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A New Perturbation Analysis for Signal Enumeration
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Abstract—The ESPRIT algorithm is a subspace-based high-res-
olution method used in source localization and spectral analysis,
which provides very accurate estimates of the signal parameters.
However, the underlying theory assumes a known model order,
which is usually not the case in many applications. In particular, it
is well known that underevaluating the model order biases the es-
timation. In this paper, we analyze the perturbation induced by an
erroneous model order, and we present an error bound for the es-
timated parameters. Based on this theoretical framework, we pro-
pose a new method for selecting an appropriate modeling order,
which consists in minimizing the error bound. This approach is
applied to both synthetic and musical signals, and its performance
is compared to that of existing methods, such as the information
theoretic criteria.

Index Terms—ESPRIT, model order selection, perturbation
theory, signal enumeration, subspace-based signal analysis.

I. INTRODUCTION

E STIMATING a line spectrum is an important task for many
applications, such as speech signal analysis and synthesis

[1] and musical signal modification [2]. Although the Fourier
transform remains a prominent tool for frequency estimation,
the ESPRIT algorithm [3] overcomes the resolution limit of the
Fourier analysis and provides straight estimates of the model pa-
rameters. This method relies on the rotational invariance prop-
erty of the signal subspace spanned by the sinusoids. Its draw-
back is that the model order is supposed to be known, which is
not the case in practice.

Many methods were proposed in the literature for estimating
the number of sinusoids in white noise. The most classical ones
are the maximum likelihood method [4] and the information
theoretic criteria (ITC) [5], among which are the Akaike infor-
mation criterion (AIC) [6] and the maximum description length
(MDL) by Schwartz [7] and Rissanen [8]. Another consistent
procedure in the framework of the ITC is the efficient detec-
tion criteria (EDC) [9], which proves to be robust to nonadditive
white noise [10]. The various ITC rely on the similarity of the
eigenvalues within the noise subspace, and not on the existence
of a gap between the signal and noise subspaces [11]. A crite-
rion for model order selection based on this gap, which looks for
a maximally stable decomposition, has been developed in [12].
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Other methods proposed for model order selection include the
Wishart matrices [13] and the cross-validation [14] approaches.
However, in the presence of a correlated noise, these methods
tend to overestimate the model order. Consequently, specific
methods have been designed to address the colored noise case,
including new information theoretic criteria [15], [16], a tech-
nique based on a band noise covariance matrix model [17], and
a maximum a posteriori criterion [18].

In other respects, we show in this paper how applying the
ESPRIT high-resolution method with an erroneous model order
perturbs the estimation of the sinusoids. Note that in the litera-
ture, most papers rather focus on the perturbations induced by
the additive noise. For example, the asymptotic second-order
properties of ESPRIT were studied in the direction of arrival
[19] and in the frequency estimation [20] context, for a finite
signal-to-noise ratio (SNR). Reciprocally, a similar study was
carried out for a finite number of data samples under a large
SNR hypothesis [21]. In [22], a class of modeling errors was an-
alyzed. However, to the best of our knowledge, no perturbation
analysis of the ESPRIT estimates in the case of erroneous mod-
eling order has ever been published (in the case of the MUSIC
algorithm, a study is available in [23]).

Note that all the abovementioned performance analyses of
the ESPRIT algorithm, as well as the subspace perturbation ap-
proach in [24], rely on first-order approximations. Conversely,
we present in this paper error bounds for the frequency esti-
mates, which are derived without approximation and which can
be easily computed. Furthermore, they are more precise than
those presented in [25]. Based on this result, we propose a new
model order selection method, which consists of minimizing the
perturbation. Contrary to the other methods proposed in the lit-
erature, which select the model order by analyzing the spectral
properties of the additive noise, our approach focuses on the
signal itself. Although it relies on a noiseless model, we ob-
served that it outperforms the classical ITC, even in low SNR
scenarios.

This paper is organized as follows. Section II summarizes the
principles of the ESPRIT high-resolution method. In Section III,
the perturbation of the poles induced by an erroneous model
order is analyzed. Then our new model order selection method,
referred to as the ESTER method, is introduced in Section IV,
where a fast implementation is proposed. In Section V, the rel-
evance of our criterion as an error bound is examined, and the
performance of the ESTER method is compared to that of some
existing methods. The main conclusions of this paper are sum-
marized in Section VI.
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II. THE ESPRIT METHOD FOR SPECTRAL ANALYSIS

The noiseless exponential sinusoidal model (ESM), also
known as the exponentially damped sinusoidal (EDS) model
[26], defines the discrete signal as

where is the order of the model, are the complex
amplitudes, and are the complex poles.

