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Sliding Window Adaptive SVD Algorithms
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Abstract—The singular value decomposition (SVD) is an impor-
tant tool for subspace estimation. In adaptive signal processing, we
are especially interested in tracking the SVD of a recursively up-
dated data matrix. This paper introduces a new tracking technique
that is designed for rectangular sliding window data matrices. This
approach, which is derived from the classical bi-orthogonal itera-
tion SVD algorithm, shows excellent performance in the context of
frequency estimation. It proves to be very robust to abrupt signal
changes, due to the use of a sliding window. Finally, an ultra-fast
tracking algorithm with comparable performance is proposed.

Index Terms—Sliding window, subspace tracking, SVD.

I. INTRODUCTION

SUBSPACE-BASED signal analysis consists of splitting the
observations into a set of desired and a set of disturbing

components, which can be viewed in terms of signal and noise
subspaces. This approach has been widely studied in the fields
of adaptive filtering, source localization, or parameter estima-
tion [1]. The eigenvalue decomposition (EVD) and the singular
value decomposition (SVD) are commonly used in subspace
estimation. However, they usually lead to computationally de-
manding algorithms. Therefore, in an adaptive signal processing
context, there is a real need for fast tracking techniques.

A reference method in subspace tracking is Karasalo’s algo-
rithm [2], which involves the full SVD of a small matrix. More
recently, the FST algorithm presented in [3] replaces this SVD
by Givens rotations, resulting in a faster tracking. Another ap-
proach consists of interlacing a recursive update of the estimated
covariance matrix or the data matrix with one or a few steps of
a standard SVD or power iteration algorithm. This is the case
of the Jacobi SVD method [4], the transposed QR-iteration [5],
the orthogonal/bi-orthogonal iteration [6], [7], and the power
method [8]. Some tracking techniques are based on other ma-
trix decompositions, such as the rank-revealing QR factoriza-
tion [9], the rank-revealing URV decomposition [10], and the
Lankzos (bi)-diagonalization [11]. A conceptually different ap-
proach considers the principal subspace estimation as a con-
strained or unconstrained optimization problem [12]–[17]. In
particular, it is established in [13] and [18] that the classical Oja
method [12] can be viewed as an approximated gradient descent
of a mean square error function. A number of faster subspace
tracking methods have been developed based on the combina-
tion of the gradient descent approach with a projection approxi-
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mation hypothesis [18]–[21]. Other techniques rely on the noise
and signal subspace averaging method [22], the maximum like-
lihood principle [23], the operator restriction analysis [24], or
the perturbation theory [25]. A review of former literature can
be found in [1].

Most of these adaptive techniques are designed for exponen-
tial forgetting windows. Indeed, this choice tends to smooth the
signal variations and thus allows a low-complexity update at
each time step. However, it is only suitable for slowly varying
signals. Conversely, a few subspace trackers are based on sliding
windows, which generally require more computations, but offer
a faster tracking response to sudden signal changes [18], [26].
The tracking of the full SVD in the sliding window case was
investigated in [27] and [28].

In this paper, we will focus on the bi-orthogonal iteration
SVD method [29], [30]. This technique has been widely investi-
gated by Strobach, who proposed various subspace tracking al-
gorithms designed for exponential forgetting windows [6], [7].
In [27], the sliding window case was addressed, but the approach
was limited to real square Hankel data matrices. The adaptive
SVD technique presented in this paper overcomes this limita-
tion. Our work mainly differs from that presented in [7] by the
way the basic sequential bi-iteration SVD algorithm is simpli-
fied.

Compared with the above-mentioned subspace tracking
methods, our fastest algorithm has the advantage of

• computing an orthonormal subspace basis at each time
step, which is required for some subspace-based estima-
tion methods, such as MUSIC [31];

• relying on a sliding window, which offers a faster tracking
response to abrupt signal variations;

• tracking the full SVD, which may be useful for rank esti-
mation and tracking, as in [7] and [28];

• relying on an approximation of the data matrix that is
less restrictive than the classical projection approximation
[18], leading to better tracking results.

