rel-
evant features for a two class discrimination by using the
Fisher selection algorithm (Duda and Hart, 1973) in two
steps. A first selection is carried out on each feature group
(prosodic, voice quality, and spectral) separately. One fifth
of features is selected for each group providing a first fea-
ture set including about 100 features. The final feature set is
then selected by applying the Fisher algorithm to the first

feature set a second time. This method avoids having
strong redundancies between the selected features by forc-
ing the selection algorithm to select features from each
group. The salience of the features is evaluated separately
for the voiced and unvoiced contents. The Fisher selection
algorithm relies on the computation of the Fisher Discrim-
inant Ratio (FDR) of each feature i:

FDRi ¼
ðli;neutral � li;fearÞ

2

r2
i;neutral þ r2

i;fear

;

where li;neutral and li;fear are class mean value of feature vec-
tor i for fear class and neutral class respectively and r2

i;neutral

and r2
i;fear the variance values.

3.2. Machine learning and decision process

The classification system merges two classifiers, the
voiced classifier and the unvoiced classifier, which consider
respectively the voiced portions and the unvoiced portions
of the segment (Clavel et al., 2006b).

The classification is performed using the Gaussian mix-
ture model (GMM) based approach which has been thor-
oughly benchmarked in the speech community. For each
class Cq (Fear, Neutral and for each classifier (Voiced,
Unvoiced)) a probability density is computed and consists
of a weighted linear combination of eight Gaussian compo-
nents pm;q:

pðx=CqÞ ¼
X8

m¼1

wm;qpm;qðxÞ;

where wm;q are the weighted factors. Other model orders
have been tested but led to worse results. The covariance
matrix is diagonal which means that the models are trained
by considering independently the data corresponding to
each feature.

The parameters of the models (the weighted factors, the
mean vector and the covariance matrix of each Gaussian
component) are estimated using the traditional Expecta-
tion-Maximization algorithm (Dempster et al., 1977) with
10 iterations.

Classification is performed using the Maximum A Poste-
riori decision rule. For the voiced classifier, the A Posteri-
ori Score (APS) of a segment associated with each class
corresponds to the mean a posteriori log-probability and
is computed by multiplying the probabilities obtained for
each voiced analysis frame, giving for example for the
voiced content:

A~PSvoicedðCqÞ ¼
PNfvoiced

n¼1 logðpðxn=CqÞÞ
Nfvoiced

:

Depending on the proportion r of voiced frames ðr 2 ½0; 1�Þ
in the segment, a weight ðwÞ is assigned to the classifiers in
order to obtain the final APS of the segment:

APSfinal ¼ ð1� wÞ �APSvoiced þ w �APSunvoiced:
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The weight is dependent on the voiced rate ðr 2 ½0; 1�Þ of the
segment according to the following function: w ¼ 1� ra. a
varies from 0 (the results of unvoiced classifier are consid-
ered only when the segment does not contain any voiced
frame) toþ1 (only the results of unvoiced classifier are con-
sidered). The rate that the weight decreases as a function of
the voiced rate is adjusted with a. The segment is then clas-
sified according to the class (fear or neutral) that has the
maximum a posterior i score:

q0 ¼ arg max
12½1:q�

A~PSfinalðCqÞ:

4. Experimental validation and results

4.1. Experimental database and protocol

The SAFE corpus stands for the variability of spoken
emotional manifestations in abnormal situations at several
levels: in terms of speakers, sound, etc. In order to restrict
this variability given the exploratory character of this
work, we focused here on the most prototypical emotional
distinction, i.e. the fear vs. neutral discrimination. The fol-
lowing experiments and analysis are thus performed on a
subcorpus containing only good quality segments labelled
fear and neutral. The quality of the speech in the segments
concerns the speech audibility and has been evaluated by
the labellers (see Section 2.3). Remaining segments include
various environment types (noise, music). Segments with
overlaps between speakers have been discarded (see Section
2.3.3). Only segments, where the two human labellers who
have obtained the lowest kappa value agree, are considered
(see Section 2.2.4), i.e. a total of 994 segments (38% of fear
segments and 62% of neutral segment). Table 6 shows the
quantity of data corresponding to each class in terms of
segment, trajectory and frame analysis. This subcorpus will
be named SAFE_1.