Let , and define the Hankel data matrix

...
...

...

which involves samples of the signal. This matrix
can be factorized in the form , where is an

Vandermonde matrix

...
...

...

diag , and is an Vandermonde matrix
[27]. If the poles are distinct, has an -dimen-
sional range space, spanned by the full-rank matrix . This
range space fully characterizes the signal poles. It is thus re-
ferred to as the signal subspace.

Let be the matrix extracted from by deleting the
last row. Similarly, let be the matrix extracted from
by deleting the first row. Then the Vandermonde matrix
satisfies the so-called rotational invariance property

(1)

where diag .
In practice, is unknown, but the signal subspace can be

obtained by computing the singular value decomposition (SVD)
of (or via subspace tracking techniques [28]–[30] in an adap-
tive context). Indeed, if are the left singular
vectors associated to the singular values
sorted in decreasing order, then the signal subspace is spanned
by the orthonormal matrix (the

last singular values being equal to zero). Since and
span the same subspace, there is a nonsingular matrix of

dimension such that

(2)

By deleting the last row in (2), we obtain

(3)

Similarly, deleting the first row in (2) and substituting (1) yields

(4)

Substituting (3) into (4) leads to the rotational invariance prop-
erty of the matrix

where is defined by its eigenvalue decomposition
. Finally, the ESPRIT algorithm [3] consists of the fol-

lowing steps:

• computing ;
• computing (where the symbol

denotes the Moore–Penrose pseudoinverse);
• extracting the poles as the eigenvalues of .

III. IMPACT OF AN ERRONEOUS MODEL ORDER

In practice, the model order is unknown. We assume below
that the ESPRIT algorithm is applied with an erroneous model
order and focus on how the estimation of the poles is affected.
For all , let and

(5)

The estimated poles are defined as the eigenvalues of .

A. Overestimation of the Model Order

If , the following proposition shows that the true poles
belong to the whole set of eigenvalues of .

Proposition III.1: Suppose that and is full
rank. Then is an eigenvalue of .

Proof: Let be the right eigenvector of associ-
ated to the eigenvalue and consider the -dimensional vector

. Note that . Consequently,

. Since is full rank, left multiplying the pre-
vious equality by yields .

B. Underestimation of the Model Order

If , it is well known that the eigenvalues of do
not match the poles in the general case. More precisely, let be
an eigenvalue of . In this section, it will be shown that
approximates one of the eigenvalues of , and that an error
bound can be easily computed. First, we need to define the upper
condition number of the signal subspace1

diag
(6)

where denotes the largest singular value of a matrix
and denotes the smallest one. This condition number
characterizes the noiseless signal itself, and does not depend on

. It is an unknown constant for our problem, which does not
need to be calculated. It is involved in the following theorem,
whose proof can be found in the Appendix.

1In [25], � was defined as the upper condition number of the Vandermonde
matrix VVV , equal to (� (VVV ))=(� (VVV )). The new definition of � in
(6) yields better error bounds, due to the presence of the infimum.
Notation: denotes the set of all positive real numbers.
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Theorem III.2 (A Priori Error Bound)2: For all , there
is an eigenvalue of for which

(7)

Note that the bound can be com-
puted without knowing the exact value of . Corollary III.3,
which follows from Theorem III.2, has a certain similarity
with the well-known Bauer–Fike theorem ([31, p. 365]),
([32, p. 321]). It gives an error bound valid for all the eigen-
values of . Again, this bound can be computed without
knowing the exact value of . It involves the spectral norm
of a matrix (or 2-norm), also denoted , defined as

.
Corollary III.3 (A Posteriori Error Bound)3: For each eigen-

value of , there is an eigenvalue of for which

(8)

where

(9)

Proof: Let be an eigenvalue of and a unitary
eigenvector associated with . Let .
Since is unitary, . In other
respects, ; thus

. Consequently

(10)

Finally, substituting (10) into (7) yields (8).
Remark: Let . We know that if .

Conversely, if , then the matrices and
span the same subspace, which means that the rotational invari-
ance property is satisfied at order . Thus complex exponen-
tials can be extracted from the observed signal, and the corre-
sponding complex poles can be estimated by means of the ES-
PRIT algorithm. Since the signal does not contain more than
complex exponentials, we expect that . The case
can happen if the signal parameters satisfy some particular re-
lationships. In practice, is always the greatest value of for
which .