The paper is organized as follows. In Section II, we recall the
principles of the bi-orthogonal iteration approach, from which
our new sliding window adaptive SVD (SWASVD) algorithm is
derived. A fast implementation of SWASVD is then presented
in Section III. In Section IV, the capacity of these new tracking
algorithms to cope with transients is illustrated in the context
of frequency estimation. Their performance is compared with
that of some of the most robust and efficient methods found
in the literature. Finally, the main conclusions of this paper are
summarized in Section V.

II. SLIDING WINDOW ADAPTIVE SVD

The bi-orthogonal iteration SVD algorithm is a straightfor-
ward extension of the classical orthogonal iteration, which com-
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TABLE I
BI-ORTHOGONAL ITERATION SVD ALGORITHM

putes the EVD of a square matrix [32, Sect. 8.2.4]. In this sec-
tion, it will be shown how this algorithm can be made adaptive
and how its computational complexity can be reduced with a
low-rank approximation of the data matrix.

A. Bi-Orthogonal Iteration SVD Algorithm

The bi-orthogonal iteration algorithm computes the domi-
nant singular values and vectors of a data matrix
(with ). The SVD of is the factor-
ization , where and
are orthonormal matrices, and is a non-nega-
tive diagonal matrix: diag , where

. Thus, the dominant singular values are
, the dominant left singular vectors are the

first columns of the matrix , and the dominant right singular
vectors are the first columns of the matrix . In many signal
processing applications, is much lower than .

The quasicode of the bi-orthogonal iteration SVD algorithm
is given in Table I. This algorithm generates two auxiliary ma-
trices and . It can be shown [29],
[30] that the columns of converge to the dominant left
singular vectors, the columns of converge to the dom-
inant right singular vectors, and and both con-
verge to .

B. Sequential Bi-Iteration SVD Algorithm

The bi-orthogonal iteration algorithm can simply be adapted
in a tracking context. Suppose the data matrix is updated ac-
cording to the following scheme:

...

where is the -dimensional data vector at time .1 The
SVD of can be approximated and updated just by replacing
the iteration index in Table I by the discrete time index .

The sequential bi-iteration algorithm is summarized in
Table II. In the right column, the computational complexities

1In the context of frequency estimation, the coefficients of xxx(t) are the suc-
cessive samples of the signal xxx(t) = [x(t); x(t� 1); . . . ; x(t�N +1)] . In
the context of direction-of-arrival (DOA) estimation, xxx(t) is the snapshot vector
received from the N captors.

TABLE II
SEQUENTIAL BI-ITERATION SVD ALGORITHM

are quantified with a multiplicative factor related to the real
floating point operation (flop) count, as obtained with the
Matlab flops command [32, Sect. 1.2.4]. For example, a dot
product of -dimensional complex vectors involves flops.

In spite of its robustness, the main drawback of this SVD
tracking algorithm is its high computational complexity (since
in practice , its dominant cost is ). How-
ever, some simplifications will be brought below, which will re-
sult in lower complexity algorithms.

C. Low-Rank Approximation of the Updated Data Matrix

In this section, a low-rank approximation of the data matrix
will be introduced. In array processing, it is well known

that rank reductions have a noise-cleaning effect. Here, this ap-
proximation will result in a faster tracking algorithm.

First, the time-updating structure of the data matrix can ad-
vantageously be taken into account. Indeed, it can be noticed
that

(1)

Now, consider the compressed data vector
. According to the definition of (see Table II), (1)

becomes

(2)

where the symbol denotes uninteresting quantities.
To go further, Strobach [7] introduces the low-rank ap-

proximation
of , which corresponds to the

projection of the rows of onto the subspace spanned by
. Consequently

where . It can be seen that this
approximation is less restrictive than the classical projection ap-
proximation [18], which implicitely assumes that

.
However, we prefer to use the low-rank approximation

. It
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corresponds to the projection of the columns of onto the
subspace spanned by . Consequently

This choice has the advantage of involving more up to date
matrix factors than . Moreover, the explicit computation of
the matrix is avoided.