The test protocol follows the Leave One Movie Out pro-
tocol: the data is divided into 30 subsets, each subset con-
tains all the segments of a movie. Thirty trainings are
performed, each time leaving out one of the subsets from
training, and then the omitted subset is used for the test.
This protocol ensures that the speaker used for the test is
not found in the training database.10

4.2. Global system behaviour

4.2.1. Selected features

It comes out from the feature selection step that pitch-
related features are the most useful for the fear vs. neutral
voiced classifier. With regard to voice quality features, both
the jitter and the shimmer have been selected. The spectral
centroid is also the most relevant spectral feature for the
voiced content. As for the unvoiced content, spectral fea-

tures and the Bark Band Energy in particular come out
as the most useful.

Each classifier considers the features selected as the most
relevant for the two-classes discrimination problem. Table
7 and 8 show the 40 selected features sorted by group for
each content voiced or unvoiced. For the voiced content,
the prosodic features are all selected after the second over-
all Fisher selection, which means that this feature group –
especially the pitch related features – seems to be the most
relevant for the fear-type emotions characterization. Voice
quality features also seem to be relevant: both, jitter and
shimmer have been selected. However the harmonic to
noise ratio has not been selected. This may be explained
by the presence of various environmental noise in our data
which makes the HNR estimation more difficult. We
should also keep in mind that the presence of music could
bias the feature selection, such as the environmental noise.
However, the segments which have been selected for the
experiments contains also background music, but at a
rather high signal (speech) to noise (music) ratio, so that
this influence should not be detrimental.

The spectral and cepstral features which correspond to
lower level features are preferred over the HNR. This fea-
ture group – initially in the greatest number – was the most
represented in the final feature set. The most relevant spec-
tral feature is the spectral centroid and cepstral features
seem to be more relevant than features describing directly
the spectral energy. Formants are also largely represented
in the final feature set.

For the unvoiced content the Bark band energy-related
features seem to be more relevant than cepstral features.
The HNR has also been selected.

Overall, the selected features correspond to statistics
computed at the trajectory level which seems to be suitable
for emotional content characterization.

4.2.2. Voiced classifier vs. unvoiced classifier

Classification performance is evaluated by the equal
error rate (EER). The EER corresponds to the error rate
value occurring when the decision threshold of the GMM
classifier is set such that the recall will be approximately
equal to the precision.

Fig. 6 shows the EER for fear from neutral classification
for various values of a. The voiced classifier is more efficient
than the unvoiced one. The EER reaches 40% when the
unvoiced classifier is used alone ða ¼ 1Þ. This worst case
is equivalent to never considering the voiced content. How-
ever, the EER is at 32% when the voiced classifier is used in

10 This is actually almost the case. Three speakers over the 400 speakers
can be found in two films.

Table 6
Experimental database SAFE_1 (seg. = segment, traj. = trajectories)

Classes Number
of seg.

Number
of traj.

Number
of frames

Duration

Fear 381 2891 113,385 19 min
Neutral 613 5417 181,615 30 min
Total 994 8308 295,000 49 min
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priority (the unvoiced classifier is used only when the seg-
ments are totally unvoiced, a ¼ 0). Best results ðEER ¼
29%Þ are obtained when the unvoiced classifier is considered
with a weight decreasing quickly as the voiced rate increases
ða ¼ 0:1Þ.

The confusion matrix resulting from the fear vs. neutral
classifier with the alpha parameter set at a ¼ 0:1 is presented
in Table 9. It illustrates the confusions between the auto-
matic labeling of the classifier and the manual labels pro-
vided by the labellers. We compute also the Mean Error
Rate (MER) and the kappa (see Section 2.2.4) between

human annotation and system classification for the perfor-
mance evaluation. The kappa value at 0.53 corresponds here
to the performance of the system taking into account the
chance. This value integrates the unbalanced repartition of
the data into the two classes and allows us to compare the
system with chance (when j ¼ 0, the system is working such
as chance).