IV. SELECTION OF AN APPROPRIATE MODELING ORDER BASED

ON THE ESTIMATION ERROR

The practical interest of Corollary III.3 is that
(which will be referred to as the a posteriori error bound) can be
computed for all , where .

2In comparison, the a priori error bound proposed in [25] was equal
to (� (VVV ))=(� (VVV )) kWWW (p) v̂vv � ẑWWW (p) v̂vvk , where v̂vv
was an arbitrary unitary vector. Note that the condition number �
defined in (6) is lower than (� (VVV ))=(� (VVV )). Moreover
� (WWW (p) � ẑWWW (p)) � kWWW (p)v̂vv � ẑWWW (p)v̂vvk for all unitary
vector v̂vv. Thus the a posteriori error bound in (7) is lower than that proposed
in [25].

3This a posteriori error bound is lower than that proposed in [25], because of
the lower value of � .

If happens to be lower than , the a posteriori error bound
gives a quantitative criterion for selecting an appropriate mod-
eling order, such that the estimation error bound is minimum. If

happens to be greater than , then is the greatest value
of for which the a posteriori error bound is
zero. In any case, detecting the maxima of the inverse error
function in the range is
a relevant approach for selecting the modeling order. Below,
this function will be referred to as the estimation error (ESTER)
criterion. In the presence of noise, we observed that a robust
way of selecting the modeling order consists in detecting the
greatest value of for which the function reaches a local
maximum that is greater than a fraction of its global maximum
(typically one-tenth of the global maximum). Examples of the
function are represented in Section V. Proposition IV.1 shows
that its values are in the interval [1, ] (the proof is given in
the Appendix).

Proposition IV.1: For all .
Note that this ESTER criterion measures the rotational in-

variance of , since by definition the rotational invariance
property is satisfied exactly if . The drawback of
the ESTER method is that a direct implementation would lead to
a very computationally demanding algorithm. First, the singular
vectors have to be computed for all ,
which requires operations, by
means of a variant of the orthogonal iteration eigenvalue
decomposition (EVD) algorithm presented in [26]. Then the
matrix must be calculated for all . Such
a computation would involve 3 multiply/accumulate (MAC)
operations for each , so that the overall complexity would be

MAC.4 This computational cost is to be compared to
that of the ITC criteria illustrated in Section V. In particular,
the complexity of the AIC, MDL [5], and EDC [9] criteria is
linear in . However, contrary to the ESTER method, these
ITC require the full SVD of the data matrix, whose complexity
is . Besides, the complexity of the criteria proposed in
[16] for addressing the colored noise case also has a complexity
equal to . Consequently, the relative complexities of the
ESTER method and the various ITC depend on .

To make the ESTER method faster, we developed a recur-
sive implementation, presented in Table I, which only involves
6 MAC for each , so that its overall complexity is
3 (plus the computation of the singular vec-
tors). In particular, it can be noticed that computing the matrices

for all in this way is not more com-
putationally demanding than computing directly. Sec-
tions IV-A and IV-B present fast methods for computing
and recursively.

A. Recursive Computation of

A direct calculation of for all from (5)
would involve 2 MAC for each , and the overall
complexity would be (2/ 3) . This section aims
at computing the matrix recursively, in order to

4Note that p is supposed to be much lower than n.
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TABLE I
RECURSIVE COMPUTATION OF EEE(p)

reduce the complexity. Equation (5) can be rewritten in the form

(11)

where and are the matrices

(12)

(13)

The matrix can be easily calculated. Indeed, since
is orthonormal, . In particular, this equation
yields , where is the

-dimensional vector such that is the last row of .
Finally, the matrix inversion lemma [31, pp. 18–19] shows that

(14)

Moreover, can be recursively updated. Indeed, (13)
yields

(15)

where
and . It can be noticed that the compu-
tation of from requires only 2 MAC.

Finally, can be computed from . Indeed, substi-
tuting (14) into (11) yields

(16)

where

(17)

It can be noticed that the computation of from re-
quires only MAC, plus the computation of .
This last operation normally requires MAC, but Lemma IV.2
suggests a recursive implementation, which involves only
MAC.

Lemma IV.2: Let be the complex number such that

(18)

Then satisfies the recursion

(19)

Proof: The assertion can be shown by substituting (15)
and (18) into (17).