The substitution of to in (2) yields

(3)

In the same way, it can be noticed that

(4)

According to the definition of (see Table II), (4) be-
comes

(5)

Taking into account that the sequential bi-iteration SVD algo-
rithm satisfies the equation

, a pre-multiplication of both sides of (5) by
yields

(6)

Then, let . This vector is
orthogonal to span so that can be written as a
sum of two orthogonal vectors

(7)

The substitution of to in (5) and (6), respec-
tively, yields

(8)

and

TABLE III
SLIDING WINDOW ADAPTIVE SVD ALGORITHM (SWASVD)

(9)

Let be the column vector obtained by transposing the
first row of . Equations (8) and (9) finally yield

(10)

Note that the exact computation of and requires
operations, whereas the approximated matrices (3) and

(10) can be computed in and operations. Therefore,
introducing these approximations in the sequential bi-iteration
SVD algorithm leads to the lower complexity algorithm herein
called SWASVD, which is summarized in Table III. Its domi-
nant cost is only . Moreover, it can be seen that for
all , SWASVD requires fewer computations than the
sequential bi-iteration algorithm. From now on, and
will denote the approximated auxiliary matrices.

III. FAST IMPLEMENTATION OF THE SLIDING WINDOW

ADAPTIVE SVD ALGORITHM

A major drawback in the SWASVD algorithm is the explicit
computation and QR factorization of the approximated matrices

and . However, these operations can be avoided by
directly updating the QR factorizations.

Since this update is simpler in the case of , the optimiza-
tion of the second iteration will be presented first.

A. Fast Implementation of the Second Iteration

In the second member of (10), the vector is orthogonal
to span . It can be normalized as

(11)

(in the special case , is forced to be ). Then,
can be written as the product

(12)
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of a orthonormal matrix by the matrix

(13)

Now, consider the QR factorization of :

(14)

where is a square orthonormal matrix,
and is a square upper triangular matrix (it will be
shown below that is also the triangular factor in the QR
factorization of , as defined in Section II). Equations (12)
and (14) yield

(15)

This last equation shows an explicit QR factorization of .
From (15), can be directly extracted:

... (16)

Therefore, the QR factorization of can be updated with the
smaller factorization (14) and the product (16).

B. Fast Implementation of the First Iteration

The QR factorization of is more difficult to update be-
cause of the row shifting in the updating scheme of the data ma-
trix. An elegant but complex way of achieving this update can
be found in [27]. A simpler solution, which has been inspired
from the considerations of Section III-A, is proposed below.

Let be the column vector obtained by transposing
the last row of . Consider the orthonormal matrix

obtained by a circular permutation of the rows of
:

...

Finally, consider the -dimensional vector .
Equation (3) yields

where .
Now, the orthogonal decomposition of given in (7) will

be transposed to . Thus, let .
It can be noticed that so that the
vector is orthogonal to span . Then, can be
written as a sum of two orthogonal vectors:

(17)

As for , let

(in the special case , is forced to be ). Finally,
can be written as the product

(18)

of a orthonormal matrix by the matrix

(19)

Now, consider the QR factorization of :

(20)

where is a square orthonormal matrix,
and is a square upper triangular matrix (it will be
shown below that is also the triangular factor in the QR
factorization of , as defined in Section II). Equations (18)
and (20) yield

(21)

This last equation shows an explicit QR factorization of the
matrix . As for , can be directly extracted
from this factorization:

... (22)

Therefore, the time-consuming direct QR factorization of
can be split into the smaller QR factorization (20) and the

product (22). Finally, (14), (16), (20), and (22) lead to the fast
implementation of the SWASVD algorithm given in Table IV,2

herein called SWASVD2. Its dominant cost is only .
Therefore, SWASVD2 is approximately three times faster than
SWASVD. As a comparison, the dominant cost of the exponen-
tial forgetting window Bi-SVD1 algorithm presented in [7] is

at each time step. It can be seen that SWASVD2 requires
a number of additional operations proportional to the sliding
window length. However, this increased computational cost is
compensated by better performance, as shown in Section III-C.

C. Step Toward Linear Complexity

In spite of the various optimizations that were introduced
above, the SWASVD2 algorithm is not the fastest subspace

2The computation of �xxx (t) is subject to rounding errors that might affect the
algorithm stability due to a loss of orthogonality among the columns of QQQ .
Note that the orthogonality can be maintained by repeating one or a few times
the following operations:

• projection of �xxx (t) onto span(QQQ ) ;
• renormalization of �xxx (t).