The mean accuracy rate of the system is 71%. It corre-
sponds to quite promising results given the diversity of fear
manifestations illustrated in the SAFE Corpus (400 speak-
ers, various emergence contexts and recording conditions).
Otherwise, if one would expect deterioration of perfor-
mance when trying to detect fear expressed in real context,
performance could be improved by adapting the system to
a specific sound environment and recording condition for a
specific surveillance application.

We compute also the confusion matrix between the sys-
tem outputs and each of the three labellers separately in
Tables 10–12. The EER obtained are between 30% (when

Table 7
List of the 40 selected features for the voiced content of SAFE_1 (Table 6)

Group Nini2/
Nini1

Selected features Nfinal/
Nini2

Prosodic 7/33 meanF 0, minF 0, F 0, maxF 0, stdevdF 0, rangedF 0, rangeF 0 7/7
Voice

quality
8/37 Jitter, Shimmer 2/8

Spectral 93/
464

meanCs, minMFCC1, meanMFCC4, maxF 1, minMFCC4, mindF 1, mindF 2, meanMFCC1, rangedF 1, rangedF 2, rangeF 1,
rangeF 2, MFCC4, MFCC1, stdevF 2, maxdF 1, maxdF 2, maxMFCC4, maxCs, minMFCC3, skewBBE3, meanBBE3, maxF 2,
stdevdMFCC11, stdevdF 2, kurtdF 1, minF 2, kurtF 1, rangeMFCC1, stdevdMFCC6, minMFCC6

31/93

Nini1 = number of extracted features, Nini2 = number of features which are submitted to the second selection ðNini2 ¼ dNini1
5 eÞ, Nfinal = number of

selected features at the end of the two successive selections, stdev = standard deviation, kurt = kurtosis, skew = skewness, d = derivative.

Table 8
List of the 40 selected features for the unvoiced content of SAFE_1 (Table 6)

Group Nini2/
Nini1

Selected features Nfinal/
Nini2

Prosodic 4/16 rangeInt 1/4
Voice

quality
8/36 tauxNonVoise, kurtdPAP 2/8

Spectral 93/464 rangeBBE6, rangeBBE7, rangeBBE10, stdevBBE6, stdevBBE7, rangeBBE8, rangeBBE5, stdevBBE10,
rangeBBE11, rangeBBE9, stdevBBE8, rangeBBE12, maxMFCC3, stdevBBE5, stdevBBE9, rangeBBE4,
rangeMFCC10, rangeMFCC12, stdevBBE11, minBBE10, rangeMFCC8, minBBE7, minBBE6, rangeBBE3,
rangeMFCC6, minBBE8, rangedBBE6, minMFCC11, stdevBBE12, stdevBBE4, minBBE9, meanMFCC3,
rangeMFCC11, rangedBBE5, maxBw1, rangedBBE4, maxBw2

37/93

Fig. 6. EER according to the weight ðw ¼ 1� raÞ of the unvoiced classifier
against the voiced classifier obtained on SAFE_1 (Table 6) (confidence
interval at 95%: radius 6 3%).

Table 9
Confusion matrix, mean error rate (MER), equal error rate (EER) and j
for fear vs. neutral classification tested on SAFE_1 (Table 6) (confidence
interval at 95%: radius 6 3%)

Manual Automatic

Neutral Fear

Neutral 71% 29%
Fear 30% 70%
MER 29%
EER 29%
j 0.53
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considering Lab3’s annotation) and 35% (when considering
Lab1’s annotation) which means a 5% gap. It corresponds
to similar results, given the confidence intervals.

4.2.3. System performance vs. human performance

A supplementary ‘‘blind” annotation based on the audio
support only (i.e. by listening to the segments with no access
to the contextual information conveyed by video and by the
global content of the sequence) has been carried out by an
additional labeller (LabSys) on SAFE_1. LabSys has to
classify the segments into the categories fear or neutral with
the same available information as the one provided to the
system. We present in Table 13 the confusion matrix and
the kappa score obtained by LabSys on SAFE_1. This table
can be linked with Table 9 in order to compare the system
performance with human performance.