Finally, the recursive computation of consists in com-
puting from with (15), then computing
from with (19), then computing from with
(16). This method requires 2 MAC at each step.
Therefore, its overall computational cost is
MAC.

Recursive Computation of : Here we suppose that all
the have been computed. A direct calculation of for
all from (9) would involve MAC for each

, and the overall complexity would be (1/3) . This sec-
tion aims at computing recursively, in order to reduce the
complexity.

Substituting (16) into (9) shows that

(20)

where

(21)

Note that the computation of from requires 2
MAC. Then substituting (15) into (21) yields a recursion for the

1 matrix

(22)

where . The
computation of from involves 2 MAC. Fi-
nally, the recursive computation of consists in computing

from with (22), then computing from
with (20). This method requires 4 MAC at each step. Thus its
overall computational cost is 2 MAC. As a result, it can
be noticed that computing the matrices and for all
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Fig. 1. A priori and a posteriori error bounds (a) a priori error bound vs.
eigenvalue error at order p = 7 (b) a posteriori error bound vs. maximum
eigenvalue error as a function of p.

is not more computationally demanding than
just computing them for . In both cases, the overall
complexity is 3 .

The complete pseudocode for computing for all
is presented in Table I. Note that the calculation of

the matrices and is not even required.

V. SIMULATION RESULTS

Section V-A illustrates the relevance of our error bounds.
Then the ESTER method is applied to synthetic signals (Sec-
tions V-B and -C) and to a musical signal (Section V-D).

A. Relevance of the a Priori and a Posteriori Error Bounds

In this section, the relevance of the a priori and a posteriori
error bounds is illustrated. The test signal is a sum of
undamped complex exponentials of the same amplitude ,
whose frequencies are randomly distributed in [ (1/2), (1/2)].
The upper condition number of the signal subspace satisfies

. The singular vectors forming the matrices
have been obtained by computing the SVD of a Hankel data
matrix of rows and columns, containing
the samples of the whole signal. For all

, the eigenvalues of the
matrix have been computed.

In Fig. 1(a), the solid line represents the eigenvalue errors
obtained for , i.e.,

sorted in increasing order. The dotted line represents the corre-
sponding a priori error bounds, i.e.,

It can be noticed that the dotted line is above the solid line (as
expected), and more importantly that the variations of the dotted
line follow those of the solid line, which suggests that the a
priori error bound is relevant.

TABLE II
PARAMETERS OF THE SYNTHETIC SIGNAL

Fig. 2. (a) Periodogram of the synthetic signal in dB. (b) Singular values of
the synthetic signal sorted in decreasing order.

In Fig. 1(b), the solid line represents the maximum eigenvalue
error obtained for all modeling orders, i.e.,

as a function of . The dotted line represents the corresponding
a posteriori error bounds, i.e., as a function of . As
for the a priori error bound, it can be noticed that the dotted line
is above the solid line (as expected) and that the variations of the
dotted line follow those of the solid line. This suggests that the
a posteriori error bound is a relevant criterion for minimizing
the bias of the estimated eigenvalues.

B. Model Order Selection for a Synthetic Signal

The test signal is a sum of undamped complex expo-
nentials plus a complex colored noise. For each ,
the th exponential is characterized by its amplitude and its
pole , where is its frequency. The values of
the parameters are given in Table II. The additive noise has been
obtained by applying the filter to a
complex white Gaussian noise, whose variance has been chosen
so that the resulting SNR is 40 dB. The periodogram of the re-
sulting test signal is represented in Fig. 2(a). It was computed
from a signal of length 255, multiplied by a Blackman window,
chosen for its high leakage rejection ( 57 dB), and zero-padded
to obtain 65 536 points in the frequency domain. In particular,
it can be noticed that the two complex exponentials of lowest
frequency are not resolved by the periodogram.

The ESTER method is compared to several other signal enu-
meration techniques, among which three information theoretic
criteria, known as the Akaike information criterion [5], the min-
imum description length (MDL) [5], and the efficient detection
criterion [9], which is known to be a robust generalization of



BADEAU et al.: PERTURBATION ANALYSIS FOR SIGNAL ENUMERATION 455

Fig. 3. Model order selection for the synthetic signal. (a) AIC, MDL, and
EDC criteria. (b) Gap criterion. (c)C ;C ;C , andC criteria. (d) ESTER
criterion.