The same method can be applied to �zzz (t) in order to maintain the orthogonality
among the columns of QQQ .
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TABLE IV
FAST IMPLEMENTATION OF THE SLIDING WINDOW ADAPTIVE SVD

ALGORITHM (SWASVD2)

tracker that can be found in the literature (for instance, the algo-
rithms presented in [18]–[21] require only operations).

To reach this minimal complexity, Strobach [7] assumes that
the matrix is close to the
identity matrix (which is the same as the classical projection
approximation [18], as mentioned in Section II-C). Such an ap-
proximation is not required here since the use of in-
stead of avoids the explicit computation of in
SWASVD2.

Table IV shows that the dominant cost of
SWASVD2 is due to the use of the full rotation matrices
and . These matrices are computed to make and

upper triangular.
In fact, it can be shown that this triangular constraint does

not affect the signal subspace estimation. If and
were not triangular, the algorithm would also converge to an
orthonormal matrix spanning the signal subspace (this approach
is known as the power method [8]). The triangular constraint is
only required to guarantee the convergence to the dominant
singular vectors.

Therefore, linear complexity can be reached by simply
relaxing this constraint. The exact QR factorization can be re-
placed by an “approximated QR factorization,” which involves
a “nearly triangular” right factor. This method, herein called
SWASVD3, is presented in the Appendix and requires
operations. Its subspace tracking performance is exactly the
same as that of SWASVD2. Although the convergence to the
singular vectors and values is no longer theoretically guaran-
teed, the algorithm proves to robustly track their variations.

IV. SIMULATION RESULTS

In this section, the performance of the new tracking algo-
rithms is illustrated in the context of frequency estimation. A
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Fig. 1. (a) Test signal. (b) Normalized frequencies of the sinusoids.

discrete signal can be described using a Hankel data ma-
trix . In the exponentially damped sinusoidal (EDS) model
case, it can be shown that span is an -dimensional sub-
space, where is the number of complex sinusoids. The ESPRIT
high-resolution method can be used to estimate the model pa-
rameters, among which are the frequencies of the sinusoids [33],
[34].

Here, this high-resolution method has been tested in conjunc-
tion with several subspace trackers on a synthetic signal (an ap-
plication to real audio signals was proposed in [33], involving
the sequential iteration SVD algorithm).

The test signal of Fig. 1(a) is a sum of complex sinu-
soidal sources plus a complex white Gaussian noise. The fre-
quencies of the sinusoids vary according to a “jump scenario”
(proposed by Strobach in the context of DOA estimation [35]):
Their values abruptly change at different time instants, between
which they remain constant. Their variations are represented in
Fig. 1(b).

The SWASVD2 algorithm was applied to this signal with
matrix dimensions and . As in [35], the
signal-to-noise (SNR) ratio was fixed to 5.7 dB.

Fig. 2(a) shows the frequency tracking result. The dotted
line indicates the true frequency parameters, whereas the solid
line indicates the estimated frequencies. It can be noticed that
SWASVD2 robustly tracks abrupt frequency variations.

The performance of the subspace estimation is also analyzed
in terms of the maximum principal angle between the true dom-
inant subspace of the data matrix (obtained via an exact singular
value decomposition) and the estimated dominant subspace of
the same data matrix (obtained with the tracker). This error cri-
terion was originally proposed by Comon and Golub as a mea-
sure of the distance between equidimensional subspaces [1].
Fig. 2(b) shows that the subspace estimation fails on transient
regions but gives excellent results everywhere else. This is not
surprising since the subspace modeling does not make sense in
transient regions.
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Fig. 2. O ((N + L)r ) SWASVD2 algorithm. (a) Frequency tracking. (b)
Maximum principal angle trajectory.
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Fig. 3. O ((N + L)r) SWASVD3 algorithm. (a) Frequency tracking. (b)
Maximum principal angle trajectory.

Fig. 3 shows the result obtained with the ultra-fast SWASVD3
algorithm on the same test signal. It can be noticed that this
algorithm reaches the same performance as SWASVD2.

These results have been compared with those obtained with
some of the most robust subspace trackers found in the literature
[2], [5]–[8], [18]–[20], [27], [28]. Three of them are illustrated
in Figs. 4–6:

• the exponential forgetting window Bi-SVD1 algorithm by
Strobach [7];

• the FAST algorithm by Real et al. [28], which is a recent
contribution to sliding window SVD subspace tracking;

• our sliding window version of the NIC subspace tracker
by Miao and Hua [19].