The kappa obtained by the system is 0.53. It corre-
sponds to a good performance compared to the value of
0.57 obtained by LabSys. However, the behaviors of Lab-
Sys and the system are quite different. LabSys is better to

recognize neutral (99% of correct recognition against 71%
for the system) and the system is better to recognize fear

(70% of correct recognition against 64% for LabSys).
LabSys annotates more segments as neutral. Almost all

the segments annotated neutral and 36% of those anno-
tated fear in SAFE_1 are labelled neutral by LabSys. This
shows that some fear cues are difficult to be perceived only
with the audio channel.

4.3. Local system behaviour

Table 14 specifies the system behaviour on the various
segments according to the threat during which they occur.
With this aim, the emotional category annotations are cor-
related with the threat track annotations as presented in
Clavel et al. (2007). Five fear subclasses are thus obtained:

– NoThreat Fear: fear occurring during normal situation,
i.e. situation with no threat.

– Latent Fear: fear occurring during latent threats.
– Potential Fear: fear occurring during potential threats.
– Immediate Fear: fear occurring during immediate

threats.
– Past Fear: fear occurring during past threats.

The reliability of the error rates err is evaluated by the
95% confidence interval (Bengio and Mariethoz, 2004).
The radius r of the confidence interval I ¼ ½err � r; err þ r�
is computed according to the following formula:

r ¼ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
errð1� errÞ

N seg

s
;

where N seg is the number of segments used for the test.
The segment distribution of the fear class in the experi-

mental database according to the type of the threat during
which the segment occurs is presented in Table 14.

Table 10
Confusion matrix for the fear vs. neutral classification system using Lab1’s
annotations as a reference (704 segments for neutral class and 631
segments for fear class, confidence interval at 95%: radius 6 4%)

Lab1 System

Neutral Fear

Neutral 70% 30%
Fear 39% 61%
MER 34%
EER 35%
j 0.48

Table 11
Confusion matrix for the fear vs. neutral classification system using Lab2’s
annotations as a reference (1322 segments for neutral class and 518
segments for fear class, confidence interval at 95%: radius 6 4%)

Lab2 System

Neutral Fear

Neutral 69% 31%
Fear 32% 68%
MER 32%
EER 32%
j 0.45

Table 12
Confusion matrix for the fear vs. neutral classification system using Lab3’s
annotations as a reference (352 segments for neutral class and 309
segments for fear class, confidence interval at 95%: radius 6 5%)

Lab3 System

Neutral Fear

Neutral 72% 29%
Fear 31% 69%
MER 30%
EER 30%
j 0.53

Table 13
Confusion matrix obtained by LabSys on SAFE_1

SAFE_1 LabSys

Neutral Fear

Neutral 99% 1%
Fear 36% 64%
j 0.57

Table 14
Proportion and recognition rate with confidence interval at 95% of fear
segments according to the degree of imminence of the threat on SAFE_1
(Table 6)

% of tested
segments

Recognition
rate

Fear No threat 7% 61%� 18%
Potential threat 4% 64%� 24%

Latent threat 33% 60%� 8%

Immediate threat 50% 78%� 5%
Past threat 5% 71%� 18%
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With regard to the fear recognition, we can see in Table 9
that 70% of the segments labelled fear are correctly recog-
nized by the system. Best performances (78%) are obtained
on Immediate Fear segments. By contrast, the recognition
rate falls on fear segments occurring during normal situation
ð61%� 18%Þ, potential ð64%� 24%Þ or latent ð60%� 8%Þ
threats. Indeed, these last types of threats correspond to sit-
uations where the threat is not clearly present and where
types of fear, such as anxiety or worry, frequently occur.
In such segments, fear is less expressed at the acoustic level
than in fear segments occuring during immediate or past
threats, which explains the performance gap.