AIC and MDL. These methods consist in minimizing a cost
function which involves the singular values

ITC

(23)

where is a function of . The AIC criterion is defined
by choosing and the MDL criterion is defined by
choosing . The EDC criteria are obtained
for all functions of such that
and . We chose

, for which we obtained the best re-
sults. The singular values have been obtained by computing the
SVD of a Hankel data matrix containing rows and

columns, involving the samples of the
whole signal. Fig. 2(b) displays the highest singular
values. Note that the singular values do not present a significant
decrease beyond .

Fig. 3(a) displays the values of the AIC (solid line), MDL
(dashed line), and EDC (dotted line) criteria, such as formu-
lated in the above equation, for . None of them
reaches a minimum at . This failure might be ex-
plained by the presence of the surrounding noise, whose power
spectral density is not uniform, contrary to the additive white
noise hypothesis on which these estimators basically rely. As
expected, the EDC criterion is more robust than AIC and MDL,
but its minimum is obtained for . Fig. 3(b) represents the
criterion proposed in [12] for detecting the gap in the singular

TABLE III
RATES OF SUCCESSFUL SIGNAL ENUMERATION FOR VARIOUS N

TABLE IV
RATES OF SUCCESSFUL SIGNAL ENUMERATION FOR VARIOUS SNR

values decrease. It can be noticed that this criterion selects the
right value , but the value is emphasized almost
as much. Fig. 3(c) displays new ITC criteria proposed in [16] to
address the colored noise case.5 The best results were obtained
with , which reaches a minimum at .

Finally, Fig. 3(d) displays the ESTER criterion for
. It can be noticed that the global maximum is

reached at , despite the surrounding noise, which was
not included in the model.

C. Statistical Performance Comparison

Below, the ESTER method and the above-mentioned signal
enumeration techniques are applied to various synthetic signals.
These signals consist of a sum of real-valued and undamped si-
nusoids, plus a colored noise. The number of sinusoids is uni-
formly distributed between one and ten, so that the model order

belongs to 2 20 . Their amplitudes, phases, and frequen-
cies are randomly distributed in the intervals [1, 10],] ]
and ] (1/2), (1/2)]. The additive noise is obtained by filtering a
white Gaussian noise by the high-pass filter 1–0.5 (whose
rejection is lower than 10 dB).

As proposed in Section IV, the robustness of the ESTER
method is improved here by detecting the greatest value of
for which the ESTER criterion reaches a local maximum
that is greater than one-tenth of the global maximum. Tables III
and IV show the rates of successful signal enumeration, aver-
aged over 10 000 independent runs, for various values of the
window length and the SNR (other analysis parameters are

and ). In Table III, the SNR is fixed to

5These new criteria are referred to as C (solid line), C (dashed line), C
(dotted line), and C (circles line). The common value of the parameters M
and M defined in [16] was set to (n=2)�1.
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Fig. 4. (a) Periodogram of the piano signal in dB. (b) Singular values of the
piano signal sorted in decreasing order.

20 dB, and the experiment is run for , and
. In Table IV, is fixed to 250, and the experiment is

run for a low SNR (10 dB), a moderate SNR (20 dB), and a high
SNR (30 dB). The obtained percentages have been rounded to-
ward the nearest integer, since the number of independent runs
(10000) guarantees that the confidence interval lies between

1% around the estimated rate, for a 95% confidence level.
It can be noticed that the AIC is ineffective for processing

these synthetic data. Besides, the successful rate of the cri-
terion [16] is always lower than that of all the other methods.
The MDL criterion seems to be more robust than ESTER to low
SNRs. However, ESTER outperforms MDL for both high values
of and high SNRs. Compared to the EDC criterion, ESTER
presents similar performance for high and high SNRs, but it is
more robust to low values of and low SNRs. Finally, ESTER
behaves similarly to the gap criterion [12] for all values of .
However, it is more robust to low SNRs. It can be noticed that
although the ESTER method relies on a noise-free signal model,
its performance does not collapse at low SNRs.

D. Model Order Selection for a Musical Signal

This section illustrates the application of the ESTER method
to a musical signal. The study deals with a piano tone, C5, sam-
pled at 11 025 Hz, from which a segment of 255 samples (23
ms) has been extracted. Note that audio signals often require
some preprocessing before applying the ESPRIT algorithm. For
example, signals with a high number of sinusoids (typically
low-pitched sounds) may first be decomposed into several sub-
band signals (via filtering/decimating, as proposed in [33]). In
this example, this preprocessing is not used, since the chosen
piano tone has few sinusoidal components. In other respects,
it is well known that the energy of audio signals is not evenly
distributed over frequencies. Therefore we used a preemphasis
filter obtained by linear prediction at order 7 to compensate for
the energy decrease.