Despite the good performance of the Bi-SVD1 algorithm, its
convergence is slower than that of SWASVD3 after abrupt
signal variations.3 This may be explained by the use of an

3The forgetting factor� ' 0:99was chosen to get an effective window length
equal to L.
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Fig. 4. O(Nr ) Bi-SVD1 algorithm. (a) Frequency tracking. (b) Maximum
principal angle trajectory.
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Fig. 5. O(NLr) FAST subspace tracker. (a) Frequency tracking. (b)
Maximum principal angle trajectory.

exponential forgetting window. Note that the Bi-SVD3 sub-
space tracker, which has also been presented in [7], has a lower
complexity (its dominant cost is ), but it proved to be
unstable on this test signal.

Concurrently, the FAST subspace tracker is better than
Bi-SVD1 in terms of the maximum principal angle error
Fig. 5(b). However, its dominant cost is , and the fre-
quency tracking response Fig. 5(a) remains slower than that of
SWASVD3. Note that the dominant cost of the approximated
FAST2 algorithm [28] is also .

The novel information criterion (NIC) subspace tracker
was introduced in [19] as a robust generalization of the PAST
algorithm [18]. Fig. 6(a) shows the frequency tracking obtained
with our sliding window version of NIC,4 whose dominant cost
is . It can be noticed that this fast subspace tracker is very
stable and converges much faster than Bi-SVD1 and FAST.

4The learning step size � was equal to 0.5.
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Fig. 6. O(Nr) sliding window NIC subspace tracker. (a) Frequency tracking.
(b) Maximum principal angle trajectory.

However, this algorithm only converges to an orthonormal
matrix spanning the principal subspace. It does not compute
the singular vectors and values of the data matrix (which might
be important for rank estimation and tracking) and does not
guarantee the orthonormality of the subspace basis at each time
step (which is required for some subspace-based estimation
methods, such as MUSIC [31]).

Finally, SWASVD outperformed all the other subspace
trackers that we have tested on the same test signal (Karasalo’s
algorithm [2], TQR-SVD [5], Loraf [6], Bi-SVD3 [7], NP3
[8], PAST [18], OPAST [20], SHSVD [27] and FAST2 [28]).
These results were not presented here to keep the presentation
as concise as possible.

V. CONCLUSIONS

This paper introduced new SVD tracking algorithms derived
from the classical bi-orthogonal iteration method. These algo-
rithms have been designed for a sliding window data matrix,
which is a characteristic that distinguishes them from most of
existing subspace tracking techniques. The results obtained on
synthetic signals in the frequency estimation context showed
their robustness to abrupt signal variations.

We successfully obtained an ultra-fast tracking algorithm
with linear complexity without degrading the excellent perfor-
mance of our subspace tracker. This could be
achieved by means of an approximated fast QR factorization.

Finally, these subspace tracking algorithms may be consid-
ered as the starting point of a real-time frequency tracker, whose
full implementation would additionally require an adaptive ver-
sion of the ESPRIT algorithm.

APPENDIX

ULTRA-FAST SWASVD3 ALGORITHM

This Appendix introduces the ultra-fast SWASVD3 tracking
algorithm. Since there is no room here for a complete descrip-
tion, only the main steps will be highlighted, and some details
required for a full implementation will be skipped.

A. Fast Approximated QR Factorization

Remember that the first iteration in SWASVD2 relies on the
low-dimensional QR factorization (20). Generally, this factor-
ization requires operations. Now, suppose that
is not only upper triangular but also diagonal (in practice, this is
nearly the case since converges to the diagonal matrix in
the original bi-orthogonal iteration SVD algorithm of Table I).
In this case, is also diagonal and, therefore, upper
triangular so that defined in (19) is an upper triangular
plus rank one matrix. In particular, it is well known that the QR
factorization of such a matrix can be achieved in compu-
tations, using only Givens rotations [32, Sect. 12.5]. There-
fore, (20) can be written

(23)

where is a product of Givens rotations, and is
a upper-triangular matrix (whose last row is equal
to in this particular case).