5. Conclusions and future work

The expectations in automatic emotion recognition/
detection are ambitious. This research field is still emerg-
ing, and the emotional phenomenon remains especially
complex to grasp. In this context our study corresponds
to a preliminary work. So far, we have explored the differ-
ent steps and strategies used in the development of a
fear-type emotion recognition system dedicated to a given
application, the audio–video surveillance. This innovative
application has motivated us to take up new challenges in
terms of emotional database and emotion recognition sys-
tems due to the specific class of the targeted emotions and
the applicative constraints. Indeed, such an application
implies to deal with heterogeneous data in noisy environ-
ments, which significantly makes more complex the classi-
fication task.

The first issue that we have addressed is the collection
of recordings with emotional manifestations occurring in
abnormal situations. Abnormal situations are especially
rare and unpredictable and surveillance data are hardly
accessible in order to protect the person privacy. Besides
there is a lack of emotional databases (acted or real-life)
which illustrate fear-type emotions in threat situations.
The audiovisual corpus – the SAFE corpus – that we
have built, contributes to handle this deficiency. We use
a new material – fiction – to illustrate in situ emotional
manifestations, including fear-type emotions (worry, ter-
ror, panic, etc.). More generally, the corpus contains
recordings of both normal and abnormal situations and
provides a large scope of contexts and therefore a large
scope of emotional manifestations. In this way, it forms
an interesting support to study a high variety of emo-
tional manifestations.

One of the lessons to be learned from our work, is that it
is crucial to develop a detailed annotation scheme which
allows us to better understand the variety of emotional
manifestations and the associated system behaviour. One
of our major contribution is to have defined an annotation
strategy with various levels of accuracy which allows us
both to better understand the variety of emotional manifes-
tations and to provide computable emotional classes. Our
annotation strategy has also the particularity to describe
simultaneously the emotion evolution and the situation

evolution. The annotation has been carried out by three
labellers, and the three annotations have been confronted.
This confrontation underlines the subjectivity of emotion
perception and shows that our annotation strategy pro-
vides an acceptable level of agreement and constitutes a
correct trade-off between genericity (data independent)
and easiness of the labellers’ task.

Another contribution which is worth mentioning is the
dissociated description of the speech flow in terms of the
voiced and unvoiced contents. This description has the
advantage of considering the speech production peculiari-
ties when the speaker is expressing strong emotions such
as fear. We have extracted a large set of acoustic features
and a selection of the most salient features has been per-
formed using the Fisher selection algorithm. For the voiced
content, the prosodic feature group – especially the pitch-
related features – seems to be the most relevant for the
fear-type emotion characterization, though voice quality
features and lower level features, such as spectral and ceps-
tral features, are also selected.

The fear vs. neutral classification achieves a mean accu-
racy rate of 71%. This is a quite promising result, given the
diversity of fear manifestations illustrated in the SAFE
Corpus (400 speakers, various emergence contexts and
recording conditions). As the fear class gathers indeed a
large scope of emotional manifestations which vary accord-
ing to threats in particular, we have also studied the system
behaviour on fear class according to the threat imminence.
As expected, the best performance (78%) is obtained on
fear segments occurring during immediate threats. In such
segments, fear is indeed strongly expressed at the acoustic
level with strong acoustic manifestations such as cries.

To sum up, the material used for our study is very com-
plex. Given this complexity and the maturity of the field of
emotion computing, we proceeded step by step by provid-
ing a first classification fear vs. neutral in order to over-
come the complexity of the data. Indeed, it is important
to deal with this complexity in terms of noisy speech and
diversity of the data (speakers, situations) because it will
be present in real audio surveillance data.

The discrimination between fear-type emotions and
other emotions (e.g. positive and other negative emotions)
will be one of the next steps of our study. Besides, it would
be interesting to upgrade our system by modelling the evo-
lution and the temporal context of the emotional manifes-
tations. This dynamic aspect is already integrated into the
annotation strategy and an analysis of emotional manifes-
tations according to the threat imminence was performed.
In a surveillance perspective, we would also like to change
from the classification fear vs. neutral to the detection of
fear-type emotions among other emotions.

Another challenge, which needs to be answered, is the
processing of overlaps between speakers and of crowd
emotional manifestations. This type of data are present in
the SAFE corpus. They might provide acoustic cues char-
acterizing group and crowd vocal manifestation during
abnormal situations.
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