The periodogram of the filtered piano signal is displayed
in Fig. 4(a). In this figure, 16 sharp spectral peaks clearly
rise above the surrounding noise level. The

Fig. 5. Model order selection for the piano signal. (a) AIC, MDL, and EDC
criteria. (b) Gap criterion. (c) C ;C ;C , and C criteria. (d) ESTER
criterion.

highest singular values of the data matrix6 are represented in
Fig. 4(b). Clearly, these singular values collapse beyond ,
which suggests a modeling order equal to 16.

Fig. 5(a) displays the AIC (solid line), MDL (dashed line),
and EDC (dotted line) criteria. Only EDC reaches a minimum
at . However, this minimum is not substantially lower
than the neighboring values. Fig. 5(b) represents the gap crite-
rion proposed in [12]. Contrary to the above-mentioned ITC,
this criterion here selects the right value . Fig. 5(c) dis-
plays the ITC criteria proposed in [16], with the same param-
eters as in Section V-B. None of them reaches a minimum at

. Finally, Fig. 5(d) displays the ESTER criterion
for all . The global maximum is reached at

. It can also be noticed that the error bounds obtained for
lower values of are relevant. Indeed, high values are reached
at , which in fact correspond to small jumps in the
decrease of the singular values (represented in Fig. 4(b)). There-
fore, the ESTER method gives the expected model order, and
moreover the error bounds can be used to quantify the adequacy
of a possible lower modeling order. In particular, it can be no-
ticed that odd model orders do not fit the signal. Indeed, since
this signal is real-valued and centered, its spectrum is Hermi-
tian symmetric with no constant component, which underlies
an even model order.

VI. CONCLUSION

In this paper, we described how the estimation of a noise-
less ESM model is affected by applying the ESPRIT algorithm

6The singular values have been obtained by computing the SVD of a Hankel
data matrix containing n = 128 rows and l = 128 columns, as in Section V-B.
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with an erroneous model order. If the model order is overesti-
mated, the true poles are among those estimated. On the con-
trary, if the order is underestimated, the estimated poles can be
seen as approximations of some of the true ones. In this last case,
an a posteriori error bound was given, which can be computed
without knowing the exact model order. Following from this ob-
servation, we introduced the ESTER criterion for selecting an
appropriate model order. Since the initial method was computa-
tionally expensive, we proposed a fast algorithm for recursively
computing the a posteriori error bounds. Then, we showed the
relevance of our criterion as an error bound, and we illustrated
the performance of the ESTER criterion on synthetic signals and
on a piano signal. In addition, we noted that the error bounds
could be used to quantify the adequacy of a possible lower mod-
eling order. Finally, although it was designed for the ESPRIT
algorithm, the ESTER criterion can be used with any high-res-
olution method. It can also be adapted to estimate the order of
the more general polynomial amplitude complex exponentials
model [34].

In the presence of noise, we mentioned in Section IV that a
robust way of selecting the modeling order consists in detecting
the greatest value of for which the ESTER criterion
reaches a local maximum greater than a fraction of its global
maximum. Future work will be dedicated to an analysis of the
effect of noise, in order to better exploit the information pro-
vided by the ESTER criterion.

APPENDIX

Proof of Theorem III.2: If for some
, the assertion is trivial, so we may assume that

. Let be a given unitary vector, and
define the residual

(24)

Since , (24) yields

(25)

Substituting (3) and (4) into (25) yields

(26)

Since is nonsingular. There-
fore, (26) yields

(27)

Consider a given diagonal matrix whose diagonal coefficients
are positive. Then (27) is equivalent to

(28)

Applying the 2-norm into (28) yields

(29)

Since is orthonormal and
. Moreover, is diag-

onal with diagonal entries , thus
. Since is full-rank, the singular

values of are the inverses of those of , so that
. Finally, since is unitary,

(29) yields

(30)

Note that (30) is satisfied for all unitary vectors and all ma-
trices diag . Consequently, (7) follows from (30).

Proof of Proposition IV.1: It can be noticed that

Applying the 2-norm yields

(31)

where

is the distance between the subspaces Span and
Span , which satisfies dist , as
shown in ([32, pp. 76–77]). Since ,
the result follows from (31).
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