In practice, is not diagonal, and this fast QR-factor-
ization cannot be achieved. However, since is nearly
diagonal, applying the fast QR-factorization technique as it is
with this nondiagonal matrix gives a nearly upper triangular ma-
trix .

This fast approximated QR-factorization is the key step of our
ultra-fast tracking algorithm. Note that (23) is not an approxi-
mation but a strict equality.

B. Modification of the First Iteration

Equation (21) now becomes

(24)

A new difficulty arises: can no longer be directly ex-
tracted from this factorization as in (22), since the last row of
the nearly upper triangular matrix is generally not equal
to . Consequently, the dimensions of the second member ma-
trices in (24) cannot be reduced.

Therefore, it will be necessary to explicitly force this last row
to be zero. Suppose that there exists a rotation matrix
such that the last row of is equal to . Then, let

Now, (22) stands with

(25)

Such a matrix will be given in section c of the Ap-
pendix.

C. Choice of an Appropriate Rotation Matrix

First, note that if , the last row of is . From
now on, suppose that . A first step toward the obten-
tion of the rotation matrix will be the computation of
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a unitary vector such that . Con-
sider the -dimensional vector

and the scalar

Then, a direct calculation shows that the vector

satisfies the homogenous equation , and
so does the normalized vector5

phase

The phase shift is chosen so that (this choice will
be explained below).

Now, we are looking for a rotation matrix whose
last row is (so that the last row of is ).
An appropriate choice for is a product of Givens
rotations,6 as defined in (26) (because it would be the classical
way of zeroing the last row of if its first rows had an
exact upper-triangular structure).

. . .

. . .

. . . (26)

Then, it can be easily shown that the last row of is
equal to

5Note that www(t) cannot be equal to 0 since either vvv(t) 6= 0 or vvv(t) = 0,
which yields �(t) 6= 0.

6Note that these Givens rotations are not real but complex transformations.
Their orthonormality is guaranteed if

• c (t) � 0;
• jc (t)j + js (t)j = 1.

where for , and
. To make this row equal to , the coefficients

and can be computed recursively as

for down to

Note that all the are non-negative numbers so that
. Therefore, it can be noticed that was

a necessary condition to guarantee the equality between
and the last row of (this condition was sufficient
because of the orthonormality of both row vectors).

Finally, the matrix defined in (25) is expressed as a
product of only Givens rotations. Therefore, can
be computed using (22) in only operations (by recursively
applying the Givens rotations). Consequently, the whole first
iteration is reduced to linear complexity (see Table V).7 , 8

D. Modification of the Second Iteration

Contrary to , it will now be shown that can be
made exactly upper triangular in operations. Indeed, sub-
stituting (19) and (20) into (13) and (14) shows that sat-
isfies the recurrence

... (27)

where

...

It can be noticed that the first member of (27) is an exact QR
factorization of the second one. Therefore, and
can be obtained by computing this QR factorization instead of
using (14).

Moreover, is an upper triangular plus rank-one matrix.
It is well known that the QR factorization of such a matrix can
be achieved using only Givens rotations.

7Note that the vector RRR (t� 1) hhh(t) can be computed in 4r operations
using simple back substitution, since RRR (t � 1) is triangular.

8The pseudo-code for SWASVD3 in Table V should not be implemented as it
is. An efficient implementation should recursively apply all the Givens rotations
without storing them in memory.
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TABLE V
ULTRA-FAST SLIDING WINDOW ADAPTIVE SVD ALGORITHM (SWASVD3)

Now, consider this fast QR factorization:

Finally, the QR factorization of gives

... (28)

and (27) and (16) now stand with

(29)

Since is a product of Givens rotations, it can be
shown that the QR factorization in (28) can be achieved using

only Givens rotations.9 Therefore, the whole QR factoriza-
tion in (27) requires only Givens rotations, i.e.,
operations. Then, the matrix can be computed using (16)
in operations (by recursively applying the Givens rota-
tions). Finally, the whole second iteration is reduced to linear
complexity (see Table V).

It can be seen that the dominant cost of SWASVD3 is
. Although this complexity is linear in , the

multiplicative factor is quite high. Therefore, this algorithm
is less computationally demanding than SWASVD2 only for
high values of (for instance, if is much smaller than ,
SWASVD3 is faster than SWASVD2 for all ; in the
general case, is a sufficient condition).
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